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Abstract

Background. Due to its decentralized nature and opportunity for substantial gains,
cryptocurrency has become a popular investment opportunity. However, the highly
unpredictable and volatile nature of the cryptocurrency market poses a challenge
for investors looking to predict price movements and make profitable investments.
Time series analysis, which recognizes trends and patterns in previous price data to
create forecasts about future price movements, is one of the prominent and effective
techniques for price prediction. Integrating Machine learning (ML) techniques and
technical indicators along with time series analysis, can enhance the prediction ac-
curacy significantly.

Objectives. The objective of this thesis is to identify an effective ML algorithm for
making long-term predictions of Bitcoin prices, by developing prediction models using
the ML algorithms and making predictions using the technical indicators(Relative
Strength Index (RSI), Exponential Moving Average (EMA), Simple Moving Aver-
age (SMA)) as input for these models.

Method. A Systematic Literature Review (SLR) has been employed to identify
effective ML algorithms for making long-term predictions of cryptocurrency prices
and conduct an experiment on these identified algorithms. The selected algorithms
are trained and tested using the technical indicators RSI, EMA, SMA calculated
using the historic price data over a period of May 2017 to May 2023 taken from
CoinGecko API. The models are then evaluated using various metrics and the effect
of the indicators on the performance of the prediction models is found using permu-
tation feature importance and correlation analysis.

Results. After conducting SLR, the ML algorithms Random Forest (RF), Gradient
Boosting (GB), Long Short-Term Memory (LSTM), and Gated Recurrent Unit
(GRU) have been identified as effective algorithms to conduct our experiment on.
Out of these algorithms, LSTM has been found to be the most accurate model out
of the 4 selected algorithms based on Root Mean Square Error (RMSE) score
(0.01083), Mean Square Error (MSE) score (0.00011), Coefficient of Determi-
nation (R2) score (0.80618), Time-Weighted Average (TWAP) score (0.40507),
and Volume-Weighted Average (VWAP) score (0.35660) respectively. Also, by
performing permutation feature importance and correlation analysis it was found
that the moving averages EMA and SMA had a greater impact on the performance
of all the prediction models as compared to RSI.



Conclusion. Prediction models were built using the chosen ML algorithms iden-
tified through the literature review. Based on the dataset built from the data col-
lected through the CoinGecko database and taking technical indicators as the input
features, models were trained and tested using the chosen ML algorithms. The LSTM
prediction algorithm was found to be the most accurate out of the chosen algorithms
based on the RMSE, R2, TWAP, and VWAP scores obtained.

Keywords: Bitcoin, Cryptocurrency, Machine Learning, Price Predictions, Techni-
cal Indicators
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Chapter 1

Introduction

In recent years, cryptocurrencies have transformed the way people think about
financial transactions and reshaped the traditional financial industry. The emer-
gence of cryptocurrencies has given investors new opportunities to make successful
investments [5]. Cryptocurrencies are virtual currencies that rely on blockchain tech-
nology, a distributed ledger system that enables safe and open exchanges without the
need for a central authority [21]. The decentralized nature of cryptocurrencies makes
them less vulnerable to manipulation by financial institutions than traditional cur-
rencies. Investors trying to precisely forecast price fluctuations and make profitable
investments face problems due to the cryptocurrency market’s extreme volatility and
unpredictability [43]. To overcome this investors have employed different techniques
like performing time-series, fundamental, sentimental, and technical analysis using
ML algorithms.

One of the most popular and globally recognized cryptocurrencies is Bitcoin.
Bitcoin was the first ever cryptocurrency to be created and was launched by a group
of programmers under the pseudonym Satoshi Nakamoto in January 2009 [7]. The
value of 1 Bitcoin has increased from $357.24 in November 2015 to $19,891.99 in
December 2017, but again fell to a low of $11,509.31 in October 2020 and then again
rose to a high of $30,220.42 in April 2023 [1]. This shows that investing in cryptocur-
rency offers the potential for significant gains but also carries the risk of substantial
losses due to its volatile nature.

ML is a domain that deals with the development of algorithms and statistical
models that enable computer systems to learn from data and improve their perfor-
mance on a specific task. Some of the tasks of ML include classification, regression,
anomaly detection, and Natural Language Processing (NLP) [35]. Making informed
investment decisions can be facilitated by the application of ML in price prediction,
which can offer useful insights into market dynamics [11]. With the use of historical
data analysis, ML algorithms may spot patterns, trends, and correlations that hu-
man analysts would miss. ML models can capture trend and momentum information
and forecast future price movements by utilizing a variety of techniques, including
time series analysis [44] and incorporating technical indicators like the SMA, EMA,
and RSI, among others [13].

The accuracy of price prediction in the cryptocurrency market can be improved
by using technical indicators such as the SMA, EMA, and RSI as input [13]. Both
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2 Chapter 1. Introduction

the SMA and EMA are trend-following indicators that are used to amplify price
data and pinpoint the trend’s direction. The momentum oscillator RSI, on the other
hand, gauges how strongly prices fluctuate.

Many researchers have used ML algorithms for price prediction of cryptocur-
rency [34, 49]. As per our knowledge, there lacks a detailed comparative analysis
of machine learning algorithms for long-term cryptocurrency price prediction where
technical indicators like RSI, EMA, SMA are used as input features which is a signifi-
cant gap in the current research. Utilizing technical indicators derived from historical
data and forecasting future cryptocurrency prices, could assist investors in making
informed investment decisions in this unpredictable market.

This thesis aims to explore the application of ML algorithms, including time
series analysis, in predicting the future prices of cryptocurrencies, with a special
focus on Bitcoin. In specific this thesis aims to explore and find out which ML al-
gorithms are better suited for making long-term predictions of Bitcoin prices while
using technical indicators as input features and conduct an experiment to identify
the most accurate model among the identified ML algorithms. Bitcoin being the
oldest cryptocurrency to ever exist has a large amount of historic price data which
would help in training the ML models to gain better performance [7]. It also aspires
to find out the impact of each input features on the ML models’ performance.

1.1 Aim and Objective

1.1.1 Aim

The aim of this thesis is to compare the machine learning algorithms for the price
prediction of Bitcoin while using technical indicators as inputs. The comparison
of the algorithms will be done based on chosen evaluation metrics to find out which
features in the dataset has the most significant effect on the predictions of each model.

1.1.2 Objectives

The objectives of this thesis are:

1. To find out the ML algorithms that can be used for the prediction of Bitcoin
prices.

2. To compare the predictions of each ML algorithm using various evaluation
metric scores.

3. To find out which among the technical indicators taken as input has more effect
on the prediction of each model.
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1.2 Research Questions
RQ1: Which ML algorithms are better suited to predict the prices of Bitcoin?

RQ2: Which among the selected ML algorithms performs the best in predicting
the price of Bitcoin when using technical indicators RSI, EMA, SMA as input, and
which among these indicators affects the prediction performance of each ML algo-
rithm the most?

1.3 Ethical, societal and sustainability aspects

1.3.1 Ethical Aspects

To make certain of the ethical aspects, the data which was used for this comparative
analysis does not contain any of the individual’s personal data but rather consists
of the daily prices of the cryptocurrency Bitcoin and the data chosen was extracted
from an open-source website Coingecko that is accessible to everyone and complies
with the General Data Protection Regulation (GDPR) policies [14].

1.3.2 Societal Aspects

To enhance the interpretability of our models’ prediction results, feature analysis is
conducted to determine which features in the dataset had the most significant impact
on the predictions, this could assist investors in making more informed investment
decisions.

1.4 Scope
This thesis aims to identify and compare ML algorithms that can predict the price

of Bitcoin using technical indicators as input. It also strives to find out which among
the technical indicators has more effect on the prediction of each model.

1.5 Outline
The structure of the thesis is as follows:
The chapter 2 discusses the technical terms which would help understand the thesis
better, the chapter 3 discusses the work related to the field of study of this thesis,
the chapter 4 elaborates the methodologies used to conduct this thesis, the chapter 5
shows the results after the execution of the thesis, the chapter 6 discusses the results
and explains what those results mean, and finally, the chapter 7 concludes the thesis
and presents the potential future work.





Chapter 2

Background

Concepts linked to the research for this thesis are covered in this section. It
provides a quick introduction to the idea of machine learning and talks about the
pertinent algorithms utilized. The evaluation metrics and technical indicators are
also highlighted.

2.1 Machine Learning

ML, a sub-field of Artificial Intelligence (AI), is an interdisciplinary field that
focuses on the development of computational algorithms and models that can au-
tonomously learn and improve from data [35]. It encompasses a set of statistical tech-
niques and algorithms that enable computer systems to analyze and interpret com-
plex patterns and relationships within data, without being explicitly programmed.

ML has a wide range of applications, some of the included fields are: Computer
vision- tasks like object detection, and object recognition. Prediction- tasks like the
prediction of future trends, classification, analysis, and recommendation based on
historic data [51]. NLP involves the analysis and understanding of human language.
ML techniques are used for tasks such as sentiment analysis, text classification, lan-
guage translation, chatbots, voice assistants, and text generation.

ML has made considerable strides in recent years thanks to the availability of
big datasets, high computing power, and innovations in algorithmic techniques like
Deep Learning (DL), AI, etc. [51].

2.1.1 Hyperparameters

The ML models have certain variables that determine the learning process, they
are known as Hyperparameters. The selection of these variables has a significant
effect on the model’s performance. Therefore, the hyperparameters for the models
must be selected carefully. Hyperparameter tuning is the process where the model is
tested with varied values of hyperparameters to find out the most optimal parameters
for the model [54].

5



6 Chapter 2. Background

2.1.2 Random Forest Algorithm

RF is a machine learning algorithm that is frequently employed for problems re-
lated to regression and classification [8]. The RF technique creates a forest of decision
trees, with each tree trained on a different portion of the data set using a different
subset of the parameters. This is done to increase volatility and lessen overfitting.

One of the fundamental characteristics of RF is the random selection of param-
eters at each split, which makes them efficient and noise-free. Initially, a random
subset of the training set’s data is chosen with replacement to build an RF. This
process is referred to as Bagging. By adding randomness, bagging seeks to lower
the variance of the model. Each tree is then trained using this bootstrap sample of
the data. The approach evaluates a random subset of the features at each node of a
decision tree to determine the optimal split [33].

By increasing the diversity and decreasing the association between the trees,
the overall accuracy of the forest is increased. After each tree has been constructed,
the algorithm predicts the class or regression value by combining the results of each
tree. When performing classification tasks, the forest produces the mode of the
classes predicted by each tree, whereas when performing regression tasks, the forest
produces the mean of the predictions [33].

