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ABSTRACT

In the new era of intelligent systems, small-scale electronics and advanced sensors, the applica-
tion use-cases and operational capabilities of autonomous robots are exponentially increasing.
Through their ability to execute complex tasks, while relying only on onboard sensors and
computation, autonomous field robots are showing promising results in inspection of infras-
tructures, search-and-rescue or surveillance, maintenance tasks, or in general operations in
areas that prove to be dangerous or hazardous for human operators to operate, while also often
increasing the efficiency of such tasks. But, to enable robots to autonomously execute their mis-
sions, the demands on onboard intelligence is increasing rapidly as well. As robot operations
move into complex and dynamic environments, into mixed-traffic or multi-robot operational
scenarios, or into missions that demand the exploration and navigation of completely unknown
areas, a new paradigm of autonomous robot navigation and collision avoidance algorithms
need to be developed as well. Towards achieving the vision of autonomous robots performing
such tasks for the good of society, this new paradigm of navigation capabilities must first be
extended to operate outside of simulation environments, and then to operations in realistic field
conditions with all the challenges that comes with that.

This thesis presents the development of a series of navigation methods for autonomous
robots, with a specific focus on Unmanned Aerial Vehicles (UAVs). Furthermore, the vision of
this thesis is to enhance the application areas of completely autonomous robotic platforms by
extending their navigation capabilities: towards avoiding obstacles in their environment both
static and dynamic, towards the critical perception-actuation link for reactive navigation, to-
wards exploring and planning dynamic paths through previously unknown areas, and towards
the coordination and safety in multi-agent robotic systems. This thesis also has a significant fo-
cus in the area of field robotics, meaning the ability to robustify and extend the robots onboard
intelligence to handle the harsh conditions of real operations. This thesis will specifically in-
vestigate the application of autonomous UAVs in search-and-rescue tasks in subterranean envi-
ronments, as well as a variety of inspection tasks in underground mines. In these environments
the robots must operate completely autonomously without any assisting communication, com-
putation, or perception infrastructure. In all of these areas, a special focus has been placed on
the real-life experimental validation of results and the required research to reach the readiness
stage of such demonstrations, serving as the main motivator for the works presented in this
manuscript.
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CHAPTER 1

Introduction

1.1 Terminology

The following offers short explanations of some acronyms and commonly used terminology as
to have a common ground with the reader.
Reactive Navigation - ”Navigating as you go” and constantly updating the trajectory - closely
coupled with environment information, and executed at high frequencies. Similar concepts are
sometimes denoted as ”Memory-less” navigation.
Autonomy - A systems ability to perform tasks without human input during execution. ”Fully
autonomous” in this thesis mainly refers to a system not relying on external infrastructure for
localization, computation, or perception.
Robot Platform - The baseline robot, without the sensors and algorithms.
Sensor Suite - The added sensors to the robot platform that allows it to sense its environment
and enables autonomy.
Robot perception - Through its sensor suite a robot can sense its world around it. This term
refers to the combination of the sensor data and the processing of that into useful information.
UAV - Unmanned Aerial Vehicle, often denoting flying robots in general.
MAV - Micro Aerial Vehicle, in this thesis used interchangeably with UAV but often denotes
smaller scale craft.
Rotorcraft - An aerial vehicle that generates lift by vertically mounted propellers or rotors as
opposed to fixed-wing aircraft that generates lift from its airfoil.
Quadrotor - a rotorcraft with four rotors. This is the platform of choice for the majority of this
thesis, and when the term UAV is used it almost always refers specifically to a quadrotor. Four
rotors provide four control surfaces which gives six degree-of-freedom control.
Wheeled Robot - Any classic car-like ground robot platform using differential or articulated
steering.
Legged Robot - Ground robots using legs for locomotion. Bipedal and quadruped motion of-
ten mimicking biological systems. Ex. Boston Dynamics Spot, which is the legged platform
of choice in this thesis.
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Actuator - The controllable physical system that provides (in the robotics context) motion of
the system. Servo-motors, propellers, powered wheels.
Controller - The mathematical entity that through automatic control theory drives a dynamical
system to its desired state through some actuator.
Actuation - The input signals and resulting actuator action generated by the controller.
MPC - Model Predictive Control, a finite-horizon optimization that considers the predicted
future states of a system, and often constraints, in its control objective.
OpEn - Short for the Optimization Engine, an open-source optimization software for nonlinear
non-convex optimization, used heavily in this thesis for nonlinear MPC applications.
Optimizer - In this thesis referring to the piece of code and mathematics that solves (finds the
minimum of) a specified problem.
Obstacle - A general term referring to an area the robot should not enter.
Occupancy Map - A pixel or voxel map where discrete areas or volumes (often boxes/squares)
are set to free, occupied, or unknown based on the robots current knowledge of the area.
Robot Exploration - Navigating through an unknown environment often with the goal of max-
imizing new map information.
Information Gain - The discrete evaluation of new map information from executing some
maneuver. If the map is voxelized the information gain can simply be the number of voxels set
from an unknown to a known state.
APF - Artificial Potential Field, an old-school very effective approach to robot navigation
where a repulsion to obstacles is combined with an attraction to a state reference.
ERRT - Exploration-RRT, a proposed tree-based method for robot exploration-planning fun-
damentally centered around RRT (Rapidly-Exploring Random Trees).
COMPRA - COMPact Reactive Autonomy, a proposed complete autonomy kit for rapid ex-
ploration mission execution in subterranean tunnel environments.
RIA - Routine Inspection Autonomy, a proposed complete autonomy kit for general multi-
waypoint inspection missions in known environments.
Subterranean - Referring to any underground environment: caves, metro stations, under-
ground mines, construction and infrastructure tunnels, and anything inbetween.
LiDAR - Light Detection And Ranging, a method of targeting a surface with a laser and mea-
suring the distance/range to it by the time of the returning refracted light.
2D LiDAR - By rotating a laser, 2D coordinates of the laser hits can be estimated from the
angle at which it was shot out and the range estimate.
3D LiDAR - A sensor very highly used in this thesis. Many lasers in a rotating array can
provide 3D x-y-z coordinates of the surfaces hit by the laser beams. This can provide 3D per-
ception and mapping for a 3D LiDAR equipped robot.
RGB-D Camera - Red-Green-Blue-Depth cameras provide a range/depth estimation of pixel
coordinates in addition to color through stereo-vision.
IMU - Inertial Measurement Unit, a combination of various ”internal” sensing technologies
such as accelerometers, gyroscopes, magnetometers, and pressure sensors.
SLAM - Simultaneous Localization And Mapping, an algorithm for estimating a robot posi-
tion based on a procedurally generated map of the environment from onboard sensors.
LIO - LiDAR-Intertial Odometry, a sensor-fusion of slower LiDAR feature tracking and map-
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based loop-closure with fast IMU predictions for robot pose estimation. This thesis heavily
relies on LIO from 3D LiDAR SLAM.
FCU - Flight Control Unit, a micro-computer onboard an aerial vehicle responsible for attitude
control, motor actuation, and often equipped with an IMU and GPS.
ROS - Robot Operating System, a middleware for message handling developed specifically
for robotics applications. All presented frameworks in this thesis are utilizing ROS for inter-
module communication and hardware-software integration.

1.2 Autonomous Field Robots and their Applications
The concept of constructing a machine that can autonomously execute a programmed task has
occupied the human mind for thousands of years, even dating back to Homer. While historical
claims of ancient actual constructed ”robots” are often dubious, industrial autonomous machin-
ery revolutionized manufacturing a long time ago now. Through the innovation of automatic
control such systems could start to interact with the world through feedback control, as op-
posed to fully pre-configured execution. In the modern world, we have access to miniaturized
hardware and smart electronics that have given rise to new robotic platforms, such as robotic
manipulators, wheeled ground vehicles, aerial vehicles, and legged robots both quadruped and
humanoid, all with revolutionary capabilities in their application domains. The last piece of
the puzzle lies in the development of robotic sensing technologies, or robot perception ca-
pabilities, that allows a system to sense its environment. This is happening not only by just
reading a temperature or pressure gauge, but sensing technologies that can be placed onboard
a robot that allows it to build an understanding and reconstruction of the world around it in
real time, such as cameras, LiDARs, and Radars, and their related perception-layer algorithms.
The robots’ perception can then be linked to the navigation and control systems, enabling the
modern era robots to execute missions in unstructured or dynamic environments - and for more
abstract missions, such as the exploration of previously unknown areas. Research into this type
of modern, mobile, and agile robots, received very high interest from the academic world from
a multidisciplinary perspective, combining computer science, mathematics, automatic control,
mechatronics, technical design, and computer vision & perception, into the development of
fully autonomous robots.

When discussing the meaning of an autonomous robot, often one will find notions of mul-
tiple levels of autonomy. But there is no doubt that the autonomous systems that are fully
self-sufficient when it comes to perception and computation, and whose software stack allows
them to execute complex missions without operator assistance and in the real world, and for
the good of society, holds a special place. These autonomous field robots are now deployed for
a variety of tasks in many environments. These range from the inspection of large-scale infras-
tructure [1–3], disaster management missions [4], search and rescue missions [5], including the
delivering of first-aid devices in case of an accident [6, 7], monitoring of forest fires [8, 9], in-
spection of mining tunnels [10], exploration and 3D reconstruction of cave systems [11], crowd
surveillance and monitoring [12, 13], ware-house logistics [14, 15] and with a large potential
in the near future for example in the construction industry [16, 17]. There are common themes
in all these types of missions that are of a high interest to the related industry, where either
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the autonomous robots can perform the task with higher efficiency, repeatability, and lowest
cost, or they can execute tasks in inherently hazardous environments and as such increase the
safety of the operator. When it comes to the field application areas, the works in this thesis will
have an overarching theme of deployment into subterranean environments. Here, autonomous
robots have huge application possibilities for increasing the safety of operations, performing
rescue missions, and entering unsafe areas or exploring inaccessible ones. Towards that di-
rection, the research contributions in this thesis will try to extend the navigation capabilities
of autonomous systems towards robust collision avoidance and safe navigation, and towards
efficient exploration and deployment capabilities.

1.3 Robot Navigation
Robot navigation in general describes a set of autonomy modules that when working together
allow the robot to move through its environment in a safe and efficient way, while also fulfilling
its mission demands. It is very rare that the navigation system on a fully autonomous robot is
handled by a single algorithm, simply due to the considerable complexity of the problem. An
example of a generalized architecture for robot mission execution and navigation can be seen in
Figure 1.1. There is of course no requirement that all of these modules are present for a robotic
mission, and the exact autonomy architecture is highly dependant on what the mission and
environment requires, but this example architecture can serve as an initial point for discussion.

