
Degree Project in Computer Science

Second cycle, 30 credits

Drone Detection using Deep
Learning
YATING LIU

Stockholm, Sweden, 2023

Drone Detection using Deep
Learning

YATING LIU

Master’s Programme, Computer Science, 120 credits
Date: February 8, 2023

Supervisor: Mårten Björkman
Examiner: Erik Fransén

School of Electrical Engineering and Computer Science
Host company: Skysense AB

© 2023 Yating Liu

Abstract | i

Abstract
Drone intrusions have been reported more frequently these years as drones
become more accessible in the market. The abuse of drones puts threats to
public and individual safety and privacy. Traditional anti-drone systems use
radio-frequency sensors widely to get the position of drones. In this thesis,
deep-learning-based detection algorithms on surveillance cameras have been
investigated to be integrated into the RF anti-drone system. The objective
of the thesis is to evaluate state-of-the-art models and training strategies for
drone detection. The main challenges in this thesis were detecting small drone
targets at long distances and running the model in real-time. It is difficult to
find a publicly available dataset of small drones online, so a real-world small
drone dataset was constructed and used in this thesis. Different versions of
YOLO were compared and tested on the real-world dataset. Modifications on
the detection heads of the models were conducted to examine their effects on
small object detection. The method of tiling on datasets was also adopted to
help with the detection of small drones. Images from different sources were
trained and added to compare with the model trained with only one source.
Bird images were added to the training dataset in different ways for reducing
the false positives when birds were included in the test set.

In conclusion, YOLOv5n and YOLOv5m overall yielded the best results
in precision, recall, and inference speed. The additional detection head on
shallow layers at small scales can improve the precision at the cost of recall
and inference time. However, it was not effective when the objects were
extremely small. The tiling approach yielded the most effective improvement
in increasing the recall value of the model. Adding bird images into the
training dataset as background had better precision and recall value than
adding annotated birds as a separate class in training. Training without
extremely small drones and birds helped improved the precision metric, while
the recall value would decrease. Further study is required to examine the
generality of the results in all types of drones.

Keywords
Drone Detection, Real-time Tracking, Deep Learning, Computer Vision,
Small Object Detection, YOLO

ii | Abstract

Sammanfattning | iii

Sammanfattning
Drönarintrång har rapporterats oftare dessa år allteftersom drönare blir
mer tillgängliga på marknaden. Missbruket av drönare utgör ett hot
mot allmänhetens och individens säkerhet och integritet. Traditionella
antidronesystem använder radiofrekvenssensorer i stor utsträckning för att få
reda på drönarnas position. I denna avhandling har djupinlärningsbaserade
detektionsalgoritmer för övervakningskameror undersökts för att integreras
i RF-antidrönarsystemet. Syftet med avhandlingen är att utvärdera state-
of-the-art modell och träningsstrategier för drönardetektering. De största
utmaningarna i denna avhandling var att upptäcka små drönarmål på långa
avstånd och att exekvera modellen i realtid. En verklighetsbaserad mindre
drönardatauppsättning konstruerades. Olika versioner av YOLO jämfördes
och testades på den verkliga datamängden. Modifieringar av modellernas de-
tektionshuvuden genomfördes för att undersöka deras effekter på detektering
av små föremål. Metoden för så kallad tiling av datauppsättningar prövades
också för att hjälpa till med upptäckten av små drönare. Bilder från olika
källor tränades och lades till för att jämföra med modellen tränade med endast
en källa. Fågelbilder lades till datasetet på olika sätt för att minska de falska
positiva i de fall fåglar även fanns med i testdatamängden..

Sammanfattningsvis gav YOLOv5n och YOLOv5m totalt sett de bästa
resultaten i precision, recall-värde och beräkningshastighet. Det extra
detekteringshuvudet på grunda lager i små skalor kan förbättra precisionen
på bekostnad av återkallelse och beräkningstid. Det var dock inte effektivt
när föremålen var extremt små. Tiling-metoden gav den mest effektiva
förbättringen för att öka recall-värdet hos av modellen. Att lägga till fågelbilder
i träningsdatauppsättningen som bakgrund hade bättre precision och recall-
värdet än att lägga till kommenterade fåglar som en separat träningsklass.
Träning utan extremt små drönare och fåglar bidrog till att förbättra
precisionsmåttet, medan recall-värdet skulle minska. Ytterligare studier krävs
för att undersöka generella resultaten i alla typer av drönare.

Nyckelord
Drönardetektering, Realtidsspårning, Deep Learning, Computer Vision, Small
Object Detection, YOLO

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to thank Mårten Björkman and Erik Fransén for giving academic
guidance throughout the degree project. I would also like to thank Peng Wang
for allowing me to conduct my degree project at Skysense AB. It was a great
pleasure to work at Skysense for a few months with encouraging colleagues
and other master thesis students. Finally, I would like to thank all my friends
and my family for supporting me during my studies.

Shanghai, January 2023 Yating Liu

Stockholm, February 2023
Yating Liu

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 2
1.4 Ethics and Sustainability . 2
1.5 Research Methodology . 3
1.6 Delimitations . 3
1.7 Structure of the thesis . 4

2 Background 5
2.1 Drone Detection . 5

2.1.1 Non-Optical Approaches 5
2.1.2 Optical Approaches 6

2.2 Deep learning in Object Detection 6
2.2.1 Two-stage Object Detection 6
2.2.2 One-stage Object Detection 7

2.3 YOLO . 8
2.4 Small Object Detection . 10

2.4.1 Prediction pyramid 10
2.4.2 Tiling . 10

2.5 Related Works . 11

3 Methods 12
3.1 Data Collection . 12

3.1.1 Publicly available dataset 12
3.1.2 Real-world dataset 13

3.2 Tiling . 13
3.3 Evaluation Metrics . 16

3.3.1 Inference Time . 16

viii | Contents

3.3.2 Precision and Recall 17
3.4 Statistical Analysis . 18
3.5 Experiments . 19

3.5.1 SOTA model selection 19
3.5.1.1 YOLO family benchmarking 19
3.5.1.2 Impact of adding or deleting detection heads 19

3.5.2 Impact of tiling . 21
3.5.3 Impact of camera . 22
3.5.4 Impact of adding bird images and annotations 22

3.6 System Documentations . 22
3.6.1 Hardware Specifications 22
3.6.2 Environment . 23
3.6.3 Hyperparameters . 23

4 Results and Analysis 25
4.1 SOTA model selection . 25

4.1.1 YOLO family benchmarking 25
4.1.2 Impact of adding or deleting detection heads 26

4.2 Impact of tiling . 27
4.3 Impact of camera . 31
4.4 Impact of adding bird images and annotations 37
4.5 Impact of object size and additional detection head 45

5 Discussion 47
5.1 SOTA model selection . 47

5.1.1 YOLO family benchmarking 47
5.1.2 Impact of adding or deleting detection heads 48

5.2 Impact of tiling . 48
5.3 Impact of camera . 49
5.4 Impact of adding bird images and annotations 50

6 Conclusions and Future work 53
6.1 Conclusions . 53
6.2 Future work . 54

References 55

List of Figures | ix

List of Figures

2.1 An example of two-stage object detection structure: Faster R-
CNN . 7

2.2 An example of one-stage object detection structure: YOLOv3 . 8
2.3 YOLOv3 Structure . 9

3.1 Tiling Strategy . 14
3.2 Eight tiles of a sample image 15
3.3 Example for YOLO format calculation 16
3.4 Example for calculating IoU 17
3.5 Structure of YOLOv5 . 20
3.6 Simplified structure of YOLO 20
3.7 Simplified structure of YOLO with additional detection head . 21
3.8 Simplified structure of YOLO with additional detection head

and without detection head for large object 21

4.1 Nemenyi Test for test results of YOLO family 26
4.2 Nemenyi Test for test results of YOLOv5n model and its

variations . 27
4.3 Data visualization of AXIS dataset without tiling: Position of

labels (left) and Relative object size (right) 28
4.4 Data visualization of tiled AXIS dataset with tiling: Position

of labels (left) and Relative object size (right) 28
4.5 Nemenyi Test for test results of training on original or tiled

images . 29
4.6 Precision decreased and recall increased when the model

trained with original size images was tested with tiled images . 30
4.7 Precision decreased and recall increased when the model

trained with tiled size images was tested with tiled images . . . 31
4.8 Data visualization of tiled AXIS dataset: Position of labels

(left) and Relative object size (right) 32

x | List of Figures

4.9 Data visualization of tiled PhoneHD dataset: Position of
labels (left) and Relative object size (right) 33

4.10 Data visualization of tiled Phone4K dataset: Position of labels
(left) and Relative object size (right) 33

4.11 Data visualization of tiled SimUAV dataset: Position of labels
(left) and Relative object size (right) 33

4.12 Sample images from four datasets 34
4.13 Nemenyi Test for test results of training on images taken by

different cameras . 36
4.14 Data visualization of bird dataset: Position of labels (left) and

Relative object size (right) 37
4.15 Nemenyi Test for test results of training with bird images and

labels . 38
4.16 Nemenyi Test for test results of omitting images with

extremely small drones and birds 41
4.17 Different detection results when removing images with small

objects. The object in the image is a bird. 42
4.18 Different detection results when removing images with small

objects. The object in the image is a drone. 43
4.19 Nemenyi Test for test results of omitting more images with

small drones and birds . 44
4.20 Nemenyi Test for test results of YOLOv5n model and its

variations (-8) . 46
4.21 Nemenyi Test for test results of YOLOv5n model and its

variations (-16) . 46
4.22 Nemenyi Test for test results of YOLOv5n model and its

variations (-32) . 46

List of acronyms and abbreviations | xi

List of acronyms and abbreviations

FPN Feature Pyramid Networks

HOG Histogram of Oriented Gradients

PAN Path Aggregation Network
PTZ Pan-Tilt-Zoom

RCNN Region Based Convolutional Neural Networks
RF Radio Frequency

SAPP Skysense Airspace Perimeter Protection
SOTA state-of-the-art
SSD Single Shot Detector
SURF Speeded Up Robust Features

UAV Unmanned Aerial Vehicle

YOLO You Only Look Once

xii | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become
more accessible to customers, increasing the risks to the airspace of airports,
prisons, power plants, and governments. Early this year in Sweden, two
nuclear plants, the parliament, and the royal palace were intruded on by
mysterious drones, raising the public’s and the police’s concerns about
Sweden’s preparedness against drones [1]. If the intruding drones are not
detected and stopped at an early stage, the infrastructure may suffer from
privacy leaks, aircraft collisions or other incidents. Traditional technologies
used in drone tracking systems involve radar or radio-frequency detection,
but these methods are not accurate when the drone is at a place with signal
interference or the received signal is blocked. To verify the accuracy of the
radio-frequency-based anti-UAV system and provide visual cues for security
personnel, Skysense AB is seeking a way to integrate a Pan-Tilt-Zoom (PTZ)
camera into the drone tracking system, where the camera can track the drone
and show the real-time drone detection results with bounding boxes in video
streams.

