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Abstract

The energy transition is accompanied by massive electrification of uses and sectors

such as transport. As a result, the pressure on the electricity grid is increasing, and the

time to connect to the power system is lengthening. Deploying new infrastructure is a

laborious and expensive process but there are alternatives to exploit the flexibility of

the power grid. The deployment of smart meters opens the door to many applications

related to flexibility on the consumer side, to reduce peak loads that threaten grid

capacity. Targeting the right consumers for Demand-Side Management (DSM) is a

prerequisite to maximizing the chances of success of such programs.

This degree project replicates and adapts the method developed in [14] to segment

residential customers. It consists of encoding Daily Load Curves (DLC) using a

dictionary of Typical Load Profiles (TLP) and grouping consumers according to the

distribution of their TLP. A temporal analysis of the main TLP reveals different

consumption behaviors. Customers are segmented into groups that reflect the degree

of volatility of their consumption. This enables a classification based on the potential

for Energy Efficiency (EE) or Demand Response (D/R) programs. We address the

issue of attribute detection using the distribution of TLP of customers. In particular,

several classification algorithms are compared to detect TLP characteristic of Electric

Vehicle (EV). The obtained load shapes show consumption peaks at night, which may

correspond to the charging time of EV.

The method is discussed, especially the choice of the number of load profiles to be

included in the dictionary of TLP. It proves to be useful to group consumers with

similar consumption profiles and opens the door to applications such as individual

household consumption forecasting.

Keywords

Smart meter data, TLP, customer segmentation, DSM, EE, D/R, clustering
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Abstract

Energiomställningen kräver en massiv elektrifiering av användningsområden och

sektorer som t.ex. transportsektorn. Detta leder till att trycket på elnätet ökar och

att tiden för att ansluta sig till elnätet blir allt längre. Att bygga ut ny infrastruktur

är en mödosam och dyr process, men det finns alternativ för att utnyttja elnätets

flexibilitet. Utplaceringen av smarta mätare öppnar dörren för många tillämpningar

som rör flexibilitet på konsumentsidan, för att minska toppbelastningar som hotar

nätkapaciteten. Att rikta in sig på rätt konsumenter för DSM är en förutsättning för

att maximera chanserna att lyckas med sådana program.

I detta examensarbete replikeras och anpassas den metod som utvecklats i [14] för

att segmentera hushållskunder. Den består av att koda DLC med hjälp av ett lexikon

av TLP och gruppera konsumenter enligt fördelningen av deras TLP. En tidsmässig

analys av de viktigaste TLP avslöjar olika konsumtionsbeteenden. Kunderna delas in

i grupper som återspeglar graden av volatilitet i deras konsumtion. Detta möjliggör

en klassificering baserad på potentialen för EE eller D/R-program. Vi tar upp frågan

om attributdetektering med hjälp av fördelningen av TLP hos kunderna. I synnerhet

jämförs flera klassificeringsalgoritmer för att upptäcka TLP som är karakteristiska för

EV. De erhållna belastningsformerna visar konsumtionstoppar på natten, vilket kan

motsvara laddningstiden för EV.

Metoden diskuteras, särskilt valet av antalet belastningsprofiler som ska ingå i

ordlistan för TLP. Metoden visar sig vara användbar för att gruppera konsumenter

med liknande förbrukningsprofiler och öppnar dörren för tillämpningar som

prognostisering av enskilda hushålls förbrukning.

Nyckelord

Data från smarta mätare, TLP, kundsegmentering, DSM, EE, D/R, klustring
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Chapter 1

Introduction

The European climate law sets the target for Europe’s economy and society to become

climate-neutral by 2050. The production and use of energy account for more than 75%

of the EU’s greenhouse gas emissions. Decarbonizing the EU’s energy system while

ensuring a secure and affordable energy supply to all is a priority of theEuropeanGreen

Deal. To shift away from fossil fuels and develop renewable energies, several sectors

such as transport, construction and industry are increasingly powered by electricity.

As a result, providing grid access for new users is no longer straightforward yet even

more critical. Transmission and distribution lines cannot be extended quickly enough

tomeet new peaks in demand and, in any case, it makes little economic sense to design

infrastructure specifically for peaks if consumption can be flattened.

At the same time, the widespread deployment of smart meters provides a significant

amount of data, not yet fully utilized, to understand consumer behavior and enhance

the efficiency of the power system. Fine-grained measurements of consumption

provide extensive information on how and when households, businesses, or industries

use electricity, which is particularly valuable for Distribution System Operators (DSO)

and aggregators when planning grid infrastructures and forecasting consumption.

Tailored D/R and EE programs can be designed for specific groups of consumers to

leverage user flexibility or willingness to adapt consumption in response to fluctuation

in the price of electricity or to incentives.

1



CHAPTER 1. INTRODUCTION

1.1 Demand-side management and flexibility

In the future, consumers are expected to play a more active role in the power

market, investing in distributed energy resources and participating inD/Rprograms to

consume in a sober and economical way. D/R refers to changes in the consumption of

a customer in response to the evolution of the price of electricity or incentives to reduce

electricity use in times of high demand. The purpose is to adapt the user demand to

the grid capacity by moving or changing the energy consumption. EEmeans using less

energy to perform a task [14]. Consumers are also expected to partially participate in

wholesalemarkets through aggregators whose function is to pool electricity supply and

sell capacity in the electricity markets.

In general, the consumption behavior of a user is defined with criteria such as

the correlation between their consumption and the aggregated load over all users.

Customers with load peaks happening at the same time as global peaks are good

candidates for incentives to shift consumption from peak hours to off-peak hours. The

problem with such a method is that an individual’s consumption is highly variable

and in practice, it is difficult to reliably estimate such indicators. To analyze the

consumption of a residential customer, establish D/R programs and evaluate the

potential for flexibility, reduction techniques such as clustering of load curves are

necessary.

The potential contribution of the residential sector for load flexibility is the subject of

several recent studies. Smart appliances and EV can be piloted to reduce peak loads

and relieve pressure on the system. In [19], a method to estimate the load profiles of

a group of residential buildings in Italy is developed. A consumption profile is created

for each of the most common building typologies. Load time shifting is modelled,

taking into account power demand and electricity price and assuming that customers

with hourly contracts are sensitive to price. The study shows that the global load

profile for all the buildings can be flattened, especially during the cold season. One

takeaway of the paper is that the potential for flexibility depends closely on the intrinsic

characteristics of the power system, the building types, and the consumers in the region

of interest. However, thismethodwould benefit from amore detailed knowledge of the

type of appliances used in the buildings and insight into the actual responsiveness of

customers to price changes.

2



CHAPTER 1. INTRODUCTION

Typical Load Profiles (TLP)

A TLP is a representation of the energy consumption patterns of a group of

loads, either representing user or utility behaviors over a given time period. It

summarizes the temporal variations in energy consumption into a single curve

or set of curves, providing a simplified and standardized view of the energy

consumption.

1.2 Load clustering and residential customer

segmentation

Smart meters record electrical consumption at different time intervals, with

frequencies varying from every minute to several hours. This huge amount of data

offers new opportunities to study consumption behaviors. Load profiling refers to the

classification of load curves or consumers according to their electricity consumption

features. Existing studies on load profiling mainly focus on industries and businesses

with relatively regular consumption patterns. Residential customers bring new

challenges, as load shapes and amplitude may vary greatly between two households

and evolve in time. One typical profile is not enough to describe the consumption

of a household. Compared with patterns at aggregated levels, smart meter data

show high volatility: the orange curve of figure 1.2.1 represents the consumption of

a single household, whereas the blue curve is the aggregated behavior at postal area

level. Figure 1.2.2 illustrates the variability of the consumption of a randomly chosen

residential customer, on the time scale of a week.

Datamining techniques are used to deal with the dimensionality of temporal data such

as electrical load curves, which are made of a large number of data points. Methods

to explore and reduce the dimension of time series without overwriting their temporal

aspect have emerged. Research has focused on discovering patterns in time series,

and algorithms for clustering dynamic data have gained momentum. Clustering is an

unsupervised technique for classifying data without a priori knowledge, where similar

data points are placed into homogeneous groups [3].

Clustering has been used to reduce the dimension of electrical load curves and

group customers with similar consumption behaviors. Different tasks have been

3



CHAPTER 1. INTRODUCTION

Figure 1.2.1: Electricity consumption (kWh) of a randomly selected household (in
yellow) and aggregated consumption at postal level (in blue)

Figure 1.2.2: Electricity consumption patterns (kWh) of a randomly chosen household
during one week of December 2017

addressed, among them the creation of TLP, or the extraction of customer features.

Historically, customers have mainly been segmented based on socioeconomic factors

known through in-home surveys for instance.

4



CHAPTER 1. INTRODUCTION

1.3 Aim and purpose

The goal of the thesis is to reproduce and adapt a data-driven methodology to segment

customers based on their electricity consumption and evaluate its benefits. The

method relies on the creation of a large set of TLP and it must be scalable to large

data sets.

TLP are one of the most common approaches to study electricity consumption data,

as they provide a simplified representation of energy consumption patterns. The

applications are numerous, from the anonymization of sensitive data to research

institutes, compliant with the requirements of the GDPR [20], to trend analysis and

modeling.

Creating groups of consumers with similar consumption lifestyle is a prerequisite to

the development of programs that enhance the willingness of targeted customers to

change their consumption patterns in response to price-based and incentive-based

D/R schemes.

1.4 Research questions

This thesis attempts to answer the following questions:

• How can customers in a large dataset be segmented into groups with similar

energy behaviors, using smart meter data?

• Is it possible to create a set of TLP that accurately describe most consumption

profiles in a large dataset?

Both magnitude and timings of consumption are relevant to group customers. Thus,

multidimensional segmentation is probably a good approach to the problem of

guided clustering of consumers. TLP provide a condensed representation of energy

consumption data, which allows for spatial and temporal comparisons of common

patterns, helps highlight trends in energy consumption and could be used as a

preprocessing step for consumption forecasting and load disaggregationmodels.

By successfully answering these questions, this thesis contributes to the research on

load profiling for the evaluation of residential consumers potential in DSM programs

and has the potential to help improve consumption models.

5



CHAPTER 1. INTRODUCTION

1.5 Delimitations

The thesis is written in collaboration with Vattenfall. In the first instance, this research

seeks to replicate and adapt the method developed in [14] to create a dictionary of

TLP and encode consumers’ behavior. Then, the benefits of this method for DSM are

discussed.

It should be noted that the data is limited to the Stockholm and Uppsala areas and

cover the years 2016 to 2021, an effect of the COVID-19 pandemic on consumption

levels can thus not be excluded. Only a subset of all the data available is used, to reduce

the running time of the algorithms and to test themethod on a spare set. The clustering

methodology to create TLP is only tested on residential data andmore specifically one-

or two-dwelling houses, but should be adaptable for industries and services. The main

focus of the work is on the adaptation of a method that is scalable to large datasets,

not on the results obtained, even though the clusters will be analyzed and put into

perspective in the context of the Swedish power system.

1.6 Outline

The structure of this thesis is as follows. Chapter 2 discusses in further detail the

context of the thesis and provides a background on theoretical aspects used in the

report. Chapter 3 addresses the data collection, preprocessing and analysis steps. It

presents a detailed description of the method used in the thesis and how it can be

evaluated. Results are discussed in chapter 4. The conclusions of this work are drawn

in Chapter 5, and avenues for further reflection are also presented.

6



Chapter 2

Background

In this chapter, the background of the degree project is presented together with related

work.