Figure 1.1: An example navigation architecture for a robotic mission, going from low level actuator
control up to high level mission planning.

Starting from the lowest level (closest to the robot actuation) and working our way up, the
lowest level generally relates to developing controllers that are tightly coupled with the dynam-
ics and actuators of the system. Low level control is of course highly platform dependant, and
while wheeled ground robot actuation can be relatively simple, quadruped [18] or bipedal [19]
low level actuation control is very challenging and a highly active research subject, although
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it will not be investigated in this thesis. We denote the next level as set-point tracking control,
referring to controllers responsible for tracking position, orientation, and velocity set-points,
or full trajectory tracking controllers [20] for agile transitioning between set-points. Set-point
reference tracking is required if any robot platform is to be linked with the higher level naviga-
tion modules, and its performance greatly influences the performance of higher level modules.
This thesis will particularly discuss the coupling and merging of set-point tracking control and
collision avoidance for high performance maneuvering.
Robust collision avoidance is critical for any robot mission, and it is the main subject of in-
terest in this thesis. In general, collision avoidance algorithms are responsible for maintaining
a safe distance from obstacles, other vehicles or humans, and in general from an encountered
dynamic environment. The demands on collision avoidance algorithms are mainly towards
higher run-time requirements for fast reactions, a tight coupling with the set-point tracking
controller, and the ability to ensure robot safety, as for many robot platforms (especially aerial)
any interactions or collision with the environment can result in the end of the mission and a
broken robot. Among the active problems in collision avoidance are the robustness and safety
guarantees [21], and how to couple advanced collision avoidance algorithms with the percep-
tion systems of the robot. Robot path planning is a quite general subject, but in Figure 1.1 we
are mainly talking about occupancy-based or grid-based path planners like A∗ [22] or Rapidly-
exploring Random Trees (RRT) [23], whose goal is to plan a path from the current estimated
position of the robot to a desired goal in a known or partially known map of the area. The
focus often lies on the speed of computation for finding the shortest or optimal path, and the
traversability or robot safety along the generated path.
The next level is more diverse, and we can denote them as mission specific modules, as they
are specific to the exact mission the robot is to execute. Some examples are provided in this
Figure, such as generating inspection behavior and coverage around infrastructure, optimizing
a route when visiting many way-points or task assignment for multi-agent systems, algorithms
for exploring an unknown space, swarm behavior, and many more. All these components de-
fine what mission the robot is performing, and from all of them the major focus in this thesis
will be on the exploration missions, but other topics will be briefly addressed as well. On
the highest level we have the mission planning, responsible for higher level coordination (ex.
behavior trees [24]) or for combining multiple mission-specific modules for more complex
missions. A simple example of that could be to explore until a target is found, switching to
an inspection behavior to completely inspect it with a sensor/payload, and then return-to-base
behaviour with a grid-based path planner. The last chapter of this thesis will touch on this sub-
ject related to field work, such as multi-robot collaboration, inspection mission configuration,
as well as return-to-base and guided landing after an exploration mission is completed.
Each autonomy architecture needs to be tailored to the mission and environment - e.g. a ware-
house robot that is following pre-defined routes to deliver objects might only need a mission
planner, simple collision avoidance, and controllers, while completing a collaborative search-
and-rescue mission in an unknown harsh environment could demand high performance of all
levels of navigation systems. In the introduction sections of the following related chapters,
we will go into more details into the state-of-the-art and the challenges of each navigation
sub-system that this thesis will touch upon.
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1.4 Thesis Contents and Contributions
The contributions of the research contained in this thesis can be summarized as: the devel-
opment of novel navigation methods for autonomous robots that focus on collision avoidance
both inside multi-agent systems and of obstacles in the environment, the critical perception-
actuation link for real-world navigation in unknown environments, as well as both reactive and
sampling based exploration algorithms for robot exploration. Overall, this is achieved through
the development of three separate frameworks, and a major field study: 1) a Nonlinear MPC
framework based on the optimization engine [25] where set-exclusion constraints form the ba-
sis of collision avoidance and local path planning, 2) an artificial potential field (APF) imple-
mentation that focuses on complete reactivity by directly using 3D LiDAR pointclouds for local
obstacle avoidance and navigation purposes, 3) the development of the ERRT algorithm where
a tree-based method is developed for a complete solution to the combined exploration-planning
problem in unknown and unstructured environments, 4) a significant field study in the deploy-
ment of autonomous robots in subterranean environments, such as underground mines - using
the developed COMPRA (COMPact Reactive Autonomy) framework (also centered around
the reactive APF and the fully reactive navigation concept), and the RIA (Routine Inspection
Autonomy) framework that combines local APF navigation with a risk-aware path planner,
route optimization, and global relocalization. These contributions and developed frameworks
can be fit into the general architecture in Figure 1.1, and we highlight the contributions of the
components of this thesis in an updated visualization in Figure 1.2.

Figure 1.2: Highlighting the contributions of the thesis. Green highlights the works on NMPC for
collision avoidance, magenta highlights the works on reactive APFs, blue highlights the works on
exploration-planning with ERRT, and red highlights the field work on navigation and mission execu-
tion in subterranean environments.

The following bullets summarize the research contents of the thesis in the order they can
be found in the thesis:

• A reactive NMPC-based navigation method where obstacles of different types are de-
tected by a 2D LiDAR, and then translated into set-exclusion constraints on the available
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position-space of the robot. As the collision avoidance is part of the control system, the
result is a local avoidance planner that fully takes the dynamics of the system into consid-
eration. Results prove real-time applications in laboratory environments using onboard
hardware for object detection and computation.

• The application of NMPC to the avoidance of dynamic obstacles. Due to the already
predictive nature (as the name implies) of MPC we can fit the consideration of dynamic
obstacles into the optimization problem by providing a prediction of future obstacle po-
sitions that define set-exclusion constraints both in position and predicted time. The
scheme is thoroughly evaluated in laboratory experiments on both UAVs and legged
robots, where the legged robot case is demonstrated in the context of safe human-robot
interaction in a ”track & avoid” architecture.

• Research into using the predictive nature of NMPC for safe trajectory orchestration in
multi-agent systems. This is demonstrated both in a centralized approach where one
central computational agent at each execution step optimizes trajectories for the whole
system, and in a distributed formulation where predicted trajectories are shared among
agents in the system and those predicted trajectories are used to form avoidance con-
straints for the ego-agent along the prediction horizon. All these are demonstrated both
in simulation and laboratory experiments for real-time applications of up to ten aerial
agents.

• The development of a 3D LiDAR-based Artificial Potential Field, where fail-safe nav-
igation is achieved by removing a reliance of a perception layer and instead repulsive
forces are generated directly from the raw pointcloud. The artificial potential field was
also combined with a NMPC, and a Lidar-Intertial SLAM framework [26], to enable a
complete kit for local autonomy, and fit to a specific sensor and computation hardware.
This framework was an enabler for research in multiple directions as an easy-to-use and
fail-safe local layer of navigation that any other module could be placed on top of.

• Further investigations into reactive 3D LiDAR APFs, trying to push the perception-layer-
free navigation into the use-cases of reactive exploration and infrastructure inspection.
Additionally, the framework was evaluated also for collision avoidance of multiple UAVs
operating in the same local space.

• The development of a 3D local exploration-planning algorithm: ERRT. The algorithm is
based on a tree-based random search, where specific sampled trajectories are analyzed
in terms of path length, information gain, and model-based actuation required to follow
the trajectory (solved as a NMPC problem). The framework was coupled with a state-
of-the-art 3D occupancy mapper [27] to enable hardware integration with 3D LiDAR
pointclouds. The framework was evaluated in both large-scale simulations and in real-
world experiments in subterranean environments.

• The COMPRA (COMpact Reactive Autonomy) Kit for subterranean search and rescue
operations. COMPRA was developed to enable quick deployment, and fast as well as
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reliable navigation through tunnel environments enabled by reactive modules for obsta-
cle avoidance and reactive tunnel exploration (the depth-camera based Deepest-Point
Heading Regulation method). The kit also includes a pipeline for object detection and
localization. The COMPRA kit was evaluated extensively in real-world subterranean and
mining environments.

• A multi-modality robot deployment framework where a legged robot is combined with
an UAV, capable of complex mission execution where the modalities of both robots are
leveraged to efficiently execute a search-and-rescue mission in a subterranean tunnel
environment.

• A significant investigation into how autonomous UAVs can be used to execute a variety
of inspection tasks in mining environments with the long-term and large-scale goal of
removing human workers from hazardous inspection tasks such as gas monitoring and
visual inspection after blasting, 3D re-mapping and inspection after a rockfall, or in
general tedious and time-consuming routine inspection or mapping tasks for maintaining
a digital twin of the mine and to ensure areas are safe for workers to enter.

We can very compactly define the goals of the thesis from the perspective of novel naviga-
tion algorithms, based on these contributions as: development and demonstration of 1) robust
collision avoidance relying on onboard obstacle detection and in multi-agent systems using
NMPC, 2) reactive collision avoidance relying only on raw sensor data with an artificial po-
tential field, 3) a robot exploration algorithm, ERRT, for combined exploration-planning using
occupancy maps, and 4) reactive exploration methodologies where direct sensor data generates
exploration behavior in subterranean tunnels.

1.5 Summary of Published Works
The following thesis chapters are compilations and summaries of a series of published or sub-
mitted conference papers and scientific journals in the field of automatic control and robotics.
In short, the manuscript is based around works published at the following conferences: The Eu-
ropean Control Conference, The International Federation of Automatic Control World Congress
(IFAC), The International Conference on Intelligent Robots and Systems (IROS) (3 papers), the
Mediterranean Conference on Control and Automation (MED) (2 papers), and published work
at the following scientific journals: The Robotics and Automation Letters (RA-L), The Trans-
actions on Control Systems Technology (TCST), The Journal of Intelligent Robotic System
(JINT), The Journal of Robotics and Autonomous Systems (JRAS) and IEEE Access. Ad-
ditionally, submitted works currently under review to: The Transactions on Robotics (TRO)
(under revision), and Expert Systems with Applications (ESWA). All published and submitted
works that the thesis chapters are based on can be found in the list below:

• Lindqvist, Björn, Sina Sharif Mansouri, and George Nikolakopoulos. ”Non-linear mpc
based navigation for micro aerial vehicles in constrained environments.” 2020 European
Control Conference (ECC). IEEE, 2020.
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• Lindqvist, Björn, et al. ”Collision Free Path Planning based on Local 2D Point-Clouds
for MAV Navigation.” 2020 28th Mediterranean Conference on Control and Automation
(MED). IEEE, 2020.

