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a b s t r a c t

We construct finite element spaces of symmetric stress tensors that are exactly divergen-
ce-free. Moreover, their basis functions can be chosen so that they have small supports.
These properties are highly desired in a number of important applications. Approxima-
tion properties of finite element spaces of divergence-free tensor functions are derived
from properties of C1 finite elements.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In many problems of mathematical physics we have to deal with divergence-free functions, e.g., when solving Maxwell
quations, Navier–Stokes equations, Einstein’s equations, bending moments of a clamped plate, heat fluxes by a dual
ariational formulation of a steady-state heat conduction problem, and various continuity equations. In [1–5], we showed
ow to construct finite element spaces whose vector functions are exactly divergence-free in 2D and 3D. In this paper,
e shall construct finite element spaces whose tensor functions are exactly divergence-free in two-dimensional domains.
uch spaces are needed to calculate e.g. the stress tensor of a linear elasticity problem by means of a dual variational
ormulation.

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary ∂Ω . We shall use the standard Sobolev space notation.
The symbol Hk(Ω) stands for the Sobolev spaces of functions whose generalized derivatives up to the order k are square
ntegrable over Ω . The norm in (Hk(Ω))p (p ≥ 1 is integer) is denoted by ∥ · ∥k and the scalar product in the Lebesgue
pace (L2(Ω))p is denoted by (·, ·)0. The space of symmetric 2 × 2 tensors

(L2(Ω))2×2
sym = {τ ∈ (L2(Ω))2×2

| τ = τ⊤
}

ill be equipped with the scalar product

(τ , µ)0 =

2∑
i,j=1

(τij, µij)0 for τ , µ ∈ (L2(Ω))2×2
sym .
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Let us introduce the operator ε : (H1(Ω))2 → (L2(Ω))2×2
sym defined by

ε(v) =

(
∂1v1

1
2 (∂2v1 + ∂1v2)

sym ∂2v2

)
,

where v = (v1, v2)⊤ and ∂jvi = ∂vi/∂xj for i, j = 1, 2.
Denote by C∞

0 (Ω) the space of infinitely differentiable functions with compact support in Ω . Let d ∈ (L2(Ω))2 and
τ ∈ (L2(Ω))2×2

sym be such that

(τ , ε(v))0 = −(d, v)0 ∀v ∈ (C∞

0 (Ω))2.

Then we say that the divergence of the tensor function τ exists in the sense of distributions in Ω and define

Div τ = d.

Obviously, for any smooth tensor τ we find that

Div τ = (∂1τ11 + ∂2τ12, ∂1τ12 + ∂2τ22)⊤, (1)

i.e., each component of Div τ is, in fact, the usual divergence of the corresponding row of τ . Due to the symmetry of τ

we can also define the divergence of tensors by mean of columns.

2. Dual formulation of the linear elasticity problem

When solving real-life technical problems, the knowledge of the stress tensor is more important than the knowledge
of displacements. We can, of course, first calculate the strain tensor by differentiating the computed displacements, and
then construct the stress tensor by Hooke’s law. This is the so-called primal approach. Alternatively, we can apply a dual
formulation that allows us to calculate the stress tensor directly.

Let ΓD and ΓN be disjoint and relatively open sets of ∂Ω such that

Γ D ∪ Γ N = ∂Ω.

et f = (f1, f2)⊤ ∈ (L2(Ω))2 be given body forces and g = (g1, g2)⊤ ∈ (L2(ΓN ))2 given surface forces. In addition, if ΓD = ∅,
e assume that the following equilibrium condition for forces f and g and their moments is satisfied:∫

Ω

f ⊤v dx +

∫
ΓN

g⊤v ds = 0 ∀v ∈ P,

where P = {v ∈ (H1(Ω))2 | ε(v) = 0} is a three-dimensional space with basis (1, 0)⊤, (0, 1)⊤, and (x2, −x1)⊤, see
[6, p. 95].

Define the set of statically admissible stresses as

T (f , g) =

{
τ ∈ (L2(Ω))2×2

sym

⏐⏐⏐ ∫
Ω

τ · ε(v)dx =

∫
Ω

f ⊤v dx +

∫
ΓN

g⊤v ds ∀v ∈ V
}
, (2)

where

V = V × V , V = {v ∈ H1(Ω) | v = 0 on ΓD}, (3)

and

τ · ε(v) =

2∑
i,j=1

τijεij(v).