1.1 Background
This thesis will be carried out at Skysense AB, the leading company in
anti-UAV technology in Sweden. Skysense currently possesses a drone
surveillance system Skysense Airspace Perimeter Protection (SAPP) based on
radio frequency, which can detect and tracks drones up to 3 kilometers away.
So far, the system can output the position of the drone in radian angle form,
while there is a lack of approach to show the visual information of the drone
from a real-world perspective. To make the system more straightforward for

2 | Introduction

users, a PTZ camera needs to be integrated into SAPP that can automatically
detect the drone according to the angle position from SAPP and move the
camera viewpoint to keep the drone in the center of the frame. The scope of
this thesis will focus on dataset construction and deep-learning model training
for drone detection.

1.2 Problem
To meet the requirements of the camera system, the model should be fast
enough to detect the drone in real time because drones can be fast-moving
in frames. In order to have effective detection, the model is desired to detect
drones when they are at distance at an early stage, so the drones in the image
will be very small in pixels.

The research questions that will be investigated in this thesis include:

• What metrics are appropriate for evaluating drone detection perfor-
mance?

• Which state-of-the-art (SOTA) model is best for real-time drone
detection?

• How to improve the detection precision of small drones?

• How to reduce false positives caused by birds?

1.3 Purpose
Drone detection and surveillance have gained more and more attention as
the usage of drones grows. The purpose of this thesis is to examine the
performance of the SOTA models and different training strategies for drone
detection. Companies or individuals who would like to implement drone
detection on a camera may use this thesis as a guide for data collection, model
selection, and training.

1.4 Ethics and Sustainability
The dataset used in the thesis contains both publicly available data and private
data collected by Skysense AB, which will not be published publicly but can be
included as examples in this thesis. The public dataset of drones is a synthetic

Introduction | 3

dataset that only contains drones and virtual backgrounds, so there is no human
involved. The bird dataset and manually collected dataset by Skysense were
also checked to ensure that no human was included. There is also no offensive
or prejudiced label categories in these datasets. Since all the models are trained
and tested on NVIDIA Agx Xavier, the experiment results may differ due to
different hardware.

Another aspect regarding ethics in this thesis is to improve the anti-
drone systems by adding visual aids, which can extend the target users
from technicians to people with no professional knowledge of radar or radio
frequency. With lower technical obstacles for users, more individuals and
companies are able to protect critical infrastructure and privacy from drone
intrusion. Infrastructures such as airports and nuclear plants don’t need to
be shut down or interrupted if they could stop drone intrusion in advance.
Such intrusion prevention systems can save a lot of human resources as well
as natural resources, obtaining sustainability.

1.5 Research Methodology
The methodology approaches in this thesis begin with the data collection by
downloading publicly available drone datasets and manually creating drone
datasets at Skysense AB. By doing a literature review, several SOTA models
are selected as candidates for benchmarking. Then some modifications to
the model and dataset are applied to see if they can improve the detection
performance. Different training strategies are tested by training models from
scratch with different training sets.

1.6 Delimitations
The final deliverable to Skysense AB will be a system that can receive the
angle information from SAPP and center camera to the drone according to
the detection result, but this thesis will not cover the camera control design
or system design. The scope of the thesis is limited to object detection model
performance evaluation and improvements. Since there is only one camera
implemented at Skysense, the camera will only track one drone at a time
if there are multiple detections. The system also does not need to identify
whether the tracked target is the same instance. The drone type in this thesis
only contains DJI Mavic because other types of drones are not in a good
condition to fly at Skysense. All the images in the dataset are taken in daytime,

4 | Introduction

so the model and the system are not expected to work in the evening.

1.7 Structure of the thesis
Chapter 2 presents relevant background information about popular models on
generic object detection and relevant literature on drone detection. Chapter 3
presents the methodology and method used to solve the problem, including the
description of the dataset, evaluation metrics, the structure of the model, and
experiment hardware and environment. Chapter 4 will show the results of the
experiments. The results will be discussed in Chapter 5. Chapter 6 includes
a conclusion about the thesis and a discussion about future work.

Background | 5

Chapter 2

Background

2.1 Drone Detection
The industrial and academic approaches to detect drone involve non-optical
approaches using acoustics [2], radar [3] and radio frequency [4], and optical
approaches which identify drones depending on extracted features from photos
and videos [5] [6].

2.1.1 Non-Optical Approaches
Acoustics Detection The acoustic features of rotors of drones can be used to
differentiate drones from surroundings [2]. Various sounds, including drones,
airplanes, birds, and thunderstorms, are collected by microphone arrays and
passed to algorithms to identify whether there is a drone based on high-
frequency features [2]. However, this technique is not feasible in areas with
much noise such as airports and urban [7].
Radar Detection Radar has been common in detecting large aerial vehicles
like airplanes. Doppler radar is also modified to capture the frequency shifts
of rotors and wing motions of drones in drone detection [3], while such
modifications can introduce more noise and make it difficult to differentiate
among drones, birds, and background clutter [8].
Radio Frequency detection Drones use Radio Frequency (RF) signals to
communicate with the ground pilot and send videos to the controller. The RF
signal can be captured and analyzed using method such as machine learning
[9]. The detection of RF signals is effective and can be done at long distances,
which makes it a common way of drone detection in the market [8].

6 | Background

2.1.2 Optical Approaches
Compared with the approaches presented previously, optical approaches
are considered to be more convenient, intuitive, and economic. Optical
approaches can be separated into two categories depending on how they extract
the features for object detection and classification.
Approaches using handcrafted feature extraction The traditional ap-
proaches of object detection are based on handcrafted feature extractions
and machine learning algorithms [10]. These approaches first use methods
like background subtraction to find the area of interest [11]. In these
applications, the majority of the cameras are quasi-static, which means the
cameras move very slowly or do not move at all, and only targets move in the
video streams [12]. Then feature descriptors such as Histogram of Oriented
Gradients (HOG)) [11], Fourier descriptors [5], and Speeded Up Robust
Features (SURF) [13] are extracted and sent to classifiers for classification
and recognition. These methods usually take a shorter time but have a lower
recognition rate compared to deep learning approaches.
Approaches using deep learning Deep learning in object detection has been
extensively used nowadays. The feature extractions of deep learning methods
are usually realized by convolutional layers, which are able to extract the
higher-level semantic features of images besides the features from raw pixels.
As a result, deep learning can generate better hierarchical features [10]. Many
SOTA models have been tested and benchmarked for drone detection tasks [6]
[14]. In this thesis, one of the goals is to test and compare some new SOTA
objection models according to our drone detection requirements.

2.2 Deep learning in Object Detection
In the research area of computer vision, there are mainly three tasks:
classification, detection, and segmentation. Our purpose of plotting a
bounding box enclosing a drone in frames needs information about what and
where is the object in the picture, falls in the detection category. There are
two kinds of models for object detection in deep learning: two-stage detectors
and one-stage detectors.

2.2.1 Two-stage Object Detection
The two-stage detectors are composed of two stages, where the first stage is
used to generate a set of regions that may contain the target objects, and the

Background | 7

second stage classifies the proposed regions and produces bounding boxes.
Typical two stage SOTA models are Region Based Convolutional Neural
Networks (RCNN) [15], Fast RCNN [16] and Faster RCNN [17]. The structure
of Faster RCNN is shown in Figure 2.1. The backbone of the model is a
convolutional neural network, typically VGG-16 or ResNet, which produce
feature maps. The Region Proposal Network generate proposals of locations
where the objects would possibly occur. The RoI pooling takes the proposals
and corresponding feature maps and do the max pooling to produce fixed size
feature maps. The outputs from RoI pooling are then fed into the classifier
to predict the class of the object and draw the bounding box. Two-stage
detectors usually have higher accuracy than early one-stage detectors, while
their inference speeds are too slow to do real-time detection.

CNN: Convolutional Neural Network
RPN : Region Proposal Network
RoI : Regions of Interest

Figure 2.1: An example of two-stage object detection structure: Faster R-CNN

2.2.2 One-stage Object Detection
One-stage object detectors drop the region proposal phase of two-stage
detectors and predict the bounding boxes and class of an object at the same
time. Without losing much accuracy in detection, the one-stage detectors are
fast enough to do real-time detection. The two popular one-stage detectors
You Only Look Once (YOLO) [18] and Single Shot Detector (SSD) [19]
take advantage of multi-scale feature maps from Feature Pyramid Networks
(FPN) and anchor boxes to make predictions of the class of object and
regression of bounding boxes on grid cells [6]. With further improvements in
YOLO, the accuracy of the one-stage detector has been improved and become
popular because of its good performance in both accuracy and inference speed.
Figure 2.2 shows a classsic one-stage detector YOLOv3. Instead of generating
proposals of objects’ locations with neural networks, Yolov3 divides images
into a grid of cells in three scales, and each cell predicts the anchor boxes and
the class probabilities.