• Lindqvist, Björn, et al. ”Collision avoidance for multiple micro aerial vehicles using
fast centralized nonlinear model predictive control.” IFAC-PapersOnLine 53.2 (2020):
9303-9309.

• Lindqvist, Björn, et al. ”Nonlinear MPC for collision avoidance and control of UAVs
with dynamic obstacles.” IEEE robotics and automation letters 5.4 (2020): 6001-6008.

• Lindqvist, Björn, et al. ”Reactive navigation of an unmanned aerial vehicle with perception-
based obstacle avoidance constraints.” IEEE Transactions on Control Systems Technol-
ogy 30.5 (2021): 1847-1862.

• Lindqvist, Björn, Pantelis Sopasakis, and George Nikolakopoulos. ”A scalable dis-
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1.6 Thesis Chapters
The rest of the manuscript is structured around four chapters each with their own subject related
to autonomous navigation methods, as well as a concluding summary. Chapter 2 will discuss
research into NMPC with integrated constraint-based obstacle avoidance in a variety of use-
cases from the perception-actuation link, avoidance of dynamic obstacles, and multi-agent
coordination, Chapter 3 discusses the development and use-cases for an APF that directly uses
raw LiDAR data for UAV navigation, Chapter 4 includes the formulation and implementation
of a novel exploration-planning ”next-best-trajectory” method, ERRT, for 3D UAV exploration.
Chapter 5 will discuss research and development of autonomy for field deployment in two
areas: 1) search-and-rescue in subterranean environments, and 2) inspection, mapping, and
surveying in underground mines. Finally, a summary of the obtained results and concluding
remarks are provided in Chapter 6.
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CHAPTER 2

Nonlinear MPC for Obstacle
Avoidance

2.1 Overview

No autonomous robot can operate without a robust and high performance control scheme, and
no mission can be executed reliably without onboard obstacle avoidance systems keeping the
robot safe. In the literature there exists a multitude of solutions to both those problems, but,
in general, they are solved separately. That means that the obstacle avoidance system that
generates the avoidance maneuver and the controller tasked to execute it are, in essence, not
fundamentally synced. Problems can arise with, for example, the feasibility of executing the
avoidance maneuver in time to avoid the collision, or with guaranteed safety when the move-
ments are very rapid or the system dynamics are challenging. In this context Model Predictive
Control (MPC) is one of the stand-out solutions as the central controller can enable very high
performance model-based control, while the addition of constraints in the optimization can
represent obstacles or other robots that are to be avoided. Additionally, MPC, as the name
implies, generates a predicted trajectory solution that is within the constraints posed by the
system dynamics, ensuring that the robot can actually follow the predicted maneuver. The
result is a combination and merging of the control and obstacle avoidance systems that also
acts as a local path planner for the robot, where the solutions are both optimal (based on the
problem formulation) and within the described vehicle dynamics.
This chapter includes the development and implementation of a Nonlinear Model Predictive
Control (NMPC) framework for autonomous robot control and collision avoidance. The main
focus area is unmanned aerial vehicles (UAVs) but implementations and experiments for both
legged robots and ground robots are included as well. The chapter will start by introducing the
fundamental aspects of the framework, such as the dynamic prediction model, the cost func-
tion and constraints, as well as the utilized optimization (solver). These stay relatively similar
throughout the presented works, and the main effort in this chapter will be on the various
applications of the baseline developed framework, and the modifications and additions that en-
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able those application areas. Three main areas of research are included: 1) Linking the NMPC
module with onboard perception systems through connecting the NMPC parametric constraints
with detected obstacles in the environment. 2) The ability for the constrained NMPC to han-
dle dynamic obstacles. As MPC schemes are inherently predictive, they are the perfect fit for
obstacle avoidance of moving obstacles. 3) Enabling safe multi-agent coordination through
vehicle-vehicle collision avoidance using NMPC. The chapter includes both a centralized for-
mulation, where a single computational agent orchestrates trajectories for the whole system,
and a distributed formulation where each agent solves its own optimization problem, but the
predicted trajectories are shared among agents to enable coordination. In all of these direc-
tions, extensive real-world experiments are provided in order to demonstrated the applicability
of the framework, and as it will be shown, the developed NMPC can handle all scenarios, while
providing smooth and stable collision avoidance maneuvers that maintain robot safety while
also keeping computation times low enough for real-time missions.
It should be highlighted that the major focus in this chapter will be the obstacle avoidance
and control performance, not the optimization itself. This thesis does not include novel ways
to formulate a MPC problem with proved guaranteed feasibility, nor does it include any new
method of nonlinear optimization developed by the author. Instead, the developed NMPC
framework is an enabler for collision and obstacle avoidance in very challenging scenarios and
contexts, and the novelty and contributions come in the form of the problem formulation that
fits the NMPC into the proper context, the applications, implementations, the developed assist-
ing modules, and in the significant real-world demonstrations of the framework. In general, the
goal is to demonstrate how a constrained NMPC can provide very high performance control
and collision avoidance, and how it can be applied in various contexts where collision avoid-
ance is of paramount importance, such as for dynamic obstacles, human-robot scenarios, and
in multi-agent systems. As such the following descriptions of system models and optimization
in Sections 2.4 and 2.5, as well as the evaluations in Sections 2.6-2.8 directly provides specific
examples as opposed to general descriptions, as the specifications need to be included anyway
for the application use-cases.

2.2 Introduction
The general ability of a robot to navigate a constrained environment, while avoiding collisions
with any obstacles encountered along the way, is one of the key ingredients that enables any
fully autonomous mission scenario, and as such, robot path planning and obstacle avoidance is
an extensively studied subject [28, 29]. To allow complex mission execution in a dynamic or
unknown environments, map-based path planners, such as heuristic grid-search algorithms [30]
or sampling based methods [31], provide the high-level paths that should be followed to reach
the desired goal (area for inspection, next area to explore, etc.).

While map-based path planning can provide low-risk paths and can incorporate notions of
risk-aware behavior [32], it is common to combine them with a layer of reactive collision avoid-
ance, operating at the local level and at a high frequency, and preferably linked more directly
to the onboard perception and control system for efficient maneuvering as map-based planners
struggle with moving obstacles and fast path updates in case new obstacles are encountered.
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For example, in [33] a RRT-based global planner is paired with an APF for UAV navigation.

Comprehensively listing and discussing the benefits and negatives of all popular and novel
approaches to collision avoidance is not possible due to the multitude of completely different
approaches to the problem, and what type of scenario it is to be used in (multi-agent safety,
densely cluttered environment, dynamic obstacles etc.), but the following section can serve
as an overview of what types of methods are commonly used, with the overarching theme of
discussing how MPC specifically can be applied and provides a benefit in these contexts.

For the classical robot safety problem of maintaining a safe distance from static obstacles
the previously mentioned APF [34] is still one of the most common approaches for reactive
obstacle avoidance and has been used for the application use-cases for both mapping [35] and
exploration tasks [36], as an extra reactive layer for obstacle avoidance, and is the main fo-
cus of the next chapter 3. Learning-based methods [37, 38] have also gained significantly in
popularity due to the general improvements in neural network architectures, and methods such
as the minimum time flight approach in [39] using an onboard LiDAR to detect potential col-
lisions have been demonstrated for avoidance in dynamic scenes. There are also reactive, or
local planning, approaches to occupancy-map based planning [40, 41], where by smart parti-
tioning of the map, the computation time can be greatly reduced. Several methods that link
the visual information from depth or monocular cameras to the optimization problems have
also been attempted [42, 43]. While MPC schemes for high-performance optimal control have
been around for some time [44], obstacle avoidance can be integrated into the MPC problem
through state constraints that restrict the position-space of the robot [45], thus achieving both
model-based optimal control and obstacle avoidance now solved for as one. This approach
has been applied to both ground [46] and later also aerial vehicles [47] that naturally have
higher run-time requirements for the controller, which ens up as a large limiting factor. In
this chapter, one of the main target problem in this area is the link between real-time obstacle
detection and classification using onboard sensors and fitting that data into NMPC constraints,
all performed using only limited onboard computation, and demonstrated on real hardware in
laboratory experiments.

The idea of incorporating moving obstacles explicitly in the local navigation problem has
gained significant attention using a variety of methods [48–52]. This allows not only for a
reactive but a proactive response to a future collision with a moving obstacle. It is perhaps
here that the MPC have the most clear advantage over many other methods. The direct con-
sideration of future states of the robot as compared to the future states of the obstacle through
prediction models allows an early response to a future collision, while also allowing real-time
solutions that take the robot model and limited actuation into account. Here one of the main
questions is how to predict obstacle trajectories [53], and how to possibly guarantee no colli-
sion despite limited or uncertain information about the obstacle. There are modern methods for
constructing and solving MPC problems that take model and obstacle uncertainty into account;
Chance Constraints [54] or Robust Scenario MPC [55] for example. NMPC has been applied
in this context also [56], and the critical perception link regarding velocity obstacles has also
been studied [57] as part of a Chance-Constrained MPC. The work in this thesis on obstacle
avoidance of dynamic obstacles focus on rapidly moving obstacles while keeping avoidance
maneuvers smooth, real-time solutions, as well as a trajectory classification scheme. Extensive
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laboratory experiments are also performed, even for multiple simultaneously moving obstacles.
Additionally, the thesis includes experiments with a legged robot for human-robot safety sce-
narios where the robot should both track (with a camera) and avoid the quickly moving human
obstacle, in a track-and-avoid scenario.

There are many different approaches to collision avoidance schemes for multi-agent robotic
systems. Rule-based schemes, such as potential functions [58, 59] are popular here as well, or
optimal control schemes [60]. A differential game approach is proposed in [61] with impres-
sive results, but relies on many conditions. In [62] a mixed-integer quadratic program is pro-
posed for centralized trajectory generation, but does not allow for real-time solutions meaning
it would be hard to call it a reactive collision avoidance scheme. Other modern solutions show-
ing promise are the barrier functions [63], or safety barrier certificates which were evaluated
for mini quad-copters in laboratory experiments, and [64] that combined potential-like func-
tions with adaptive control to achieve collision avoidance robust to model uncertainty. MPC-
approaches also have an advantage in this context due to their predictive nature. Especially in
a distributed scheme [65, 66] agents can share their intended predicted trajectories with other
agents in the system that can be leveraged to orchestrate robust and consistent collision-free
motion in dense swarms of robots. This thesis presents both a centralized scheme, where we an-
alyze the scalability of the rapidly growing optimization problem, and a distributed scheme that
attacks the problem of scalability through obstacle prioritization that uses the shared predicted
trajectories. The centralized scheme is evaluated for up to nine agents in simulation, and for
four agents in real experiments. The distributed scheme is evaluated for up to ten aerial agents
in real-world experiments. The distributed solution is also applied as a safety-coordination
layer in a task allocation mission context for wheeled robots.