From (1) and (2) we find that Div τ + f = 0 in Ω and τn = g on ΓN for a sufficiently smooth τ ∈ T (f , g).
Now let us recall very briefly a primal formulation of the classical linear elasticity problem, see [6, p. 64]. The strain

tensor ε(v) is coupled with the stress tensor τ via the generalized Hooke’s law

τ = C : ε

(
τij =

2∑
k,l=1

Cijklεkl(v)
)
,

where the linear elasticity coefficients C = (Cijkl)2i,j,k,l=1 satisfy Cijkl ∈ L∞(Ω),

Cjikl = Cijkl = Cklij,

and that there exists a constant c > 0 such that

ξ · (C(x) : ξ ) ≥ c∥ξ∥
2
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holds a.e. in Ω for any symmetric tensor ξ = (ξij)2i,j=1, ξij ∈ R1, where ∥ · ∥ is the standard spectral norm. Further, assume
that u ∈ (H1(Ω))2 is a suitable displacement function which satisfies the Dirichlet boundary conditions on ΓD, namely
u = u on ΓD in the sense of traces. Then the primal problem of linear elasticity consists of finding u ∈ (H1(Ω))2 which
inimizes the functional of potential energy I : (H1(Ω))2 → R1 defined by

I(v) =
1
2

∫
Ω

ε(v) · (C(x) : ε(v)) dx −

∫
Ω

f ⊤v dx −

∫
ΓN

g⊤v ds

over the set {v ∈ (H1(Ω))2 | v = u on ΓD}.
In what follows, we concentrate on a dual variational formulation of the linear elasticity problem [6, p. 106]. According

to [6, p. 65], the generalized Hooke’s law can be inverted (see also [7]). It gives a relation between strain and stress tensor
for a nonhomogeneous and anisotropic material of the elastic body:

ε = A : τ

(
εij =

2∑
k,l=1

Aijklτkl

)
,

where A = (Aijkl)2i,j,k,l=1, Aijkl ∈ L∞(Ω),

Ajikl = Aijkl = Aklij,

nd that there exists a constant c > 0 such that

η · (A(x) : η) ≥ c∥η∥
2

holds a.e. in Ω for any symmetric tensor η = (ηij)2i,j=1, ηij ∈ R1.

Definition. The dual problem of linear elasticity consists of finding a 2 × 2 symmetric tensor σ which minimizes the
functional (of the complementary energy) J : (L2(Ω))2×2

sym → R1 defined by

J(τ ) =
1
2
a(τ , τ ) − b(τ ) :=

1
2

∫
Ω

τ · (A : τ ) dx −

∫
Ω

τ · ε(u) dx

ver the set T (f , g).

Obviously, the bilinear form a(·, ·) is symmetric and uniformly elliptic. Further, we introduce an equivalent formulation
f the dual problem. Let some particular solution τ ∈ T (f , g) be given, i.e. Div τ + f = 0 in Ω and τn = g on ΓN in
he sense of distributions, where n is the outward unit normal to ∂Ω . Furthermore, we shall assume that all functions
ppearing below are sufficiently smooth so that the corresponding operations are correctly defined. Using the substitution

τ = τ 0
+ τ ,

we can reformulate the dual problem as follows:
Find a 2 × 2 symmetric tensor σ 0 which minimizes the functional J0 : (L2(Ω))2×2

sym → R1 defined by

J0(τ 0) =
1
2
a(τ 0, τ 0) − b(τ 0) + a(τ , τ 0) (4)

over the space of divergence-free tensor functions

T := T (0, 0) =

{
τ ∈ (L2(Ω))2×2

sym

⏐⏐⏐ (τ , ε(v))0 = 0 ∀v ∈ V
}
. (5)

If σ 0
∈ T is sufficiently smooth, then Div σ 0

= 0 in Ω and σ 0n = g on ΓN .
Since τ is a given function, J(τ ) is a fixed constant. Then one immediately sees that

J(τ 0
+ τ ) − J(τ ) =

1
2
a(τ 0

+ τ , τ 0
+ τ ) − b(τ 0

+ τ ) −
1
2
a(τ , τ ) + b(τ )