8 | Background

FPN: Feature Pyramid Networks

Figure 2.2: An example of one-stage object detection structure: YOLOv3

2.3 YOLO
In the past few years, the YOLO series algorithms have been updated to
YOLOv5. The first three versions of YOLO were all proposed by the same
author, and YOLOv3 was the one with big improvements in detection accuracy
and inference speed [18]. YOLOv3 adopted Darknet53 as the backbone,
utilized feature pyramid networks (FPN) as the neck. The backbone uses
convolution layers to extract features from the input images, and the neck
combines the features from previous convolution layers using up sampling
[18]. The head also uses a pyramid structure, which make predictions of
bounding boxes at three different scales (82nd layer, 94th layer and 106th
layer) on the three feature maps generated from the neck [18]. The three
output feature maps are of size 13×13, 26×26 and 52×52. The 13×13 layer
is responsible for detecting large objects and 52×52 layer is responsible for
detecting small objects. Each scale uses 3 pre-defined anchor boxes on each
cell’s center for predicting bounding boxes. In addition, skip connections are
used to fuse the residuals between layers to improve the accuracy of detection
[20]. The object class prediction and confidence are predicted using logistic
regression [18].

Background | 9

Conv : convolutional layer(s)
s2 : with stride of 2

Residual Block: repeated convolutional layers with ResNet structure
batch size : the output size of the block

Figure 2.3: YOLOv3 Structure

In 2020, two new versions of YOLO, YOLOv4 and YOLOv5, have
been released by two different research teams. Both models have
shown improvement in performance. YOLOv4 changed the backbone to
CSPDarknet53 for feature extraction, replaced the neck of YOLOv3 with
the combination of FPN and Path Aggregation Network (PAN) and also
explored alternatives in many other aspects of YOLOv3, including activations,
bounding box loss, data augmentation, regularization methods, etc., [21].
YOLOv5 has gained more popularity because besides trying to change the
basic components of the networks, it has released different sizes of models and
implemented the models in Python and Pytorch instead of C [22]. YOLOv5
provides models in five different scales: N, S, M, L, and X which stand for tiny,
small, medium, large, and extra-large. The larger model has deeper networks
and wider channels, meaning it has more layers and filters, while the structures
of those five models are basically the same.

10 | Background

2.4 Small Object Detection
One of the challenges in object detection is detecting small objects. The
definition of small objects here can be that they are either small in the real
world or appears small in an image. The small object challenge in drone
detection and tracking falls into the second category. A small object is defined
as an object less than 32×32 pixels or the height and width occupy less than
10% of the width and height of the original image [14]. The small objects
in images with low resolution usually lack distinctive shapes and textures,
making detection more difficult. In recent years, many approaches have been
proposed to improve small object detection.

2.4.1 Prediction pyramid
From YOLOv3, the models in YOLO family use a structure called prediction
pyramid which combines the features extracted from both shallow and deep
layers to make predictions. The models predict bounding boxes at three
different scales on hierarchical feature maps [18]. In the deep layers of
the network, the feature maps have larger receptive fields and rich semantic
information, which is good for large object detection [23]. The feature maps
produced from shallow layers contain small receptive fields, but the rich
information of location and edges are preserved, which is better for small
object detection [23].

2.4.2 Tiling
Object detection networks have different input sizes. For example, the input
sizes of YOLOv3 and YOLOv4 are 416 × 416 pixels, while YOLOv5 takes
640 × 640 pixels as its input image sizes. When the input image is larger than
the input sizes of the network, the image has to be resized to fit the network.
For example, an image (1280 × 1280 pixels) with a drone (16 × 16 pixels) is
passed to YOLOv5 as input, the image will then be resized to 640 × 640 pixels
to fit the network. As a result, the drone will become 8 × 8 pixels. Moreover,
the features of a small object would become extremely small or even vanish
after it is operated by convolution layers and max-pooling layers, making it
difficult to predict.

The method of tilling input images divides the image into patches and
passes each patch to the network independently [24]. In this way, the operation
of resizing the input image can be skipped and the detailed features can be

Background | 11

preserved since the resolution of the objects remains unchanged. However,
the inference time will increase a lot because we need to feed every patch of
the image into the network, and we also need extra time to crop the image and
merge the predicted bounding boxes.

2.5 Related Works
A performance benchmark study on detecting drones has been done in [6]. It
compares the mean average precision among Faster RCNN, SSD, YOLOv3
and DETR trained by three different datasets, and YOLOv3 overall yields the
best performance in precision and inference speed [6]. In [25], the inference
speed of YOLOv3 is improved by minimizing the number of filters while
keeping the number of layers, and the detection of small drones is ensured
with an additional camera with an external professional zoomed lens. It is not
feasible in this thesis because there is only one camera available. Moreover,
the performance of YOLOv4 and YOLOv5 are not included in these papers
because YOLOv4 and YOLOv5 have not been released at that time. In [26],
background subtraction is applied to the images before they are passed to
YOLOv5s. However, the inference speed of the model is decreased and the
background subtraction can only work on a fixed camera. Moreover, most of
the drones in [26] are larger than 30 pixels × 30 pixels, which are of medium
and large sizes. In the 2020 Drone vs. Bird Detection Challenge, two of
the best three teams have tested YOLO in their work[27]. One team tested
YOLOv5s and stopped investigating further because YOLOv5s did not give
good detection results. The other team used YOLOv3 with Spatial Pyramid
Pooling. They trained the model with real images and generated synthetic
images with drones and birds, while the images are only annotated with drones.
The synthetic images only improved the average precision by 0.2%. The team
also applied tiling to the images, but the comparison of the model performance
with and without the tiling strategy is not shown.

12 | Methods

Chapter 3

Methods

The purpose of this chapter is to provide an overview of the research method
used in this thesis. Section 3.1 focuses on the data collection construction
for this research. Section 4.2 illustrates how an image was tiled. Section 3.3
describes the metrics used to evaluate how good a model is. Section 3.5
describes the experimental design. Section 3.6 describes the hardware types,
software environments, and model hyperparameters.

3.1 Data Collection
The data used in the thesis were composed of real-world data and publicly
available data. The real-world data was collected by myself at Skysense. The
publicly available data was downloaded from the Internet. All the labels were
converted to or created in YOLO format, which will be explained in 4.2.

3.1.1 Publicly available dataset
In this thesis, two datasets from online open resources were used. One was
SimUAV [23], and the other one was Wild Bird dataset [28].

When searching the online drone dataset, it was found that few of the
existing drone datasets contained drone targets in small sizes, or explicitly
annotated different types of drones as different categories. The SimUAV
dataset is a simulated drone dataset implemented by Airsim and UE4 [23].
Airsim is a drone simulator, and UE4 is used to create different environments
for drones to fly in [23]. In this dataset, the author used four kinds of drone
models including Parrot A.R. Drone, DJI Inspire I, DJI Mavic 2 Pro and DJI
Phantom 4 Pro, and they were annotated with different labels. There were

Methods | 13

4,095 images in SimUAV dataset that only contain DJI Mavic 2 Pro, which
was used in this thesis to compare how the performance of the model would
be if the training data is taken by a camera that is different from the test data.
The images in this dataset were all 640 × 640 pixels.

Wild Bird dataset was collected at a wind farm in Japan with a digital still
camera [28]. The resolution of the images was 5616 × 3744 pixels. There
were 2,371 images that contained bird annotations in this dataset. The images
were used to investigate whether adding bird images and annotations in the
training set would improve the performance of the model in distinguishing
drone and bird.

3.1.2 Real-world dataset
In this thesis, a realistic drone dataset was constructed with the help of
Skysense and Molar Data. Videos of a DJI Mavic 2 Pro flying from 5 meters
to 200 meters were taken using AXIS Q6215-LE (1920 × 1080 pixels) and
iPhone (1920 × 1080 pixels and 4096 × 2160 pixels). Images were extracted
from the video at the rate of 10 frames per second. There were 9,000 images
in total (each camera had 3,000 images), and there was one and only one drone
in each image. After the implementation of the system with the model trained
by the above images, it was found that the model sometimes recognized birds
as drones. Therefore, some additional images of birds were taken using AXIS
Q6215-LE. Since controlling a bird or anticipating when and where they would
appear, only 1,069 images of birds was taken, which was much fewer than the
drone images.

3.2 Tiling
To boost the model performance on drone detection when the drone was small
in the image, the method of image tiling was used. To prevent any miss of
objects on the edge of the borders of tiled images, the cropped contiguous
images need to have overlaps, and the length of overlaps should be longer than
the width and height of the annotated bounding boxes in the dataset.

The resolution of the AXIS camera Q6215-LE was 1920 × 1080 pixels
and the input image size of YOLOv5 was 640 × 640 pixels. In our thesis,
each image in the dataset was cropped into 8 tiles, with 2 tiles in the vertical
direction and 4 tiles in the horizontal direction. The width and height of the
tile were both 640 pixels, which was the input image size of YOLOv5 model.

14 | Methods

The formula for calculating the overlaps among evenly distributed tiles is

LO =
nLtile − Limage

n− 1
.

where LO is the length of the overlap, n is the number of tiles in that direction,
Ltile is the length of a tile in that direction, Limage is the length of the original
image in that direction.

According to this formula, the length of the overlap between the vertically
contiguous tiles is 200 pixels, which is perfect because it is an integer.
However, from this formula, the length of the overlap between the horizontally
contiguous tiles is 213.3̇ pixels, such precision is difficult to achieve. Instead,
the length of the three overlaps were manually designed to 200, 200, and 240
pixels to make the tiling more precise and easier to calculate. Figure 3.1
illustrates how an image is tiled. Figure 3.2 shows what the tiles of an image
look like.

Figure 3.1: Tiling Strategy

Methods | 15

Figure 3.2: Eight tiles of a sample image

After tiling, the labels of the image also need to be adjusted to their new
coordinates. All the labels of the original images are in YOLO format. For
every image, there is a .txt file with the same name containing annotations of
the objects, including the object class, x-y coordinates, width, and height. The
last four values x, y, w, h are calculated in the equations below. The coordinate
system uses pixel indices, where a pixel is a base unit. The origin lies at the
top left corner of the image and the indices increase from left to right and
top to bottom. The object class is an integer, and the rests are floats between
0 and 1, which are calculated as follows, and an example can be found in
Figure 3.3. (xmin, ymin) is the coordinate of the top-left corner of the bounding
box. (xmax, ymax) is the coordinate of the bottom-right corner of the bounding
box. wimage is the width of the image and himage is the length of the image.

x =
xmin + xmax

2

1

wimage

y =
ymin + ymax

2

1

himage

w =
xmax − xmin

wimage

h =
ymax − ymin

himage

16 | Methods

Figure 3.3: Example for YOLO format calculation

Since the x, y coordinates, the image height, and the image width all change
in a new tile, we need to shift the annotations according to which tile they are
in.