All the works presented in this chapter are based on the Optimization Engine [25, 67] (for
short OpEn),which is an open-source code generation software for embedded nonlinear opti-
mization, that is fully ROS-integrated. It generates Rust code, which is very fast and prov-
ably memory safe. OpEn uses PANOC (proximal averaged Newton-type method for optimal
control) [68, 69] combined with either a penalty method [70] or an augmented Lagrangian
method [25,71] to account for general non-convex constraints such as the ones that result from
collision avoidance.

2.3 Contributions

This chapter will present a large number of different works but with an overarching theme: the
applications of a NMPC framework towards reactive navigation and collision avoidance, with
a heavy focus on experimental verification of the frameworks. The goal is to demonstrate how
the constrained NMPC can provide an early response to obstacles, generate smooth and stable
avoidance maneuvers without unnecessary maneuvering, maintain specified safety distances
to obstacles, maintain collision-free motion in dense robot swarms and for rapidly moving
obstacles, and that through OpEn keep computation times low even with a large prediction
horizon. The specific contributions of the included works can be summarized in the following
bullets:
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• The overall NMPC framework that stays relatively similar throughout the chapter, that
includes the prediction models, cost function, constraint formulations, and the optimiza-
tion formulation as to fit it neatly into the OpEn framework. The main benefit of the
overall formulation is the merging of model-based set-point reference tracking with the
obstacle avoidance.

• Developing the seamless link between onboard perception systems and the parametric
NMPC constraints. Using an onboard 2D LiDAR to detect and classify nearby static
obstacles forming a framework that that could stand as a stable and properly functional
navigation framework, using onboard sensing and computation. We use an outer penalty
method combined with the PANOC algorithm to handle the nonconvex constraints that
result from collision avoidance.

• Incorporating the concept of obstacle avoidance of dynamic obstacles. Following a sim-
ilar optimization framework, we add a trajectory classification and prediction scheme
and evaluate the NMPC in scenarios of rapidly moving obstacles, and multi-obstacle
scenarios.

• Extending the moving obstacle framework to a legged robot that also includes a pipeline
for detecting and tracking dynamic moving obstacles with a RGB-D camera in the
human-robot safety scenarios. This is demonstrated in completely infrastructure-free
experiments relying on onboard sensing, state-estimation, perception, and computation.
Here we also apply constraints to keep the moving obstacle in view of an onboard camera
to ensure that the robot can continuously see the moving obstacle.

• A centralized NMPC (C-NMPC) for multi-agent trajectory orchestration. The scheme
is evaluated in simulations and experiments for dense robot swarms with the goal of
maintaining safe and consistent maneuvering without oscillations in attitude, where one
central computation agent computes trajectories for all agents.

• A distributed multi-agent scheme that is fully scalable via an obstacle prioritization
scheme. Agents share their predicted trajectories at high frequencies with all other agents
in the system, and an augmented Lagrangian method is used to solve for non-convex con-
straints.

2.4 Model and Cost function
A majority of the works presented in this chapter will be towards UAVs, specifically rotor-
craft/quadrotors. Changes in the robot model or cost function in the sections that use legged
robots or ground robots will be described in the related sections, but we can start by consid-
ering an UAV-system as it is used in most of the works included in this thesis. Assuming that
the UAV is equipped with an attitude controller, as is often the case [72, 73], a common con-
figuration of actuation commands sent to a rotorcraft are reference angles in roll and pitch, a
yawrate command, and a thrust command. Yawing is decoupled from the rest of the actuation
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while there is a tight connection between the roll, pitch, and thrust due to the acceleration of the
system being produced by tilting the thrust vector via roll and pitch. As such, the UAV model
used in this chapter does not include a heading or yaw state, and this state will be controlled by
a separate simple PD-controller (Proportional-Derivative). A result of not considering the yaw
angle as part of the system dynamics used for the NMPC is that the dynamics are described in
yaw-compensated global frame of reference meaning a frame rotated about the heading angle
of the UAV. As such, the quadrotor system has six degrees of freedom controlability but the
NMPC model only considers five. The nonlinear UAV model is described as follows:

ṗ(t) = v(t) (2.1a)

v̇(t) = R(φ ,θ)

0
0
T

+

 0
0
−g

−
Ax 0 0

0 Ay 0
0 0 Az

v(t), (2.1b)

φ̇(t) = 1/τφ(Kφ φref(t)−φ(t)), (2.1c)

θ̇(t) = 1/τθ(Kθ θref(t)−θ(t)), (2.1d)

where p = [px, py, pz]
⊤ are position states, v = [vx,vy,vz]

⊤ linear velocity states, both in the
yaw-compensated global frame of reference, and φ and θ ∈ [−π,π] are the roll and pitch angle
states. Moreover, R(φ(t),θ(t)) ∈ SO(3) is a rotation matrix that describes, in Euler form, the
rotation of the thrust vector with φref ∈ R, θref ∈ R and Tref ≥ 0 to be the references in roll,
pitch and total mass-less thrust generated by the four rotors. The above model assumes that
the acceleration depends only on the magnitude and angle of the thrust vector, produced by the
motors, as well as the linear damping terms Ax,Ay,Az ∈ R and the gravitational acceleration g.

The attitude terms are modeled as a first-order system between the attitude (roll/pitch) and
the references φref, θref, with gains Kφ ,Kθ ∈ R and time constants τφ ,τθ ∈ R. The aforemen-
tioned terms model the closed-loop behavior of a low-level attitude controller tracking φref and
θref.

Following that, let the state vector be denoted by x = [p,v,φ ,θ ]⊤, and the control action as
u = [T,φref,θref]

⊤. The system dynamics of the UAV are discretized with a sampling time Ts
using the forward Euler method to obtain

xk+1 = ζ (xk,uk). (2.2)

This discrete model is used as the prediction model of the NMPC. This prediction is done with
receding horizon e.g., the prediction considers a set number of steps into the future. We denote
this as the prediction horizon, N ∈ N, of the NMPC. Let us then directly denote xk+ j|k as the
predicted state at time step k+ j, produced at the time step k. Also denote the control action as
uk+ j|k. Let the full vectors of predicted states and inputs along N be denoted as xxxk = (xk+ j|k) j
and uuuk = (uk+ j|k) j. By associating a cost to a configuration of states and inputs, at the current
time and in the prediction, a nonlinear optimizer can be tasked with finding an optimal set of
control actions, defined by the cost minimum of this cost function. Putting aside the collision
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avoidance constraints for now, the control objective is to reach a desired state reference xref
while minimizing the actuation and minimizing the rate change in actuation from time step to
time step in order to promote smooth control signals. Thus we formulate the cost function (or
objective function) as:

J(xxxk,uuuk,uk−1|k) =
N

∑
j=0
∥xref− xk+ j|k∥2

Qx︸ ︷︷ ︸
State penalty

+∥uref−uk+ j|k∥2
Qu︸ ︷︷ ︸

Input penalty

+∥uk+ j|k−uk+ j−1|k∥2
Q∆u︸ ︷︷ ︸

Input rate penalty

, (2.3)

where Qx ∈ R8×8,Qu,Q∆u ∈ R3×3 are symmetric positive definite weight matrices for the
states, inputs and input rates respectively. In (2.3), the first term denotes the state penalty,
which penalizes deviating from a certain state reference xref. The second term denotes the in-
put penalty that penalizes a deviation from a desired or baseline input vector, for the case of an
UAV system this can be the steady-state input uref = [g,0,0] i.e. the inputs that describe hov-
ering in place. Finally, to enforce smooth control actions, a third term is added that penalizes
changes in successive inputs, the input change penalty. It should be noted that for the first time
step in the prediction, this cost depends on the previous control action uk−1|k = uk−1, which is
provided as an additional input to the optimizer.

2.5 Constraint Definition and Optimization
Following the constraint formulation structure used in [47, 69] we use the function [h]+ =
max{0,h} as described by (2.4). This allows us to formulate the constraints as equality expres-
sions such that [h]+ = 0 implies that the constraint is satisfied, which also fits neatly into the
OpEn framework. This form of constraint is used when we are solving the constraints with
the penalty method [70], which is the case for all sections in this chapter except in section
2.8.2, where the augmented Lagrangian method [25] is used instead, and will be discussed

specifically in the relevant section.

[h]+ =

{
0 if h≤ 0
h otherwise

(2.4)

Equation (2.4) is used for describing a constrained area by choosing h as an expression that is
positive while violating the constraint (inside the obstacle), and negative when the constraint
holds (outside the obstacle). Additionally, by utilizing this constraint representation, we can
define more complex obstacle shapes by taking the product of multiple such terms, as the
product is zero when any of the terms are negative.

2.5.1 Obstacle Constraints of various types
Obviously a wide range of obstacles shapes and geometries can be encountered by a robot
moving in a cluttered environment. This section will describe a set of useful constraint types,
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which are also the ones applied in the various following application scenarios. To start, a
circular expression can be used for any blocked area or general obstacle, where the radius of
the circle envelops the area that is undesirable or blocked, forming an infinite cylinder in the
3D space. The circular equality constraint Ccircle is defined in (2.5) with a specified radius and
x-y position as:

Ccircle(p,ξ c) := [hcircle]+ = [r2
c − (px−pc

x)
2− (py−pc

y)
2]+ = 0, (2.5)

where ξ c = [pc
x, pc

y,rc] define the x,y coordinates of the center and the radius of the obstacle.
Although we have obviously not described the whole NMPC problem or optimization process
yet, a useful visualization of a circular or cylindrical obstacle and the simulated navigation
around such an obstacle can be seen in Figure 2.1. The left image shows a cost map, where
the expression in (2.5) has been mapped to the cost domain, and the right image shows the
resulting constrained position space with multiple such obstacles and how the simulated UAV
(in this case denoted as a MAV (Micro Aerial Vehicle) following the work it is from) does not
enter the obstacles when moving around them.

Figure 2.1: Cost map of a circular (or infinite cylinder) constraints with a radius of 2m (left). Simulated
navigation around circular obstacles (right).