2.1 Flexibility in the Swedish grid

The electrical grid in Sweden is divided into three categories: the national grid

(transmission grid), regional grids, and local grids (distribution grids). The national

grid is managed by the government agency Svenska kraftnät while most of the regional

grids are owned by the grid companies E.ON Elnät Sverige, Vattenfall Eldistribution,

and Ellevio.

As mentioned earlier, the growing integration of intermittent renewable energies (c.f.

Fig. 2.1.1) and the electrification of uses in society with more devices and equipment

running on electricity are increasing the pressure on the power system. To ensure

stability and delay the addition of new facilities, leveraging system flexibility may

become necessary. Flexibility is defined as the possibility of adapting generation or

consumption patterns as a consequence of a price signal or incentives. It concerns

different actors of the power grid (c.f. Fig. 2.1.2) and can be of different types:

• Technical flexibility, i.e. optimization of the existing infrastructure.

• Market-based flexibility with initiatives such as coordiNet [18], whose aim is to

reduce the grid congestion between Transmission System Operators (TSO) and

DSO while facilitating the participation of customers in electricity markets.

7



CHAPTER 2. BACKGROUND

• Demand-side flexibility, which refers to the portion of demand that can be

decreased, increased or shifted over a given period in response to price signals or

incentives.

Figure 2.1.1: Evolution of the the share and capacity of renewable energy sources in
Sweden [12]

Figure 2.1.2: Power system flexibility enablers [2]

Dynamic Line Rating (DLR) and Network Topology Optimization (NTO) are two

examples of technical flexibility, whose aim is to maximise the use of transmission

assets at each moment. DLR can help the integration of a higher share of less

predictable renewable generation by increasing the grid capacity. Historically, TSO

8



CHAPTER 2. BACKGROUND

andDSOhave used seasonal static thermal ratings for line conductors to calculate their

theoretical rather than real ampacity 1. DLR is the ability to vary the thermal capacity

of an overhead power line in real time, depending on varying conditions such as

ambient temperature or solar radiation [1]. In practice, dynamic systemsuse sensors to

monitor real-time environmental conditions and maximize power flows. Another way

of tackling congestion is through network topology optimization, where the topology

is changed by switching on or off transmission lines for instance. The authors of [17]

combine network optimization with a weather-based pricing mechanism to evaluate

the potential for load curtailment under natural hazards such as windstorms.

InDSMandD/Rpractices, consumer loads are controlled either technically or through

incentives to respond to imbalances in supply and demand. D/R can be defined as “the

incentive payments designed to induce lower electricity use at times of high wholesale

market prices or when system reliability is jeopardized” [17]. DSM designates a

group of technologies such as energy storage or curtailment of loads used to change

consumption patterns. DSM drives cost reduction of energy consumption by shifting

loads to off-peak periods, thus reducing peak loads and maintaining the balance

between electricity demand and supply.

Ref. [13] identifies 6 elements in an energy management system, among which:

• Smart meters which transmit information from the customer to the service

provider.

• Renewable energy sources such as solar that can be directly harnessed by so-

called prosumers to diminish their electricity bill.

• EV or storage. Plug-in electric vehicles have the potential to behave like

distributed energy storage and to discharge power back to the grid at a fast rate.

Vehicle-to-grid (V2G) mechanisms may thus be used as spinning reserves 2.

• Load management. Proper scheduling of the use of load is central to optimizing

consumer comfort and energy efficiency. Loads can be classified as storable,

shiftable, or curtailable, as base load or resulting from self-generation. This will

be further developed in the next section.

DSM and D/R are subject to specific constraints to ensure good integration of flexible

1Maximum current rating of a power conductor.
2The spinning reserve is the amount of capacity which canmake up for power shortages or frequency

drops within a given period of time

9



CHAPTER 2. BACKGROUND

products in the electricity market. Rules control the timing, reliability, and magnitude

of customer response. Since trades in electricity markets often involve high volumes,

capacity from different consumers may need to be pooled through aggregators. Time-

of-use (ToU) tariffs, curtailed load or critical peak pricing are just a few examples of

contract types used to monitor consumer behavior.

Residential customers get involved in demand response programs through specific

contracts. Ref. [10] distinguish five main types of contracts offered in the electricity

market: time of use or dynamic pricing, fixed load or dynamic capping, and direct load

control. Constraints can either be imposed by the price of electricity or be defined

by a cap on the authorized volume of consumption. In price-based contracts, the

tariff for electricity is used to trigger a change in consumption while in incentive-

based programs, participants are rewarded depending on load reduction during peak

demand. Customers can also choose between static or dynamic contracts. ToU pricing

is a static price-based contract whereas dynamic load capping is a dynamic volume-

based contract (c.f. Fig. 2.1.3). Eventually, a customer may cede control over specific

appliances in a control-based contract.

Figure 2.1.3: Example of dynamic contracts: ToU and real-time-based pricing [9]

From the contract provider’s perspective, the design of optimal tariffs is a difficult

problem. Regulations prohibit from offering specific tariffs to each household.

Customers have to be able to choose between keeping their current pricing or shifting

to a new tariff. Still, an optimal pricing model should take into account the expected

response of households to contract options. Quantifying the number of hours at a

time that electricity consumption can be reduced or the frequency to which consumers

are willing to shift their habits is key. Each contract comes indeed with its own set

of benefits and risks for consumers. Risks can be financial, especially when pricing

10



CHAPTER 2. BACKGROUND

is dynamic, and non-financial with a loss of autonomy and privacy for control-based

contracts. A customer with a price-based contractmay end up payingmore than if they

had a fixed contract while a volume-based contract may curtail consumption at given

times and limit the use of some appliances.

Overall, with technical improvement, the Swedish grid is becoming more like a smart

grid that supports bidirectional flows of information and electricity. EV encompass

the challenges and potential that are the future of the power grid with on the one hand

increasing electricity load, but on the other, new solutions such as storage through

plug-in mechanisms that may help smooth load profiles [23].

2.2 Smart meter data, time series and Typical Load

Profiles

One of the building blocks of load management systems is data feedback from smart

meters. Sweden was one of the first countries in Europe to spread out smart meters.

As smart meters are owned by DSO in Sweden, the Energimarknadsinspektionen -

National Regulatory Authority for Energy (Ei) has developed regulations onminimum

requirements for smart meters to ensure equal treatment of consumers. Those

requirements aim at providing more information to both consumers and DSO to

respectively increase their awareness and help them be more efficient. By 2025, all

smart meters should register active energy every hour or fifteen minutes in a way that

protects consumer privacy and data security [11].

A set of observations such as electricity measurements taken at specific times is called

a time serie. Electricity consumption is a discrete-time serie measured at fixed-time

intervals. Figure 2.2.3 shows the electricity consumption of a household over several

years. It is easy to detect some outliers where consumption abruptly drops to 0. It also

highlights the annual periodicity of the signal, varying with the seasons. Zooming on

monthly consumption would also exhibit a weekly pattern. Hourly measurements give

a total of 24 data points per consumer per day. Each consumer can be characterized

by their load mix, that is to say, the collection of all their daily load curves.

The classification of consumers according to their loads is the topic of many studies

trying to evaluate customers’ potential to participate in demand response. It may

be possible to reduce power demand through load control or increase it to receive

11



CHAPTER 2. BACKGROUND

Figure 2.2.1: Load curve of a randomly chosen household between 2016 and 2021

the surplus from variable electricity production [16]. However, not all consumers

show the same potential for demand-side flexibility. Load profiling is defined as

the classification of load curves or consumers according to electricity consumption

behaviors [24]. The goal is to segment consumers based on the flexibility of their

load to evaluate their responsiveness to different signals. Data about which and when

appliances are being used is usually not available. Load profiling studies are manifold

and have various research objectives: from the grouping of similar consumption

profiles, TLP can be created that describe a specific behavior or user group. Load

profiling can also help identify information about consumers, such as socioeconomic

indicators or insight into the type of appliances that they own. With the massive roll-

out of smart meters, household clustering could be shifted from an attribute-based

approach to a shape-based one [22].

The deployment of D/R programs requires a better knowledge of customers. Several

studies have attempted to predict load curves, others try to identify specific appliances

from load shapes. The authors of [26] present an algorithm to recognize classical

appliances (refrigerators, air conditioners, washing machines, water dispensers, etc.).

In [10], loads are classified into different categories, depending on their degree of

flexibility (c.f. Fig. 2.2.2):

• Non-storable vs storable loads

• Non-shiftable vs shiftable loads (laundry, dishwasher, vacuum cleaner)

• Base load (instant power is needed and cannot be interrupted such as fire alarms

12



CHAPTER 2. BACKGROUND

or freezer) vs curtailable loads (the service can be interrupted instantly such as

TV or computer).

Figure 2.2.2: Classification of loads

Once typical load profiles have been identified, several load management techniques

can be applied [13] including:

• Peak shaving to flatten load at the time of peak consumption.

• Valley filling to increase load during off-peak hours to improve load factor3.

• Load shifting.

Figure 2.2.3: Load management techniques: peak shaving, valley filling and load
shifting

In [16], several indicators for measuring the flexibility gain of load shifting are

introduced. Among them, the maximum shiftable rate of an appliance activity

encompasses both the shiftable potential and penetration rate4 of the appliance.

3The load factor is the average load divided by the peak load in a specified time period. It is an
indicator of the efficiency of energy usage. A high load factor means that the electric system is used
more efficiently. fload = average load

maximumloadinagiventimeperiod )
4Percentage of targeted customers who own the appliance.
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Theoretically, the charging load of an EV can be fully shifted. However, the current

infrastructure does not support a significant use of smart control meaning that, in

practice, few charging loads can be shifted.

2.3 Machine learning techniques for consumption

characterization

With access to smart meter data, machine learning algorithms are increasingly being

used for flexibility applications. Among others, HiddenMarkovModels have been used

for Non-Intrusive Load Monitoring (NILM) also known as energy consumption data

disaggregation, to evaluate the contribution of each appliance to the total electricity

demand. More recently, deep learning models such as Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) neural networks have been tested for

flexibility prediction based on indoor and outdoor temperatures and heat pump

consumption [6].

During the last decade, many authors have worked on inferring the relationship

between customer characteristics and their consumption, either estimating load

profiles according to consumer information or deriving information about consumers

from smart meter data. The authors of [25] identify four challenges related to

the depiction of consumer behavior: pattern recognition, personal price design,

socio-demographic information identification, and household behavior coding. The

main applications are for individual and aggregated forecasting of loads. Ref. [25]

gives an overview of how smart meter data analytics is used to model electricity

consumer behavior. As mentioned, one area of research is the relationship between

the socioeconomic status of individuals and their consumption. The authors propose

an automatic feature extraction method based on deep learning to derive socio-

demographic characteristics from consumers such as sex, age, employment, or social

class. One of the main challenges of load clustering is to detect the high similarity of

loads slightly shifted in time. Convolutional neural networks is a good model for load

profiling as the features computed in the convolutional layer are invariant to small

shifts, allowing stable features to be obtained fromvarying load profiles. Besides,many

factors such as weather conditions or the day of the week can affect load profiles. The

correlations between electricity consumption and these factors are nonlinear and can
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be modeled by neural networks with multiple layers.

2.4 Clustering

Clustering consists in finding similarities between data according to characteristics

of the data and grouping similar objects into clusters so that data within the same

group are related and data in different groups are unrelated. Good clusters have high

intra-cluster similarity and low inter-cluster similarity. Clustering can be used as a

stand-alone tool to get further insights about the data or as a preprocessing step for

other algorithms. Load profiling is divided into direct-clustering-based and indirect-

clustering-based approaches. The most popular clustering techniques are k-means,

hierarchical clustering, and Self-Organizing Map (SOM), which can be directly used to

group load curves. Indirect clustering uses features extracted from input data before

clustering [24].