3.3 Evaluation Metrics
In this thesis, three evaluation metrics were used to evaluate the performance
of models. They are inference time, precision, and recall.

3.3.1 Inference Time
The drone tracking system needed to be real-time, so the average inference
time of models was calculated using a test dataset. To ensure a good user
experience, the frames per second should be higher than 10, which means the
inference time of the model should be less than 100 ms/frame. Moreover, the
tiling increases the number of times to run the model. For each image, 8 tiles
would be passed into the model, so to make the object detection fast enough
for real-time tracking, the inference speed of the model should be less than
12.5 ms/tile.

Methods | 17

3.3.2 Precision and Recall
The concept of Intersection of Union (IoU) was introduced to measure
the performance of the object detection model. IoU is calculated as the
intersection divided by the union of the two bounding boxes: ground truth
bounding boxes and predicted bounding boxes (Figure 3.4). The ground truth
bounding boxes are manually annotated and the predicted bounding boxes are
the outputs of the model.

Figure 3.4: Example for calculating IoU

The higher the IoU, the more closely the predicted bounding box resembles
the ground truth bounding box. A threshold is set to determine if the detected
object is valid. In this thesis, the threshold is set to 0.65. In that case:

• If IoU ≥ 0.65, the detected object is valid and classified as True Positive
(TP).

• If IoU ≤ 0.65, the detected object is not valid and classified as False
Positive (FP).

• The case when the model fails to detect the ground truth in the image is
classified as False Negative (FN).

• Every part that does not have ground truth and detected objects are
classified as True Negative (TN).

Precision (P) and Recall (R) are calculated from true positives (TP), false
positives (FP) and false negatives (FN).

P =
TP

TP + FP

18 | Methods

R =
TP

TP + FN

Precision tells whether the detections are correct, and recall tells whether
the detection can detect all the objects.

Ideally, we want both the precision and recall to be high, so the drone
tracking system won’t track a wrong object or miss a drone. In some cases,
customers would not want any false alarms and may prefer a model with very
high precision and do not care about the recall. Other customers that would
like to track every suspicious target may want a model with high recall and
allow reasonable false alarms.

3.4 Statistical Analysis
Friedman test and post hoc Nemenyi test were performed to compare the
performance of different models in Python [29]. Each dataset was shuffled
three times and recorded as D1, D2, and D3 for example. D1, D2, and D3
were then divided into the train, validation, and test sets. A model was trained
and tested on D1, D2, and D3 separately and average values and standard
deviations of the evaluation metrics were listed in this report. The results
of each evaluation metric of a model belonged to one group. Afterward, the
Friedman test was performed on the evaluation metrics of different models
on each dataset. The Friedman test is used to validate significant differences
among different models. The Friedman Test follows the hypothesis below:

• The null hypothesis (H0): The mean value for the evaluation metric of
the groups is equal.

• The alternative hypothesis (Ha): At least one of the evaluation groups’
evaluation metrics differs from the others.

If the p-value of the Friedman test was larger than 0.05, the null hypothesis
would be rejected. Then, a post hoc test, the Nemenyi test, would be conducted
to find which two groups were different. The p values in this test described
whether there was a statistical difference between the two groups. If the p-
value of the evaluation metrics of the two groups was smaller than 0,05, the
two models of the two groups had a statistically significant difference in the
evaluation metric.

Methods | 19

3.5 Experiments

3.5.1 SOTA model selection
In this section, two experiments were designed to find which YOLO model is
best for detecting drones in real time. The first experiment was to compare the
performance of YOLOv3, YOLOv4, and YOLOv5. The second experiment
was to test whether adding or deleting the detection head would improve the
performance of models.

The 3,000 real-world images taken by AXIS are randomly divided into
training, validation, and test datasets. The portion of the train, validation and
test datasets is 8 : 1 : 1.

3.5.1.1 YOLO family benchmarking

YOLOv5 provides models in five different scales: N, S, M, L and X which
stands for tiny, small, medium, large and extra-large. All five models together
with YOLOv3 and YOLOv4 were trained from scratch for 300 epochs on GPU
with batch size 16.

3.5.1.2 Impact of adding or deleting detection heads

Further modifications were applied to the best model selected from the
previous experiment. From YOLOv3, YOLO family uses the prediction
pyramid system as the head of the network to make the prediction of the
bounding boxes. The system has three detection heads, gathering feature maps
at three different scales [18].

20 | Methods

Conv : convolutional layer(s)
CSP : Cross Stage Partial Network
SPPF : Spatial Pyramid Pooling-Fast
batch size: the output size of the block

Figure 3.5: Structure of YOLOv5

Figure 3.6: Simplified structure of YOLO

In this experiment, an additional detection head was added to the prediction
pyramid system in a low-level layer to test whether it would improve the
performance of detecting small objects. The detection head for detecting large

Methods | 21

objects was also deleted to see if it would affect the small object detection
performance.

Figure 3.7: Simplified structure of YOLO with additional detection head

Figure 3.8: Simplified structure of YOLO with additional detection head and
without detection head for large object

3.5.2 Impact of tiling
Every image from the train, validation and test dataset in previous experiments
was tiled into 8 pieces, and the labels of drones were also recalculated for each
tile. After tiling, 24,000 images were obtained. 4,247 images had a drone,
while the rest were background. The experiment in this section compared the

22 | Methods

performance of models trained on the original dataset and the tiled dataset.
The impact of training without background was also tested.

3.5.3 Impact of camera
Skysense would like to offer more camera options for customers, so the camera
type and resolution of images would not be restricted to AXIS Q6215-LE
1920×1080 pixels. In this experiment, how model performance would change
was tested when it was trained on a dataset taken by a different camera, or a
dataset that was simulated by a computer. The datasets used in this experiment
include images taken by iphone in HD mode and 4K mode and simulated drone
dataset SimUAV.

To investigate how many new images we need when we want to implement
a model on the new camera, an additional experiment was done with models
trained with merged datasets taken by phone in HD mode and AXIS.

3.5.4 Impact of adding bird images and annotations
When the tracking system with the model was tested at Skysense, the system
would track birds sometimes. To reduce the false positives caused by birds,
a bird dataset was constructed and trained together with images of drones.
The bird dataset consisted of images from two sources. One was taken by
AXIS at Skysense, which only had 1,069 images and 1,724 labels, while
tiled AXIS dataset had 4,274 images and 4,274 labels of drones. To avoid
the errors caused by imbalanced classes, the online bird dataset was added
to the bird dataset which had 3,268 images and 3,843 labels. The model
was trained with additional bird images with annotations as foreground and
background. Then, images with extremely small drones were omitted from
train and validation sets to test if it would reduce false positives. The YOLOv5
model with additional heads was also tested to see if the head would take effect
without extremely small detection targets.

3.6 System Documentations

3.6.1 Hardware Specifications
In this thesis, NVIDIA Jetson AGX Xavier Developer Kit was used for all
the development including data pre-processing, model training, and system

Methods | 23

programming. The specifications of NVIDIA Jetson AGX Xavier Developer
Kit are shown in the following Table 3.1.

Table 3.1: Hardware specifications of NVIDIA Jetson AGX Xavier

Components Specifications

CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3
GPU 512-core Volta GPU with Tensor Cores
Memory 32GB 256-Bit LPDDR4x | 137GB/s

3.6.2 Environment
The models are developed and tested under the environments shown in the
Table 3.2

Table 3.2: Environment Specifications

Name Version

Ubuntu 18.04
CUDA 10.2
OpenCV 4.1.1
torch 1.8.0
torchvision 0.9.0
numpy 1.13
matplotlib 3.3.4
pandas 0.22.0
scipy 0.19.1

3.6.3 Hyperparameters
All the YOLO models in this thesis use the same hyperparameters setting.

24 | Methods

Table 3.3: Hyperparameters Setting

Hyperparameters Values Comments

lr0 0.01 initial learning rate
lrf 0.01 final OneCycleLR learning rate (lr0 × lrf)
momentum 0.937 SGD momentum/Adam beta1
weight decay 0.0005 optimizer weight decay
warmup_epochs 3.0 warmup epochs (fractions ok)
warmup_momentum 0.8 warmup initial momentum
warmup_bias_lr 0.1 warmup initial bias lr
box 0.05 box loss gain
cls 0.5 cls loss gain
cls_pw 1.0 cls BCELoss positive_weight
obj 1.0 obj loss gain (scale with pixels)
obj_pw 1.0 obj BCELoss positive_weight
iou_t 0.20 IoU training threshold
anchor_t 4.0 anchor-multiple threshold
anchors 3 anchors per output layer (0 to ignore)
fl_gamma 0.0 focal loss gamma (efficientDet default gamma=1.5)
hsv_h 0.015 image HSV-Hue augmentation (fraction)
hsv_s 0.7 image HSV-Saturation augmentation (fraction)
hsv_v 0.4 image HSV-Value augmentation (fraction)
degrees 0.0 image rotation (+/- deg)
translate 0.1 image translation (+/- fraction)
scale 0.5 image scale (+/- gain)
shear 0.0 image shear (+/- deg)
perspective 0.0 image perspective (+/- fraction), range 0-0.001
flipud 0.0 image flip up-down (probability)
fliplr 0.5 image flip left-right (probability)
mosaic 1.0 image mosaic (probability)
mixup 0.0 image mixup (probability)
copy_paste 0.0 segment copy-paste (probability)

Results and Analysis | 25

Chapter 4

Results and Analysis

4.1 SOTA model selection

4.1.1 YOLO family benchmarking
The different performances of YOLO models are shown in Table 4.1. The
extra large version of YOLOv5 crashed every time while training, so there is
no result of YOLOv5x. In YOLOv5 model collections, the larger the model is,
the better precision and recall it has. In all the valid results we have, YOLOv5l
has the best precision and recall but it is comparably slow, making it unsuitable
for tiling methods. The YOLOv5n model is the fastest model and also the only
model that can satisfy the time limit of tiling methods.