RF is scalable and can handle large datasets with millions of observations and
thousands of features. One of the key features of RF is its ability to perform feature
selection and feature importance analysis. This allows analysts to identify which
input features are most relevant for predicting the price of a cryptocurrency. By
focusing on the most important features, analysts can build more accurate and in-
terpretable models, and avoid overfitting and model complexity [50]. To make a new
prediction at new point x, we use the equation [19] :

Regression:f̂J
rf (x) =

1
J

∑J
j=1 Tj(x)

Where,

f̂J
rf (x) represents the predicted value of the target variable for a given input variable

x.
J represents the number of decision trees in the forest,
Tj(x) represents each decision tree in the forest.

2.1.3 Gradient Boosting Algorithm

GB is a robust ML method that is frequently employed across various industries
to address a variety of challenges. It is a member of the ensemble approach fam-
ily, which integrates several models to produce predictions that are more accurate
than those produced by any one model alone [38]. GB involves adding models to
an ensemble one at a time, with each new model aiming to fix any errors caused by
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the previous one. To put it simply, it assembles a group of inefficient learners, like
decision trees, and trains them to reduce the errors of the prior model.

The term "gradient" relates to the gradient descent optimization algorithm, which
is utilized to minimize the loss function in GB. It aims to minimize the loss function,
which evaluates the variation between the target variable’s predicted and actual val-
ues [18]. This residual error is then used to train the following decision tree. This
method is repeated until the error is reduced to a minimum or a specific number of
iterations is reached. Since each iteration is checked to reduce errors, it even helps in
reducing overfitting. It can be used for both classification and regression applications
and can handle both numerical and categorical input. It can be used for both clas-
sification and regression applications and can handle both numerical and categorical
input.

GB can effectively deal with missing data and outliers as one of its benefits.
This characteristic is highly beneficial in Bitcoin markets, where data can be limited
and unreliable. Since the cryptocurrency market is extremely volatile and prone to
sudden changes, the algorithm’s ability to handle non-linear relationships between
variables is crucial for price prediction [37].

2.2 Deep Learning

DL is a subfield of machine learning. It mainly focuses on training neural networks
with multiple levels to identify and represent complex patterns and relationships in
the data [52]. Since deep learning deals with a range of neural network architectures,
it is also known as Deep Neural Networks. DL models are designed to automatically
extract hierarchical features from input data, enabling them to learn intricate pat-
terns and relationships.

DL is effective for deciphering and obtaining knowledge from both massive amounts
of data and data gathered from many sources [15]. Some popular DL architectures
include Convolutional Neural Networks (CNN)s for image and video processing, Re-
current Neural Networks (RNNs) for sequential data processing, and Generative
Adversarial Networks (GANs) for generating new data samples.

2.2.1 Recurrent Neural Networks

Recurrent Neural Network (RNN) is one of the most popular deep learning ar-
chitectures and is used for a variety of tasks, including speech recognition, time
series forecasting, creating image descriptions, video tagging, and many more [48].
RNN as the name suggests has cycles where the information is transmitted back
into itself, thereby taking into account the previous input along with the current
input. This enables RNNs to handle sequential data. When training an RNN, the
network’s parameters (weights and biases) are adjusted through a process called
back-propagation, where the error signal is propagated backward from the output to
the input layers. During this process, gradients are calculated, representing the rate
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of change of the error with respect to the network’s parameters. These gradients are
then used to update the parameters and improve the network’s predictions.

Even though RNNs have successfully overcome the limitations of feed-forward
neural networks, they suffer from the vanishing gradient problem where the gra-
dients calculated during back-propagation diminish or "vanish" as they propagate
backward through the layers of the network [56].

2.2.2 Long Short-Term Memory

RNN architectures such as LSTM are frequently employed in time-series forecast-
ing, speech recognition, and NLP because they can capture long-term dependencies.
While traditional RNNs, experience the vanishing gradient problem. On the other
hand, LSTM uses a memory cell to store and retrieve input from earlier time steps,
which makes it suited for modeling sequential data with long-term dependencies [20].

LSTM consists of 4 main components: 3 component gates, namely the Input,
Output, and Forget gates and a memory cell. The input gate regulates the entry
of fresh inputs into the memory cell. Forget gate decides how much of the previous
memory state should be forgotten by the memory cell. The output gate regulates the
output of memory cell states, and finally, the memory cell is in charge of retaining
the data and transmitting it to the next time step. Tanh and sigmoid activation
functions are used to create the LSTM gates. The sigmoid function returns values
between 0 and 1, to represent the opened or closed status of the gates. The tanh
function returns values ranging from -1 to 1, to represent the strength of the memory
cell state [31].

Backpropagation through time is used to minimize the loss function as the LSTM
model is being trained to determine the best values for its parameters. The param-
eters include weight matrices and bias vectors of each gate along with the output
layer. Gradient clipping can be used to limit the size of the gradient during train-
ing, as LSTMs can still suffer from vanishing gradients if the gradient is too small,
and from exploding gradients if the gradient is too large. In order to predict future
prices, LSTMs can be used to identify patterns in historical price data. The model
uses a series of historical prices to forecast each subsequent price in the series. The
loss function that calculates the difference between predicted and actual prices is
optimized in order to train the LSTM [28].

The forward training process of an LSTM network can be described using the
following equations [49]:

it = σ(Wi[ht−1, xt] + bi)

ft = σ(Wf [ht−1, xt] + bf )

ct = ft · ct−1 + it · tanh(Wc[ht−1, xt] + bc)

ot = σ(Wo[ht−1, xt] + bo)

ht = ot · tanh(ct)



2.2. Deep Learning 9

Where xt is the input at time step t, ht is the hidden state at time step t, ct is
the cell state at time step t, and it, ft, and ot are the input gate, forget gate, and
output gate, respectively, at time step t. W and b are the weight matrices and bias
vectors, respectively. The sigmoid function and the hyperbolic tangent function tanh
are used to bind the output between 0 and 1, and between –1 and 1, respectively.

2.2.3 Gated Recurrent Unit

GRU is a form of RNN architecture that is frequently employed in NLP, speech
recognition, and other sequential data analysis applications like price predictions.
GRU is a type of RNN that processes sequential data by keeping an internal state
that is changed whenever new input is added to the sequence [12]. GRU may, how-
ever, selectively recall or forget data from earlier time steps because it uses a gating
mechanism to regulate the information’s passage through the network. This gating
mechanism also helps GRU to avoid the vanishing gradient problem.

GRU has two gating units: an update gate and a reset gate. The update gate
chooses how much of the old state should be kept and how much new input should
be added to the existing state. The reset gate regulates how much of the prior state
is forgotten before absorbing the incoming input. These gates are developed through
training and have the ability to modify their behavior based on the required task.
GRU is simpler to implement and faster to train than LSTM because it has fewer
variables and needs less computation. In comparison to other ML models, GRU has
a number of benefits [55].

In order to estimate price trends in the extremely volatile and dynamic crypto
market, it is first necessary to be able to capture long-term dependencies and pat-
terns in the time series data. Additionally, because GRU can handle variable-length
data sequences, it is appropriate for handling time series data with inconsistent time
intervals or missing data points. GRU is able to analyze the enormous amount of
data produced by the crypto market since it is extremely scalable and can be trained
on massive datasets. To anticipate future price patterns, the model combines the ex-
tracted features with historical price data. The model’s output is a list of predicted
prices for a specific time [17].

The hidden state at time t, ht, is updated based on the input at time t, xt,
and the previous hidden state, ht−1, using the following equations [49]:

ut = σ(Wu[ht−1, xt])

rt = σ(Wr[ht−1, xt])

ht = (1− ut) · ht−1 + ut · tanh(W [rt · ht−1, ut])

Where ut and rt are update and reset gate, respectively
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2.3 Technical Indicators
The technical indicators RSI, EMA, and SMA are generally used for financial

analysis to understand market dynamics and generate trading signals [6, 22]. These
indicators help identify the trend strength and potential price reversals. In this the-
sis, using these indicators as inputs to the ML models would help provide additional
context and information beyond the raw price data. This would help the models
identify complex patterns between the indicators and the prices enabling the models
to achieve better performance.

These technical indicators are specifically utilized as input features in this thesis
because they are well-established, frequently used, and have an established history of
being effective in a wide range of market conditions. Additionally, they are simple to
compute and analyze, so even a novice can understand them. These indicators can
be used for both short-term and long-term studies, depending on the time range [36].

2.3.1 Relative Strength Index:

Technical analysis uses the RSI indicator to gauge the strength of price movement
in financial assets [45]. Usually, it is determined by averaging the gains and losses
on an item over a specified time period. Foretelling shifts in momentum and trend
reversals are possible with the RSI. It is used by traders and analysts to identify
probable overbought or oversold conditions in an asset as well as potential price cor-
rections or reversals.

A ML model for the prediction can be trained using RSI as one of the input
features. The model’s capability to predict outcomes may be enhanced by adding
RSI to its feature set [40].

The RSI is calculated using a mathematical formula that compares the mag-
nitude of recent price gains to recent price losses over a specified period.

RSI calculation formula used in this thesis:

RSI = 100−
(

100

1 +RS

)

Where RS(Relative Strength) is Average Gain by Average Loss.

2.3.2 Simple Moving Average:

The average price of a security or asset over a given length of time is known as the
"Simple Moving Average", and it is determined by summing up the prices for a given
number of periods and dividing those values by the same number of periods [36].
SMA can be a helpful input element because it offers details on the price trend of
the asset over a predetermined amount of time. This can assist in identifying both
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short-term and long-term trends in the data, which can raise the predictive power of
the machine learning model.

The SMA is calculated by adding together a specified number of prices over
a given time period and then dividing the sum by the number of periods [6].

SMA calculation formula used in this thesis:

SMA =

∑N
i=1 Pi

N

Where N is the number of periods used in the calculation, Pi denotes the price
of the asset at period i.

2.3.3 Exponential Moving Average:

EMA, which stands for Exponential Moving Average, is a moving average that,
in contrast to a simple moving average, gives more weight to recent price data [36].
EMA is calculated by adding a weighted average of the current day’s price and the
previous day’s price to the previous day’s EMA value after applying a smoothing
factor to it. The smoothing factor is a constant value that defines the weight given
to the preceding EMA value.

EMA serves as a beneficial tool for long and short traders and investors because
it responds more swiftly to price trends. As it aids in recognizing significant price
swings and probable market turning points, it could be helpful for both long-term
and short-term predictions [6].