2.4.1 Clustering techniques

Review of the main approaches

The main clustering approaches are partitioning, hierarchical clustering, density-

based and grid-based approaches. In this report, we are interested in the first two

families.

Partitioning consists in building several partitions of the data and then evaluating them

against a criterion such as inertia (within-cluster sum-of-squares). k-means is one of

the most well-known partitioning algorithms that requires predefining the number of

clusters and runs in linear time. Data points are clustered trying to create groups of

equal variance, minimizing the inertia:

∑
i,k s.t. si∈Clk

∥si − Ck∥2

Each cluster is described by themean (centroidCk) of the data points {si} in the cluster
Clk. Centroids are not necessarily points in the dataset, contrary to medoids5. The

points in a cluster are those that are closest to its centroid than any other centroid.

5Medoid: point in the cluster closest to the centroid.
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Algorithm 1 k-means

Input Data points {si}, number of clustersK
Output Results of the clustering: clusters {Clk}k∈{1,...,K} and centroids {Ck}k∈{1,...,K}

1: Random initialization of centroids {Ck}k∈{1,...,K}
2: while any of the {si} changes cluster do
3: Attribute each point si to the closest centroid Ck

4: Recompute all cluster centers {Ck}k∈{1,...,K}
5: end while
6: return Clustering results

The k-means algorithm always converges but not always to a global optimum. The

performance of the algorithm depends tightly on the initialization of the cluster

centers. The k-means++ scheme initializes centroids distant fromeach other, generally

producing better results than random initialization [4]. The k-means algorithm scales

well to large numbers of samples but it is sensitive to noise and outliers.

Hierarchical clustering is a family of clustering algorithms generally divided into two

types:

• Bottom-up approach or agglomerative: the algorithm starts with each data point

in its own cluster. Neighboring clusters are then iteratively joined.

• Top-down approach or divisive: in the beginning, all data are in same cluster

which is then split recursively.

One of the advantages of hierarchical clustering is that the number of clusters does

not need to be defined beforehand. Besides, it is possible to represent results with

a dendrogram, which makes it interpretable. However, Hierarchical Agglomerative

Clustering (HAC) has a time complexity of O(n3) and is unstable.

To decide which clusters to combine first, a measure of similarity between clusters is

needed. The linkage criterion determines the distance between clusters as a function

of the pairwise distances between data points. The lower level metric (distance)

determines which data points are closest neighbors, whereas the linkage criterion acts

on the shape of clusters. Four linkage criteria are implemented in the Python library

“scikit-learn”:

• Ward is similar to the k-means objective function: it minimizes the sum of

squared differences within all clusters.

• Complete linkage minimizes the maximum distance between data points
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belonging to different clusters.

• Average linkage minimizes the average of the distances between data points

belonging to different clusters.

• Single linkage minimizes the distance between the closest data points of pairs of

different clusters.

Figure 2.4.1: Single, complete and average linkages

Single, average and complete linkage can be used with any affinity matrix or distances

such as l1, l2 or cosine distance. The metric should maximize the distance between

points in different clusters and minimize the distance within each cluster.

Evaluation of clusters

The quality of the clustering can be evaluated with the similarity measure used for

clustering and the ability to discover hidden patterns. It can be based on the shape of

clusters, their stability (sensitivity to noise), or domain knowledge. Direct evaluation

in the relevant application is the best way to measure the effectiveness of clustering for

a given task, but it can be expensive to perform.

The accuracy of the clustering can be evaluated according to two types of

measures:

• An external index, such as cluster purity, in case a ground truth such as a class

label is given.

• An internal criterion, which measures the quality of the clusters without

using external information. Objective functions in clustering generally seek

to maximize intra-cluster similarity (points within a cluster are similar) while

minimizing low inter-cluster similarity (instances of different clusters are

dissimilar). The Silhouette coefficient S measures how close a point is to its
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neighbors within the same cluster compared to other clusters:

S = max
i

b(i)− a(i)

max(a(i), b(i))

where a(i) is the mean distance between data point i and its cluster neighbors

and b(i) is the minimum of the mean distance between data point i and the data

points in another cluster.

2.4.2 Clustering of residential loads and customers

Existing studies on load profiling mainly focus on industries and businesses with

relatively regular consumption patterns. Residential customers bring new challenges,

as their load patterns may vary greatly between two customers but also evolve over

time. The daily consumption of a customer can therefore not be described with only

one typical profile. Clustering is an effective way to address the high dimensionality of

smart meter data.

In [22], a method to analyze DLC of residential customers and improve D/R targeting

is developed. A reduction technique is applied that identifies the main time periods

of activity during the day. Instead of using highly variable load curves directly, their

reduced representations are grouped into clusters. The results are then used to help in

the tailoring of D/R programs for households.

In [25], a clustering method based on transitions between consumption behaviors

is developed. The dynamics of electricity consumption are used as a factor for

clustering and are represented with a time-dependent Markov model. The underlying

assumption is that future consumption behaviors are related to current states. The

method tackles the challenge of the high dimensionality of fine granularity datasets

with a distributed clustering algorithm based on a divide-and-conquer approach,

where adaptive k-means is applied at local sites and a modified Fast Search and Find

of Density Peaks (CFSFDP) method is performed at global sites.

Load forecasting is a challenging task, especially at the household level. Forecasting is

conducted at different time horizons, ranging from day-ahead with Short-term Load

Forecasting (STLF) to a couple of years ahead with LSTM. [21] shows the value of

load profiling for short-term forecasting of the consumption of residential customers.

One way of forecasting system load is first to use smart meter data for individual
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household forecasting and then to aggregate the predicted loads to build a high-level

forecastingmodel. In this paper, low-level (i.e. smart meter) data are first clustered by

intraday consumption behavior with an emphasis on coincident demand, highlighting

customers who contribute most to the total consumption at specific times. The system

load is built using averaging of clusters on each segment of the day.

2.5 Classification and feature importance

In this degree project, the focus is on non-parametric supervised learning methods

for classification. The aim is not so much to perform classification tasks as to extract

the characteristic features of a given group. For this purpose, we use algorithms for

which it is possible to estimate the relative importance of the features with respect to

the prediction of the target variable. In order to improve the quality of the predictors,

two assembly methods have been tried.

2.5.1 Ensemble methods

The goal of ensemble methods is to combine the predictions of several base estimators

to improve robustness. Two families of ensemble methods exist:

• Averaging methods output the averaged prediction of a set of classifiers

independently built. Bagging methods and random forests are two examples of

algorithms that help reduce the variance of predictions.

• Boosting methods like AdaBoost combine weak models built sequentially to

gradually reduce the bias of the combined estimator.

Base classifiers of ensemble methods are different due to different samplings of

training data or parameter values.

A decision tree predicts the value of a target variable by learning simple decision

rules from the data. Algorithms to construct trees choose a variable at each node

that best splits the sample according to a metric which measures the homogeneity of

the target variable within the created subsets. For instance, information gain can be

used to decide which feature to split on at each node. It measures the reduction in

entropy6 before and after the split, i.e. the entropy reduction due to the addition of

6Given a discrete random variableX with values in χ and a probability distribution p : χ→ [0, 1], the
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Figure 2.5.1: Illustration of a boosting method with parallel learners and weighted
datasets [5]

a new attribute. As the tree grows, the decision rules become more complex. In a

classification tree, leaves represent class labels and branches represent a combination

of characteristics that lead to the label. A small decision tree is often a weak classifier,

with predictions slightly better than random guesses. Random forest is a perturb-and-

combine averaging algorithm based on decision trees.

The boosting algorithm AdaBoost trains individual classifiers sequentially, iteratively

re-weighting the training examples so that each classifier is trained based on

knowledge of the performance of previously trained classifiers. The training data is

re-weighted to emphasize the hard cases, i.e. instances that were misclassified in the

previous step. The final classifier is a weighted sum of the component classifiers where

each classifier is weighted by the quality of their individual predictions.

2.5.2 Classification evaluation

There are several ways of evaluating the performance of a classification model. A

confusion matrix summarises the results of the classification:

Accuracy is the proportion of correctly classified instances to the total number of

instances:

acc =
TP + TN

TP + FP + FN + TN

entropyH of X is defined asH(X) := −
∑
x∈χ

p(x) log p(x).
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True class
1 0

Prediction
1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)

Table 2.5.1: Confusion matrix

It is an intuitive metric, but it can be misleading if classes are imbalanced. More

generally, the choice of the metric is above all a matter of the problem to be addressed.

If a poisonous mushroom recognition program is developed, it is imperative that a

mushroom that is not edible is not classified as such, i.e. the priority is to reduce the

number of false negatives. It is less serious to wrongly classify a mushroom poisonous

even if it is not (false positive). Precision (true positive instances over the total number

of positive instances)measures the ability to avoid false positives while sensitivity (true

positive rate, i.e. true positive instances over the total number of positive instances)

is a measure of the estimator’s ability to find all the positive instances. The F1 score

combines precision and sensitivity.

2.5.3 Feature importance

There are several common methods for evaluating feature importance in machine

learning models. The tree-based models implemented in the scikit-learn library have

a built-in feature importance attribute. The features that are located at the top of the

trees are those that impact the largest number of inputs. The fraction of the sample that

a feature influences can be used to measure the relative importance of that feature. In

scikit-learn, the importance of the feature is calculated using the fraction of inputs and

the decrease in impurity7 due to splitting the data at the node of the feature. Then

the feature importance is averaged over the different trees. This method suffers from

two main shortcomings: on the one hand, it evaluates the importance of the features

based on statistics performed on the training set. This means that this technique gives

an evaluation of the importance of the feature to classify points in the training set,

however it is unclear how this generalizes to other datasets. On the other hand, it gives

more importance to features with high cardinalities.

The permutation method does not have these shortcomings. The permutation

importance consists in measuring the impact on predictions of randomly shuffling the

7Impurity is a measure of homogeneity of the labels at a node.
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values of a feature. If a feature is important, randomly shuffling its value should have a

negative impact on the model results. Recursive feature removal is a similar approach

in which the least important features are gradually removed. The model is re-trained

on a reduced number of features and its performance with and without a feature is

compared.

2.5.4 Imbalanced datasets

By using different subsets of data or features, ensemble classifiers improve

performance over basic classifiers. However, class imbalance affects predictions and

classifiers tend to favor majority classes. Techniques to deal with this problem include

oversampling and undersampling. In the first case, new samples are generated in the

underrepresented class using data preprocessing such as sampling with replacement.

Algorithms such as ADASYN, which focuses on difficult examples, and SMOTE use

interpolation to create new samples. In the latter case, samples are generated from

the original set instead of being selected. Clustering is used to reduce the number

of samples in over-represented classes: instead of training on the original data, the

centroids of the clusters are used for the classification task. Subsampling generally

gives better results than oversampling but can lead to a loss of information. In [7], two

methods are proposed to obtain a balanced random forest: weighted and balanced

random forests.

• The weighted random forest has a greater penalty for misclassification of

minority class instances.

• The balanced random forest combines ensemble learning with a reduced

sampling of the majority class.
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Methodology

This chapter presents the data used in the thesis and gives a theoretical description of

methodologies and methods applied in the degree project.

The aim of thework is to adapt and assess theDSM-related benefits of themethod from

[14] to characterize the energy lifestyle of residential consumers from their electricity

consumption records. The steps of the method are presented in figure 3.0.1. Smart

meter data are decomposed into daily load shapes (normalized load curves) and daily

total usage. Load shapes are associated to TLP. The first step of the method, taking

inspiration from [14], is thus to create a set of typical load shapes that cover the

variety of uses of residential consumers. Then, DLC are encoded with the help of the

dictionary of TLP. Features, such as vectors of TLP frequency, are extracted from this

representation. Themethod is tested on several tasks, including the creation of groups

of users with similar consumption behavior and the identification of information about

customers. In broad terms, the following steps are taken:

• Smart meter data are preprocessed to obtain DLC. Households are divided into

different samples.