The 3D version of this constraint denoted as Csphere, that will be very useful when it comes
to multi-robot systems and for keeping a general distance in 3D to a point-like obstacle, can be
written as

Csphere(p,ξ s) := [r2
s − (px−ps

x)
2− (py−ps

y)
2− (pz−ps

z)
2]+ = 0, (2.6)

where ξ s = [rs, ps
x, ps

y, ps
z]. Another useful constraint is a polytope surface, of which a simple

and applicable version is that of a 2D rectangle as an intersection area of lines or a 3D inter-
section volume of planes. This type of constraint can represent any wall or flat object that fits
poorly into a circular or ellipsoidal shape. The constraint for a single line takes the form of
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(2.7),

Cline(p;ξ
l) := [mpx− py +b]+ = 0, (2.7)

where m,b are standard line constants. We want to extend this type of constraint to form a
rectangle that envelops a certain area that contains the obstacle. For example, in the follow-
ing section the perception system provides end-points of line segments as its output data that
represents the location of a wall-like obstacle. This type of information can be turned into a
rectangle of intersecting lines that envelops the line segment with a specified enlarging safety
distance, visualized in Figure 2.2.

Figure 2.2: The obstacle detector outputs a line segment, which is turned into a constrained area with
safety distance ds.

To describe the 2D rectangular constraint we can take the product of four line terms as:

Crec(p,ξ rec) := [mpar px− py +bpar,1]+

[−(mpar px− py +bpar,2)]+[mperp px− py +bperp,1]+[−(mperp px− py +bperp,2)]+ = 0, (2.8)

where ξ rec ∈ R6 includes line constants for all four lines. It should be clear that to form such
a constraint, we will have two lines parallel (with constants mpar,bpar,1,bpar,2, and opposing
signs) to the original line segment and two perpendicular (with constants mperp,bperp,1,bperp,2).
These line constants can easily be computed via simple algebraic operations to envelop a spe-
cific area, which produces a constraint as in Figure 2.3, also showing a simulated path of the
UAV around the polytope surface obstacles.

To demonstrate the power and generality this constraint method offers, we can also form
a constrained passage obstacle by combining the rectangle and the circle. For simplicity in
notation and implementation, let’s assume that the entrance to the passage, and the wall that
the entrance is part of are along one of the coordinate axis of the robot. The expression for the
entrance becomes
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Figure 2.3: Cost map of a polytope or wall-like constraint as the intersection area of four lines (2D)
(left). Simulated navigation around two wall-type obstacle (here as the 3D intersection of six planes)
(right).

Centrance(p,ξ e) := [−(r2
e − (py−pe

y)
2− (pz−pe

z)
2)]+ = 0, (2.9)

with ξ e = [re, pe
y, pe

z] e.g. using the circular expression with a negation such that the whole
position space, except the infinite cylinder here in the y-z plane, is constrained and the con-
straint would only be satisfied inside the ”entrance”. The constrained passage representation
becomes

Cpassage(p,ξ e,ξ rec) := [hentrance]+[hline,1]+ . . .= 0, (2.10)

creating a wall (rectangle) geometry with the product of four line expressions hline,1, . . .hline,4
as in (2.8) with a hole in it from the entrance (negated circle) such that the constraint is satisfied
(= 0) outside the rectangle, and inside the passage where any of the terms are zero. A similar
visualisation of a simulated navigation scenario through such entrances is shown in Figure 2.4
where the robot has to navigate through the passages to reach the other side of the wall.

2.5.2 Input rate constraints
In all the works summarized in this chapter, we also impose a constraint on the successive
differences of control actions for specific control variables. For the UAV case we impose
such constraints on φref and θref, so as to directly prevent an overly aggressive behavior of the
controller in-flight in addition to the input rate costs in the cost function, that is

|φref,k+ j−1|k−φref,k+ j|k| ≤ ∆φmax, (2.11a)

|θref,k+ j−1|k−θref,k+ j|k| ≤ ∆θmax. (2.11b)
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Figure 2.4: Simulated navigation through constrained passages, where the only path to the other side is
through the passage visualized by the circles.

The above inequality constraints can be re-written as equality constraints as follows:

[φref,k+ j−1|k−φref,k+ j|k−∆φmax]+ = 0, (2.12a)

[φref,k+ j|k−φref,k+ j−1|k−∆φmax]+ = 0, (2.12b)

e.g. setting a lower and upper bound with the maximum allowed change in consecutive control
action as ∆φmax. The exact same constraint is also formed for θref, with the maximum change
as ∆θmax. For the subsections using other robotic platforms, the same method of constraining
the input rates are applied to the relevant control variables.

2.5.3 Input constraints

Finally, we also directly apply constraints on the control inputs. Since the NMPC is used with
a real robotic systems, hard bounds on control inputs must be considered, as for example a low-
level controller might only be able to stabilize the attitude within a certain range for a UAV, or
due to the actuator restrictions of the platform itself for legged or wheeled robots. Thus, we
define bounds on inputs as:

umin ≤ uk+ j|k ≤ umax. (2.13)

2.5.4 Resulting NMPC problem and Optimization

The NMPC problem resulting from the discussed cost function and constraints is solved by the
open-source Optimization Engine (OpEn) [25, 67] and its associated algorithm PANOC [68,
69], that solves nonlinear non-convex optimization problems. The Optimization Engine gener-
ates embedded-ready source code from a specified cost function and set of constraints, while it
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can solve general parametric optimization problems on the form:

P(xk|k) : Minimizez∈Z f (z,ρ) (2.14a)

subject to:G(z,ρ) = 0, (2.14b)

where f is a continuously differentiable function with Lipschitz-continous gradient function
and G is a vector-valued mapping so that ∥G(z,ρ)∥2 is a continuously differentiable function
with Lipschitz-continous gradient. The decision variable and additional input parameter are
denoted by z and ρ ∈Rnp respectively. ρ is an input parameter to the NMPC module including
the initial measured state of the UAV x̂k = xk|k, references ure f and xre f , the previous control
action uk−1 (for the first term in the input change cost), and importantly the obstacle data ξ obs

(ξ c,ξ rec etc.), where np is the total number of such input parameters.
Based on the cost function and constraints outlined in the previous sections we can now

formulate the NMPC problem. For simplifying the notation, let us collect all obstacle terms of
interest for the specific use-case into a single notation as CCCobs that could include multiple of
the same obstacle, or a mix of different defined obstacle types. The number of such constraints
considered in the NMPC problem is then Nobs. The NMPC prolem becomes:

Minimize
uuuk,xxxk

J(xxxk,uuuk,uk−1|k) (2.15a)

s. t.:xk+ j+1|k = ζ (xk+ j|k,uk+ j|k),

j = 0, . . . ,N−1, (2.15b)

umin ≤ uk+ j|k ≤ umax, j = 0, . . . ,N, (2.15c)

Cobs(pk+ j|k,ξ
obs
i ) = 0, j = 0, . . . ,N, (2.15d)

i = 1, . . . ,Nobs (2.15e)

Rate constraints (2.12), j = 0, . . . ,N, (2.15f)

xk|k = x̂k. (2.15g)

This can be fit into the OpEn framework by performing a single-shooting of the cost func-
tion via the decision variable z = uuuk and define Z by the input constraints (2.13). We also define
G to cast the previously discussed equality constraints. For the consideration of the constraints,
a quadratic penalty method [70, 74] is applied, as it allows for the types of equality constraints
proposed requiring only that the mapping of the constraint expression is continuously differen-
tiable with Lipschitz-continous gradient. By formulating the problem as:

Minimizez∈Z f (z,ρ)+q∥G(z,ρ)∥2, (2.16)

where q ∈ R+ is a positive penalty parameter, the PANOC algorithm [69] can be applied to
the problem. When using a penalty method, an optimization problem where the constraints are
mapped to the cost-domain is re-solved multiple times with an increasing penalty parameter q
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associated to the constraints, while using the previous solution as the initial guess (hotstart). In
very simplified terms, this method gradually moves the cost-minima of (2.16) by increasing q
until non of the constraints are violated, or rather until a specified tolerance is met.

In Figure 2.5 the penalty method concept is displayed, where the solution from one to five
penalty method iteration are shown for obstacle avoidance around a circular obstacle where
qi = 10i, i = 1, . . . ,5. As the penalty parameter is increased, the optimized trajectory, uuuk (here
displayed in position coordinates via the prediction model), is moved out of the obstacle. The
trajectory will lie completely outside the obstacle as q approaches infinity, and as such small
constraint violations should be expected and compensated by enlarging the obstacle. In Figure
2.5 it is depicted that the first iterations are not significantly different, and in the following
experimental evaluations we will be using penalties with qi = 103× (4i−1), i = 1, . . . ,4, based
on the results from initial testing and simulations.

Figure 2.5: NMPC optimized trajectories using one to five penalty method iterations for a circular
obstacle with radius r = 0.3m. The cost-minima is gradually pushed out as the cost associated with
violating the constraint is increased.

2.6 Perception-based Reactive Navigation

In order for the described constrained NMPC to act as an independent and fully functional
reactive local navigation scheme, the fundamental link between the NMPC constraints and
perception information from onboard sensors must be investigated. This is one of the ma-
jor contributions of this chapter, since a vast majority of previous works, to the authors best
knowledge, rely either on simulations [75–78], or when experiments are performed rely on
pre-defined obstacles [47, 69], or motion-capture system to track obstacles [79, 80]. This lim-
its the real-world impact of NMPC-based obstacle avoidance in the robotics context, and we
will show in multiple challenging laboratory experiments the application of an NMPC-based
obstacle avoidance scheme in real-time, real-world scenarios for an Unmanned Aerial Vehi-
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cle (UAV), relying only on on-board computation and perception using on-board 2D LiDAR,
forming a complete navigation scheme for constrained environments. As will be experimen-
tally demonstrated the novel proposed reactive scheme is computationally efficient and fast
enough to satisfy the run-time requirements of the UAV platform, using limited computation
power, while maintaining a safe distance from any obstacle and performing smooth and effi-
cient obstacle avoidance maneuvers.