Table 4.1: Test results of YOLO family

Model Precision (%) Recall (%) Inference time (ms)

YOLOv3 93.1 ± 0.6 75.1 ± 0.4 102.1 ± 0.2
YOLOv4 93.3 ± 0.8 74.1 ± 0.6 25.0 ± 0.3
YOLOv5n 93.8 ± 0.5 72.6 ± 0.6 7.9 ± 0.2
YOLOv5s 95.4 ± 0.5 74.1 ± 0.8 19.4 ± 0.3
YOLOv5m 96.1 ± 0.3 75.6 ± 0.6 49.5 ± 0.2
YOLOv5l 98.8 ± 0.3 76.4 ± 0.2 101.4 ± 0.3
YOLOv5x N/A N/A N/A

p-value of the Friedman test 0.015 0.012 0.010

The p-values of Friedman tests on precision, recall and inference time
were all smaller than 0.05, so the precision, recall and inference time had

26 | Results and Analysis

statistically significant differences. Nemenyi test was done to find which
models had different mean of precision, recall and inference time. The results
were visualized in Figure 4.1.

(a) (b) (c)

Figure 4.1: Nemenyi Test for test results of YOLO family

In Figure 4.1a, only YOLOv3 and YOLOv5l had p-value less than 0.05, so
only YOLOv3 and YOLOv5l had significantly different means of precision.
For recalls, YOLOv5l and YOLOv5n had p-value 0.014 < 0.05, so the recall
of YOLOv5l was significantly greater than YOLOv5n. Although the average
inference time of YOLOv5n was very short compared to other models, it was
only significantly smaller than YOLOv3 according to the Nemenyi test.

4.1.2 Impact of adding or deleting detection heads
Contrary to expectation, adding a detection head that took advantage of the
feature maps with higher resolution had a negative impact on the performance
of the model in all evaluation metrics. By deleting the detection head for large
objects, the inference speed and recall became better but were still worse than
the original model. The results are shown in Table 4.2. YOLOv5n-P2345 is
the model with the additional detection head and YOLOv5n-P234 is the model
without the detection head for large objects.

Table 4.2: Test results of YOLOv5n model and its variations

Model Precision (%) Recall (%) Inference time (ms)

YOLOv5n 93.8 ± 0.5 72.6 ± 0.6 7.9 ± 0.2
YOLOv5n-P2345 93.4 ± 0.7 71.2 ± 0.4 10.5 ± 0.3
YOLOv5n-P234 90.0 ± 0.8 71.0 ± 0.8 9.9 ± 0.3

p-value of the Friedman test 0.049 0.086 0.049

Results and Analysis | 27

The p-values of Friedman tests on precision and inference time were
smaller than 0.05, while the recalls did not have statistically significant
difference. According to the post hoc Nemenyi tests in Figure 4.2, the
precision of YOLOv5n-P234 was significantly lower than YOLOv5n, and the
inference time of YOLOv5n-P2345 was significantly longer than YOLOv5n.
The results from the Friedman and Nemenyi tests both indicated that adding
or deleting detection heads of YOLOv5n would not improve the performance
of YOLOv5n.

(a) (b)

Figure 4.2: Nemenyi Test for test results of YOLOv5n model and its variations

4.2 Impact of tiling
The original AXIS dataset had 3,000 images and 3,000 labels. After tiling, the
number of images in the tiled dataset was 8 times the number of images in the
original dataset. The number of annotations was also increased because some
drones appeared in overlapping areas. There were 24,000 images in the tiled
AXIS dataset. 19,726 images in the tiled AXIS dataset were background, and
the rest 4,274 images were labeled with drones. By comparing the position of
labels in Figure 4.3 and Figure 4.4, drones became appearing on the corners of
the images instead of only appearing in the center of the images. Drones were
distributed more uniformly in images after tiling. The scale of the coordinates
of the relative size became larger in the right picture in Figure 4.4, meaning
that the same object took more portion of the image after tiling. Thus, the
relative object sizes were larger.

28 | Results and Analysis

Figure 4.3: Data visualization of AXIS dataset without tiling: Position of
labels (left) and Relative object size (right)

Figure 4.4: Data visualization of tiled AXIS dataset with tiling: Position of
labels (left) and Relative object size (right)

YOLOv5n model was trained and validated with original and tiled images
with and without background images. The results are shown in Table 4.4
below.

Table 4.3: Abbreviations of train, val and test sets 1

Abbreviation Train Val Test

OOO Original images Original images Original images
OOT Original images Original images Tiled images
TTT Tiled images Tiled images Tiled images
ttT Tiled images w/o bg Tiled images w/o bg Tiled images

Results and Analysis | 29

Table 4.4: Test results of training on original or tiled images

Abbreviation Precision (%) Recall (%)

OOO 93.8 ± 0.5 72.6 ± 0.6
OOT 72.9 ± 0.8 72.4 ± 0.6
TTT 93.3 ± 0.2 96.0 ± 0.3
ttT 92.6 ± 0.3 96.4 ± 0.4

p-value of the Friedman test 0.032 0.060

Figure 4.5: Nemenyi Test for test results of training on original or tiled images

The recall increased a little, while the precision became lower when the
model trained with original images was tested with tiled images. That was
because due to the tiling, the relative object size became larger, so what
the model learned on original images was not applicable to tiled images,
introducing more false positives. An example was shown in Figure 4.6.

When all the tiled images were used for training, the recall increased a lot.
With a larger relative size in an image, the drone was easier to be detected by
the model. However, the precision decreased by 0.01, which means the model
mistook something else for a drone more often.

The performance of the model did not decrease a lot when trained without
19,726 images of background. It even had higher recall than trained with
the background, which meant it has fewer misses on drones. An example
was shown in Figure 4.7. In the following experiments, the pure background
images in datasets would be removed to save space and time.

The Friedman and Nemenyi tests also verified the above analysis. The p-
value of the Friedman test on recall was 0.060> 005. Thus, the null hypothesis
that all the trained models had equal means of recall cannot be rejected.

30 | Results and Analysis

For precision, only model trained on original size images had statistically
significant difference between test set of original size images and tiled images.

(a) Original image where there is a drone in the middle. The model trained with
original size images failed to detect the drone.

(b) Tiled image from the original image. The model trained with original size images
detected false positive.

(c) Tiled image from the original image. The model trained with original-size images
succeeded in detecting the drone.

Figure 4.6: Precision decreased and recall increased when the model trained
with original size images was tested with tiled images

Results and Analysis | 31

(a) Original image where there is a drone on the edge of the roof in the middle. The
model trained with original-size images failed to detect the drone.

(b) Tiled image from the original image. The model trained with tiled-size images
detected a false negative (top-left), while it also introduced a false positive (bottom-
right).

Figure 4.7: Precision decreased and recall increased when the model trained
with tiled size images was tested with tiled images

4.3 Impact of camera
Table 4.5 below shows how datasets were split into train, validation, and test
sets. The test set was constructed from the tiled AXIS dataset only.

32 | Results and Analysis

Table 4.5: Train, validation and test sets split for different dataset

Dataset Train Val Test

Tiled AXIS 3420 427 427
Tiled PhoneHD 3040 381 /
Tiled Phone4K 2946 368 /

SimUAV 4095 512 /

The label distribution and relative sizes are shown in Figure 4.8, Figure 4.9,
Figure 4.10 and Figure 4.11. The labels were distributed randomly and evenly
in images in all datasets. The relative label size of tiled AXIS and tiled
PhoneHD dataset were similar, where most of the labels were within the size of
16×6.4 pixels. Compared with tiled AXIS dataset, the tiled Phone4k dataset
had larger relative label size and the SimUAV has smaller relative label size.

Figure 4.8: Data visualization of tiled AXIS dataset: Position of labels (left)
and Relative object size (right)

Results and Analysis | 33

Figure 4.9: Data visualization of tiled PhoneHD dataset: Position of labels
(left) and Relative object size (right)

Figure 4.10: Data visualization of tiled Phone4K dataset: Position of labels
(left) and Relative object size (right)

Figure 4.11: Data visualization of tiled SimUAV dataset: Position of labels
(left) and Relative object size (right)

34 | Results and Analysis

(a) A sample from tiled AXIS dataset (b) A sample from tiled PhoneHD dataset

(c) A sample from tiled Phone4K dataset (d) A sample from SimUAV dataset

Figure 4.12: Sample images from four datasets

Results and Analysis | 35

Table 4.7 shows the results of training on images taken by different
cameras. The SimUAV had the worst performance on the test set. It could be
because the features of simulated Mavics were different from features of real
Mavics and the sizes of the simulated Mavics were too small. So the model
could not use the parameters learned from simulated Mavics to recognize real
Mavics. The model trained with tiled PhoneHD had better performance but
was still not comparable to the model trained with tiled AXIS. That could be
because the relative label sizes were similar to the ones in tiled AXIS, but
different cameras could have different brightness, colors, or distortion levels.

Table 4.6: Abbreviations of train, val and test sets 2

Abbreviation Train Val Test

AAA Tiled AXIS Tiled AXIS Tiled AXIS
HHA Tiled PhoneHD Tiled PhoneHD Tiled AXIS
KKA Tiled Phone4K Tiled Phone4K Tiled AXIS
SSA SimUAV SimUAV Tiled AXIS

Table 4.7: Test results of training on images taken by different cameras

Abbreviation Precision (%) Recall (%)

AAA 92.6 ± 0.3 96.4 ± 0.4
HHA 82.0 ± 0.5 77.7 ± 0.4
KKA 47.0 ± 0.7 55.2 ± 0.3
SSA 9.5 ± 0.2 7.9 ± 0.7

p-value of the Friedman test 0.030 0.030

According to the Friedman and Nemenyi tests, the performance of the
model trained on simulated dataset was significantly poorer than the model
trained on tiled AXIS. The results above also show that to train a model that
has the best performance on the test set, we should use the same camera to
take photos for train, validation, and test sets. In the next experiment, the tiled
phoneHD dataset and tiled AXIS were merged to investigate how many new
images we need when we want to implement a model on the new camera. The
results are shown in Table 4.8.