• DLC are decomposed into a load shape (normalized consumption) and total

daily consumption. A dictionary of TLP is built based on a sample of the data.

Modifications are proposed to speed up the running time of the algorithms used

in [14].

• Distribution vectors are created to describe the frequency of TLP in the

consumption records of residential customers and group users with similar
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consumption habits.

• Detection of attributes and characterization of customers relevant to the

development of DSM are tested.

Figure 3.0.1: Steps of the segmentation task [22]

3.1 Data presentation and preprocessing

3.1.1 Presentation of smart meter data

The dataset is made of the consumption records of one- or two-dwelling houses.

The measurements correspond to the period between 2016-01-01 and 2021-02-28,

or a maximum of 1,460 DLC per smart meter. Two sets are created, one to create

the dictionary of TLP, the other to evaluate the methodology. Each is made of

the consumption records of 1,000 smart meters, without overlap between the two

sets. In the beginning, only the data until 2020 were kept to avoid the potential

confounding effect of COVID-19 on consumption. However, for the purposes of the

study concerning the profiles of the users of EV,most of whomwere purchased in 2020

or later, the data set was finally extended to 2021. The customers are distributed in two

electricity network regions, Uppsala (UPP) and Huvudsta (HUV) (cf. Fig. 3.1.1).

3.1.2 Removal of missing data and outliers

The first step in preprocessing is to deal with missing values and outliers. A missing

valuemeans a null consumption. The clusteringmethodology used in the project takes

as input the daily consumption curves of the households, i.e. a list of 24 values per

day and per customer. A simple way to solve the problem of missing data is with
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Figure 3.1.1: Local grid areas in the Stockholm region. Credits: Nätområden.se

interpolation, which consists in taking the values on both sides of the missing point

and averaging them. However, this technique is problematic when a smartmeter stops

recording or transmitting data for several hours. As the data set available is very large,

the final decision is to delete the missing values, i.e. all the daily consumption lists

where at least one hour of consumption has not been recorded. There are few isolated

missing points, but rather day orweek-long periodswhen consumption is not recorded.

Thus, there is little loss of data due to the use of a list of 24 values rather than isolated

measurements.

The second problem is to identify outliers and implement an appropriate strategy

to remove or replace them. The method adopted consists in filtering the extreme

consumption values in relation to seasonal averages. The 5% most extreme values are

removed. The reason behind this is that marginal behaviours are not of great interest

for consumer segmentation. Thus, one can filter out these extreme consumptions.

Moreover, the data set is very large, the results are therefore not impacted by the

withdrawal of a few DLC.
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3.1.3 Analysis of consumption data

To deal with the huge size of the data set, made of a billion DLC, two samples of 1,000

smart meters are randomly created. The training data set is used to build a set of TLP.

The other is needed to test the methodology and evaluate the quality of the dictionary.

Figure 3.1.2 shows the box plot of daily household consumption for each month of the

year (January is 1 and December is 12) in the training data set. Themonths are divided

into two seasons: summer goes from April to September and winter from October to

March. The graph is created after removal of outliers because unexpectedly high levels

of consumption distort the estimates. The creation of typical load patterns should not

be negatively impacted by the removal of extreme values.

Figure 3.1.2: Distribution of daily consumption (kWh) over the months of the year

Figure 3.1.3 shows the distribution of the daily consumption of the DLC of the training

set. It exhibits a long tail in the direction of high consumption, while most daily

consumption is spread around 15 kWh.

The statistics in 3.1.1 and 3.1.2 describe household daily consumption (in kWh) during

winter and summer. Consumption ranges from a median value of 20 kWh and an

average of 32 kWh in the summer compared to 49 kWh, respectively 65 kWh, in the

winter. Consumption is significantly higher in the winter months than in the summer.

The average and median consumption values are more than twice as high in winter as

in summer. Themain focus of energy consumption is heating, with significantly higher

consumption during the Swedish winter, mainly because of colder temperatures.
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Figure 3.1.3: Distribution of daily consumption andmedian consumption (dotted line)

Mean Standard Deviation 25% quantile Median 75% quantile

65.13 69.79 21.42 49.00 81.43

Table 3.1.1: Household daily consumption (kWh) for the winter season

Mean Standard Deviation 25% quantile Median 75% quantile

32.48 38.87 10.69 19.89 40.23

Table 3.1.2: Household daily consumption (kWh) for the summer season

3.2 Encoding of Daily Load Curves

In this part, we explain how Kwac et al. [14] transform the consumption data into

a standardized reduced representation, which allows comparison of consumption

patterns between groups of customers. Our contribution consists in a simplification of

the overall methodology and the implementation of approximation-algorithms to save

time. Our suggestions come from tests carried out following the general framework

developed in [14] but relaxing the cluster coherence constraints in the clustering

algorithms.

The main steps of the encoding, developed by Kwac et al. in [14] and summarized in

figure 3.2.1, consist in:

1. Decomposition of load curves into daily load shapes anddaily total usage (volume

of consumption)

2. Creation of a set of TLP

3. Matching DLC to their closest TLP
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Figure 3.2.1: Encoding of DLC

3.2.1 Method of Kwac et al. [14] to create the set of Typical Load
Profiles

Kwac et al. [14] create the set of TLP in two steps. First, adaptive k-means is used

to create consistent clusters of loads. Then, correlated clusters are merged with HAC.

The general framework of the method to build a dictionary of relevant TLP is studied

in this section. A simplification of the intermediate algorithms, which reduces the

computation time, is proposed in the next section.

Let us note li,j the load curve of customer i on day j and si,j their load shape.

li,j = {mij,0,…,mij,23} and si,j = {nmij,0,…, nmij,23}

where mijt is the hourly consumption of customer i on day j during hour t and nmijt

is the normalized hourly consumption of customer i on day j during hour t such that

nmijt =
mijt∑
t´mijt′

.

The dictionary of TLP is created to encode loads. The encoding consists in the

association of load shapes to TLP of the dictionary. The set of TLP is built on a sample

of the data, both to speed up calculation and to ensure that the resulting dictionary is

able to describe the consumption profiles of unseen households. It must satisfy two
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main criteria:

• It must have good coverage. This means that the majority of load shapes in the

dataset are sufficiently close to at least one typical shape (and preferably only

one). There may be noisy behaviors, which are not expected to be closed to a

TLP. The notion of coverage is tightly connected to the coherence of patterns

within a cluster, i.e. to the intra-cluster similarity and also the generalisability of

the model: how well does it perform when we move from classifying loads in the

building dataset to loads in an evaluation dataset?

• The dictionary must also be consistent. The TLP obtained by creating several

dictionaries from different samples of households should be close. Consistency

is linked to the notion of robustness of the model, which depends on the size of

the sample selected to build the TLP. In our case, the training sample had to

be small enough to keep the calculation time low, but big enough to represent

diverse behaviors.

TLP are created with the help of two clustering algorithms. Load shapes are divided

into groups, whose centers, which are an average of the shapes in the cluster, constitute

the TLP. The main difficulty of this method is to determine the optimal number T of

clusters according to the two main criteria. To have good coverage, a dictionary must

contain enough TLP to cover the variety of consumption profiles. If the number of

clusters is too small, data that represent very different consumption behaviors will end

up in the same group. On the other hand, if the number of clusters is too large, there

is a risk of overfitting to perfectly match the shapes of the sample used to create the

dictionary. The dictionary will thus be poorly suited to describe other samples.

Kwac et al.’s method to produce TLP is based on a two-step procedure (c.f. “Method”

of Fig. 3.2.2). Daily load shapes of the training samples are divided into clusters using

adaptive k-means. A first set of TLP ismade with the cluster centers. The size of the set

is reduced by successively merging the clusters of the closest TLP until the desired size

of the dictionary is reached. The goal of the first step is to find a numberK of clusters

that guarantees good coverage, i.e. that the curves within a cluster are close to each

other. In the second step, a hierarchical clustering algorithm is used to group together

clusters that are highly correlated.

The two clustering algorithms used to create TLP in [14], adaptive k-means and

hierarchical clustering, are reviewed. The focus of the method is on defining the right
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Figure 3.2.2: Encoding of load curves for customer segmentation

number of TLP.

1. Adaptive k-means

The modified version of k-means clustering proposed in [14] does not require

specifying a priori the final number of clusters K but rather a threshold θ which

controls the distance between the elements of a cluster k and the cluster center Ck =

{mk,0, ..., mk,23}, where ∀i ∈ {0, ..., 23},mk,i is the mean of all the ith coordinates of the

load shapes in k.

For each clusterClk resulting from the initialization, if there exists a load shape s inClk

such that the normalized distance between s and the cluster center Ck is higher than

the threshold θ, then the clusterClk is divided using a 2-means clustering. The number

of clustersK is adjusted accordingly and k-means is run once again, using the current

centers updated with the result of 2-means for the initialization. This procedure is

repeated until the condition 3.1 is satisfied for all the load shapes or the number of

clusters exceed an upper limit.

Let us note ∥.∥2 the Euclidean norm such that ∀x ∈ Rn, ∥x∥2 =
√∑n

i=1 x
2
i . Given that

a TLP is not null, the threshold condition for i, j is:

min
k

∥sij − Ck∥22
∥Ck∥22

≤ θ (3.1)

The squared distance between the load shape and the centroid is divided by the

norm of the centroid to ensure that the threshold condition 3.1 guarantees the same
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Algorithm 2 Adaptive k-means

InputDaily load shapes {sij}, minimum andmaximum numbers of clustersmink and
maxk, threshold θ
Output Results of the clustering: final number of clusters K, clusters {Clk}k∈{1,...,K}
and centroids {Ck}k∈{1,...,K}

1: K ← mink ▷ Number of clusters
2: Nv ← maxk ▷ Number of clusters violating 3.1
3: Random initialization of centroids ▷ scikit-learn ‘k-means++’ initialization
4: while Nv ̸= 0 do
5: if K > maxk then
6: return Failure to converge
7: else
8: RunK-means algorithmwith {Ck}k∈{1,...,K} as initial centroids to set/update
{Clk}k∈{1,...,K} and {Ck}k∈{1,...,K}

9: Nv ← 0
10: for k = 1 toK do
11: if ∃sij ∈ Clk s.t. 3.1 is violated then
12: Nv ← Nv + 1
13: Run 2-means algorithm to divide Clk into Clk1 and Clk2
14: end if
15: end for
16: K ← K +Nv

17: Update {Ck}k∈{1,...,K} with the new cluster centers
18: end if
19: end while
20: return Clustering results
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intra-cluster purity over all groups. For non-trivial solutions, θ should be chosen in

[0, 2].

2. Hierarchical clustering

Asmentioned before, the first algorithmguarantees low cluster inertia. However, there

is a risk of creating many small and highly correlated clusters whose resulting centers

exhibit the same behavior, thus inducing redundancy in the typical load profiles. The

second algorithm, therefore, aims at assembling the closest centroids to reduce the size

of the final dictionary. The hierarchical clustering algorithm is applied to the centroids

of the k-means clusters and not to the load curves directly: it is therefore not costly to

calculate the pair-wise distances between all the cluster centers, whereas it would have

been impossible to apply such a method on the initial dataset. The algorithm takes as

input the final size T of the dictionary. The choice of T is made by taking the minimal

number of clusters that allows a coverage of 95% of the load shapes, respecting the θ

condition.