The calculation of EMA involves two main components: the smoothing factor
and the previous EMA value. The smoothing factor determines the weightage given
to the most recent data point and is typically derived from a specified time period or
the number of data points. Since it places more emphasis on recent data, the EMA
reacts more quickly to price changes compared to the SMA [6].

EMA calculation formula used in this thesis:

EMA = (Price− EMAprevious) ∗ SmoothingFactor + EMAprevious

Where EMAprevious is the EMA value from the previous calculation "Smooth-
ingFactor" is a constant that determines the weightage given to the most recent data
point.
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2.4 Evaluation Metrics

2.4.1 RMSE:

RMSE is a commonly used metric to evaluate the performance of a predictive
model, particularly in regression analysis [24]. RMSE measures the difference be-
tween the predicted and actual values of a dataset and provides a measure of how
much the predictions deviate from the actual values, on average. A lower RMSE
value represents better performance.

The formula to calculate RMSE is:

RMSE = sqrt(1/n ∗ sum((predictedi − actuali)
2))

Where,
n is the number of data points in the dataset,
predictedi is the predicted value for the i-th data point,
actuali is the actual value for the i-th data point.

2.4.2 MAE:

Mean Absolute Error (MAE) is a commonly used metric for evaluating the accu-
racy of a predictive model. It measures the average magnitude of errors in a set of
predictions, without considering their direction [24]. A lower MAE value suggests
better performance.

The formula to calculate MAE is:

MAE =

n∑
i=1

|yi − ŷi|
n

Where,
Y is the actual value,
Ŷ is the predicted value, and n is the number of observations.

2.4.3 MSE:

MSE is a commonly used metric to measure the difference between the predicted
and actual values of a regression problem [24]. It is calculated by taking the average
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of the squared differences between the predicted and actual values. A lower MSE
value represents better performance.

The formula to calculate MSE is:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

Where,
Yi is the actual value,
Ŷi is the predicted value,
n is the number of observations.

2.4.4 R-Squared:

R2 (pronounced as "R-squared") is a statistical measure that represents the propor-
tion of the variance in a dependent variable that can be explained by the independent
variables in a regression model [24]. R2 is a measure of how well the regression model
fits the data.

The value of R2 ranges from 0 to 1, with higher values indicating a better fit
of the model to the data. An R2 value of 0 means that the model explains none of
the variability of the response data around its mean, while an R2 value of 1 indicates
that the model perfectly predicts the response data.

The formula to calculate R2 is:

R2 = 1− SSR

SST

Where,
SSR (Sum of Squared Residuals) is the sum of the squared differences between the
predicted values and the actual values.
SST (Total Sum of Squares) is the sum of the squared differences between the actual
values and the mean of the target variable.

2.4.5 TWAP:

TWAP is a metric used to measure the average price of an asset over a specific
period of time [3]. It is commonly used in finance and trading to evaluate the per-
formance of a trading strategy or to benchmark the execution of trades. The TWAP
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value of the predicted prices closer to the TWAP value of the actual prices suggests
that the models’ performance is good.

The formula to calculate TWAP is:

Weighted average price =

∑n
i=1 Pricei · Timei∑n

i=1 Timei

Where,
Price1 to Price n are the prices recorded for each time interval,
Time1 to Time n are the durations of the time intervals,
Total time is the sum of the durations of all the time intervals.

The formula used to calculate TWAP in this thesis is:

TWAP =

∑T
t=1 Pt∑T
t=1 Qt

where,
Pt represents the price for a particular timestamp,
Qt represents the actual test prices for the same timestamp,
and T represents the total number of timestamps.

2.4.6 VWAP:

VWAP is a financial indicator used to measure the average price at which a stock
or other security has traded over a specific period, based on both the trading volume
and price for each transaction. It is the sum of the total volume-weighted prices by
the total traded volume for the given period [3]. The VWAP value of the predicted
prices closer to the VWAP value of the actual prices suggests that the models’ per-
formance is good.

The formula to calculate VWAP is:

VWAP =

n∑
i=1

(Pricei × Volumei)
∑n

i=1 Volumei
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Related Work

For predicting the price of cryptocurrencies, there are numerous comparative stud-
ies available. Many researchers have conducted cryptocurrency price predictions us-
ing a variety of methods. Few of them employed DL models, while some just took
ML techniques into account when conducting their research. Researchers have also
taken into account various cryptocurrencies, like Ethereum and Litecoin. Few arti-
cles considered a short-term strategy, while others focused on long-term analysis. A
few of these papers are discussed below:

Phaladisailoed et al. [42] used 1-minute interval trade data from January 1, 2012,
to January 8, 2018, via the Kaggle website to predict Bitcoin values using the LSTM,
GRU, Theil-Sen, and Huber regression models. Theil-Sen and Huber and other re-
gression models were tested using the scikit-learn and Keras libraries, and the findings
revealed that GRU and LSTM performed superior to them. With an of 0.00002 and
an R2 of 0.992, GRU had the best accuracy, however, it took more time than Huber
regression. They have solely used R2 metrics to assess their models. Evaluating us-
ing only linear regression models makes them unable to compute non-linear relations
between variables. Comparably [4, 49] have also used RNN algorithms to conduct
their studies.

In order to predict cryptocurrency prices, Seabe et al. [49] used three differ-
ent types of RNN, including LSTM, GRU, and Bi-Directional LSTM. The study
focuses on Bitcoin, ethereum, and Litecoin, three of the most popular cryptocurren-
cies, and measures the performance of the models using Mean Absolute Percentage
Error (MAPE) and RMSE. According to the experimental findings, Bi-LSTM fared
better than LSTM and GRU in terms of prediction accuracy, with the lowest MAPE
values for Bitcoin, Litecoin, and Ethereum being 0.036, 0.041, and 0.124, respectively.
However, they did not take into account any ensemble machine learning models and
instead just compared deep learning algorithms. Only RMSE and MAPE measures
were used to evaluate their models.

To determine which RNN model performed best, Vanderbilt et al. [4] tested 3
distinct cryptocurrencies— Bitcoin, Litecoin, and Ripple—using 3 different RNN
models—Simple RNN, LSTM, and GRU. From January 2015 to March 2020, they
used historical price information from coinmarketcap.com. In an effort to improve
the model’s accuracy, they have also run further tests using new data from Google
Trends for the same time period. They came to the conclusion that the three pro-

15
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cedures were comparable in accuracy to one another. Additionally, the accuracy
did not improve further after conducting additional experiments utilizing the data
from Google Trends. They simply used the RMSE statistic to evaluate their model,
and they subsequently tried to improve the output by training them with each cryp-
tocurrency’s daily closing price including or excluding Google Trends information.
To improve the validity of the forecast results, other evaluation metrics along with
RMSE were used in this thesis.

Like [49] Kim et al. [29] have tested on three cryptocurrencies namely Bit-
coin, Ethereum, and Litecoin using LSTM and GRU deep learning algorithms. The
datasets were chosen from coinmarket based on kurtosis and skewness. LSTM and
GRU models are trained and tested on the same hyperparameter configuration while
increasing the number of epochs from 1 to 30. The accuracy of each model is mea-
sured by RMSE and MAE. After the testing phase, they concluded that GRU was
more advantageous for the downward stabilization trend, and the LSTM was suit-
able for the upward stabilization trend. Similarly, other researchers [27,30] have used
RMSE and MAE as their main evaluation metrics.

Iqbal et al. [27] focused on finding the most efficient technique out of ARIMA,
FB Prophet, and XGBoosting for predicting the future price of Bitcoin based on
RMSE, MAE, and R2 parameters. After their experimentation on all three algorith-
mic techniques, they found out that the parametric score of ARIMA is the best of
all three considered techniques. They have used the Kaggle dataset’s historical price
data and pre-processed that data and used it to build their models for comparison.
They have mostly focused on supervised machine learning algorithms and have not
considered any other type of algorithms for their comparison. On the other hand,
our comparative analysis is based on a mixture of both Supervised learning models
RF, GB and RNN models LSTM, GRU.

In order to determine the future trends of the Ethereum cryptocurrency, Ku-
mar et al. [30] used deep learning techniques including the Multi-Layer Perceptron
(MLP) and LSTM, and evaluated their findings using the RMSE, MAE, and metrics.
They have made a long-term prediction and computed values for each day, hour, and
minute using previous pricing data. They used daily data that included open price,
closing price, high and low, volume per day, and hourly data from August 2015 to
August 2018. They came to the conclusion that the LSTM model is superior to the
MLP in terms of robustness and accuracy for long-term reliance. Our models were
trained using the dataset that contained the technical indicators EMA, SMA, RSI
based on the historical price data.

Like [27] few researchers have solely based their study on ML algorithms. Der-
bentsev et al. [16] focused on the short-term prediction model for price prediction of
cryptocurrencies. The updated Binary Auto Regressive Tree (BART) was adapted
to series data and standard models. Study shows that BART is more accurate than
ARIMA. ARIMA model in slow-growing and transitional dynamic times. RMSE for
this algorithm for the horizon of 14, 21, and 30 days was within the ranges 4%, 6%,
and 8% respectively. They have taken closing prices from January 2017 to March
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2019 according to yahoo finance, and calculated their time series in log return. They
have made the log return for the next time period their target variable. The forecast
was carried out on five different time horizons: 5, 10, 14, 21, and 30 days using three
models for each cryptocurrency. In contrast, we have considered the values SMA,
EMA, and RSI values as our target variables.

Chen et al. [9] have identified Bitcoin prices through regular prices and high-
frequency prices to predict Bitcoin prices through ML techniques at different fre-
quencies. In comparison with the usual price benchmark results, XGB and SDA
machine learning algorithms have higher results with the highest statistical accuracy
of 66% and 65.3% respectively. They have employed 2 datasets: The first includes
the aggregated Bitcoin daily price, with a big interval and small scale, from Coin-
MarketCap.com. The second dataset consists of 5-minute interval Bitcoin real-time
trading price data at high-frequency and large scale pulled from Binance. They have
considered 12 features like block size, hash rate, etc, and used data from 2 different
datasets to conduct their study whereas we have used technical indicators like (SMA,
EMA, and RSI) and a single dataset from Coinbase to conduct our experiment on.