=
1
2
a(τ 0, τ 0) − b(τ 0) + a(τ , τ 0) = J0(τ 0)

nd therefore,

σ = σ 0
+ τ . (6)

Remark 1. There are many possibilities how to construct a particular solution τ ∈ T (f , g) appearing in (4) and (6). For
instance, when ΓN = ∅ we define

τ 11(x1, x2) = −

∫ x1

0
f 1(ξ, x2)dξ, τ 22(x1, x2) = −

∫ x2

0
f 2(x1, ζ )dζ ,

nd set τ 12 = τ 21 = 0, where (x1, x2) ∈ R2, f i = fi in Ω , and f i = 0 in R2
\ Ω for i = 1, 2. Then from (1) and (2) we find

that Div τ + f = 0 in Ω . For Γ ̸= ∅ see Appendix and [8, p. 447].
N
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3. Construction of divergence-free tensor functions

First we introduce a method concerning how divergence-free (i.e. solenoidal) vector functions from the space

Q = {q ∈ (L2(Ω))2 | (q, grad v)0 = 0 ∀v ∈ V } (7)

can be described. The definition of Q is based on the following Green’s formula:

(q, grad v)0 + (div q, v)0 =

∫
∂Ω

vq⊤n ds ∀v ∈ H1(Ω) (8)

for a sufficiently smooth vector function q. In this case we have div q = 0 in Ω and q⊤n = 0 on ΓN if q ∈ Q due to
density theorems for the Sobolev spaces (3), see [9,10]. Note that the above Green’s formula (8) is valid also for functions
q whose divergence exists in the sense of distributions, see [11].

Further, we introduce the operator

curlw = (∂2w, −∂1w)⊤, w ∈ W ,

where

W = {w ∈ H1(Ω) | w = 0 on ΓN}.

Theorem 1. Let ΓD and ΓN be connected. Then

Q = curl W .

Proof. Let q ∈ Q . Then by Green’s formula (8) we find that

div q = 0 in Ω

in the sense of distributions if all test functions v are equal to zero on whole boundary ∂Ω . Taking v ≡ 1 in (8) we find
that ∫

∂Ω

q⊤n ds = 0.

According to [11, p. 22], there exists a stream function w ∈ H1(Ω) unique apart from an additive constant (which will be
chosen later) such that

q = curlw. (9)

Let ΓN ̸= ∅ and let s = (n2, −n1)⊤, i.e., s is the unit tangential vector to ∂Ω . Then by (7) and Green’s formula (8) we
obtain

0 = (curlw, gradϕ)0 = −(gradw, curlϕ)0 = −

∫
∂Ω

w(curlϕ)⊤n ds

=

∫
∂Ω

w(gradϕ)⊤s ds =

∫
ΓN

w
∂ϕ

∂s
ds (10)

or all ϕ ∈ C∞(Ω) such that ϕ = 0 on Γ D. This implies that the tangential derivative of w on ΓN is zero in the sense of
distributions. Since ΓN is connected, we can choose the stream function w in (9) to be zero on ΓN . If ΓN = ∅, then the
additive constant can be chosen arbitrarily. Hence, q ∈ curlW .

Conversely, let w ∈ W and let ϕ ∈ C∞(Ω) with ϕ = 0 on ΓD. Similarly to (10) we get

(curlw, gradϕ)0 =

∫
ΓN

w
∂ϕ

∂s
ds.

However, the last integral vanishes, since w = 0 on ΓN . Hence, curl w ∈ Q by (7). □

Note that there are analogous results based on a theorem of De Rahm, see e.g. [12].
Now recall the definition of the Hessian operator hes: H2(Ω) → (L2(Ω))2×2

sym ,

hes z =

(
∂11z ∂12z
sym ∂22z

)
.

urther, we introduce the operator inv :H2(Ω) → (L2(Ω))2×2
sym defined by

inv z =

(
∂22z −∂12z

)

sym ∂11z

4
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and let

Z = {z ∈ H2(Ω) | z = ∂nz = 0 on ΓN},

where ∂n stands for the normal derivative. Notice that invz is the inverse tensor to hes z up to det(hes z).