Algorithm 3 Hierarchical clustering

Input Size of the dictionary T , number of clusters K, clusters {Clk}k∈{1,...,K} and
centroids {Ck}k∈{1,...,K} returned by algorithm 2
Output Typical load profiles {Ck}k∈{1,...,T}

1: whileK > T do
2: K ← K − 1
3: Find the two closest centers Ci and Cj

4: Cli ← Cli ∪ Clj ▷Merge corresponding clusters Cli and Clj of sizes ni and nj

5: Ci ← niCi+njCj

ni+nj
▷ Compute the barycentre of the original centroids weighted by

their sizes
6: Update Ci and delete Cj.
7: end while
8: return Typical load profiles {Ck}k∈{1,...,T}

The distance matrix between centroids is initiated at the beginning of the algorithm

and then updated at each step with the new distances between the centroids from the

merged clusters and the rest of the centers.

Discussion about the method of Kwac et al. [14]

The method developed in [14] is a two-step process: the adaptive k-means clustering

insures that loads inside a cluster are not too far from the center. This is done by
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imposing a threshold θ on the distance between load shapes inside a cluster and

the cluster center. Correlated clusters are then merged by hierarchical clustering

on the centroids. The advantage of this method over classical clustering approaches

is that a reasonable size for the dictionary is determined at the same time as it is

constructed. Indeed, in k-means clustering, the number of clusters k has to be pre-

assigned, which is impractical with time-series because data sets are very large and

checks for determining the number of clusters are complicated.

The first step allows reducing the dimension of the original dataset with k-means

which offers the possibility to control the quality of the resulting clusters thanks to

the θ parameter. Then, hierarchical clustering can be used on the centroids returned

in the first step. This algorithm has an expensive time complexity in O(K3) which

makes it impractical for direct classification of load shapes. It has the disadvantage

of producing unbalanced cluster sizes1, but it is particularly useful for applications

requiring a comparison of the similarity of different pairs of instances, as in the case of

nearest neighbor search. It is therefore an ideal candidate to correct the results of the

k-means algorithm. By combining two clustering algorithms, themethod developed in

[14] aims at building a stable and coherent dictionary.

One of the shortcomings of the adapted k-means is that the algorithm only stops under

two conditions:

• Either the number of clustersK exceeds kmax,

• Either the number of violated clusters Nv is equal to 0.

However, whenNv is close to 0, the procedure can become very slow. Let’s imagine the

case when there is an outlier in the data and Nv = 1. The algorithm continues to run

until this outlier and all other curves finallymeet the threshold condition. To do this, at

each new iteration,Nv additional clusters are created and the k-means algorithm runs

to reassign each curve to a cluster. The number of clusters evolves very slowly because

Nv is small. However, each iteration is time-consuming. Moreover, in the example, the

quality of the clustering does not improve as new clusters are created. Therefore, the

algorithm could be improved by adding a convergence criterion to stop it. Two options

could be explored:

• One possible solution is to use a tolerance value to terminate the algorithm if the

1“Rich get richer” behavior c.f. 2.3. Clustering — scikit-learn 1.2.0 documentation
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difference between the centroids of two consecutive iterations is smaller than a

threshold value.

• Alternatively, the algorithm is terminated when the inertia between two

successive iterations is less than a given value.

In place of the adaptive k-means, we use an approximation algorithm and stop it when

Nv reaches a lower bound.

3.2.2 Adaptation of the method of Kwac et al. [14]

Our approach is to simplify the overall methodology to create the set of TLP. The

encoding method inspired by [14] is reduced to the following steps:

• Generation of a set of load curves large enough to cover the variety of

consumptions in the initial dataset. The goal is to quickly create a set of varied

load profiles. Two approaches are developed: a simple k-means algorithm and a

clustering algorithm inspired by the θ-adaptive k-means (see algorithm 4).

• Clustering of the most similar loads to further reduce the size of the dictionary

and make it more stable. As in [14], hierarchical clustering is used to group

centroids. Algorithm 5 is proposed as an alternative to 3 in case the number of

centroids produced during step 1 is too high.

We take example from the θ-adaptive k-means to propose a clustering approximation,

sub-optimal compared to the k-means algorithm but faster to obtain a set of diversified

TLP. Clusters are initialized using k-means with a small k to create a rough division of

loads and then to successively redivide the clusters until the desired number of clusters

is obtained or until the iterative solutions converge (see algorithm 4).

When K is small (of the order of 100), it is possible to use the algorithm 3 to further

reduce the size of the dictionary and cluster the centroids obtained in the first step. On

the other hand, whenK is large (of the order of 10,000), the procedure is costly because

it is necessary to initially calculate all the pair-wise distances between centroids. Then,

at each iteration, the distances between the new center resulting from the merging of

the nearest neighbors and the remaining centroids need to be updated. Contrary to the

algorithm 3, the algorithm 5 does not take into account the weights of each centroid

to adjust the pair-wise distance matrix after merging the two nearest neighbors. Here,

the classical hierarchical clustering algorithm is applied and weights are only used a
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Algorithm 4 Approximation of adaptive k-means

Input Daily load shapes {sij}, initial and final numbers of clusters K0 and Kf ,
threshold θ, tolerance ϵ, tolerance for the number of violated clusters ϵNv

Output Results of the clustering: clusters {Clk}k∈{1,...,K} and centroids {Ck}k∈{1,...,K}

1: K ← K0

2: Run K-means algorithm to set {Clk}k∈{1,...,K} and {Ck}k∈{1,...,K}
3: Nv ← Kf

4: while Nv > ϵNv andK < Kf do
5: Nv ← 0
6: for k = 1 toK do
7: if ∃sij ∈ Clk s.t. 3.1 is violated then
8: Nv ← Nv + 1
9: Run 2-means algorithm to divide Clk into Clk1 and Clk2 ; compute Ck1

and Ck2

10: end if
11: end for
12: if

∑
k,i∈{1,2}

d(Ck, Cki) < ϵ then ▷ d: Distance between centers of two consecutive

iterations
13: return {Clk}k∈{1,...,K} and {Ck}k∈{1,...,K}
14: end if
15: K ← K +Nv

16: Update clusters and centroids with results from 2-means clustering
17: end while
18: return Clustering results
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posteriori to adjust the final calculation of the typical load profiles.

Algorithm 5 Approximation of hierarchical clustering

Input Size of the dictionary T , clusters {Clk}k∈{1,...,K}, sizes of clusters {nk}k∈{1,...,K}

and centroids {Ck}k∈{1,...,K}

Output Typical load profiles {Ck}k∈{1,...,T}

1: Run hierarchical clustering to create T groups of centroids

2: return The barycentres of each group weighted by the sizes {nk}k∈{1,...,K}

3.3 Features extraction and customer

segmentation

Once the dictionary is built, it is possible to encode new load shapes by assigning them

to the closest TLP. One can also keep track of those that do not satisfy the condition

3.1, to see if some patterns are not correctly captured by the TLP.

Load shapes of customers are classified according to their associated TLP. For each

household i, a distribution vector of size T is built, which gives the frequency of each

TLP. The variability of a customer’s consumption can be expressed by their entropyE,

defined by the following formula:

E := −
∑

k∈{Cli}

p(Ck) log p(Ck)

where {Cli} is the set of the clusters where the load shapes of i have been distributed,
and p(C) is the frequency of the load shape C among all the load shapes of i. The

entropy is maximal when a consumer has an equal probability of having any of the

TLP, that is to say, if their consumption patterns are very diverse and unpredictable.

On the contrary, it is minimal if only one TLP is enough to describe the consumption

of the user.

From the dictionary, two types of analysis are conducted:

• On an aggregated level, shape analysis of the prevalent TLP provide information

on the general behavior of users such as their main timings of consumption, and

highlight potential spatial and seasonal patterns.
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• On the household level, each consumer is characterized by the sequence of

TLP resulting from the encoding of their DLC and by the sequence of total

daily volume of consumption. Features can be extracted from those two

representations to segment customers sharing the same behavior.

The analysis of TLP provide criteria for grouping customers. As mentioned, shape

analysis of TLP gives an insight on the timings of consumption, whether it be in

the morning, during daytime, at night, in the evening, or a combination of those.

Users are usually characterized by their peak consumption: the load factors and the

degree of utilization measure the efficiency of the electrical usage of a household.

Therefore, load shapes are grouped according to the timing of their peaks. To do so, the

function find_peaks of the library “SciPy” looks for local maxima through comparison

of neighboring values.

Kwac et al. [14] cluster households based on the frequency distribution of their TLP.

Consumer are represented by a vector of dimensionT equal to the size of the dictionary,

such that each coordinate gives the frequency of the load profile in the daily load shapes

of the customer. Distribution vectors are clustered with the k-means algorithm. If T is

too large, it may be necessary to reduce the size of vectors before clustering. A simple

way to proceed is to keep the top N load shapes ordered by cluster size. Centroids of

low-dimensional clusters are then filtered out.

3.4 Attributes detection: focus on Electric

Vehicles

The electricity consumption of the residential sector depends on many factors: type of

heating system, use of certain appliances, etc. One of the research subject associated

to the deployment of smart meter data is load disaggregation. Detecting the signature

of a device is extremely difficult, even with high frequency smart meter data. Hourly

measurements are not enough for NILM. In this part, we try to detect the TLP

associated to EV using the distribution vectors presented earlier.
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3.4.1 Presentation of the data

The method studied in this degree project is used to identify EV owners. Data about

households with an EV in the Uppsala region is provided by the Swedish Transport

Agency (STA). The test set is made of 1075 non-EV and 176 EV owners (c.f. Tab

3.4.1).

Non EV (0) EV (1) Total

Sample 1075 (86%) 176 (14%) 1251
Train set 798 (85%) 140 (15%) 938

Validation set 277 (88%) 36 (12%) 313

Table 3.4.1: Distribution of the two classes in the sets

The consumption data is filtered to keep only the data following the date of purchase of

the vehicle. However, there is not any available information about the discontinuation

of the use of an EV. Therefore, in case several EV have been purchased, only the data

after the date of purchase of the last vehicle are kept.

The evolution of consumption over the year is similar for EV and non-EV owners (see

Fig. 3.4.1). The difference in consumption between the two groups is relatively bigger

during the summer though (c.f. Tab. 3.4.2 and 3.4.3). The figures should be takenwith

caution as the data for households without an EV are more evenly distributed between

2016 and 2021 than the data for those with an EV. In fact, a number of confounding

factors can explain the differences in consumption between the classes (EV vs non-

EV). It may be that EV owners are more likely to have solar panels for instance. As

consumption is lower in the summer, notably due to the reduction in heating, EV

consumption represents a larger share of the total need of household, even though

seasonal factors can also affect the consumption of EV.

Mean Standard Deviation 25% quantile Median 75% quantile

66.39 63.54 24.81 51.06 84.74

Table 3.4.2: EV owners’ daily consumption (kWh) for the winter season

Mean Standard Deviation 25% quantile Median 75% quantile

44.79 46.04 15.91 31.34 56.08

Table 3.4.3: EV owners’ daily consumption (kWh) for the summer season

Figure 3.4.2 shows the distribution of daily consumption of EV owners across all
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Figure 3.4.1: Distribution of daily consumption of EV owners over the months of the
year

seasons. The main differences are the smoother distribution and the presence of some

households with very high consumption among EV.

Figure 3.4.2: Distribution of daily consumption of EV owners

3.4.2 Identification of load shapes of Electric Vehicle owners

Applications of the DLC-reduction method include customer segmentation and

attribute detection. In this section, we propose a method to identify the most helpful

TLP to distinguish classes of customers such as EV owners versus non-EV owners.