2.6.1 Directly using LiDAR data
A first thought in this direction could be to use the raw 2D LiDAR hits in close proximity to the
UAV, and form a separate circular constraint for each LiDAR point sufficiently close to the UAV
to be reachable within the prediction horizon. This method was attempted in simulations using
the physics-based gazebo simulator that also includes realistic sensor data from an onboard 2D
LiDAR, and the flight dynamics of the platform. Figure 2.6 shows the simulated mission set-up
in a maze-like scenario. We can see that the constrained NMPC manages to navigate through
the maze but the path is not optimal. Similarly, Figure 2.7 shows the safety distance from the
environment (from the 2D LiDAR range measurements) where we can see that a specified 0.7m
safety distance is maintained throughout the scenario (e.g. rc = 0.7), but the figure also shows
that the computation time exceeds a desired 20Hz (or 50ms) sampling time/rate specified by
previous hardware experiments for UAVs [47], and this was not even using limited onboard
computation resources for the simulation. The straightforward reason is the very high number
of constraints required if each LiDAR point forms a separate constraints along the horizon.
Additionally, local minima can occur in between points/constraints and the result is either the
robot getting stuck, or the suboptimal resulting maneuver shown in Figure 2.6. A conclusion
is if we desire optimal behavior and real-time execution with limited resources the perception-
constraint link has to be done in a more proper way.

Figure 2.6: Gazebo environment setup and 2D-LiDAR equipped UAV (left). Path traversed through the
environment when given a waypoint on the opposite side of the maze.
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Figure 2.7: Minimum-range LiDAR measurement (as a measure of safety distance) (left), and the solver-
time of the NMPC module throughout the simulation run (right).

2.6.2 Obstacle Detection and Classification
The solution for linking 2D LiDAR sensor information to the NMPC constraint came in the
form of the Obstacle Detector package [81]. The package uses combined segmentation and
merging of obstacles from 2D LiDAR data and it is a perfect fit for the required needs, provid-
ing geometric approximations of the surrounding environment in the form of line segments and
circles, which, not incidentally, fits into the previously discussed obstacle types. Circular ob-
stacles, c, are, just like in the constraint formulation, defined by a radius and the x-y coordinates
of the center of the circle as;

c ≜ {rc, pc}= {rc,(pc
x, pc

y)}. (2.17)

where rc, pc
x, pc

y define the radius, and x,y-position of the center of the circle. The obstacle
detector also supports an additional safety distance, ds, such that rc = rreal + ds. This safety
distance is required, since the constraints for obstacle avoidance assumes the position of the
UAV to be expressed by a point. As such, ds represents the size of the UAV, and also in
practise an extra increase to compensate for inaccuracies in measurements, solver tolerances,
and limited penalty method iterations. Line segments, l, are defined by extreme points of the
line segment as:

l ≜ {pl,1, pl,2}= {(pl,1
x , pl,1

y ),(pl,2
x , pl,2

y )}, (2.18)

where (pl,1
x , pl,1

y ) defines the x,y-position of the start-point of the line segment and (pl,2
x , pl,2

y )
the end-point. From each such set of points, we can parameterize a rectangular constraint by
computing the four line equations, as shown in Figure 2.2, to envelop the original line segment
with a rectangle using the same extra safety distance ds. As the detector is limited to outputting
circles and line segments, obstacles are forced to be classified into either one which is obviously
a limiting factor.

2.6.3 Hardware Experiments
Laboratory experiments were performed to validate the pairing between the NMPC and ob-
stacle detection, and the ability for the OpEn-based NMPC to generate safe and consistent
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maneuvers around obstacles. The UAV platform used can be seen in Figure 2.8, equipped
with a rotating 2D LiDAR and using an Intel UpBoard as its computation resource. A motion
capture system was used to estimate the UAV state x̂, and the full sensing and autonomy archi-
tecture can be seen in Figure 2.9. The pipeline for object detection can be seen in Figure 2.10,
where the Obstacle Detector turns the surrounding environment into a set of line segments and
circles which can then be fit into the defined constraints, shown as cost maps. As a note, the
prediction horizon was set to N = 40 in the following experiments implying a 2 s prediction
with the controller running at 20 Hz.

Figure 2.8: UAV used in the following hardware experiments. Notably, the UAV is equipped with
a rotating 2D LiDAR (for obstacle perception), an Intel UpBoard for onboard computation, and the
ROSflight FCU.

Figure 2.9: Complete control and information flow architecture during hardware experiments. State
estimation is provided by a Vicon motion capture system in a global world frame W , while obstacles
are detected by 2D LiDAR and the Obstacle Detector. State and obstacle information is fed to the NMPC
which generates control inputs to the ROSflight attitude controller.

The best way to visualize the experiment is by the following video link: https://www.
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Figure 2.10: The pipeline for obstacle constraint generation. 2D LiDAR equipped UAV and obstacles
(left), the output of the Obstacle Detector (middle), and resulting constraint cost maps (right).

youtube.com/watch?v=xl_YQuDjs1M&feature=youtu.be. Here the reader can
see the laboratory scenarios set up for validation, the real-time behavior of the platform, and
the generated prediction trajectories. The evaluations were designed such that after take-off, a
single position reference was given to the UAV on the opposite side of the area. In between
the take-off location and the provided position reference, obstacles were placed in such a way
that the UAV is forced to maneuver around them. Three experiment scenarios were trialed: 1)
A baseline generic cylindrical obstacle, 2) a multi-obstacle course of wall-like obstacles that
the UAV has to move between, and 3) a scenario with a very narrow opening between obsta-
cles where the constrained NMPC particularly can shine through guaranteeing hard bounds
on safety distances. The first experiment is visualized in Figure 2.11 showing the full avoid-
ance path as well as snap shot images from the experiment. Notably the third sub-plot shows
the maintaining of a specified hard bound of 0.4m safety distance (based on the size of the
platform) from the detected obstacle surface.

The obstacle course scenario is visualized in Figure 2.12. Here the UAV must pass between
two obstacles placed 1m apart while maintaining the 0.4m safety distance from each. The
obstacles are correctly detected and a safe distance is maintained while navigating past them.
The generated avoidance trajectory is efficient and smooth considering the scenario.

The last experiment with a narrow opening is visualized in Figure 2.13. The scenario is
simple: the only way to get to the other side is through the narrow opening of 0.85m (e.g.
there is a total of 5cm clearance based on the desired safety distance). The UAV executes an
aggressive avoidance maneuver to perfectly fit in between the obstacles. Here the ability to
perfectly sync the control behavior with the obstacle avoidance really shines through, as the
maneuver is precise, quick, and totally within the ability for the platform to execute efficiently.

Figure 2.14 shows the minimum-range LiDAR measurements throughout the three scenar-
ios where the maximum violation of safety distnaces was 3cm, a very small violation consider-
ing the real-world experiment scenario with the narrow opening, and the fact that the obstacle
perception data comes from onboard sensors and will as such not be perfect. Figure 2.14 also
shows the solver times from the experiments. At a 20Hz control loop rate, set the same as the
discretization rate in the prediction model, the goal is to keep below a 50ms solver time using
only the limited onboard resources. To maintain flight stability the solver was set up to stop the
optimization process after 50ms in case it would get stuck, which is why the one spike in the
second experiment, and the peak in the third experiment is maximally 50ms. In general, the
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Figure 2.11: Path around a cylinder-like obstacle in a laboratory environment when given a position
reference on the other side, using perception-based constraints. (1) complete path around obstacle, (2)-
(4) showing snapshots during navigation highlighting the predicted trajectory and detected obstacles.

optimization time is kept well below, but there are critical moments where the solver does not
converge within the desired time. This can cause significant problems if a control input that
is not collision free is applied to the system but thankfully due to the very fast re-calculation
rate (twenty times per second) any incorrectly generated control signals were quickly corrected
before a collision or violation of safety distances.

Overall, the NMPC showed significant promise as a local navigation scheme in very chal-
lenging scenarios where maintaining a safe distance is critical, and the robot must navigating
in between obstacles in a cluttered environment. A missing experiment for this direction is
definitely navigation through a larger scale area cluttered with various obstacles of different
shapes and sizes, but was not possible at the time due to the size of the testing arena.

2.7 Obstacle Avoidance of Dynamic Obstacles
While most autonomy framework are satisfied with safely navigating through a static environ-
ment, there are certain scenarios where the consideration of moving obstacles are absolutely
critical. For example, if autonomous robots are to be used in close quarters with humans, vehi-
cles, and other robots in urban environments, special attentions has to be placed on their ability
to correctly coordinate maneuvers around obstacles that are also moving. The fundamental dif-
ference between the usual notion of collision avoidance and avoidance of moving obstacles is
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Figure 2.12: Path around two wall-like obstacles in a laboratory environment when given a position
reference on the other side, using perception-based constraints. (1) complete path around obstacles, (2)-
(4) showing snapshots during navigation highlighting the predicted trajectory and detected obstacles.

that for a rapidly moving obstacle, or a robot with slow dynamics, the avoidance maneuver has
to start long before the obstacle enters the current unsafe zone or area of influence of the avoid-
ance method or algorithm. To do so, an important component is the ability to predict where
an obstacle will be in the future, and to connect that prediction to the avoidance algorithm, to
enable an early response and an efficient avoidance maneuver. Using the quite clear example
of the autonomous car, safety critical maneuvering in regards to pedestrians or other cars must
include direct considerations of how those obstacles are predicted to move in the future so
that the car can break in time to avoid the collision, which is why significant research effort
in this direction were done the context of autonomous cars [82], since it is required to ensure
collision-free paths in the urban environment. These methods use a wide array of stochastic
prediction models [83] or hypothesis based models [84] for the consideration of moving obsta-
cles. For smaller-scale robots the real-world scenarios include human-robot safety in cluttered
environments, objects thrown or launched at for example a UAV, or in collaborative robotic
swarms.

This section will discuss the relatively straight-forward addition of moving (or dynamic)
obstacles into the developed constrained NMPC framework through two works. One focuses
on UAVs and rapidly moving obstacles of various types where we will introduce the obstacle
prediction and a trajectory classification scheme as add-ons to the baseline framework. The
second work focuses on a legged robot (Boston Dynamics Spot), where we adapt the system
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Figure 2.13: Path through a very narrow constrained opening in a laboratory environment when given
a position reference on the other side, using perception-based constraints. (1) complete path through
opening, (2)-(4) showing snapshots during navigation highlighting the predicted trajectory and detected
obstacles.