36 | Results and Analysis

(a) (b)

Figure 4.13: Nemenyi Test for test results of training on images taken by
different cameras

Table 4.8: Test results of merging Tiled PhoneHD and Tild AXIS

Dataset
Precision RecallTrain Val Test

Tiled PhoneHD Tiled PhoneHD Tiled
PhoneHD 0.911 0.962

Tiled PhoneHD Tiled PhoneHD Tiled AXIS 0.825 0.776
Tiled AXIS Tiled AXIS Tiled AXIS 0.923 0.967

Tiled PhoneHD
+ 20% Tiled AXIS

Tiled PhoneHD
+ 20% Tiled AXIS Tiled AXIS 0.836 0.858

Tiled PhoneHD
+ 40% Tiled AXIS

Tiled PhoneHD
+ 40% Tiled AXIS Tiled AXIS 0.859 0.891

Tiled PhoneHD
+ 60% Tiled AXIS

Tiled PhoneHD
+ 60% Tiled AXIS Tiled AXIS 0.905 0.907

Tiled PhoneHD
+ 80% Tiled AXIS

Tiled PhoneHD
+ 80% Tiled AXIS Tiled AXIS 0.888 0.976

Tiled PhoneHD
+ 100% Tiled AXIS

Tiled PhoneHD
+ 100% Tiled AXIS Tiled AXIS 0.891 0.978

With more images from tiled AXIS added to tiled phoneHD train dataset,
the model performance became better. When the model was trained by all
the train images from tiled AXIS and tiled phoneHD, the precision was still
lower than the model trained only with tiled AXIS, but the recall was 0.11
higher. It indicates that the model was able to learn more features of Mavics

Results and Analysis | 37

from different datasets, so the model had fewer false negatives. However,
the decrease of precision also shows that the new feature learned from tiled
phoneHD dataset may be misleading.

4.4 Impact of adding bird images and anno-
tations

In this experiment, images of birds were added to the train, validation and test
sets of tiled AXIS dataset. The label distribution and relative sizes of birds are
shown in Figure 4.14.

Figure 4.14: Data visualization of bird dataset: Position of labels (left) and
Relative object size (right)

Table 4.10 shows that, the performance of model became poorer when
birds were added to the test set. The Friedman and Nemenyi tests also shows
that the recall of the model training with birds as foreground was significantly
lower than training only on drones. The model performance would not be
improved no matter how the bird dataset was added to the train and validation
sets.

38 | Results and Analysis

Table 4.9: Abbreviations of train, val and test sets 3

Abbreviation Train Val Test

A_A_Ab Tiled AXIS Tiled AXIS Tiled AXIS
+ birds

Ab_Ab_Ab Tiled AXIS
+ birds as background

Tiled AXIS
+ birds as background

Tiled AXIS
+ birds

AB_AB_Ab Tiled AXIS
+ birds as foreground

Tiled AXIS
+ birds as foreground

Tiled AXIS
+ birds

Table 4.10: Test results of training with bird images and labels

Abbreviation Precision of drone (%) Recall of drone (%)

A_A_Ab 77.1 ± 0.2 96.4 ± 0.4
Ab_Ab_Ab 77.0 ± 0.4 83.0 ± 0.4
AB_AB_Ab 76.1 ± 0.3 82.0 ± 0.5

p-value of the Friedman test 0.097 0.049

(a)

Figure 4.15: Nemenyi Test for test results of training with bird images and
labels

To further investigated the impact of the bird dataset, the images with
extremely small birds and drones and the corresponding labels were omitted
from the train, validation, and test sets. The model was tested with both a
complete test set and a test set without extremely small birds and drones. Here,

Results and Analysis | 39

images in which a label’s (width + height)/2 is smaller than 8 were omitted.
The results were shown in Table 4.12. The overall performance of models
trained with drones and birds was better than the model trained without birds.
The model trained without birds mistook birds for drones many times. Adding
birds in the train and validation set helped the model learn the difference
between drones and birds. The test results of the third, forth, seventh, and
eighth models in Table 4.12 also show that there is no need to label birds as a
separate class.

Table 4.11: Abbreviations of train, val and test sets 4

Abbreviation Train Val Test

A_A_Ab8 Tiled AXIS Tiled AXIS Tiled AXIS
+ birds (-8)

A8_A8_Ab8 Tiled AXIS (-8) Tiled AXIS (-8) Tiled AXIS
+ birds (-8)

Ab8_Ab8_Ab8
Tiled AXIS
+ birds as

background (-8)

Tiled AXIS
+ birds as

background (-8)

Tiled AXIS
+ birds (-8)

AB8_AB8_Ab8
Tiled AXIS

+ birds as foreground
(-8)

Tiled AXIS
+ birds as foreground

(-8)

Tiled AXIS
+ birds (-8)

A_A_Ab Tiled AXIS Tiled AXIS Tiled AXIS
+ birds

A8_A8_Ab Tiled AXIS (-8) Tiled AXIS (-8) Tiled AXIS
+ birds

Ab8_Ab8_Ab
Tiled AXIS
+ birds as

background (-8)

Tiled AXIS
+ birds as

background (-8)

Tiled AXIS
+ birds

AB8_AB8_Ab
Tiled AXIS

+ birds as foreground
(-8)

Tiled AXIS
+ birds as foreground

(-8)

Tiled AXIS
+ birds

40 | Results and Analysis

Table 4.12: Test results of omitting images with extremely small drones and
birds

Abbreviation Precision of drone (%) Recall of drone (%)

A_A_Ab8 86.0 ± 0.1 93.2 ± 0.1
A8_A8_Ab8 46.0 ± 0.7 80.8 ± 0.4

Ab8_Ab8_Ab8 86.3 ± 0.3 92.5 ± 0.5
AB8_AB8_Ab8 84.0 ± 0.4 89.0 ± 0.6

A_A_Ab 77.1 ± 0.2 96.4 ± 0.4
A8_A8_Ab 32.1 ± 0.3 76.0 ± 0.2

Ab8_Ab8_Ab 78.5 ± 0.3 71.6 ± 0.5
AB8_AB8_Ab 72.3 ± 0.7 72.1 ± 0.6

p-value of the Friedman test 0.004 0.004

The results from the above two tables show that the model can learn the
difference between birds and drones when labels in the train and validation
images are bigger. According to the Friedman and Nemenyi tests, the precision
of A8_A8_Ab was significantly lower than A_A_Ab8 and Ab8_Ab8_Ab8.
Testing on images with bigger targets prevented the false positives in
extremely small objects, ensuring good precision. The recall of A_A_Ab
was significantly higher than Ab8_Ab8_Ab. The introducing of bird and
the omitting small objects in training resulted in more false negatives. The
following experiments in Table 4.13 tried to omit different sizes of small
objects from the dataset. The images of birds were trained as background
in these experiments.

Results and Analysis | 41

(a)

(b)

Figure 4.16: Nemenyi Test for test results of omitting images with extremely
small drones and birds

42 | Results and Analysis

(a) Model trained with tiled AXIS + birds
as background

(b) Model trained with tiled AXIS + birds
as background (-8)

(c) Model trained with tiled AXIS + birds
as background (-16)

(d) Model trained with tiled AXIS + birds
as background (-32)

Figure 4.17: Different detection results when removing images with small
objects. The object in the image is a bird.

Results and Analysis | 43

(a) Model trained with tiled AXIS + birds
as background

(b) Model trained with tiled AXIS + birds
as background (-8)

(c) Model trained with tiled AXIS + birds
as background (-16)

(d) Model trained with tiled AXIS + birds
as background (-32)

Figure 4.18: Different detection results when removing images with small
objects. The object in the image is a drone.

44 | Results and Analysis

Table 4.13: Test results of omitting more images with small drones and birds

Abbreviation Precision of drone (%) Recall of drone (%)

Ab8_Ab8_Ab8 86.3 ± 0.3 92.5 ± 0.5
Ab16_Ab16_Ab16 95.2 ± 0.3 100.0 ± 0.0
Ab32_Ab32_Ab32 99.7 ± 0.3 100.0 ± 0.0

Ab8_Ab8_Ab 78.5 ± 0.3 71.6 ± 0.5
Ab16_Ab16_Ab 84.8 ± 0.2 64.0 ± 0.6
Ab32_Ab32_Ab 93.5 ± 0.2 56.6 ± 0.2

p-value of the Friedman test 0.010 0.010

(a) (b)

Figure 4.19: Nemenyi Test for test results of omitting more images with small
drones and birds

The performance of the model in detecting larger objects was better. The
recalls even archived 1 when the threshold was larger than 16. However, as
the precision increased, the recall of the complete test set became very low,
which indicates that the model failed to detect small drones when trained
without images of small drones and birds. In the Nemenyi test of precision,
the precision of Ab32_Ab32_Ab was significantly higher than Ab8_Ab8_Ab,
showing that the model was less likely to identify birds as drones for larger
objects. By manually removing the small objects from the test set, the recall
of Ab32_Ab32_Ab32 was significantly higher than Ab32_Ab32_Ab.

Results and Analysis | 45

4.5 Impact of object size and additional
detection head

In Section 4.1.2, the additional detection head did not work. In the above
experiments, the YOLOv5-P2345 and YOLOv5-P234 models were revisited
to see if they could perform better in recognizing drones and birds. In
Table 4.14, YOLOv5n-P2345 had better precision when objects with an
average sum of width and height smaller than 16 were removed, while the
recall was still lower than YOLOv5n. In Nemenyi tests, the precision of
YOLOv5n-P2345 was significantly higher than YOLOv5-P234 when trained
with Ab8 and Ab16, which shows the importance of detection head for large
objects. In Figure 4.22a,when more small objects were omitted in the train set,
the precision of YOLOv5n was significantly higher than YOLOv5n-P2345,
while there was no statistically significant difference between YOLOv5n-
P2345 and YOLOv5n-P234.