Four classification models implemented with the Python library “scikit-learn” are

compared: Random Forest (RF), Weighted Random Forest (WRF), Balanced Random

Forest (BRF) and AdaBoost. The classification models take probability distribution

vectors as input and return a label: 0 for non-EV and 1 for EV.

Feature importance is used to select the most important TLP for the detection of EV

owners. Impurity-based and permutation-based feature importances are compared.
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Permutation importance is evaluated on the validation dataset by randomly shuffling

the values of each feature, one after the other. The aim, beyond testing the relevance of

distribution vectors for the recognition of certain groups, is to detect the TLPassociated

with a charging vehicle. The frequency of occurrence of the selected TLP are compared

for households with and without an EV. Themost characteristic patterns of EV owners

are derived.

A frequent problem in the detection of specific attributes is the imbalance between the

different classes. The data set of EV contains only about 200 users whose relevant

consumption is recorded over a few years. With the Python library “scikit-learn”, it is

possible to re-balance the classes (see section 2.5). WRF uses the same model as RF

with class_weight = balanced_subsample.

To evaluate the different models, several scores are compared:

• Out of bag evaluation is a score computed on the training set, using an out-of-bag

estimate.

• The validation score is the mean accuracy on the validation set.

• Precision measures the ability of not labeling as positive a sample that is not.

• Recall is the ability to find all the positive instances.

• The F1-score is the harmonic mean of precision and recall.

3.5 Evaluation of the methods

3.5.1 Evaluation of the Typical Load Profiles

The quality of the dictionary is evaluated based on:

1. An intrinseque evaluation, looking at the correlation between pairs of TLP.

2. An evaluation of the encoding of data in the test set, made of the consumption

records of 1,000 smart meters.

The Pearson correlation coefficient between the TLP x and y measures their linear

correlation and is given by:
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rx,y =

∑
t∈{0,...,23}(xt − x̄)(yt − ȳ)»∑

t∈{0,...,23}(xt − x̄)2
»∑

t∈{0,...,23}(yt − ȳ)2

where x̄ (resp. ȳ) is the average value over the day of TLP x (resp. y).

For each load shape s = [s0, ..., s23] and their associated TLP C = [C0, ..., C23], the

estimated threshold θ̂ and Residual Standard Deviation (RSD) σ(s − C) are defined

as:

θ̂ =
∥s− C∥22
∥C∥22

σ(s− C) =

√
1

24

∑
i∈{1,...,24}

(si − Ci)2

These two indicators allow a quick comparison with the results of article [14]. The

estimated threshold is useful in case algorithm 2 is used. The RSD is a measure of the

error between DLC and TLP.

3.5.2 Comparison of behaviors between two groups

The dictionary is used to conduct a temporal analysis of consumption behaviors. In

chapter 4, consumption patterns during weekdays and weekends are compared. The

significance of the difference in frequency of a TLP between weekdays and weekends

is evaluated with a two proportion z-test. It is used to test a difference between the

frequencies in two samples of data. The null hypothesisH0 is that the frequency of the

TLP is equal during weekdays and weekends. The alternative hypotheses are:

• H1: the frequencies are not equal.

• H2: the frequency of the TLP is lower during weekdays than weekends.

• H3: the frequency of the TLP is lower during weekends than weekdays.

The statistic z is given by the following formula:

z =
p1 − p2√

p(1− p)(1/n1 + 1/n2)

where p1 and p2 are the frequencies during weekdays and weekends, n1 and n2 are the
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sample sizes, and p is the total frequency:

p =
p1n1 + p2n2

n1 + n2

If the p-value is less than the significance level α, then the null hypothesis is rejected

(i.e. the frequency of the TLP is not the same during weekdays and weekends).

Common choices for α are 0.10, 0.05, and 0.01.
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Results

Chapter 4 presents and discuss the results of the thesis. First, the quality of the

dictionary of TLP is evaluated in terms of coherence and coverage. Then, the TLP are

analyzed to characterize the general consumption patterns of residential households of

the dataset. We look at the results of load shapes encoding at household level: a visual

analysis of the clustering results is performed. After that, several features are proposed

to group customers with similar energy behavior. Among others, the method is tested

on the task of classifying EV/non-EV for the identification of relevant TLP. Eventually,

the interest of the method for DSM applications is discussed.

4.1 Analysis of the dictionary of Typical Load

Profiles

The set of TLP is built on a sample of 1,000 smart meters or 1 million DLC. In

the first place, we tried to use the algorithms proposed in [14], but running them

several times to find the right parameters was too time-consuming. Therefore,

we explored two approaches using the approximation algorithms introduced in the

previous chapter.

4.1.1 Parameters selection and comparison of methods

Two methods were tested and compared to build the dictionary of TLP:

• Use of algorithm 2 which provides a set of 10,000 load shapes then reduction
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of the size of the dictionary using algorithm 5, an adaptation of hierarchical

clustering. An optional reduction step can be added by selecting top shapes.

• Use of the k-means algorithm in the first step with k = 500, applied to daily

load shapes. The size of the dictionary obtained is reduced using the hierarchical

clustering algorithm with T = 200.

The choice of the parameters is justified afterwards.

First method: adaptive k-means and hierarchical clustering, top shapes

To determine the value of the parameter θ, we look at the evolution of the number of

clusters according to the threshold θ. Depending on apriori knowledge of the dataset,

it is possible to impose a given threshold but the goal here is to find a balance between

the precision of the clustering and the number of clusters.

Figure 4.1.1: Number of clusters given θ

The smaller the θ, the closer the load shapes in a cluster are to the center, but the greater

the number of clusters. We want to reduce the dimension of the dataset to efficiently

characterize customers’ consumption. The consumption profiles are variable and,

while the aim is to capture the diversity of profiles, the TLP should still generalize

well to other households. Therefore, the inflection point at 0.3 is chosen for θ. The

execution time of this step is 1,25 hours and 11,949 clusters are obtained. When the

algorithm is interrupted, 10 clusters still do not meet the condition 3.1. The reason is

that convergence can be unnecessarily slow when Nv is close to 0, so we prematurely

stop the algorithm to prevent useless oscillations.

Figure 4.1.2 shows how the number of clusters that do not respect the condition

evolves during the successive iterations: the first iterations of the algorithm lead to
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an exponential growth in the number of clusters, because they all contain at least one

load violating 3.1. This highlights the sensitivity of the method to initialization and

the presence of outliers. An outlier may force a cluster to divide without improving

the clustering results. The initialization of the approximation algorithm is essential

because k-means is not executed on the whole data set when K changes. Clusters are

divided to improve intra-clustering similarity but the method disregards inter-cluster

dissimilarity. With more computing resources, it would be interesting to compare the

evolution of the number of violated clusters with different initializations. Indeed, the

faster the convergence and the better the clustering, since the relative importance of the

approximation part of dividing clusters is reduced compared to the initialization. The

k-means algorithm is not deterministic either, but several initializations are compared

and the best is selected, looking at the inertia of the initial clustering. In our case, out

of 400 clusters, only 4 respect condition 4.1.2. The number of violated cluster reaches

a peak at 2,500 when K = 5, 500 and then starts decreasing until almost all clusters

respect the constraint.

Figure 4.1.2: Number of violated clusters with respect toK

On top of figure 4.1.2, the evolution of the ratio of the number of violated clusters over

the total number of clusters would be a good indicator of the speed of the algorithm.

Certainly, this method ensures a certain proximity of the loads within a cluster but it

does not guarantee that the loads are associated with the closest cluster. Nevertheless,

given the large amount of data and the size of the resulting set of TLP, one can hope

that the impact of this mismatch is not too great. The task is to create a first set of

diverse TLP and not to directly cluster loads. In practice, this step is mainly used

to generate varied load shapes, which can then be gathered into more meaningful

representations with the second algorithm. Thus, it may be sufficient to use an
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approximation algorithm for this part.

The complexity due to the computation of the pair-wise distances does not allow us

to use the hierarchical clustering algorithm on the 11,949 centroids. Instead, we use

the approximation provided by the algorithm 5 to reduce the size of the dictionary. To

choose the final size T , we plot the evolution of the inertia as a function of the number

of clusters (c.f. Fig 4.1.3). The linear relationship between the inertia and the number

of clusters does not help decide on T . Instead, we look at the percentage of loads that

violate the condition of proximity to the centre. From figure 4.1.3, T = 600 appears to

be a good candidate.

Figure 4.1.3: Evolution of the total inertia of clusters of load shapes of the test set using
the successive centroids as TLP and the number of loads not respecting the θ-condition
with T

However, the number of load profiles is still very large. The quality of the dictionary

is evaluated against another sample of data, also composed of the load shapes of 1000

households over the period 2016-2021. Each load is associated with the closest TLP.

The Cumulative Distribution Function (CDF) in figure 4.1.4 shows that 130 shapes

cover more than 80% of the data. Only the top 130 shapes are kept.

Second method: k-means and hierarchical clustering

The previous method indicates that a set of about a hundred load shapes is enough

to characterize a majority of the consumption profiles of the dataset. If load shapes

are reduced to the timing of peak consumption and the focus is on profiles with one

or two peaks, which constitute a large part of the observed profiles, then a dictionary

of 24 × 24 = 576 load shapes would be needed to encapsulate all the potential

combinations. Of course, the peaks are not necessarily concentrated in one hour but
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Figure 4.1.4: Coverage of the data

may be spread over a longer period, and some combinations are unlikely. Nevertheless,

this gives the intuition that with 500 TLP, it is possible to cover a large diversity of

consumption behaviors.

Moreover, hierarchical clustering can only be performed on a relatively small set of

centroids. Thus, a maximum of 500 clusters at the end of the first step is set. Two

approaches are compared: the traditional k-means algorithm with k = 500 and the

adapted algorithm where the parameter θ is set to 0.3 but where the algorithm is

interrupted when the number of clusters exceeds 500. The top shapes and the inertia

obtained in both cases are close but the adaptive method is two times faster.

4.1.2 Analysis of the dictionary

The TLP were evaluated against several criteria, including:

• Clustering metrics such as inertia.

• The quality of the encoding of test data.

The results of the different methods are quite similar. This is not surprising since

the general framework of the methodology is the same: first a reduction with a

form of k-means algorithm that produces a large set of TLP and then a clustering of

the most similar shapes. Thus, the interest of the method presented in [14] lies in

the conjunction of the two reduction steps to obtain a dictionary of reasonable size

covering a varied panel of consumption without creating too specific shapes. About

a hundred TLP may seem excessive. For comparison, we have also built a dictionary

of 50 typical shapes. This dictionary is large enough to create groups of consumers
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with similar behaviors. However, it performs poorly for attribute detection, let alone

load disaggregation, the goal of which is to identify the specific signature of a device.

Creating a sufficiently large dictionary allows for the detection of specific usages. A

final dictionary with between 100 and 200 load shapes is a good compromise for the

different use cases. The results of the secondmethod are presented, as it does not need

to filter out marginal shapes unlike method 1 where only top shapes are retained.

Figure 4.1.5 shows the distributions of estimated threshold θ̂ and RSD σ(s − C). A

clear majority of the load shapes respect the threshold condition (θ = 0.3). The RSD

measures the dispersion of the differences between the 24 daily measurements of the

the load shapes and the TLP. Most values are below 0.03.

Figure 4.1.5: Distributions of estimated threshold θ̂ and residual standard deviation

Figure 4.1.6 shows the distribution of the number of TLP per household. This indicator

should be taken with caution because it does not reflect the frequency with which a

household’s consumption follows a given pattern. In parallel, we give the number of

households that a cluster represents, and the same remark applies. Some consumption

patterns are common to all households, while others are more specific. Similarly,

some households have very consistent profiles with a few TLP, while others have very

anarchic behaviors. Households with few load shapes may be more predictable and

easier to target for specific DSM programs, while those that exhibit more fluctuations

in their behavior may be more flexible.