Figure 2.14: Minimum-range LiDAR measurement throughout the three experiments with a set safety
distance ds = 0.4m (left) and solvertime on limited hardware for the NMPC module (right).

model to fit the new robot platform. This work considers the human-robot safety scenario
where the legged robot operates in a fully autonomous mode, using onboard sensing to detect
and track the human, as well as onboard state-estimation and computation.
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2.7.1 Avoidance of various trajectory types with an UAV.
Consider a general obstacle that we would like the UAV to maintain a specified safety distance
from. The spherical obstacle described in (2.6) fits our purpose well, where we can say that the
radius of the sphere rs = ruav + robs +ds, e.g. the size-radius of the robot plus the approximate
size-radius of the obstacle, plus an extra safety distance. Fundamentally, in (2.15) we are form-
ing a separate constraint for each predicted time step along the horizon and for each obstacle
which we denoted Cs(pk+ j|k,ξ

s
i ) = 0, j = 0, . . . ,N, i = 1, . . . ,Ns, with ξ s

i in that case describing
the relevant information (position, size, etc.) of the obstacle, as an input to the OpEn solver.
Let us extend the notation to have a separate obstacle data input for each constraint along the
horizon as ξ s

i,k+ j|k, where we can now feed a predicted obstacle trajectory (along the horizon,
discretized at the same sampling rate as the system prediction model) as an input to the solver.
This is formulated such that the obstacle trajectory is fully parametric and as such the pre-
diction of future obstacle positions is external to the NMPC module, and it is agnostic to the
method of obstacle prediction. Any discrete prediction model of the obstacle will have larger
errors for predictions further into the future due to propagated model mismatch and estimation
noise. Let us right away implement a compensating obstacle enlargement as a brute-force way
to compensate for that error as ds,k+ j|k, and in this work we will consider a simple linearly in-
creasing safety distance along the horizon, as that worked very well in practise. As an example,
in the following evaluations this parameter is 0.4m at k|k and increases up to 0.6m at k+N|k

The next step is computing the ξ s
k+ j|k for all j = 0, . . .N, e.g. the predicted obstacle tra-

jectory. In this work we will be using a trajectory classification and prediction scheme where
a buffer of measurements of the obstacle position and velocity are used to classify its motion
into one specific type from a pre-defined set of trajectory models. While many kinds of tra-
jectories can be encountered and considered in the scheme, we are focusing on three types:
obstacles moving with linear motion, obstacle moving with projectile motion, and static obsta-
cles (ṗs = 0). Linear motion is described by:

ṗobs(t) = vobs(t), (2.19)

where vobs are the velocities of the obstacle and no forces are acting on the obstacle. The
projectile-motion trajectory is defined by:

ṗobs(t) = vobs(t), (2.20a)

v̇obs(t) =

 0
0
−g

−
Bx 0 0

0 By 0
0 0 Bz

vobs(t), (2.20b)

where B are linear aerodynamic damping terms. The buoyancy force of the obstacle is consid-
ered small enough to ignore. Equations (2.19), (2.20) are then discretized by the forward Euler
method using the same sampling time as the controller/prediction model, Ts. In the discrete
prediction model of the projectile-motion we also include a condition for bouncing, with a
much-simplified collision interaction with a coefficient of restitution applied on the velocities
(assuming the ground is flat) as the sphere hits the ground to model the energy-loss in the col-
lision. The result is that from an initial measured state [p̂obs, v̂obs] we can compute any ξ s

k+ j|k.
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The classification is done by a simple heuristic that is comparing the M last measured position
and velocity terms to a backwards prediction based on the above equations iterating from the
current measured state. Using the same notation as for the prediction of the NMPC, let pobs

k|k
denote the current measurement and pobs

k|k− j denote the predicted obstacle state j steps back in
time based on the initial condition. Also denote the previous measurements in position and
velocity of the obstacle as pobs,prev

j and vobs,prev
j respectively (a buffer of previously measured

states). We measure the error, etra j, as:

etra j =
M

∑
j=1
| pobs,prev

j − pobs
k|k− j |+ | v

obs,prev
j − vobs

k|k− j | , (2.21)

e.g. comparing the measured previous states with the ”backwards predicted” previous states,
and summing the error for the M measurements to get the total. Equation (2.21) is evaluated
for the three different classes of trajectories and the class that generates the lowest error is
chosen for the trajectory prediction, as it is the best match from the measured obstacle state
information. This is run for every new measurement of the obstacle and thus the trajectory of
a single obstacle is allowed to change during the movement, and the predicted trajectory only
depends on the current/lates measurement. It should be noted that the static condition and the
linear are identical for an actual static obstacle, but generally this type of measurement will
include noise and uncertainties and thus the static condition is included to filter for erroneous
velocity and position measurements on a static obstacle. The outcome is that we can now
evaluate the dynamic obstacle avoidance in different types of scenarios without having to re-
define the obstacle prediction specifically for that scenario.

With this relatively straight-forward addition we are ready to evaluate the NMPC for dy-
namic obstacle avoidance scenarios. The UAV platform used for experiments is the Crazyflie
Nano Quadcopter, depicted in Figure 2.15.

Figure 2.15: Platform used for experimental evaluation - The Crazyflie 2.0 Nano Quadcopter.

The smaller platform was chosen due to the risks related to throwing obstacles at the robot,
and for operations in close proximity to humans. The downside is that no computation or
perception can be run onboard the platform and as such the NMPC module is run on a laptop
and the control signals T,θre f ,φre f , ψ̇ are sent to the Crazyflie over Bluetooth communication.
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This does result in delays of approximately 0.1s before a computed control signal actuates the
vehicle. A Vicon motion capture system tracks both the UAV and the obstacle in the following
experiment evaluations and provides both x̂ and [p̂obs, v̂obs]. Four experiments are performed: 1)
Avoidance of an obstacle thrown at the UAV (projectile motion) visualized in Figure 2.16, 2) A
”pedestrian” walking towards the UAV visualized in Figure 2.17, 3) A bouncing ball scenario,
shown in Figure 2.18 where we leverage the fact that we can provide a trajectory of arbitrary
form and as such can easily include the bouncing dynamic, and 4) a scenario where another
autonomous UAV moves through the ego agents’ space while an obstacle is simultaneously
thrown at it, which is demonstrated in Figure 2.19.

Figure 2.16: Experiment with a ball thrown at the UAV. Obstacle trajectory (gray dotted line), predicted
trajectory at the first moment a collision is predicted (purple), and the resulting collision avoidance
maneuver (black).

Visualizing multiple moving objects in static images is very difficult, and as such the reader
is recommended to watch the following video (and it is really the only way to properly see
the results) demonstrating the dynamic avoidance capabilities: https://www.youtube.
com/watch?v=vO3xjvMMNJ4. The video also includes two comparisons using a basic
Artificial Potential Field [34] and using the NMPC from the last section without the obstacle
prediction. The safety distances between obstacle and UAV are shown in Figure 2.20, where
we can see that the other methods fail and result in a crash, while the dynamic obstacle NMPC
maintains the desired distances , with the closest obstacle-UAV distance in any experiment was
0.38 m, only a 2 cm violation of the desired safety distance. This occurred during the bouncing
ball experiment, and in all other scenarios the desired safety distance was maintained. Figure
2.20 also shows the performance of the trajectory classification scheme. The plot shows the
values of etra j for each obstacle class during the initial moments in the experiments where
the obstacle starts to move. It only took 0.1− 0.2s from the initial movement (e.g. ball is
thrown, pedestrian starts walking) for the correct trajectory class to be identified, the trajectory
predicted, and for the controller to react to the moving obstacles.
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Figure 2.17: Experiment with a moving towards the UAV. Obstacle trajectory, predicted trajectory at the
moment a collision is predicted, and the resulting collision avoidance maneuver.

Figure 2.18: Experiment with a bouncing ball, where the obstacle would hit the UAV after the first
bounce. Obstacle trajectory, predicted trajectory at the moment a collision is predicted, and the resulting
collision avoidance maneuver.

2.7.2 Human-Robot Safety for legged robots

The same ideas were also demonstrated on a legged robot platform, namely the Boston Dy-
namics (BD) Spot. The aim of this section is to demonstrate collision avoidance of moving
dynamic obstacles in the context of complete autonomy, meaning no motion-capture system or
pre-defined obstacle, instead only using onboard sensing and computation. The NMPC is thus
augmented with several other assisting autonomy modules and sensing capabilities, where the
robot, full autonomy kit, sensors, and information flow is visualized in Figure 2.21.

This section will focus on the NMPC implementation and on the experimental results, while
a more detailed description of the other components can be found in [85]. On a high level, the
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Figure 2.19: Experiment with multiple dynamic obstacles; one projectile and one linearly moving non-
cooperative UAV. Obstacle trajectories and the resulting collision avoidance maneuver.

Figure 2.20: Relative distances as measured from the center of the obstacle to the center of the UAV
(from Vicon Mo-cap) (left), and the trajectory classification scheme showing also the time of obstacle
movement beginning and the controller initiating obstacle avoidance (right).

track-and-avoid architecture is divided into three steps: 1) CNN-based (Convoluted Neural
Network) object detection using the YOLO [86] (You Only Look Once) framework trained
on the Microsoft Coco dataset for human detection [87], 2) an object localization and state
estimation pipeline for tracking human obstacles that is using depth-camera information and a
Kalman filter [88] with a constant acceleration model to estimate the obstacle states [p̂obs, v̂obs],
and 3) the proposed NMPC to perform the active tracking and avoidance maneuvers. To sup-
plement full autonomy alongside the proposed framework we use the Lidar-Inertial Odometry
LIO-SAM [89] to estimate the robot state x̂. While there are some differences in NMPC im-
plementation, most key components stay the same: the constraint formulation, cost function,
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Figure 2.21: Boston Dynamics spot with custom sensor suite for full autonomy (left), and the Track &
Avoid architecture used for experiments (right). The velodyne 3D Lidar generates the pointcloud {P}
used for state-estimation, while the Intel RealSense D455 generates RGB image I and depth image D
which are used to detect and localize the obstacle.

solver etc. are almost identical, and this section will thus only discuss the differences from
the baseline framework. As the motion of the legged robot is in 2D, we will only consider the
linear motion obstacle model from the previous section, which is also more commonly denoted
as constant velocity obstacles.