Similar to [9] Saad et al. [46] have used internal indicators mempool size, hash
rate, etc. to study the trends of two cryptocurrencies namely Bitcoin and Ethereum,
and found out the key network indicators affecting their price and then applied ML
techniques like LSTM and Regression to find out the accuracy of their model. They
have considered Bitcoin data from the “Blockchain” API and collected data from
April 2016 to May 2018. Similarly, data related to Ethereum was collected using
the information provided by an Ethereum exchange “Etherscan”, for the same time
period. Their results showed that with LSTM, Bitcoin achieves higher accuracy with
minimum error on each epoch. However, with the conjugate gradient method, the
overall margin of error with the Hessian algorithm was more than the conjugate gra-
dients. We have trained our models on the dataset containing the technical indicators
(EMA, SMA, RSI) based on the historical price data.

Huang et al. [25] have used decision trees to predict Bitcoin prices using daily price
data of BTC-USD from January 1st, 2012 to December 29th, 2017 at investing.com.
They have split their data into 3 subsample sets for the purpose of calculating the
technical indicators as inputs, training the decision trees, and testing the trained
model. They have used 124 technical indicators to predict the range of the next-day
returns. The 124 indicators are split into 21 non-overlapping return ranges. These
technical indicators are included in the ta-lib library and are grouped into 5 cate-
gories by the ta-lib. They found that the proposed model has strong (out-of-sample)
predictive power for narrow ranges of Bitcoin daily returns. We have only considered
three technical indicators and predicted the future prices of Bitcoin.

Chowdhury et al. [11] have used ensemble learning methods, K-NN model, gra-
dient boosted trees, and neural net model to find and analyze the close price of nine
cryptocurrencies and for the index, cci30. They have collected historical data which
includes seven-day week daily data for the month of January 2019 from coinmarket-
cap.com. to have considered 7 attributes and divided their dataset into two training
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and testing. To find out the index values they have taken data from cci30.com. For
forecasting the daily close price of the month of January 2019, they have used the
K-NN algorithm in the RapidMiner platform. They obtained 92.4% accuracy using
the ensemble learning method, and 90% accuracy from gradient-boosted trees and
concluded that the ensemble learning method is considered as the best among all the
models used in the paper. They have only used data for the month of January 2019
and found the corresponding index values using the K-NN model, whereas we used
RF, GB, and GRU and predicted the future prices using data from the past 6 years.

Liu et al. [32] have used OLS and XGB to predict returns for 3703 cryptocur-
rencies for the 2013 – 2021 period. Based on daily data they have built an equal-
weighted portfolio that gives 2.4% daily return with a 0.27 Sharpe ratio. They have
used data from many varying sources ranging from databases, google Trends to bank
databases, and other commodity prices. They obtained a 4.8% R2 value, they came
to the following conclusions: 1-day lagged returns have great predictive power for
crypto returns, three OECD indices are important for forecasting cryptocurrency
returns and Google searches have higher predictive power for large cryptocurrencies
than small ones. They have used OLS and XGradient Boosting models to conduct
their research and also built an equal-weighted portfolio. We have only considered 4
algorithms to predict the future prices of Bitcoin.

From the reviewed related work it can be observed that there is much work done
using different algorithms and different datasets for the prediction of cryptocurrency
prices, yet there is still much to be researched in terms of long-term predictions.
Additionally, not many studies have used technical indicators for predicting cryp-
tocurrency prices. By utilizing technical indicators this thesis aims to identify an
efficient algorithm for making long-term predictions of Bitcoin prices.

The related work results are noted in Table 3.1

Reference Technique Outcome Evaluation Dataset

[27]
ARIMA,
FBProphet,
XGB

Bitcoin price
prediction

RMSE:
ARIMA: 322.4
FBProphet:229.5
XGB: 369

Kaggle
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[32] OLS, XGB

Forecasting
returns for 3703
cryptocurrencies,
creating
equal-weighted
portfolio

R2:
XBG: 4.855%
Returns:
OLS:
Equal-weighted:
6.297%
Capital-weighted:
1.852%
XGB:
Equal-weighted:
7.105%
Capital-weighted:
2.165%

Various
sources

[11]

Ensemble
learning methods,
K-NN model,
gradient boosted
trees,
neural net model.

Close price of
cryptocurrency
and their
corresponding
index

Accuracy:
Ensemble
learning: 92.4%
Gradient
boosted: 90%

Coin-
marketcap,
Cci30.com

[25] Decision trees Bitcoin price
prediction

Average:
Geometric: 2.77
Arithmetic: 4.20

Investing

[46] LSTM, Regres-
sion trees

Cryptocurrency
price prediction:
Bitcoin,Ethereum

Accuracy:
Bitcoin: 0.9957
Ethereum: 0.9999

Blockchain,
Etherscan

[9]
LSTM, QDA,
SVM, RF,
XGB, LR, LDA.

Bitcoin price
prediction

Accuracy:
LR: 66.0%
LDA: 63.9%
QDA: 55.1%
SVM: 65.3%
RF: 51.0%
XGB: 48.3%
LSTM: 57.0%

Coin-
marketcap
Binance

[16]
ARIMA,
Regression tree,
BART

Cryptocurrency
forecasting:
Bitcoin,Ethereum,
Ripple

RMSE of BART:
14 days: 4%
21 days: 6%
30 days: 8%

Yahoo
finance

[30] MLP, LSTM Ethereum price
prediction

RMSE:
MLP: 21.3
LSTM:20.53

CoinDesk
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[29] LSTM, GRU

Cryptocurrency
price prediction:
Bitcoin,Ethereum
Litecoin

RMSE:
Type a:
LSTM: 0.415
GRU: 0.091
Type b:
LSTM: 0.268
GRU: 0.447

Coinmarket

[4] Simple RNN,
LSTM, GRU

Cryptocurrency
price prediction:
Bitcoin, Ripple,
Litecoin

P-value
(BTC,ETH,LTC):
RNN: 0.997,
0.908, 0.704
LSTM: 0.939,
0.508, 0.877
GRU: 0.659,
0.729, 0.642

Google
trends,
coin-
marketcap

[49]
LSTM, GRU,
Bi-directional
LSTM

Cryptocurrency
price forecasting:
Bitcoin, Litecoin,
Ethereum

RMSE
(BTC,LTC,ETH):
LSTM:1031.3,
148.5, 9.66
Bi-LSTM:1029.3,
83.9, 8.0
GRU:1274.1,
98.3, 8.1

Yahoo
finance

[42]

LSTM, GRU,
Theil-Sen
and Huber
regression

Bitcoin price
prediction

R2:
Theil-Sen
regression: 99.17%
Huber
regression:99.18%
LSTM:99.2%
GRU:99.2%

Kaggle

Table 3.1: Related Work
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Method

To identify the factors influencing the price of Bitcoin and develop an accurate
prediction model for future prices, a combination of qualitative and quantitative
research methods has been used. By doing so, it was possible to achieve a compre-
hensive understanding of the factors affecting Bitcoin prices and develop an efficient
model for predicting future prices.

Qualitative research methodology in the form of a SLR has been employed, which
involves a systematic search for relevant literature followed by a critical evaluation of
the quality and relevance of the identified studies. The outcome of the SLR provides
valuable insights into the current body of knowledge in the domain of research and
helps in identifying suitable ML algorithms for the prediction of Bitcoin prices using
technical indicators calculated from the historical price data.

Quantitative research methodology involves conducting an experiment to gather
empirical data related to the predictions made on the historic Bitcoin price data.
This experimentation involves building a model using the selected algorithms, train-
ing, testing, and evaluating them using the relevant dataset and appropriate metrics.
The experimentation process helps to validate the model’s accuracy and reliability.

4.1 Literature Study

To address research question 1, a qualitative analysis in the form of a structured
literature review is conducted by following the guidelines provided by C.Wohlin [53].
This method helps in gaining an understanding of different ML algorithms for the
prediction of cryptocurrency prices and also helps in identifying the appropriate al-
gorithms for the prediction of Bitcoin using historical price data. The steps taken in
our research are as follows:

1. Identifying Keywords: The keywords that were analogous to our research goal
were identified- Machine Learning, Prediction, Deep Learning, Cryptocurrency,
Technical Indicators, and Price.

2. Formulating the Search String: Different search strings were formulated using
the keywords identified in the previous step.

21
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3. Finding the Literature: Using the search string research literature was found
in the databases- Google Scholar, IEEExplore, Science Direct, arXiv.

4. Inclusion and Exclusion Criteria: After collecting the research papers, articles,
and conference papers from the aforementioned databases using the search
string, the inclusion and exclusion criteria were formulated.

Inclusion Criteria:

(a) Literature related to ML algorithms for prediction tasks.

(b) Articles need to be published.

(c) Every literature must be in the English language

Exclusion Criteria:

(a) Literature that is not completed.

(b) Articles that are not written in the English language.

(c) Literature related to classification.

5. Application of the inclusion and exclusion criteria: The inclusion and exclusion
criteria were employed on the collected literature to filter them and finally the
literature is selected.

6. Reviewing the selected literature: The observations from the gathered literature
are compiled and reviewed for analysis.

4.2 Experiment

In order to answer RQ2, a quantitative analysis in the form of an experiment was
conducted using the algorithms identified from the SLR conducted to answer RQ1.
The experiment is done by building prediction models using the selected algorithms.
Thereby identifying the best algorithm for the prediction of Bitcoin prices.

4.2.1 Working Environment

• OS: Microsoft Windows 11 64-bit

• Processor: Intel CORE i5-1155G7 @ 2.50GHz

• Graphics: Intel IRISXe Graphics

• RAM: 16.00 GB DDR4 SDRAM

• Name: Visual Studio Code - Coding editor

• Name: python version 3.9.12 – Open-source programming language.

• Name: requests Version: 2.29.0 - Library to make HTTP requests.
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• Name: pandas Version: 2.0.1 - Powerful data structures for data analysis [39].

• Name: pandas-ta Version: 0.3.14b0- Extension for pandas used for Technical
Analysis Indicators [39].

• Name: scikit-learn Version: 1.2.2- A library that provides many regression
machine learning algorithms [41].

• Name: keras Version: 2.12.0 – A library that provides many deep learning
neural network models [10].

• Name: numpy Version: 1.23.5- Library that gives support for large multidi-
mensional arrays and matrices [23].

• Name: matplotlib Version: 3.7.1- Library that provide plotting features [26].

The structure of the experiment was as follows:

1. Selecting and pre-processing the data set to obtain quality data and splitting
them into three.

2. Performing Hyperparameter-Tuning using the validation dataset.

3. Training the ML models using the training dataset.

4. Testing the trained models using the testing dataset.

5. Evaluating the model using the selected metrics.

6. Finding out which feature in the dataset affected the prediction of all the
models.

4.2.2 Selecting the Dataset

The historical price data in USD of Bitcoin was taken from the CoinGecko database
which is a well-established and reputable open-source database that offers compre-
hensive and reliable historical price data of several famous cryptocurrencies like Bit-
coin, Ethereum, and many more [2]. CoinGecko focuses specifically on cryptocur-
rency market data, making it highly relevant. Also, by requesting historical prices
using an API helps in receiving data up to the date when the request was made.