Only 20 clusters have more than 10,000 load shapes (0.97% of the data). The largest

cluster has 28.3% of the data (291,814 load shapes). The number of clusters necessary

to cover a given percentage of the data is shown in figure 4.1.7: 43 clusters are enough

to cover 80% of the load shapes.

Figure 4.1.8 shows the distribution of the Pearson correlation coefficients between the
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Figure 4.1.6: Distributions of the number of TLP per household and the number of
households per cluster

Figure 4.1.7: Coverage of the data (CDF)

pairs of TLP. 13% of the pairs of load shapes have a correlation higher than 0.50. One

way to further reduce the size of the dictionary would be to filter on highly correlated

pairs to keep only one of the load shapes. However, the analysis of correlated shapes

show that even though peaks occur at the same time, overall densities may be different

(c.f. Fig. 4.1.9), as the peak intensity is different. Therefore, correlation is not used to

filter load shapes, especially since the agglomerative clustering step is already based

on a similar approach. Still, it gives insight about simultaneity of peaks and explains

the bias towards positive coefficients, as consumption profiles are not symmetrical in

the morning and in the evening.

Conversely, negatively correlated load shapes correspond to loads with opposite peak

timings, as can be seen in figures 4.1.10 and 4.1.11. Shape 0 has a peak consumption

around 14:00, whereas the peak for shape 1 goes from 02:00 to 04:00. Shape 2

corresponds to daytime consumption, while shape 3 is a combination of evening and

night consumption.
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Figure 4.1.8: Distributions of correlation coefficients between TLP

Figure 4.1.9: Example of two highly correlated (> 0.99) load shapes

Figure 4.1.10: Example 1: negatively correlated (< −0.75) load shapes

Figure 4.1.11: Example 2: negatively correlated (< −0.75) load shapes

50



CHAPTER 4. RESULTS

Once the TLP are evaluated, the value of data encoding can be illustrated through

different applications:

• Consumption analysis at aggregated level:

• Creation of groups of customers with similar consumption profiles.

• Prediction of EV ownership.

4.2 Shape analysis: study of the Typical Load

Profiles

Label 7 1 33 9 55 36 95 20

Size 291814 46621 46104 37885 22601 21308 20947 19404
Frequency 0.283 0.045 0.045 0.037 0.022 0.021 0.021 0.019

Label 31 166 101 17 15 68 14 45 34

Size 18134 17734 17235 15554 15390 15104 14611 13930 11547
Frequency 0.018 0.017 0.017 0.015 0.015 0.015 0.014 0.014 0.011

Table 4.2.1: Size and frequency of the clusters of top TLP
Label 7 corresponds to shape 1, label 1 to shape 2, ... and label 45 to shape 16.

Figure 4.2.1 shows the 16 main load shapes. A load shape can be seen as a probability

density. The most frequent shape (shape 0) allows to easily verify that the integral is

equal to 1 (the daily average is about 0.04, that is to say over 24 hours a total of 0.96).

The shape corresponding to a double peak is found several times in the morning and

late afternoon, with different times for the main peak (shapes 7, 8, 11, 12). Shape 0

represents 28%of the loads (see Tab. 4.2.1). It can correspond to a vacant dwelling, but

not only since the median consumption associated to this shape is approximately 50

kWh (see Fig. 4.2.2). Other top shapes account for 1-5% of the loads of the test set. The

second most important shape represents a late afternoon consumption and the third

a morning consumption. Both TLP 5 and 13 show a morning peak, slightly delayed in

time. The degree of utilization (ratio of maximum to minimum consumption) is better

for shape 5 than for shape 13, because the peak is lessmarked and consumption ismore

spread out. Shapes 7 and 8 are highly correlated (with a correlation coefficient of 0.66)

and are very similar. However, the peak of shape 7 is at 12:00 and the peak of shape

8 is at 13:00. The average consumption associated with shape 8 is lower than that of
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shape 7.

Figure 4.2.1: Top 16 load shapes

Figure 4.2.2: Volume of daily consumption (kWh) associated to the main load shapes

Figure 4.2.3 shows the peaks found on the top 8 shapes, with a prominence of 0.06

times the amplitude of the signal. Finding peaks on a large data set is not an easy

task, but a systematic check could be performed on the final dictionary. Specifying an

absolute minimum height can be useful to avoid detecting small fluctuations (c.f. label

0). On the contrary, if the goal is to knowwhen people consume, rather than to identify

appropriate peaks, then comparison with neighboring values is the right approach, but

the time window needs to be defined.
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Figure 4.2.3: Identified peaks of the top 8 shapes

With the dictionary, it is possible to perform temporal and spatial analyses and

compare the main shapes in different areas or across seasons. If the consumption of a

substation can be tracked, it becomes possible to see which patterns are dominant and

when they occur. Using weather data, one could see whether decreasing or increasing

temperature has an impact on load shape. These are just a few examples of the type

of analyses that can be conducted with the set of TLP. All the data in our data set are

collected in a small area, so the focus is on temporal analysis.

Figure 4.2.4: Timings of peaks (number of shapes and volume of consumption in kWh)

Figures 4.2.4 shows the results of the shape analysis conducted on the whole test set.

Load shapeswere divided into different categories based on the timing of consumption:

morning (06:00 - 11:00), daytime (11:00 - 17:00), evening (17:00 - 22:00), night

(00:00 - 06:00 and 22:00 - 00:00) and a combination of those. The most classic

shape, which also accounts for the highest total volume of consumption, is by far a

combination of evening and morning consumption. This is an expected result, as
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households are usually not at home during the day on weekdays, that is, 5 days a

week.

4.2.1 Temporal analysis: comparison of weekdays and
weekends

In this section, the result of comparing weekday and weekend consumption is

presented. To continue the above analysis, figure 4.2.5 shows that a larger

proportion of loads are classified as daytime consumption during the weekends than

during weekdays. The same is true for the combination of daytime and evening

consumption.

Figure 4.2.5: Timings of peaks during weekdays (left) and weekends (right)

Figure 4.2.6: Top 9 TLP during weekdays

Most of the main shapes are common to both weekdays and weekends (see Fig. 4.2.6

and4.2.7), but their frequencymaybedifferent (Fig. 4.2.10). The vacant housing shape
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Figure 4.2.7: Top 9 TLP during weekends

is the dominant shape on both weekdays and weekends. In contrast to weekdays, the

main shapes on weekends do not show a drop in consumption like shapes 5 and 7 of

the weekdays. Load shape 3 in the weekend with a peak in the middle of the day is not

among the top shapes during weekdays and conversely, load shape 4 in the weekday,

with a flat consumption during the day and a peak in the evening is really typical of

working days.

Figure 4.2.8: Weekdays Figure 4.2.9: Weekends

Figure 4.2.10: Frequency of the top 9 TLP

For a significance level α = 0.05, only 13.5% of the TLP have similar frequencies

during weekdays and weekends (Tab. 4.2.2). 45.5% of TLP are more frequent on

weekends than on weekdays, showing that consumption patterns during the weekends

are diverse. Of the top 20 weekday shapes and the top 20 weekend shapes, only one

has a similar proportion in both groups.
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Number of TLP

P (Ci|weekdays) = P (Ci|weekends) 27 (13.5 %)
P (Ci|weekdays) < P (Ci|weekends) 82 (41 %)
P (Ci|weekdays) > P (Ci|weekends) 91 (45.5 %)

Table 4.2.2: Distribution of the results of the z-test with α = 0.05

4.3 Customer segmentation

Frequency analyses of the clusters associatedwith each TLP provide information about

the temporal and spatial characteristics of residential consumption in the Stockholm

area. In the previous section, the focus was on the main TLP. One of the goals of

creating the TLP is to characterize household consumption and better target customers

for D/R and EE programs. Therefore, this section examines the distribution of TLP

in daily household consumption. It is then possible to deduce the main patterns of

customers. A temporal analysis can also be conducted at household level to see how a

specific user consumes during vacations, weekends or at different times of the day or

year.

4.3.1 Encoding of the energy consumption of customers

The encoding of the consumption data, associated with the TLP, allows to significantly

reduce the size of the data set. Figure 4.3.1 shows the top 16 load shapes of a randomly

selected customer. The first group looks noisy but it corresponds to the top profile

over all households, which is flat (c.f. Fig. 4.3.2). For comparative purposes, the

TLP associated with the 4 main shapes are shown in figure 4.3.2. The TLP labeled

according to the results of the previous shape analysis provide some insight on the

type of consumption profile of the customer: the first load shapes show a more

important consumption in the evening. By describing each TLP precisely (timing

of peak consumption, intensity of peaks, frequency of occurrence for all users, etc.),

customer behaviors could be segmented on different criteria.
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Figure 4.3.1: Top 16 load shapes of a randomly chosen household

Figure 4.3.2: Typical load profiles associated to the first row of Fig. 4.3.1

4.3.2 Segmentation based on entropy and volume of
consumption

This section focuses on a method to automatically group consumers according to the

distribution of their TLP. Figure 4.3.3 shows the distribution of the entropy of all the

households in the test set. At aggregated level, the daily distribution does not differ

significantly from the overall distribution (see Fig. 4.3.4).

The purpose of the distribution vectors is to group customerswith similar consumption

patterns. The k-means algorithm is used for clustering with k = 4 chosen thanks to the

built-in score (c.f. Fig. 4.3.5).

Figure 4.3.6 shows two scatter plots corresponding to summer andwinter of household

normalized entropy on the x-axis and normalized consumption volume on the y-axis.

The households are colored by group (see Fig. 4.3.6). This confirms that customers
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Figure 4.3.3: Distribution of entropy

Figure 4.3.4: Distribution of entropy for each day

Figure 4.3.5: k-means score and sizes of the groups

Figure 4.3.6: Scatter plot of consumers’ normalized entropy vs normalized volume of
consumption in the summer (left) and the winter (right)

are clustered based on their entropy only. However, the graph also shows that during

the summer, the households with the most volatile consumption are also those with
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the lowest total consumption. One hypothesis is that holidays disrupt the usual

consumption patterns of households. Distribution vector-based clustering segment

households on the variability of their usage, expressed as the frequency of their daily

patterns.

4.4 Detection of Electric Vehicles

Table 4.4.1 and figure 4.4.1 show a report of the classification models’ performances

and their respective confusionmatrices. From the comparison of out of bag evaluation

and validation score, it is clear that AdaBoost (estimator = DecisionTreeClassifier,

n_estimators = 100) overfits during training. In the results, EV is considered as the

positive class.

RF WRF BRF AdaBoost

Out of bag evaluation 0.91 0.90 0.89 0.99
Validation score 0.93 0.93 0.88 0.91

Precision 0.82 1.00 0.49 0.62
Recall 0.50 0.39 0.69 0.58
F1-score 0.62 0.56 0.57 0.60

Table 4.4.1: Evaluation of the different classifiers

Figure 4.4.1: Confusionmatrices (from left to right, top to bottom : RF,WRF, BRF and
AdaBoost)

Comparing F1-scores, RF is the best model to identify the features specific to EV.

We present the results obtained with this model. Obviously, the classification scores
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obtained here are very low. This will be discussed in the next section. For themoment,

the focus is not so much on the classification task as in the task of recognising the TLP

associated with EV owners. Of course, the more reliable the classification, the more

relevant the features that are important for the classification.