Theorem 2. Let ΓD and ΓN be connected. Then

T = inv Z,

where T is from (5).

Proof. Let τ = (τij) ∈ T be arbitrary. Denote its columns by q1 and q2. Clearly, qi ∈ Q for j = 1, 2. Since ΓD and ΓN are
onnected, we obtain by Theorem 1 that there exist two stream functions w1, w2 ∈ W such that

qj = curlwj, j = 1, 2.

Due to the symmetry τ12 = τ21 we obtain −∂1w1 = ∂2w2. Setting w = (w1, w2), we see that w is also divergence-free.
ence, w ∈ Q , since w⊤n = 0 on ΓN . Using Theorem 1 once again, we find that there exists the third stream function
∈ W such that

w = curl z.

ince the derivatives ∂1z and ∂2z also belong to W , we get that z ∈ Z . Moreover, we see that τ = inv z, for instance,
11z = −∂1w2 = τ22.
Conversely, let z ∈ Z be arbitrary. Since z = ∂nz = 0 on ΓN , we obtain that ∂1z, ∂2z ∈ W . Applying Theorem 1, we find

hat

curl(∂2z) = (∂22z, −∂12z)⊤ ∈ Q ,

curl(∂1z) = (−∂12z, ∂11z)⊤ ∈ Q ,

nd thus, inv z ∈ T . □

emark 2. For a given divergence-free tensor τ ∈ T the corresponding potential function z such that

τ = inv z

s called the Airy function, see [6, p. 161]. It is unique apart from a linear function. To see this we take z1, z2 ∈ Z such that
nv z1 = inv z2 = τ . Then inv(z1 − z2) = 0 implying that z1 − z2 is a linear polynomial.

. Finite element approximation of the dual problem

Using Theorem 1, we can define finite element spaces of divergence-free vector functions by Qh = curl Wh, where Wh
is an arbitrary finite element space of W . Similarly, Theorem 2 gives us a possibility to construct finite element spaces
of divergence-free tensor functions as follows. Let Zh ⊂ Z be a finite element space generated by C1-elements over some
triangulation [13,14]. Then we set

Th := inv Zh.

Remark 3. For construction of finite element spaces Zh we refer to [14]. If basis functions {z i} in Zh, i = 1, . . . , dim Zh,
have small supports, then {inv z i} ⊂ Th have also small supports. We can take for instance piecewise quadratic composite
C1-triangular elements invented by G. Heindl [15] (see also [4,16]). Applying the operator inv to any function zh ∈ Zh,
we get a piecewise constant tensor inv(zh) ∈ Th which is exactly divergence-free in the sense of distributions. The basis
functions inv z i can be calculated analytically by double differentiation of C1 piecewise quadratic basis functions z i. Then
we can easily handle, e.g., possible inequality constraints that occur in plasticity and related limit or shakedown analysis,
in problems of Signorini’s type or in stress hardening [6]. We could also apply the composite piecewise cubic Hsieh-
Clough–Tocher C1 triangular elements (see [17, p. 341]). Then the corresponding divergence-free basis functions inv z i

are piecewise linear and discontinuous, in general.

A conforming finite element approximation of the dual linear elasticity problem consists of finding σ 0
h ∈ Th which

minimizes the same functional (4) over Th and the function
0
σh := σh + τ

5
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is called then an approximate solution. By (6), (10), and the well-known Cea’s lemma there exists a constant C > 0 such
hat

∥σ − σh∥0 = ∥σ 0
− σ 0

h ∥0 ≤ C inf
τh∈Th

∥σ 0
− τh∥0 = C inf

zh∈Zh
∥inv z0 − inv zh∥0

= C inf
zh∈Zh

∥hes(z0 − zh)∥0 ≤ C inf
zh∈Zh

∥z0 − zh∥2,

here σ 0
= inv z0, z0 ∈ Z , and τh = inv zh due to Theorem 2. Now we can apply standard interpolation results for

1-elements to prove the convergence (or some rate of convergence) of σh to σ as h → 0, see e.g. [14,17].

. Conclusions

Divergence-free vector or tensor functions have many important application. For instance, a simultaneous use of
he primal and dual formulations enables us to apply the hypercircle method which produces exact evaluation of the
iscretization error when the primal and dual finite element method are employed, see [6, p. 259]. We can also obtain
wo-sided bounds of energy and a posteriori error estimates, see [18, p. 64]. Some other applications are mentioned in
ntroduction.