4.2.3 Preprocessing the data

Models in this research use Bitcoin prices in USD from the CoinGecko database. In
particular, the daily interval price data in USD from May 2017- May 2023, is focused.
The price of Bitcoin had a significant shift in 2017, compared to the smaller changes
observed in the previous years. The chosen period includes historical price data span-
ning six years, which would provide the machine learning algorithms enough data to
train and test enabling them to produce effective results. The data is stored as a data
frame after being extracted as a .Json file utilizing the API endpoint. The dataset
initially contains the features price, volume, and their corresponding timestamps.



24 Chapter 4. Method

Data formatting is performed by utilizing the to_numeric() function for converting
the prices and volumes data and to_datetime()function to convert the time column
in the data frame. These formatting functions are called from the imported pandas
library. Using the prices data, 3 technical indicators SMA, EMA, and RSI are calcu-
lated. The technical indicators EMA and SMA are calculated over a 5-day period,
whereas the indicator RSI is calculated over a period of 14 days. These indicators
are calculated with the help of pandas_ta library in python.

To handle the missing values all the NaN (not a number) spaces/values are re-
placed with 0, using the fillna() function in python. In order to make certain that
all features are in the same scale, minmax scaler is used from the scikit-learn library.
The minmax scaler transforms the values of each feature, between 0-1. This scal-
ing technique preserves the relative relationships between the values while bringing
them to a standardized range [42]. The minmax scaler uses the following formula to
perform scaling operation:

Xsc =
x−min(x)

max(x)−min(x)

After preprocessing the dataset, it consists of 6 features that are free from any
missing values and ready for splitting the dataset into two:

1. Time

2. Price

3. Volume

4. SMA

5. EMA

6. RSI

The pre-processed dataset (which consists of 2190 rows and 6 columns) is now
split for training, validating, and testing the ML models. The dataset is split in such
a way that the training set contains 70% of the data from the start date taken which
consists of 1532 rows, the Validation set contains 10% of the data which is 219 rows
and the testing set contains the remaining 20% of the total data which constitutes
439 rows. These training, validation, and testing datasets are used to build and
evaluate models from the chosen algorithms.

4.2.4 Creation of Prediction Models

Prediction models are needed to be built using the selected algorithms to train
and test. The RF model is created by calling the RandomForestRegressor() func-
tion from the scikit-learn library. Similarly, the GB model is created by calling the
GradientBoostingRegressor() from the scikit-learn library. The LSTM model is
created using the Keras library by calling the Sequential() function and adding the
LSTM units. Similarly, the GRU model is created using the Keras library using the
Sequential() function and adding the GRU units.
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4.2.5 Selection of Hyper-Parameters

For ML Algorithms to have higher performance, the most optimal hyper-parameters
are needed to be selected. These hyper-parameters help the ML models to fit well to
unseen data and help improve the performance of the models [54]. Hyper-parameter
tuning is done with the help of validation dataset.

Random Forest Regressor:

The RF Regressor has a hyper-parameter called n_estimators which specifies
the number of decision trees that form the forest. The regressor is trained using the
training dataset in multiple iterations, with the number of estimators incrementing
from 50 to 300 in steps of 50 at each iteration. In each iteration, the model makes
predictions using the validation dataset, and the predictions are evaluated using the
score. The model with the best score among all the hyper-parameter configurations
is then selected for training the model. This approach ensures that the RF is opti-
mized for the given dataset and provides the best possible performance.

Gradient Boosting Regressor:

Similar to RF the GB regressor has hyper-parameter n_estimators which rep-
resents the number of decision trees in the model. In addition to n_estimators
it also has the hyper-parameter learning rate. It determines the contribution of
each tree to the final prediction. To optimize the hyper-parameter, the model is
trained using different combinations of hyper-parameters: learning rate (0.001, 0.01,
0.1) and n_estimators (50,100,150,200). The predictions are made using the val-
idation dataset. The predictions of each iteration are evaluated using scores. The
hyper-parameters of the model with the best scores are chosen for training the GB
Regressor.

LSTM:

The LSTM model is configured with three hyperparameters: batch_size, epochs,
and lstm_units. The batch size determines the number of samples processed before
updating the model’s internal parameters during training, while the epochs repre-
sent the number of times the learning process takes place. Lastly, the lstm_units
specifies the number of units in each layer of the model. To optimize the LSTM
model’s performance, different combinations of the hyperparameters are evaluated
using the training dataset. For each combination, predictions are made using the
validation dataset, and the resulting scores are computed. After evaluating all pos-
sible hyperparameter combinations, the model with the least score is selected, and
its hyperparameters are used to train the final LSTM model.

GRU:

The GRU model has the hyper-parameters: batch_size(16, 32), which de-
fines the number of samples processed before updating the internal parameters dur-
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ing training, epochs (50, 100), which sets the number of learning iterations, and
gru_units (50, 100), which specifies the number of units in each layer of the model.
To find the best hyper-parameter combination, the GRU model is trained using the
training dataset with all possible hyper-parameter combinations. The validation
dataset is used to make predictions at each iteration, and the predictions are evalu-
ated using the score. The hyper-parameters of the model with the lowest score are
then selected to train the final model.

4.2.6 Training The Models

The models are trained using the training dataset and setting the hyper-parameters
to the values found during validation.

Random Forest Regressor:

The RF algorithm builds several decision trees during training, with each tree
being trained on a different random subset of the training data. The feature that
offers the best separation of the data is used to make a split at each node of each
tree. This process is repeated until each leaf node includes a subset of the training
data, and the predicted value is the average of the target values in that subset. The
model is built by calling the ‘RandomForestRegressor()’ class from the scikit-learn
library and setting the number of decision trees to be created to 100. These decision
trees are separately trained using random subsets derived from the training dataset.
The model is trained using RSI, EMA, and SMA as the input features and ‘Price’
as the target variable.

Algorithm 1 Random Forest model training and evaluation
1: Input: Training data (Xtrain, ytrain), testing data (Xtest, ytest), hyperparameters

(nestimators)
2: Output: Random Forest model performance metrics
3: Initialize Random Forest model rf with nestimators estimators
4: Train model on training data (Xtrain, ytrain)
5: Evaluate model on testing data (Xtest, ytest)
6: Predict prices on testing data using model rf
7: Compute Random Forest model RMSE, MSE, MAE, and R2 performance metrics
8: Compute Random Forest model TWAP and VWAP performance metrics
9: return Random Forest model performance metrics

Gradient Boosting Regressor:

GB chooses the optimal feature to divide the data at each node of the tree dur-
ing training in order to generate a decision tree. By adding decision trees to the
ensemble, the model is trained iteratively, with each new tree fixing the mistakes
produced by previous trees. By calling the ‘GradientBoostingRegressor()’ class
from the scikit-learn library and setting the number of decision trees to be created to
100. These decision trees are separately trained using random subsets derived from
the training dataset. The model is trained using RSI, EMA, and SMA as the input
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features and ‘Price’ as the target variable, which involves fitting the decision trees
to the data using gradient descent to minimize the loss function.

Algorithm 2 Gradient Boosting model training and evaluation
1: Input: Training data (Xtrain, ytrain), testing data (Xtest, ytest), hyperparameters

(nestimators)
2: Output: Gradient Boosting model performance metrics
3: Initialize Gradient Boosting model gb
4: Set number of estimators to nestimators

5: Train model with training data (Xtrain, ytrain)
6: Evaluate model on testing data (Xtest, ytest)
7: Predict prices on testing data using model gb
8: Compute Gradient Boosting model RMSE, MSE, MAE, and R2 performance

metrics
9: Compute Gradient Boosting model TWAP and VWAP performance metrics

10: return Gradient Boosting model performance metrics

LSTM:

The LSTM neural network is built using Keras, a well-known DL library. The
model is initially set up as an empty sequential model, allowing for the sequential ad-
dition of layers. A dense output layer with one unit and two LSTM layers, each with
50 lstm_units, is then added to the model. The loss function utilized is MSE, and
the model is optimized using the Adam optimizer. Three technical indicators—RSI,
EMA, and SMA—that are employed to forecast the price of Bitcoin make up the
input data. After that, the input data is reconfigured to have three time steps and
one feature per time step (3,1).

The target variable or Bitcoin price is represented by the output data, which
is a 1D tensor with the same length as the input data. The fit method uses input
data, target data, epochs (50) which tell how many times the model iterates through
the complete training dataset, and batch size (32) which refers to the number of sam-
ples utilized in each training iteration, as inputs to train the model. Based on the
difference between its predictions and the actual target values, the model modifies
its weights and biases during training.
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Algorithm 3 LSTM model training and evaluation
1: Input: Training data (Xtrain, ytrain), testing data (Xtest, ytest), hyperparameters

(nunits, nepochs, nbatch)
2: Output: LSTM model performance metrics
3: Initialize LSTM model lstm
4: Add LSTM layer with nunits units, return sequences, and input shape (3, 1)
5: Add LSTM layer with nunits units
6: Add Dense layer with 1 unit
7: Compile model with optimizer Adam and loss function mean squared error
8: Train model with nepochs epochs and batch size nbatch on training data

(Xtrain, ytrain)
9: Evaluate model on testing data (Xtest, ytest)

10: Predict prices on testing data using model lstm
11: Compute LSTM model RMSE, MSE, MAE, and R2 performance metrics
12: Compute LSTM model TWAP and VWAP performance metrics
13: return LSTM model performance metrics

GRU:

Similar to the LSTM algorithm, GRU is also built using the Keras library. The
training process of GRU is similar to that of LSTM, an empty sequential model is
first created, and then 2 GRU layers with 50 units each and a dense output layer with
1 unit are added. The model is then fitted using input and target data. The input
data which contains RSI, EMA, and SMA values, is reshaped to have 3 time steps
and 1 feature per time step, yielding the 3D tensor of shape (number of samples,
1) as the input data. A 1D tensor of price values makes up the target data. The
training is carried out with a batch size of 32 over 50 epochs.