Table 4.14: Test results of YOLOv5n model and its variations

Model Precision (%) Recall (%)

YOLOv5n-Ab8_Ab8_Ab 78.5 ± 0.3 71.6 ± 0.5
YOLOv5n-P2345-Ab8_Ab8_Ab 86.5 ± 0.2 63.8 ± 0.3
YOLOv5n-P234-Ab8_Ab8_Ab 77.0 ± 0.3 68.8 ± 0.2

p-value of the Friedman test 0.049 0.049

YOLOv5n-Ab16_Ab16_Ab 84.8 ± 0.2 64.0 ± 0.6
YOLOv5n-P2345-Ab16_Ab16_Ab 95.8 ± 0.3 54.4 ± 0.1
YOLOv5n-P234-Ab16_Ab16_Ab 84.5 ± 0.2 61.9 ± 0.2

p-value of the Friedman test 0.049 0.049

YOLOv5n-Ab32_Ab32_Ab 93.5 ± 0.2 56.6 ± 0.2
YOLOv5n-P2345-Ab32_Ab32_Ab 92.9 ± 0.2 54.3 ± 0.4
YOLOv5n-P234-Ab32_Ab32_Ab 85.2 ± 0.2 53.6 ± 0.4

p-value of the Friedman test 0.049 0.049

46 | Results and Analysis

(a) (b)

Figure 4.20: Nemenyi Test for test results of YOLOv5n model and its
variations (-8)

(a) (b)

Figure 4.21: Nemenyi Test for test results of YOLOv5n model and its
variations (-16)

(a) (b)

Figure 4.22: Nemenyi Test for test results of YOLOv5n model and its
variations (-32)

Discussion | 47

Chapter 5

Discussion

The experiments in this thesis were designed to combine the findings in related
works in the drone detection area and to investigate more in detail. In [6], the
author tested YOLOv3 and concluded that YOLOv3 yielded the overall best
performance. The first experiment compares the models in the YOLO family.
Besides YOLOv3 and YOLOv4, YOLOv5 of different sizes were included in
the experiments, providing a full picture of the model performance in YOLO
family, and bridging the gaps between the latest model versions and previous
model benchmarking and research. The detection heads of the YOLOv5n
model were then added or deleted, and the performance of the models was
compared. The second experiment focused on the tiling method used by one
of the teams the 2020 Drone vs. Bird Detection. YOLOv5n was used on the
tiled dataset because it performed better than YOLOv3 in inference speed in
the previous experiment. In the next experiment, the real dataset, a synthetic
drone dataset and datasets taken by phones were used to compare the how
the model performance would differ when trained with different dataset. The
final experiment added annotated bird images into the dataset, and compared
the model performance uder different training strategies. The results of the
experiments will be discussed in the following sections.

5.1 SOTA model selection

5.1.1 YOLO family benchmarking
It is surprising to see that all YOLO models had good performance on detecting
drones in AXIS dataset, especially when almost all the drones in the dataset
were extremely small, which only took less than 0.003% area of the image.

48 | Discussion

That may be because the dataset used in this experiment only involved the
drone class. Moreover, although the images was taken in sunny, cloudy and
snowy weathers, most of the dataset was taken in good illumination condition.
When comparing the models in YOLO family, we can find that YOLOv5
models generally outperform previous models in either precision, recall, or
inference speed aspects. All YOLOv5 models have impressive speed. It only
took the tiny model 7.9 ms to do detection on an image. The large model
had roughly the same inference speed as YOLOv3, but its precision and recall
increased by 0.057 and 0.013. YOLOv5s and YOLOv5m had a good balance
in all the evaluation metrics. Although the inference speeds of YOLOv5s and
YOLOv5m were slower than the speed limit for the tiling approach (12.5ms),
they were fast enough to do inference on whole images in real-time.

5.1.2 Impact of adding or deleting detection heads
In Section 4.1.2, models with an additional detection head on shallow feature
maps were tested. The inference time increased due to the extra regression
time in the new detection head. After the detection head for the large object
was deleted, the inference speed was still slower than the original inference
speed. That was because the feature maps in shallow layers were bigger and
took longer time to regress. However, the precision and recall decreased
unexpectedly. In Section 4.5, the approaches of adding and deleting detection
heads were revisited. It turned out that after removing objects whose average
sum of width and height was smaller than 8 or 16, the detection head for
extremely small objects helped improve the precision of the model. However,
it would decrease recall. When there were only objects whose average sum
of width and height was larger than 32, the small detection head began to
lose its effect and even introduce more false positives. When tested with
images containing all sizes of objects, the original YOLOv5n model had
the most balanced performance. So using the default YOLOv5 structure is
recommended when it may encounter objects of various sizes.

5.2 Impact of tiling
The YOLOv5n model trained in Section 4.1.1 was used for testing the tiled
images. The relative object sizes in the train set were much smaller than the
test set, so the features might differ a lot. As a result, the precision dropped
from 0.944 to 0.736, which indicated that the features the model extracted were
not representative of drones. When the model was trained and tested with tiled

Discussion | 49

images, the recall increased from 0.729 to 0.958. In the 2020 Drone vs. Bird
Challenge, the AP reached 89.1 after tiling, but the comparison between the
model trained before and after tiling was not shown [27]. Here the AP of
YOLOv5n on AXIS dataset, though not shown in the result section, reached
97.5 from 78.2, which increased the performance by 24.6%, which was a huge
improvement. Despite the little decrease in precision, training and testing with
tiled images improved the performance of the model. The model was able
to detect more drones of different backgrounds and sizes. The next model
was trained without the pure background images in tiled datasets. Since there
was only one drone in each original-size image, after tiling, an image would
produce 2 to 7 tiles with pure backgrounds. In our tiled AXIS dataset, there
were 4,274 tiles with a drone and 19,726 tiles of pure background. Compared
with the model trained with the whole tiled AXIS dataset, the performance
of the model trained only with 4,274 tiles was good actually. The precision
only decreased by 0.012, and the recall even increased by 0.009. One thing
we need to notice is that most of the time, the background of a drone was the
sky in a tile. Omitting the other background images prevented the model to
learn what features were not a drone, making the precision decrease. However,
the good performance of the last model still shows the excessive background
images were redundant, and it was enough for the model to achieve a good
result without the background images.

5.3 Impact of camera
Due to the high resolution of the Phone4K images and the removal of pure
background images, most of the tiled Phone4K images only contained a drone
in the sky. Compared with the tiled AXIS and tiled PhoneHD datasets, the
tiled Phone4K dataset lacked backgrounds such as forests and buildings. That
made the precision of the model much lower. Moreover, the relative sizes
of the drones in the tiled Phone4K dataset were larger, so the model was
easier to miss small drones. The tiled PhoneHD dataset had more similar
object sizes and contained comparatively sufficient backgrounds, so it had
higher precision and recall. However, there was still a gap in having the same
performance as the mode trained with the tiled AXIS dataset. The SimUAV
was very different in relative object sizes. Because it was a simulated dataset
for small drone detection, the drones were much smaller than our dataset, and
very few large drones were included. Besides, the Mavic and the backgrounds
in the images were also distinct from the real world. The images seemed to
be over-sharpened and overexposed. Such differences between the train and

50 | Discussion

test sets made the model performance very poor. Contrary to the increment in
model performance in [27], combining two dataset would decrease the model
performance. That may be due to the test set and the train set came from the
same sort, and the AAA model was over-fitted. The introduce of images taken
by phones made the model less over-fitted to the AXIS images.

The experiment among different datasets show that training and testing on
the same dataset had the best result, so if Skysense wants to implement the
model on a different camera, it’s better to retrain the model with the images
taken from the new camera, especially when the resolutions of the cameras
are different. The other experiment was designed to test if we could take
advantage of the old dataset by adding images from new cameras. Assume that
the old dataset is the tiled PhoneHD dataset. The new camera is AXIS. The
performance of the model was tested when different amounts of tiled AXIS
images were added to the train set. The results in Table 4.8 show that the
more images from the new camera, the better the performance. The recall
was higher when new images took up more than 4

9
of the train set, while the

precision still could not reach 0.923, the value when trained with a pure tiled
AXIS dataset. So constructing a new dataset is still necessary when Skysense
wants to replace AXIS with a new camera.

5.4 Impact of adding bird images and anno-
tations

When bird images were added to the test set, the previous model detected
many birds as drones, making precision drop a lot. The recall remained the
same since there were no changes to the true positives or false negatives.
When the bird images were also added to the train set, the decrease in
both precision and recall showed that the model cannot learn the difference
between bird and drone well. Most false positives and false negatives occurred
when drones were extremely small. Some false positives came from the
background buildings and trees. Results in Table 4.12 show, removing images
with extremely small labels help improve the precision of the model. In
[27], the birds were not annotated in the dataset, and here training drones
with unannotated and annotated birds were both tested. Training birds as
background had better results, which indicates that a lot of time on annotating
the birds could be saved.

In Figure 4.17 and Figure 4.18, the average sums of the bird’s and the
drone’s width and height were both 10 pixels. The confidence in predicting the

Discussion | 51

bird as a drone became lower when the small objects were removed from the
train set, improving the precision. The confidence in predicting a true positive
drone became lower as well, but the confidence remained high in Figure 4.18c.
However, the small drone could not be detected in Figure 4.18d, so the recall
dropped a lot. In Table 4.13, the precision and recall became very high when
the sum of an object’s average sum of width and height was larger than 16
pixels. That was useful because if Skysense had a very low tolerance for false
positives caused by birds, the model (Tiled AXIS + birds as background (-16))
can be used to do the detection, and not confirm the detection until the sum of
the bounding box’s average sum of width and height is larger than 16 pixels.

52 | Discussion

Conclusions and Future work | 53

Chapter 6

Conclusions and Future work

This chapter presents the conclusions and future work of this thesis.

6.1 Conclusions
The research questions proposed in Section 1.2 are as follows:

• What metrics are appropriate for evaluating drone detection perfor-
mance?

• Which state-of-the-art model is best for real-time drone detection?

• How to improve the detection performance of small drones?

• How to reduce false positives caused by birds?