Figure 4.4.2: Top 5% load shapes selected on impurity-based importance to recognize
EV with RF

Figure 4.4.3: Top 6 load shapes based on permutation importance

Two ways of evaluating feature importance are tested: impurity-based feature

importance and permutation importance. The features obtained are not the same

(see Fig. 4.4.2 and 4.4.3), but all of them correspond to a single peak and a flat

consumption during the rest of the day. Figure 4.4.2 shows the top 5% features (i.e.

load shapes) ordered by impurity-based feature importance, filtered to keep only those
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which are more frequent among EV owners than among non-EV owners. As expected,

most shapes correspond to night peaks, probably when vehicles are charging. Figure

4.4.3 shows the top 6 load shapes (for comparison with the previous method) based

on permutation importance, which are more frequent among EV owners. Only single

peaks are found. This is also expected as vehicles are not charged several times during

the day.

It is not clear which method is more effective in selecting model features, but a

combination of the two approaches provides a more comprehensive view of the

patterns of interest. More generally, this section presents a method to detect features

but does not pretend to do user classification. Again, the only features given to the

models are the distributions of TLP and not the TLP themselves, which may allow

for refinement of the classification models and better results. Taking into account the

volume of consumption would help greatly as well. Besides, the validation set includes

few EV owners, which may be detrimental to the quality of the results.

4.5 Discussion of the results

The results include an analysis of the set of TLP created by load clustering, the study

of the top consumption patterns in the test set, a comparison of consumption patterns

during weekdays andweekends and the detection of shapes thatmay correspond to the

charging of EV. Looking at the results rather than the methodology, it is particularly

interesting to review the last application.

As mentioned in the previous section, the classification scores obtained in the EV

recognition task are not high. Once again, only the distribution of TLP was taken into

account. Nevertheless, the methodology allows us to distinguish load profiles that are

those we would expect for EV. Moreover, if the goal is to improve the classification,

taking into account the volume of consumption of the users should certainly allow to

obtain a higher F1-score. It should also be noted that very little informationwas known

on the use of EV by consumers.
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Discussion

In this chapter, the methods and results are discussed. The method presented in

the degree project consists in creating a dictionary of TLP and then encoding the

consumption data of the households to obtain a simplified representation of their

smart meter data. The segmentation of customers is based on the similarity between

the distributions of their TLP. Distribution vectors are also used to detect load shapes

characteristic of EV. The discussion covers the preprocessing of the data, the creation

of the dictionary of TLP, the segmentation method, the analysis of the TLP and the

interpretation of the results obtained.

5.1 Methodology

The data pre-processing step removes values that are extreme in comparison to the

dataset. It is also possible to detect outliers from a smart meter by comparing each

value with the mean and standard deviation of all consumption records over a moving

time window whose size is predefined. However, comparing neighboring values is not

effective when the values are missing over a long period of time, which is usually the

case. This is the reason why we prefer simply removing global outliers rather than

outliers for a given user.

The encoding method is based on the creation of the dictionary of TLP. The approach

of reducing the size of the data with a k-means algorithm and then clustering the highly

correlated shapes provides good results. The simple k-means used in the project allows

to significantly reduce the computing-time compared to the adaptive k-means method
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used in [14].

The main difficulty in creating the set of TLP is to estimate the number of load profiles

needed. The size of the dictionary should be closely related to the final application of

the data encoding. If TLP are to be used for load forecasting, a high level of accuracy

is important, which justifies a high number of TLP. The method presented in [14]

proposes to use adaptive k-means so as not to choose a priori the number of clusters,

but the problem is deferred to the choice of the parameter θ whose interpretation

is not obvious. This is another reason why we choose to use a simple k-means

algorithm.

The TLP are used to encode DLC. Distribution vectors reflecting the importance of

each TLP in the consumption habits of a user are created for each consumer, and are

used for the segmentation of customers. This approach is interested as it highlights

the variability of consumption but it could be improved to reflect the actual distance

between load profiles, by taking as input the actual TLP (and not only the distribution

vectors) or the distances between them. Assume that load profiles 1 and 2 represent

the same behavior slightly offset in time. Household i has consumption similar to load

profile 1, and household j has similar consumption although closer to load profile 2.

The two consumers have similar energy behaviors but are assigned to different TLP

and their distribution vectors do not highlight this similarity. To improve this naive

approach, the distance between load profiles should be used in the clustering process,

instead of simply taking into account the frequency of each pattern. Kwac and al. use

the Earth mover distance, which corresponds to the minimal cost to transform one

shape into another [15]. The cost is the normalized usage needed to transform the

shape multiplied by the number of hours of the shift. This metric could be used for the

construction of the dictionary as well, as a distance for hierarchical clustering when

grouping similar shapes together. Then, the similarity measure between shapes needs

to be integrated in the method for customer segmentation. Again, the Earth mover

distance could be used to express the cost to transform a distribution vector from one

household to another, taking into account the distance between the shapes, and their

frequency.
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5.2 Applications

The approach to customer segmentation should depend on the objective of the

program and the type of customer targeted. In this project, variability is used as

a criterion for classifying customers. Indeed, we assume that stable consumers

have a predictable consumption pattern, which facilitates the identification of their

potential for flexibility, whereas more volatile consumers are more likely to change

their behavior and are therefore good targets for EE programs. However, other criteria

can be used to segment consumers.

The analysis of the top TLP provides information on preferences in consumption

at different moments. The method used for peak timing analysis, where peaks are

detected automatically, requires the specification of many parameters such as height,

width and spacing between peaks. In practice, the shapes of consumption peaks are

very different, making it difficult to define appropriate parameters. It is not possible

to accurately detect peaks on every DLC, whereas it is possible to manually classify

the TLP according to the time when peaks occur. Therefore, profiling improves the

reliability of the study of timing of consumption.

The profiling method developed in the project, while offering accurate insight into the

behavior of domestic consumers, also provides an efficient way to anonymize data.

Smart meter data is indeed classified as personal data and, as such, is protected by the

General Data Protection Regulation (GDPR). TLP do not show specific details about

individual energy usage, thus protecting the privacy of consumers.

5.3 Results

The results reflect the behavior of one or two residential houses in the Stockholm area

over 5 years. Theoretically, themethod of grouping and comparing consumers does not

require additional information on households. However, this relatively homogeneous

group of consumers may cover different realities. In the case of a two-dwelling house,

the level of consumption and the variety of profiles is expected to be greater than

for a smart meter recording data from only one household. To be more precise,

customers could be divided according to their consumption level first and then TLP

created for each group. This would improve the accuracy of the TLP and the encoding

scheme.
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Conclusion

In this chapter, the conclusions of the degree project and the potential development of

the work are presented.

6.1 Conclusive summary

This work focuses on the technical aspects of a method for segmenting electricity

consumers according to their consumption habits, in order to facilitate the

implementation of D/R programs. In practice, this method relies on the construction

of a dictionary of TLP that allows to reduce the size of the consumption data while

keeping a sufficient degree of accuracy to obtain a characterization of the variability

of the habits of a household, rather than averaging the DLC, and risking to integrate

marginal behaviors.

This project takes up and adapts the methodology presented by Kwac et al. in [14]

by following the general framework of the method but proposing simplifications to

save time on the different steps. The results are consistent with those obtained in the

paper on another residential consumption dataset. A shape analysis of the TLP in the

dictionary is performed, to illustrate the direct use of profiling, then a segmentation

based on the variability of users’ consumption is presented, which relies, as proposed

in [14], on the encoding of household consumption data, using the dictionary of TLP

to associate a DLC with a TLP, and then on the clustering of TLP distributions in the

encoded data. This results in four groups of consumers that can be distinguished by

the degree of variability in their consumption profiles. The interest of the segmentation
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from the perspective of D/R programs is discussed. Finally, the method is evaluated

with respect to its potential for attribute detection thanks to classification algorithms

used to identify features relevant to recognize EV owners.

The conclusion of this work is that the 2-step clustering method allows to create a

set of TLP of good quality, in terms of coverage and consistency, whose size has to

be adjusted (e.g. selecting the main shapes) according to the final application. The

same level of accuracy is not expected for customer segmentation as for individual

consumption prediction. The method of size reduction of consumption data allows

to adjust the desired degree of accuracy while filtering out marginal profiles, which are

not interesting from the perspective of D/R. The encoding of smart meter data allows

to generate a detailed report of the energy behavior of a customer, highlighting the

top shapes that are characteristic of their consumption and the temporality of these

shapes. Moreover, this simplified representation of energy usage patterns makes it

easier to compare energy usage across different users. It opens the doors to new

applications such as attribute detection and individual forecasting, thanks to the high

level of accuracy of the set of TLP. Finally, the method presented in the project offers

insights into the sharing of consumption data, classified as sensitive, for research

purposes.

6.2 Future Work

The methodology presented in this degree is designed to deal with the variety of

residential customer profiles. The next step is to see if it can be applied to other

consumer groups (services and industry) and if it is relevant. Small businesses may

be good candidates. The interest would be less in modelling the variation over time of

the consumption of a particular shop than in modelling the diversity of consumption

of different shops.

The methodology opens the door to the modeling of individual consumption, which is

increasingly relevant for smart grid planning. The performances of models taking raw

data or TLP as input should be compared to evaluate the benefits of profiling. Ref. [21]

uses a methodology for intraday load forecasting consisting in clustering of customers

based on their energy behavior, forecast of the load of each group and then aggregation

of the results of the group forecasts. It shows that error can be reduced, compared to

models taking rawdata as input. Asmentioned in [14],Markov chains could be used for
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load shape prediction, where the states of themodelwould be TLP and the observations

could include weather or electricity prices.

Tariff optimization is needed to incentivize customers to reduce peak loads that

threaten the stability of the grid. To optimize models, the response of households

to price fluctuation must be modelled. Thus, a future step could be to classify TLP

according to whether the peak consumption occurs during peak or off-peak hours.

From this, the preference of users to consume during peak hours can be expressed,

as well as the potential for peak shaving, if willingness to change behavior can’t be

measured. The objective of [8] is to propose an optimal ToU tariff, using principal-

agent theory. It is assumed that households seek to maximize their utility, which is not

just a function of the price of electricity but also of user flexibility, as nobody wants to

have to cook in the middle of the night. The pricing methodology models consumer

preferences. In [8], three parameters are used to characterize consumer flexibility: α

measures the preference to consume during peak hours, β the willingness or ability

to shift consumption to off-peak hours, and λ, the importance placed on electricity

relative to other goods of consumption. Better knowledge of the consumers can allow

for better estimation of the α and β parameters.

NILM must identify the most discriminative features from the smart meter data.

Deep learning techniques are generally capable of automatically extracting important

features. Unsupervised solutions minimize the need for data transformation. Yet,

feature quality impacts model performance and choosing the right data is critical.

Feature selection reduces the complexity of the model, saving computation time

and improving generalization ability. Even though most recent models can handle

data with huge dimensionality, it can be useful to transform input data, using load

profiling for example. As with load forecasting, it would be interesting to study the

improvement that load profiling can bring to disaggregation models. However, this

application remains the most uncertain, and should be tested on easy-to-identify

devices, especially since the current literature on NILM focuses on active power data

from smart meters.

6.3 Final Words

This data profiling method offers an interesting technical approach to the problem

of the dimensionality of smart meter data, which record data at ever closer time
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intervals. It is of great interest for the segmentation of consumers according to their

consumption habits. Nevertheless, the main way of leveraging user flexibility for DSM

purposes is still to offer tariffs aiming at reducing peaks. The optimization of these

models is a difficult problem, with an asymmetry of information between the supplier

and the households, whose behavior is uncertain. Load profiling allows to quickly

capture the type of consumption of the customers and thus to improve the modeling

of their behavior. In the context of micro and smart grids, the modeling of individual

consumption may become a key issue.
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