Algorithm 4 GRU model training and evaluation
1: Input: Training data (Xtrain, ytrain), testing data (Xtest, ytest), hyperparameters

(nunits, nepochs, nbatch)
2: Output: GRU model performance metrics
3: Initialize GRU model gru
4: Add EMA layer with nunits units, return sequences, and input shape (3, 1)
5: Add GRU layer with nunits units
6: Add Dense layer with 1 unit
7: Compile model with optimizer Adam and loss function mean squared error
8: Train model with nepochs epochs and batch size nbatch on training data

(Xtrain, ytrain)
9: Evaluate model on testing data (Xtest, ytest)

10: Predict prices on testing data using model gru
11: Compute GRU model RMSE, MSE, MAE, and R2 performance metrics
12: Compute GRU model TWAP and VWAP performance metrics
13: return GRU model performance metrics
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4.2.7 Testing the Models

The testing process involves evaluating the performance of all the trained ML
models on the same testing dataset. This testing dataset was obtained by splitting
the pre-processed dataset, ensuring that the models are assessed on unseen data.
The trained RF and GB models are used to make predictions using the predict()
function from the Scikit-learn library and the testing dataset was used as the input.
Similarly, predictions are made using predict() function from the Keras library on
the trained LSTM and GRU models, and the input features of the test data are
reshaped to match the input shape expected by the LSTM and GRU models. The
predicted values by each model are stored in the test data data-frame for analysis.

4.2.8 Feature Importance and Correlation Analysis

In order to find out the importance of each feature in the prediction models.
The permutation feature importance method was employed. Here, firstly the MSE
(baseline) is computed for each model, then each feature is iterated and multiple
permutations of the values of that feature are performed. For each permutation,
the score of the model is calculated and stored in a list. The importance of each
feature is then calculated as the difference between the original score and the mean
of the permuted scores of that feature. This represents the change in the model’s
performance when the values of the features are randomly shuffled.

Correlation analysis is performed to find out the linear relationship between each
feature and the prediction of each model. To calculate the correlation coefficients the
‘corr’ method of the panda’s library is used. It computes the pairwise correlation
between each technical indicator and the prediction of each model.

4.2.9 Evaluation Metrics

Evaluation metrics are essential for determining a model’s performance and its
relevance for solving an identified problem. The choice of the evaluation metrics is
based on the relevance of the problem to be solved and the characteristics of the
target variables. In the case of Bitcoin price prediction, evaluation metrics are cho-
sen based on their ability for determining the accuracy of the model’s predictions.
For this thesis, the metrics calculated are MSE, RMSE, MAE, and R-squared. The
error metrics (MSE, RMSE, MAE) compute the difference between the actual and
predicted prices, whereas R-squared measures the proportion of variance in the pre-
dicted prices. These metrics are calculated using the sklearn library. Additionally,
TWAP and VWAP are used to find out the time-weighted and volume-weighted av-
erages of the predicted prices. These metrics are calculated by using the formulas
mentioned in section 2.10

Bitcoin is highly volatile, and its price is affected by many factors like market
sentiments, the current volume of the Bitcoin, investor confidence, economic factors,
and historical prices of Bitcoin. In this thesis, historical price data is considered
for the prediction, because it allows us to identify trends and patterns that have
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occurred in the past and can potentially reoccur in the future. Moreover, historical
data provides a large amount of information that can be used to train ML models
to make long-term predictions. It is also important to note that predicting Bitcoin
prices using historical data is not a foolproof method, as there is no guarantee that
past trends will continue into the future.



Chapter 5
Results and Analysis

A SLR has been conducted to identify various ML algorithms for predicting the
prices of Bitcoin. RSI, EMA, and SMA are calculated using the historical price data
of Bitcoin data, and a dataset was created. RF, GB, LSTM, and GRU were trained
with the dataset which contains these technical indicators as the input features and
prices as the output variable. These algorithms were evaluated using the metrics
(RMSE, , MAE, R2, TWAP, VWAP).

5.1 Systematic Literature Review Results
To identify ML algorithms that can be used to predict Bitcoin prices, a SLR was

performed. The relevant literature was reviewed and the findings are tabulated in
table 5.1:

S.No Title Findings

1

Time-Series Prediction of
Cryptocurrency Market using
Machine Learning Techniques
[27]

This paper focused on finding out the
most efficient technique out of ARIMA,
FB Prophet and XG Boosting for
predicting the future price of Bitcoin
based on RMSE, MAE and R2 parameter.
After their experimentation on all three
algorithmic techniques, they have found
out that the parametric score of ARIMA
is the best of all three considered
techniques.

31
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2
Predicting the Trends of Price
for Ethereum Using Deep
Learning Techniques [30]

This paper focused on using deep
learning techniques like
Multi-layer perceptron (MLP) and
Long-Short term memory (LSTM)
to find out the future trends of Ethereum
cryptocurrency based on the data from
CoinDesk and coin market repository
and assessed against RMSE, MAE,
and parameters. They concluded
that the LSTM model is more robust and
precise for long-term dependency as
compared to MLP.

3

Toward Characterizing
Blockchain-Based
Cryptocurrencies for Highly
Accurate Predictions [46]

This paper focused on studying the
trends of two cryptocurrencies namely
Bitcoin and Ethereum and found out the
key network indicators affecting their
price and then applied machine learning
techniques like LSTM and Regression
to find out the accuracy of their model.
Their results showed that with LSTM,
Bitcoin achieves higher accuracy with
minimum error on each epoch. However,
with the conjugate gradient method the
overall margin of error with the Hessian
algorithm was more than the conjugate
gradients.

4
An Applied Study of RNN
Models for Predicting
Cryptocurrency Prices [4]

This paper focused on experimenting
on 3 RNN models (Simple RNN, LSTM,
and GRU) on 3 different cryptocurrencies
(Bitcoin (BTC), Litecoin (LTC),
and Ripple (XRP)) to find out which
performed better. They have also used
additional data from google trends to
perform additional experiments to try and
boost the accuracy of the model.
They concluded that the 3 techniques
considered were similar in terms of
accuracy to each other. Also, after
performing additional experiments using
the data from google trends the accuracy
did not increase further.
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5
A Cryptocurrency Prediction
Model Using LSTM and GRU
Algorithms [29]

This paper focused on testing on three
cryptocurrencies namely Bitcoin,
Ethereum, and Litecoin using
LSTM and GRU deep learning algorithms.
The datasets were chosen from coinmarket
based on kurtosis and skewness. After the
testing phase they have concluded
that, GRU was more advantageous for the
downward stabilization trend, and the
LSTM was suitable for the
upward stabilization trend.

6

Forecasting Cryptocurrency
Prices Time-Series Using
Machine Learning Approach
[16]

This paper focused on the short-term
prediction model for machine-learning
cryptocurrencies. The updated
Binary Auto Regressive Tree (BART)
was adapted to series data and standard
models. Study shows that BART is
more accurate than the ARIMA,
ARFIMA model in slow-growing and
transitional dynamic times. In particular,
RMSE for this algorithm for the horizon
of 14, 21, and 30 days was within the
ranges 4%, 6%, and 8% respectively.

7

Bitcoin Price Prediction Using
Machine Learning: An
Approach to Sample
Dimension Engineering [9]

This paper focused on identifying
Bitcoin prices through regular prices and
high frequency prices to predict Bitcoin
prices through machine learning
techniques at different frequencies.
In comparison with the usual price
benchmark results, XGB and SDA has
higher results with highest statistical
accuracy of 66% and 65.3%
respectively.
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8

Forecasting Cryptocurrency
Prices Using LSTM, GRU,
and Bi-Directional LSTM:
A Deep Learning Approach
[49]

This paper focused on using three types
of Recurrent Neural Networks (RNNs),
namely Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU),
and Bi-Directional LSTM (Bi-LSTM),
for forecasting cryptocurrency prices.
The study focuses on three major
cryptocurrencies, Bitcoin (BTC),
Ethereum (ETH), and Litecoin (LTC),
and evaluates the performance of the
models using Root Mean Squared Error
(RMSE) and Mean Absolute Percentage
Error (MAPE). The experimental results
show that Bi-LSTM outperformed
LSTM and GRU in terms of prediction
accuracy, with the lowest MAPE values
of 0.036, 0.041, and 0.124 for
BTC, LTC, and ETH, respectively.

9
Machine Learning Models
Comparison for Bitcoin Price
Prediction [42]

This paper focused on using LSTM,
GRU, Theil-Sen and Huber regression
models to predict Bitcoin prices using
1-minute interval trading data. Different
regression models were experimented
with using scikit-learn and Keras libraries
and the results showed that GRU and
LSTM performed better than
Theil-Sen and Huber regression models.
GRU showed the best accuracy with an
of 0.00002 and R2 of 0.992, but it
took more time than
Huber regression.
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10
Predicting Bitcoin Returns
Using High-Dimensional
Technical Indicators [25]

This paper focused on using decision
trees to predict Bitcoin prices using daily
price data of BTC-USD. They have used
124 technical indicators to predict the
range of the next day returns. The 124
indicators are split into 21 non-
overlapping return ranges. These
technical indicators are included in
the ta-lib library and are grouped into
5 categories by the ta-lib. They found
that the proposed model has strong
(out-of-sample) predictive
power for narrow ranges of Bitcoin
daily returns.

11

An Approach to Predict and
Forecast the Price of
Constituents and Index of
Cryptocurrency Using
Machine Learning [11]

This paper focused on using ensemble
learning methods, K-NN model, gradient
boosted trees, and neural net model to
find and analyze the close price of nine
cryptocurrencies and for the index, cci30.
They have obtained 92.4% accuracy using
ensemble learning method, 90% accuracy
from gradient boosted trees and
concluded that ensemble learning method
is considered as the best among all the
models used in the paper.

12
Forecasting Cryptocurrency
Returns with Machine
Learning [32]

This paper focused on using OLS and
XGB to predict returns for 3703
cryptocurrencies for the 2013 – 2021
period. Based on daily data they have
built an equal-weighted portfolio that
gives 2.4% daily return with a 0.27
Sharpe ratio. They have obtained a 4.8%
R2 value, they came to the following
conclusions: 1-day lagged returns
have great predictive power for
crypto returns, three OECD
indices are important for forecasting
cryptocurrency returns and Google
searches has higher predictive power for
large cryptocurrencies than small ones.
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13
Predicting Gold and Silver
Price Direction Using
Tree-Based Classifiers [47]

This paper focused on using several
machine learning tree-based classifiers
(bagging, stochastic gradient boosting,
random forests) to predict the price
direction of gold and silver exchange
traded funds. Decision tree bagging,
stochastic gradient boosting, and random
forests predictions of gold and silver price
direction are much more accurate than
those obtained from logit models. For a
20-day forecast horizon, tree bagging,
stochastic gradient boosting, and
random forests produce accuracy rates of
between 85% and 90% while logit models
produce accuracy rates between 55% and
60%. Stochastic gradient boosting
accuracy is a few percentage points less
than that of random forests for forecast
horizons over 10 days.