According to the requirements from Skysense, the model should be fast to run
in real-time and be able to locate the drone location in the video stream. As a
result, inference speed, precision and accuracy were selected as evaluation
metrics. In the UAV detection benchmarking [6], YOLOv3 had the best
inference speed and overall precision. Further benchmarking has been done
in this thesis to test the performance of the latest YOLO models. The results
of the benchmarking show that YOLOv5n and YOLOv5m are able to run in
real-time with good performance, and YOLOv5n is the only model that is fast
enough to run on image tiles in real-time. Tiling images can increase recall,
avoiding the miss of small drones in detection. Adding an additional detection
head can increase the precision, but it had a negative effect when trained with
extremely small drones. To achieve the best performance, the train, validation,
and test images should be taken by the same camera. Images taken from

54 | Conclusions and Future work

other cameras can help improve recall but decrease the precision. Adding bird
images as background in the train set can help improve the precision and recall,
but extremely small drones and birds in the train set have a negative impact on
model performance. The model is able to differentiate drones and birds better
when the average sum of birds’ or drones’ width and height is larger.

6.2 Future work
Due to the limitation of available drones, YOLOv5 with different training
strategies was tested on drone datasets that only contained DJI Mavics. To
verify the generality of the conclusions of the thesis, experiments on datasets
with drones of different types should be done in the future. Moreover, although
the images was taken in sunny, cloudy and snowy weathers, most of the dataset
was taken in good illumination condition. Images taken in rainy days or at
dawn and dusk are expected to be added into the dataset, too.

This thesis focuses on improving the model performance on images taken
by one specific camera that was used in Skysense, so the images in the test set
were all taken by the AXIS camera. Further study could try constructing the
test set from different sources and investigating the generalization capabilities
of the model and the corresponding improvement.

References | 55

References

[1] “Sweden drones: Sightings reported over nuclear plants and palace,”
BBC. [Online]. Available: https://www.bbc.com/news/world-europe-60
035446 [Page 1.]

[2] M. Z. Anwar, Z. Kaleem, and A. Jamalipour, “Machine learning inspired
sound-based amateur drone detection for public safety applications,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2526–
2534, 2019. doi: 10.1109/TVT.2019.2893615 [Page 5.]

[3] G. J. Mendis, T. Randeny, J. Wei, and A. Madanayake, “Deep learning
based doppler radar for micro uas detection and classification,” in
MILCOM 2016 - 2016 IEEE Military Communications Conference,
2016. doi: 10.1109/MILCOM.2016.7795448 pp. 924–929. [Page 5.]

[4] S. R. Ganti and Y. Kim, “Implementation of detection and
tracking mechanism for small uas,” in 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), 2016. doi:
10.1109/ICUAS.2016.7502513 pp. 1254–1260. [Page 5.]

[5] E. Unlu, E. Zenou, and N. Rivière, “Generic fourier descriptors for
autonomous uav detection,” in ICPRAM, 2018. [Pages 5 and 6.]

[6] B. K. S. Isaac-Medina, M. Poyser, D. Organisciak, C. G. Willcocks, T. P.
Breckon, and H. P. H. Shum, “Unmanned aerial vehicle visual detection
and tracking using deep neural networks: A performance benchmark,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops, October 2021, pp. 1223–1232. [Pages 5, 6,
7, 11, 47, and 53.]

[7] E. Unlu, E. Zenou, N. Rivière, and P.-E. Dupouy, “Deep learning-
based strategies for the detection and tracking of drones using several
cameras,” IPSJ Transactions on Computer Vision and Applications,

https://www.bbc.com/news/world-europe-60035446
https://www.bbc.com/news/world-europe-60035446

56 | References

vol. 11, no. 1, Dec. 2019. doi: 10.1186/s41074-019-0059-x. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02863410 [Page 5.]

[8] S. R. Ganti and Y. Kim, “Implementation of detection and
tracking mechanism for small uas,” in 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), 2016. doi:
10.1109/ICUAS.2016.7502513 pp. 1254–1260. [Page 5.]

[9] A. Shoufan, H. M. Al-Angari, M. F. A. Sheikh, and E. Damiani,
“Drone pilot identification by classifying radio-control signals,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 10, pp.
2439–2447, 2018. doi: 10.1109/TIFS.2018.2819126 [Page 5.]

[10] Y. Liu, L. Liao, H. Wu, J. Qin, L. He, G. Yang, H. Zhang, and
J. Zhang, “Trajectory and image-based detection and identification
of uav,” Vis. Comput., vol. 37, no. 7, p. 1769–1780, jul 2021. doi:
10.1007/s00371-020-01937-y. [Online]. Available: https://doi.org/10.1
007/s00371-020-01937-y [Page 6.]

[11] Z. Wang, L. Qi, Y. Tie, Y. Ding, and Y. Bai, “Drone detection based on
fd-hog descriptor,” in 2018 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2018. doi:
10.1109/CyberC.2018.00084 pp. 433–4333. [Page 6.]

[12] A. Canepa, E. Ragusa, R. Zunino, and P. Gastaldo, “T-rexnet—a
hardware-aware neural network for real-time detection of small moving
objects,” Sensors, vol. 21, no. 4, 2021. doi: 10.3390/s21041252.
[Online]. Available: https://www.mdpi.com/1424-8220/21/4/1252
[Page 6.]

[13] A. Tanzia, R. Tanvir, B. R. Bir, and U. Jia, “Drone detection by
neural network using glcm and surf features,” in 2021 Journal of
Information Systems and Telecommunication (JIST), vol. 0, 2021, pp.
15–24. [Page 6.]

[14] R. Jiang, Y. Zhou, and Y. Peng, “A review on intrusion drone
target detection based on deep learning,” in 2021 IEEE 4th Advanced
Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), vol. 4, 2021. doi: 10.1109/IM-
CEC51613.2021.9482092 pp. 1032–1039. [Pages 6 and 10.]

https://hal.archives-ouvertes.fr/hal-02863410
https://doi.org/10.1007/s00371-020-01937-y
https://doi.org/10.1007/s00371-020-01937-y
https://www.mdpi.com/1424-8220/21/4/1252

References | 57

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014. [Page 7.]

[16] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015. [Page 7.]

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc.,
2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/fi
le/14bfa6bb14875e45bba028a21ed38046-Paper.pdf [Page 7.]

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767 [Pages 7, 8, 10, and 19.]

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision –
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham:
Springer International Publishing, 2016. ISBN 978-3-319-46448-0 pp.
21–37. [Page 7.]

[20] X. Chen, J. Lv, Y. Fang, and S. Du, “Online detection of surface
defects based on improved yolov3.” in Sensors (Basel), 2022. doi:
10.3390/s22030817 [Page 8.]

[21] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020.
[Online]. Available: https://arxiv.org/abs/2004.10934 [Page 9.]

[22] G. J. et. al., “ultralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV DNN support,” Oct.
2021. [Online]. Available: https://doi.org/10.5281/zenodo.5563715
[Page 9.]

[23] C. Rui, G. Youwei, Z. Huafei, and J. Hongyu, “A comprehensive
approach for uav small object detection with simulation-based transfer
learning and adaptive fusion,” 2021. [Pages 10 and 12.]

https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
https://doi.org/10.5281/zenodo.5563715

58 | References

[24] F. �. Ünel, B. O. Özkalayci, and C. Çiğla, “The power of tiling for
small object detection,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2019. doi:
10.1109/CVPRW.2019.00084 pp. 582–591. [Page 10.]

[25] E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, “Deep learning-based
strategies for the detection and tracking of drones using several cameras,”
IPSJ Transactions on Computer Vision and Applications, vol. 11, 12
2019. doi: 10.1186/s41074-019-0059-x [Page 11.]

[26] Y. Lv, Z. Ai, M. Chen, X. Gong, Y. Wang, and Z. Lu, “High-resolution
drone detection based on background difference and sag-yolov5s,”
Sensors, vol. 22, no. 15, 2022. doi: 10.3390/s22155825. [Online].
Available: https://www.mdpi.com/1424-8220/22/15/5825 [Page 11.]

[27] A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou,
D. Zarpalas, M. Méndez, D. de la Iglesia, I. González, J.-P. Mercier,
G. Gagné, A. Mitra, and S. Rajashekar, “Drone vs. bird detection:
Deep learning algorithms and results from a grand challenge,” Sensors,
vol. 21, no. 8, 2021. doi: 10.3390/s21082824. [Online]. Available:
https://www.mdpi.com/1424-8220/21/8/2824 [Pages 11, 49, and 50.]

[28] R. Yoshihashi, R. Kawakami, M. Iida, and T. Naemura, “Bird detection
and species classification with time‐lapse images around a wind farm:
Dataset construction and evaluation,” Wind Energy, vol. 20, pp. 1983–
1995, 2017. [Pages 12 and 13.]

[29] S. Herbold, “Autorank: A python package for automated ranking
of classifiers,” Journal of Open Source Software, vol. 5, no. 48, p.
2173, 2020. doi: 10.21105/joss.02173. [Online]. Available: https:
//doi.org/10.21105/joss.02173 [Page 18.]

https://www.mdpi.com/1424-8220/22/15/5825
https://www.mdpi.com/1424-8220/21/8/2824
https://doi.org/10.21105/joss.02173
https://doi.org/10.21105/joss.02173

TRITA-EECS-EX- 2022:32

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Ethics and Sustainability
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	Drone Detection
	Non-Optical Approaches
	Optical Approaches

	Deep learning in Object Detection
	Two-stage Object Detection
	One-stage Object Detection

	YOLO
	Small Object Detection
	Prediction pyramid
	Tiling

	Related Works

	Methods
	Data Collection
	Publicly available dataset
	Real-world dataset

	Tiling
	Evaluation Metrics
	Inference Time
	Precision and Recall

	Statistical Analysis
	Experiments
	SOTA model selection
	YOLO family benchmarking
	Impact of adding or deleting detection heads

	Impact of tiling
	Impact of camera
	Impact of adding bird images and annotations

	System Documentations
	Hardware Specifications
	Environment
	Hyperparameters

	Results and Analysis
	SOTA model selection
	YOLO family benchmarking
	Impact of adding or deleting detection heads

	Impact of tiling
	Impact of camera
	Impact of adding bird images and annotations
	Impact of object size and additional detection head

	Discussion
	SOTA model selection
	YOLO family benchmarking
	Impact of adding or deleting detection heads

	Impact of tiling
	Impact of camera
	Impact of adding bird images and annotations

	Conclusions and Future work
	Conclusions
	Future work

	References