In this paper, we show how to construct finite element stress tensor basis functions that are exactly divergence-free
nd have small supports which is necessary to get sparse resulting systems of linear algebraic equations. Our construction
s based on a special second order differential operator inv which is applied to C1 finite elements. The convergence and the
ate of convergence of the corresponding finite element approximations follow directly from approximation properties of
1 elements used.
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ppendix

Here we sketch how to construct a particular solution τ ∈ T (f , g) appearing in (4) and (6) for ΓN ̸= ∅. For simplicity,
let Ω = (0, 1)× (0, 1) be the unit square and let Γ 2 be the intersection of Ω with coordinate axes x1 and x2. Furthermore,
assume that f and g are sufficiently regular. First we shall deal with the first row of τ . Similarly to Remark 1 we define

F1(x1, x2) =

(
−

∫ x1

0
f1(ξ, x2)dξ, 0

)
,

here (x1, x2) ∈ R2. Further we set

G1 = curlw1 in Ω,

here w1 ∈ H1(Ω) is a function with the tangential component

(curlw1)⊤n = g1 − F⊤

1 n on ΓN .

ote that w1 in not uniquely determined. Therefore, a special construction of w1 will be given below.
Using Green’s formula (8), we find that

(F1 + G1, grad v)0 = (F1, grad v)0 + (G1, grad v)0

= (−div F1, v)0 +

∫
∂Ω

vF⊤

1 n ds +

∫
∂Ω

vG⊤

1 n ds

= (f1, v)0 +

∫
ΓN

vF⊤

1 n ds +

∫
ΓN

v(g1 − F⊤

1 n)ds

= (f1, v)0 +

∫
ΓN

g1v ds

or all v ∈ V . Therefore, F1 + G1 will be the first row of τ , since div(F1 + G1) + f1 = 0 in Ω and (F1 + G1)n = g1 on ΓN .
Now we show how to construct w1 explicitly. First we divide ΓN as follows

Γ = Γ
(1)

∪ Γ
(2)

,
N N N

6
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where Γ
(1)
N is the horizontal segment and Γ

(2)
N is the vertical segment of ΓN . Clearly, the term F⊤

1 n vanishes on ΓN and,
therefore, w1 ∈ H1(Ω) can be any function satisfying

∂1w1 = g1 on Γ
(1)
N ,

−∂2w1 = g1 on Γ
(2)
N

and also the compatibility condition w1(0, 0) = 0. For instance, we can set

w1(x1, x2) =

∫ x1

0
g1(ξ, 0)dξ −

∫ x2

0
g1(0, ζ )dζ .

Similarly we construct F2 and G2 so that div(F2 + G2) + f2 = 0 in Ω and (F2 + G2)n = g2 on ΓN , namely, let

F2(x1, x2) =

(
0, −

∫ x2

0
f2(x1, ζ )dζ

)
,

where (x1, x2) ∈ R2. Then F⊤

2 n vanishes on ΓN . Further, we set

G2 = curlw2 in Ω,

so that

(curlw2)⊤n = g2 − F⊤

2 n on ΓN .

Here w2 ∈ H1(Ω) can be any function satisfying

∂1w2 = g2 onΓ
(1)
N ,

−∂2w2 = g2 onΓ
(2)
N

and also the compatibility condition w2(0, 0) = 0. It can be defined analogously to w1, namely,

w2(x1, x2) =

∫ x1

0
g2(ξ, 0)dξ −

∫ x2

0
g2(0, ζ )dζ .

hen F2 + G2 will be the second row of τ . Hence, we can put τ = F + G, where F = (F⊤

1 , F⊤

2 ) and G = (G⊤

1 ,G⊤

2 ).
However, we still need to fulfill the symmetry condition τ 12 = τ 21. Using the definition of F , we find that the both

ff-diagonal entries of F vanish. Therefore, from the definition of G we have to satisfy the following relations

τ 12 = −∂1w1, τ 21 = ∂2w2.

his can be satisfied, for example, if g1 = g2 is constant and f arbitrary.
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