14

Cryptocurrency Price
forecasting: A Comparative
Study of Machine Learning
Model in Short-Term Trading
[34]

This paper focused on present a
comparative performance of large-scale
selected, Machine Learning algorithms
for cryptocurrency forecasting.
Specifically, this paper concentrates
on forecasting time series data for a
short-term trading period in ten
cryptocurrencies (BTC, ETH, etc.) with
ten selected machine learning algorithms
(Random Forest, K-Nearest Neighbours,
Neural Networks, Gradient Boosting, etc.)
Their experimental results show that the
Gradient Boosting with the mean square
error criterion is superior in predicting
most major cryptocurrencies by
performing statistical analysis and data
visualizations. Additionally, the Random
Forest and Decision Tree model built by
the Classification and Regression Tree
algorithm also shows outstanding
performance.

Table 5.1: SLR Findings

The SLR conducted on these papers has shown that RF, GB, LSTM, and GRU
have been proven effective in predicting cryptocurrency prices. So, these ML algo-
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rithms have been chosen to conduct the experiment.

5.2 Experiment Result
An experiment is conducted using the ML algorithms identified from the results

of the SLR. The algorithms RF, GB, LSTM, and GRU are trained using the same
dataset and then tested for the prediction of Bitcoin prices. The predictions are
evaluated using RMSE, MSE, MAE, R2, TWAP, and VWAP. For evaluation of the
models’ predictions using TWAP and VWAP, the TWAP and VWAP values were
calculated using the actual prices of the Bitcoin. The TWAP value calculated using
actual Bitcoin prices was found to be 0.39953 and the VWAP value calculated using
actual Bitcoin prices was found to be 0.34847. The results are visualized using the
Matplotlib library for creating line graphs and Microsoft Word for creating bar
graphs. The experiment results are presented in this section.

5.2.1 Random Forest Regressor

Hyper-parameter tuning was performed on RF with varying n_estimators values,
it was found that the model performed the best when the n_estimators was set to
100 with the validation set score of 0.00052. Therefore, the n_estimators value was
set to 100 and the model was trained using the pre-processed dataset and tested on
unseen data to make predictions of Bitcoin prices. The trained RF model achieved
an RMSE of 0.01973, MSE of 0.00038, MAE of 0.43742, R2 of 0.45762, TWAP of
0.41585, and VWAP of 0.36904. The evaluation metrics used to assess the trained
model, along with the actual and predicted values, are compared in the bar graph
5.1 and line graph 5.2 shown below.

Figure 5.1: Evaluation Results Bar Graph of Random Forest
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Figure 5.2: Actual Vs Predicted Prices of Random Forest

After the evaluation was done the feature importance was computed in order to
understand which feature in the dataset affected the prediction of the model more.
The feature importance was measured by performing the method ’permutation feature
importance’. This method is done by randomly permuting the values of a single
feature in the test dataset and observing the resulting decrease in the model’s perfor-
mance. The RF’s feature importance scores for the features ’RSI’, ’SMA’, and ’EMA’
are 0.00009, 0.01294, and 0.00411, respectively. The feature importance scores of RF
are displayed in the form of a bar graph 5.3 below.

Figure 5.3: Feature Importance Bar Graph of Random Forest

Also, correlation analysis was performed to find out the linear relationship be-
tween each feature and the predictions of the RF. The correlation coefficient values
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for the features for ‘RSI’, ‘SMA’, and ‘EMA’ with the prediction values of RF are
0.0697,0.9933, and 0.9929 respectively. The bar graph 5.4 below displays the corre-
lation between each feature and the predictions of the RF.

Figure 5.4: Correlation Analysis Bar Graph of Random Forest

Below in figure 5.5 is a snippet of the actual and predicted values of the model.

Figure 5.5: Prediction Values of Random Forest Model

5.2.2 Gradient Boosting Regressor

Hyper-parameter tuning was performed on the GB with varying n_estimators
values and learning rates, it was found that the model performed the best when the
n_estimators was set to 100 and the learning rate was set to 0.01 with the valida-
tion set score of 0.00048. Thereafter, the model was trained using the pre-processed
dataset and tested on unseen data to make predictions of Bitcoin prices. The trained
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GB achieved an RMSE of 0.01515, MSE of 0.00022, MAE of 0.45006, R2 of 0.50735,
TWAP of 0.41510, and VWAP of 0.36721. The evaluation metrics used to assess the
trained model, along with the actual and predicted values, are compared in the bar
graph 5.6 and line graph 5.7 shown below.

Figure 5.6: Evaluation Results Bar Graph of Gradient Boosting

Figure 5.7: Actual Vs Predicted Prices of Gradient Boosting

After the evaluation was done the feature importance was computed in order to un-
derstand which feature in the dataset affected the prediction of the model more. The
feature importance was measured by performing the method ’permutation feature
importance’. This method is done by randomly permuting the values of a single
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feature in the test dataset and observing the resulting decrease in the model’s perfor-
mance. The GB’s feature importance scores for the features ’RSI’, ’SMA’, and ’EMA’
are 0.00015, 0.02495, and 0.00023, respectively. The feature importance scores of the
GB are displayed in the form of a bar graph 5.8 below.

Figure 5.8: Feature Importance Bar Graph of Gradient Boosting

Also, correlation analysis was performed to find out the linear relationship be-
tween each feature and the predictions of the GB. The correlation coefficient values
for the features for ‘RSI’, ‘SMA’, and ‘EMA’ with the prediction values of GB are
0.0941,0.9959, and 0.9954 respectively. The bar graph 5.9 below displays the corre-
lation between each feature and the predictions of the GB.

Figure 5.9: Correlation analysis Bar Graph of Gradient Boosting

Below in figure 5.10 is a snippet of the actual and predicted values of the model.
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Figure 5.10: Prediction Values of Gradient Boosting Model

5.2.3 Sequential LSTM

Hyper-parameter tuning was performed on LSTM with varying lstm_units, epochs,
and batch_size values, it was found that the model performed the best when the
lstm_units was set to 50, batch_size to 32, and epochs to 50 with the validation
set score of 0.00050. Thereafter, the Sequential LSTM was trained using the pre-
processed dataset and tested on unseen data to make predictions of Bitcoin prices.
The trained LSTM model achieved an RMSE of 0.01083, MSE of 0.00011, MAE of
0.80635, R2 of 0.80618, TWAP of 0.40507, and VWAP of 0.35660. The evaluation
metrics used to assess the trained model, along with the actual and predicted values,
are compared in the bar graph 5.11 and line graph 5.12 shown below.

Figure 5.11: Evaluation Results Bar Graph of LSTM
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Figure 5.12: Actual Vs Predicted Prices of LSTM

After the evaluation was done the feature importance was computed in order to un-
derstand which feature in the dataset affected the prediction of the model more. The
feature importance is measured by performing the method ’permutation feature
importance’. This method is done by randomly permuting the values of a single
feature in the test dataset and observing the resulting decrease in the model’s perfor-
mance. The LSTM model’s feature importance scores for the features ’RSI’, ’SMA’,
and ’EMA’ are 0.00019, 0.00665, and 0.00824, respectively. The feature importance
scores of the LSTM model are displayed in the form of a bar graph 5.13 below.

Figure 5.13: Feature Importance Bar Graph of LSTM
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Also, correlation analysis was performed to find out the linear relationship between
each feature and the predictions of the LSTM. The bar graph 5.14 below displays the
correlation between each feature and the predictions of the Sequential LSTM model.
The correlation coefficient values for the features for ‘RSI’, ‘SMA’, and ‘EMA’ with
the prediction values of the LSTM model are 0.1231,0.9966, and 0.9963 respectively.

Figure 5.14: Correlation Analysis Bar Graph of LSTM

Below in figure 5.15 is a snippet of the actual and predicted values of the model.

Figure 5.15: Prediction Values of LSTM Model

5.2.4 Sequential GRU

Hyper-parameter tuning was performed on GRU with varying gru_units, epochs
and batch_size values, it was found that the model performed the best when the
gru_units was set to 50, batch_size to 32 and epochs to 50 with the validation set
score of 0.00055. Thereafter, the Sequential GRU was trained using the pre-processed
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dataset and tested on unseen data to make predictions of Bitcoin prices. The trained
GRU model achieved an RMSE of 0.01271, MSE of 0.00016, MAE of 0.80670, R2 of
0.80627, TWAP of 0.41330, and VWAP of 0.36573. The evaluation metrics used to
assess the trained model, along with the actual and predicted values, are compared
in the bar graph 5.16 and line graph 5.17 shown below.

Figure 5.16: Evaluation Results Bar Graph of GRU

Figure 5.17: Actual Vs Predicted Prices of GRU

After the evaluation was done the feature importance was computed in order to un-
derstand which feature in the dataset affected the prediction of the model more. The
feature importance is measured by performing the method ’permutation feature
importance’. This method is done by randomly permuting the values of a single



46 Chapter 5. Results and Analysis

feature in the test dataset and observing the resulting decrease in the model’s perfor-
mance. The GRU model’s feature importance scores for the features ’RSI’, ’SMA’,
and ’EMA’ are 0.00019, 0.00528, and 0.00988, respectively. The feature importance
scores of the GRU model are displayed in the form of a bar graph 5.18 below.

Figure 5.18: Feature Importance Bar Graph of GRU

Also, correlation analysis was performed to find out the linear relationship between
each feature and the predictions of the GRU. The correlation coefficient values for
the features of ‘RSI’, ‘SMA’, and ‘EMA’ with the prediction values of the GRU model
are 0.1284, 0.9961, and 0.9959 respectively. The bar graph 5.19 below displays the
correlation between each feature and the predictions of the Sequential GRU model.

Figure 5.19: Correlation Analysis Bar Graph of GRU
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Below in figure 5.20 is a snippet of the actual and predicted values of the model.

Figure 5.20: Prediction Values of GRU Model

5.3 Analysis

The results gathered from the aforementioned sections are the following:

Based on the Evaluation Metric Scores:

• Based on the RMSE scores, LSTM was the best-performing model.

• Based on the MSE scores, LSTM was the best-performing model.

• Based on the MAE scores, RF was the best-performing model.

• Based on the R2 scores, GRU was the best-performing model.

• Based on the TWAP scores, LSTM was the best-performing model.

• Based on the VWAP scores, LSTM was the best-performing model.

Based on the permutation feature importance scores:

• The technical indicator RSI affected the prediction power of both GRU and
LSTM the most.

• The technical indicator EMA affected the prediction power of GB the most.

• The technical indicator SMA affected the prediction power of GRU the most
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Based on the correlation analysis scores:

• The technical indicator RSI affected the prediction power of GRU the most.

• The technical indicator EMA affected the prediction power of LSTM the most.

• The technical indicator SMA affected the prediction power of LSTM the most.



Chapter 6

Discussion

A SLR was conducted to identify the ML algorithms suitable for the prediction of
Bitcoin prices. Then an experiment was conducted using the algorithms identified
from the performed SLR. For the experiment historic price data of Bitcoin in USD
was collected. Technical indicators were calculated and a dataset was created using
these indicators as input features and the prices as the target variable.

The dataset was preprocessed and was used along with the hyper-parameter val-
ues found via hyper-parameter tuning to train each ML model. The trained ML
models were tested using unseen testing data. The predictions of each model were
evaluated using the chosen metrics. Permutation feature importance and correlation
analysis were performed on the tested models to identify the importance of each
feature in predictions.

The intention behind conducting this thesis was to find out an ideal machine
learning algorithm for the prediction of Bitcoin prices. In this section, the research
questions are answered.

6.1 Research Question 1

Which prediction models (ML algorithms) are better suited to predict the
prices of Bitcoin based on technical indicators calculated using historical
price data?

This question is answered by using the research methodology, SLR done in section
5.1. To conduct the SLR, relevant literature was gathered following the inclusion and
exclusion principles mentioned in section 5.1. The databases Google Scholar, IEE-
Explore, Science Direct, and arXiv were scoured to procure the required literature.
After the analysis of the gathered literature, many ML algorithms were identified.
Out of which, LSTM and GRU were found to have better predictive accuracy when
compared to other machine learning algorithms [4, 29, 30, 42, 46]. It was also found
that ensemble methods like RF and GB regressors were highly effective in finding out
the future trends of cryptocurrencies [11,25,34,47]. RF and GB algorithms combine
individual models to make predictions. LSTM and GRU are DL neural networks
that make use of a memory cell component to make predictions. Therefore, the ex-
periment was conducted using the ML algorithms: RF, GB, LSTM, and GRU. The
findings of the SLR are reported in table 5.1.
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6.2 Research Question 2

Which among the selected ML algorithms performs the best in predicting
the price of Bitcoin when using technical indicators (SMA, EMA, and
RSI) as input, and which among these indicators affects the prediction
performance of each ML algorithm the most?

An experiment was conducted using the algorithms identified in RQ1. Prediction
Models were built using the chosen algorithms. Firstly historic price data of Bitcoin
in USD was collected using the CoinGecko API. The volume, price data, and their
corresponding timestamps were requested using the API endpoint. Three technical
indicators RSI, EMA, and SMA were calculated using the requested prices data.
A dataset containing 6 columns: Time, Price, Volume, RSI, EMA, and SMA was
created. Then data preprocess takes place where all the missing and NaN values are
replaced with 0, and all the data is scaled to a range of 0 to 1. This process is done
to ensure that there are no biased or inaccurate results and to ensure that all the
features have similar magnitude.

After the dataset is preprocessed it is divided into training, validation, and testing
tests. 70% of the data is allocated for the training set, 10% for validation, and 20%
for the testing set. Hyper-parameter tuning was performed to find out the best pa-
rameter configuration for getting efficient results. The value of the hyper-parameter
n_estimators when increased from 50 to 100 was found to improve the performance
of RF and GB models. On further increasing the values to above 150, it was found
that the performance started to decrease, hence the n_estimators was set to 100
in both the regressors. In the case of LSTM and GRU models optimal prediction
performance was found when the batch_size was set to 32, epochs to 50 and the
lstm_units and gru_units set to 50. When these hyper-parameter values were in-
creased beyond the stated values the performance was found to lacking. Therefore,
the hyper-parameters chosen for LSTM and GRU models were: batch_size of 32,
epochs of 50, and lstm_units and gru_units of 50.

Thereafter, each model is trained using the training dataset. After the training of
the models, each trained model is tested using the unseen dataset. The predictions
of each model are evaluated using the evaluation metrics: RMSE, MSE, MAE, R2,
TWAP, and VWAP.

The predictions made by each model are scaled predictions due to the appli-
cation of the MinMaxScaler() function in the data preprocessing step. The actual
format of the prices can be achieved with the help of the inverse_transform()
function which is provided by the MinMaxScaler() itself. This procedure was not
done in this thesis as the main aim was to find out how well each model was predict-
ing the prices rather than the prediction of exact prices itself. We achieve the same
by comparing the scaled predictions with the scaled actual prices.

To find which feature affected the prediction of each model more permutation
feature importance and correlation analysis between each feature and the prediction
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values of all the models is performed. The below table 6.1 shows the evaluation
results of all the models.

Model RMSE MSE MAE R2 TWAP VWAP
RF 0.01973 0.00038 0.43742 0.45762 0.41585 0.36904

GB 0.01515 0.00022 0.45006 0.50735 0.41510 0.36721
LSTM 0.01083 0.00011 0.80635 0.80618 0.40507 0.35660

GRU 0.01271 0.00016 0.80670 0.80627 0.41330 0.36573

Table 6.1: Evaluation Metric Values

From the results, it can be determined that LSTM and GRU models have better
accuracy in predicting Bitcoin prices when compared to the RF and GB models.
Since, they have the lowest RMSE (0.01083, 0.01271) and (0.00011, 0.00016) in par-
ticular LSTM having the lowest RMSE value performs the best among the chosen
models. Even though the RF and GB models have slightly higher RMSE (0.01973,
0.01515) and MSE(0.00038, 0.00022), they still perform relatively well in terms of
accuracy. However, since RMSE measures the average deviation of the predictions
from the actual values it can be sensitive to outliers. Other metrics have also been
considered to evaluate the models for more informed findings. From the results re-
ported it could also be argued that RF and GB having lower MAE values (0.43742,
0.45006) as compared to LSTM (0.80635) and GRU (0.80670), suggests that RF
performs better when compared to other models in terms of MAE scores and has
a lower absolute difference between the predicted price and the actual price on an
average when compared with other models.

Another possible explanation based on the R2 metric may be that LSTM (0.80618)
and GRU (0.80627) are better able to explain the variance in the target variable than
the RF (0.45762) and GB (0.50735) models. The TWAP and VWAP scores indi-
cate that in long-term predictions the LSTM (0.40507, 0.35660) and GRU (0.41330,
0.36573) models perform slightly better than the RF (0.41585, 0.36904) and GB
(0.41510, 0.36721) models since their TWAP and VWAP scores are closer to the
actual TWAP and VWAP (0.39953, 0.34847) values. Therefore, based on the evalu-
ation metrics it can be said that the LSTM model having better RMSE, MSE , and
R2 scores performs the best in making long-term price predictions of Bitcoin using
technical indicators.

After conducting permutation feature importance, the combined feature impor-
tance scores of each model are shown in table 6.2 below:
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Model RSI EMA SMA
RF 0.00009 0.01294 0.00411
GB 0.00015 0.02495 0.00023
LSTM 0.00019 0.00665 0.00824
GRU 0.00019 0.00528 0.00988

Table 6.2: Feature Importance Scores

From the table 6.2, it can be determined that the technical indicator EMA is im-
portant for both RF (0.01294) and GB (0.02495), while SMA was the most important
feature for LSTM (0.00824) and GRU (0.00988). Overall, it can be concluded that
the EMA feature is important for all models, while the importance of SMA is more
in LSTM and GRU.

Additionally, after conducting the correlation analysis of each feature with the
predictions of each model to find out the linear relationships between the features
and the predicted values. It was found that the technical indicator EMA had a very
strong correlation in all models, followed by SMA. RSI showed the least correlation.
The correlation results are presented in the table 6.3.

Model RSI EMA SMA
RF 0.0697 0.9933 0.9929
GB 0.0941 0.9959 0.9954
LSTM 0.1231 0.9966 0.9963
GRU 0.1284 0.9961 0.9959

Table 6.3: Correlation Analysis Scores
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The images that follow show the aggregate outcomes of all of the models’ forecasts.

Figure 6.1: Actual Vs Predicted Prices of All models
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Figure 6.2: Feature Importance Graph of All Models

Figure 6.3: Correlation Analysis Graph of All Models
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Figure 6.4: Evaluation Results Graph of All Models

By carrying out this experiment, it was discovered that LSTM performed better
than the other forecasting models in predicting Bitcoin values. This outcome, how-
ever, is restricted to the dataset (CoinGecko) and the technical indicators included
in model training. The outcomes can vary if other technical indicators are used.





Chapter 7
Conclusions and Future Work

Public interest in Cryptocurrency as an asset is increasing exponentially in recent
years. Financial analysis is being conducted to gain insights for investing in cryp-
tocurrency as the market is quite volatile. Indicators like SMA, EMA, and RSI are
normally used in financial analysis. Investors have employed many techniques for
gaining more knowledge on future trends of cryptocurrency. One such way adopted
is predicting prices using machine learning algorithms. This thesis focuses on con-
ducting a financial analysis by using technical indicators as input features for training
machine learning models.

A SLR was conducted for the purpose of choosing the relevant algorithms to
conduct the study on. The algorithms chosen after the review were: RF, GB,
LSTM, and GRU. Optimal hyper-parameters for each model were found by per-
forming hyper-parameter tuning using the validation dataset. The models were then
trained on the technical indicators calculated using historic price data of Bitcoin in
USD. The trained models were tested and evaluated using various evaluation met-
rics to gain insights into the performance of each ML algorithm. After comparing
the metric scores of each model, LSTM with RMSE score (0.01083), MSE score
(0.00011), R2 score (0.80618), TWAP score (0.40507), and VWAP score (0.35660)
was found to be the best-performing model in predicting the Bitcoin prices when
compared to the other models. By performing permutation feature importance and
correlation analysis it was found that the moving averages EMA and SMA had
a greater impact on the performance of the prediction models as compared to RSI.
The results obtained from conducting this thesis are specific to the dataset and the
technical indicators used to train the models.

In the future, we would like to modify the dataset by taking a larger dataset,
considering other technical indicators, testing on a different dataset, and considering
economic and social factors. We would also like to consider other cryptocurrencies to
conduct this experiment on. Building prediction models using other algorithms and
other feature importance techniques to identify the significance of each input feature
on the prediction capabilities of the machine learning models.
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