As the autonomy architecture relies on the built-in Spot walking controller, we can ignore
the complex low-level dynamics of autonomous quadruped walking movements. Instead, we
define a high level model with states x = [pG

x , pG
y ,v

B
x ,vB

y ,ψ]T and with control inputs u =

[uB
vx ,u

B
vy ,uω ]

T . Here, the denoted frame G is in a global frame of reference, and robot body
frame velocities in B represent velocities with a rotation about the z-axis with the heading
angle ψ . The proposed high level kinematic model for the legged robot, keeping the position
coordinates in a global frame, can then be formulated as:

ṗG
x (t) = cosψ(t)vB

x (t)− sinψ(t)vB
y (t)

ṗG
y (t) = sinψ(t)vB

x (t)+ cosψ(t)vB
y (t)

v̇B
x (t) = 1/τvx(κvx(uB

vx(t)− vB
x (t))

v̇B
y (t) = 1/τvy(κvy(uB

vy(t)− vB
y (t))

ψ̇(t) = κωuω(t) (2.22)

where the evolution of velocity states is modelled as a first-order system with gains κvx,κvy ∈R
and time constants τvx,τvy ∈R, representing the response of the low-level Spot controller when
acting on control input u, while κω ∈ R is the gain related to the rotational movements. A
fundamental difference here is that we want the NMPC to both track (keep within field of view
of the camera) and avoid the obstacle, and as such, as opposed to the UAV model, we must
directly include the heading state ψ into the problem. If we want to keep the global frame, it
becomes a difficult to apply the same quadratic cost to the heading state as for the other terms
in equation (2.3) as the heading state is 2π-modular. For example, if we assume that the state
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estimation provides ψ ∈ [−π,π], there is a clear discontinuity at ψ ∼ ±π and an incorrect
cost associated with ψre f −ψ for a subset of initial conditions and references. There are ways
around that by shifting the coordinate frames and such, but as the solver supports the nonlinear
terms we could use a trigonometric function in the cost function specifically for the heading
state cost for ψre f −ψ . A variety of expressions could be used but here we add the following
term to (2.3): (−cos(ψre f −ψ) + 1)Qψ . The expression is at its minimum for (ψre f −ψ)
mod 2π = 0 and positive real valued.

As opposed to the previous work on dynamic avoidance, we can not assume that the ob-
stacle size is known. The robot moves in 2D, so we can use the circular constraint from (2.5)
for the set-exclusion constraint that represents the obstacle. The object localizer provides the
width of the detected bounding box with the human obstacle in it as Wobs. We keep the desired
minimum safety distance to the obstacle as ds. Additionally, let us use the co-variances of the
measured obstacle state from the Kalman filter (Figure 2.21) as a way to enlarge the obstacle in
the presence of uncertainty, where σp,σv are the Euclidean norms of co-variances of the track-
ing Kalman filter along each axis for the position and velocity states respectively. The idea
is to increase the obstacle radius if the measurement (and thus also prediction) uncertainty of
obstacle states are high. A similar idea was used in [56] using robot state uncertainties, while
in our case the co-variances represent how uncertain the predicted obstacle positions are. The
radius of the circular constraint becomes

rc =Wobs/2+ds + cσ (σp +σv) (2.23)

with cσ as a scaling constant. The legged robot is not enveloped well by a single circle due
to its shape, and as such we impose two circular constraints which can be seen in Figure 2.22,
one over the shoulder that overlaps with the estimated position coordinate, and another offset
by the robot length l as to be situated over the rear.

Figure 2.22: Active tracking of the obstacle based on predicted trajectories of both the robot and the
obstacle (left), and the constraints used for obstacle avoidance (right).

Figure 2.22 also shows the concept of predictive tracking. We want to generate heading
references along the prediction horizon that track the moving obstacle, such that the obstacle
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never leaves the field of view of the onboard camera. We also impose this as a constraint as:

Ctrack(ψ,ψref,β ) := [−cos(ψre f −ψ)+1−β ]+ = 0, (2.24)

using a similar formulation as the heading cost. Here β represents the allowed offset between
the heading state ψ and the generated heading reference ψref that is based on the field of view
of the camera. The heading reference to look towards the obstacle is

ψref = arctan(pG
obs,y− pG

y , pG
obs,x− pG

x ). (2.25)

We can evaluate this expression based on future predicted robot states and predicted obsta-
cle states via the discrete prediction model xk+1 = ζ (xk,uk). We use the previous solution uuuk−1,
under the assumption that NMPC trajectories will not differ significantly from one time step
to the next during fast run-time operations to generate ψref,j, j = 0 . . .N along the horizon from
predicted obstacle positions pppG

obs, estimated position p̂G , and previous solution uuuk−1. We have
thus extended the constrained avoidance NMPC into a predictive track-and-avoid framework,
fully integrated with onboard perception systems. Notably, as the higher level dynamics of the
legged robot are relatively slow, this NMPC is sampled at 10 Hz as opposed to the 20 Hz for the
UAV system. That also implies that the prediction horizon of N = 40 results in a 4 s prediction
of both the obstacle and robot states.

The framework is evaluated in laboratory experiments, where once again the optimal way to
view the results is through the real-time behavior of the robot which can only be seen in video
form at the following link: https://www.youtube.com/watch?v=_NaRNfnSmks.
A snapshot moment from one of the experiments is visualized in Figure 2.23 showing the
approaching human to the robot and the predicted avoidance maneuver (red arrows) around the
estimated predicted obstacle trajectory (green line). The red arrows, whose base represent the
predicted robot position and arrow angle represents the predicted heading state, both avoid the
obstacle and align the predicted heading state towards the predicted obstacle position.

Several scenarios are presented: stress testing the predictive tracking, avoidance of a static
obstacle, a scenario when a rapidly moving human runs towards the BD Spot robot such that it
must execute an aggressive track-and-avoid maneuver, and finally a meeting scenario where the
human and robot are moving in opposite directions. The framework demonstrated very high
performance even for an obstacle moving at an estimated 2.5m/s which is a significant result
for perception-based avoidance of dynamic obstacles. The formulation for predictive tracking
also maintained the human in the field of view of the camera for all experiments. We used
a safety distance ds = 1m, and extracted the minimum range measurements from the depth
camera from the bounding box with the human in it to evaluate if that distance was maintained.
In all experiments the distance was kept under 1 m except in one instant with the most rapidly
moving obstacle (momentary estimated velocity of over 4m/s and average approach speed
of 2.5m/s), where that safety distance was violated by 0.1 m. This is still a very promising
result as the dynamic obstacle suffers from estimation errors which can of course lead to small
violations of the safety distances regardless of the performance of the NMPC, or simply that
the human obstacle was moving so fast that a complete avoidance maneuver was not possible
based on the initial conditions. In general, the framework performed very well and serves
as a demonstration of dynamic obstacle avoidance and visual tracking in a fully autonomous
scenario with zero external support for the robot.
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Figure 2.23: Example of a predicted track and avoid maneuver. The coordinate frame denotes the
current robot pose, the red arrows denote the predicted robot poses that track and avoid the obstacle,
while the blue dot and green line denote the current and predicted positions of the obstacle along the
horizon.

2.8 Multi-agent Coordination

Coordination of multi-agent systems act as an enabler for increasing the efficiency of executing
various tasks like inspection, exploration, or construction missions, as more agents can partic-
ipate in the task. Coordination happens on multiple levels, where on the high level one might
discuss the task assignment problem [90, 91] or swarm behavior [92], but to reach the stage of
multiple agents operating in the same local space collaboratively the first step is agent-agent
safety. This is often solved more as a more local problem, and in this section we will apply
the constrained NMPC in this context. The fundamental difference to previous sections is the
cooperativeness of the obstacles. In a multi-agent scenario we leverage the fact that we have
control over all agents in the system (e.g. the obstacles), and also have information about how
they are planning to move in the future. Two NMPC formulations will be presented: 1) A
centralized NMPC (CNMPC) where a central computation agent orchestrates control actions
for all agents in the system, where all agent states are augmented into one large system and
coupled through the collision avoidance constraints between agents, and 2) a distributed for-
mulation where each agent solves in principal the same NMPC problem as described in Section
2.7 with the difference that the obstacle trajectories are not predicted from a measured obstacle
state, and are instead shared among the agents in the system. The distributed work will also
address scalability through an obstacle prioritization scheme.
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2.8.1 Centralized Collision Avoidance
The centralized scheme fundamentally only has two differences to the baseline NMPC frame-
work. First, we collect the state and input vectors of all agents into one system of states as
x = [x1,x2, . . . ,xNa ] and u = [u1,u2, . . . ,uNa ] where Na denotes the number of agents in the sys-
tem. The dynamic model for each agent stay the same as in (2.1). We can apply the same cost
function as (2.3), penalizing deviations from state and input references as well as penalizing
consecutive changes in inputs along the horizon, with the only difference being that each agent
has a related state and input reference xref = [x1

ref,x
2
ref, . . . ,x

Na
ref] etc. In the same way input con-

straints (2.13) and inpute rate constraints (2.12) are still applied to all agents in the centralized
scheme. The second difference is that the agent-agent collision avoidance constraints, in this
work using the circle-type constraint (2.5), are formulated between agent states, not between
robot and an ”external” obstacle. As such we can rewrite the constraint as

Cl,i(xxxk) :=
[
r2

c − (pi
x,k+ j|k − pl

x,k+ j|k)
2 − (pi

y,k+ j|k − pl
y,k+ j|k)

2]
+

= 0. (2.26)

Here the superscripts i and l denote non-duplicate unordered pairs of agents (e.g. a constraint
between i, l is equivalent to one between l, i so both do not need to be included) and i ̸= l.
As a note the total number of agent-agent safety constraints would then equal the (Na− 1)-th
triangular number (1,3,6,10,15,21, etc.). In this work we used the 2D circle-type constraint
(2.5) as opposed to a spherical one with the motivation that preferably in dense swarms agents
should not fly on top of each other as the propeller wake might cause a destabilizing effect.
We can still also apply and use the same obstacle constraints as previously discussed, but now
formulated for each agent in the centralized scheme such that the agents must avoid the obstacle
while maintaining a safe distance from all other agents.

This scheme was first evaluated in baseline simulations, and then in laboratory experiments
using the Crazyflie Nano Quadcopter. For the simulations, the state update model is the same
as the nonlinear discretized prediction model of the system with an addition of a Gaussian noise
parameter. This noise represents a general uncertainty in state data, as well as an uncertainty in
how the vehicles behave based on a certain input. Adding noise to the state update forces the
optimizer to make realistic micro-adjustments to compensate. The noise parameter is generated
with a normal Gaussian distribution with a specified mean, µ , and standard deviation, σ2

as N (µ,σ2) [93]. The noise added to each state are the IID (independent and identically
distributed) processes ηp ∼N (0,0.01), ηv ∼N (0,0.005) and ηθ ,φ ∼N (0,0.001), where
ηp, ηv, and ηθ ,φ are the noise added to the position, velocity, and attitude terms respectively.

The first simulation scenario set-up can be seen in Figure 2.24.
Agents (here denoted as MAVs (Micro Aerial Vehicles) following the notation in the pub-

lished work) must move past an obstacle while also keeping a safe distance from each other.
This scenario can also be used to see how the OpEn solver scales with an increasing number of
constraints and decision variables (control inputs) by adding more and more agents to the sides
such that the innermost agents must avoid the obstacle and all outer agents must compensate in
their trajectories to keep a safe distance. We analyze the up-scaling of the centralized scheme
on the computation time of the optimizer and on how the constraint violations increase in the
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Figure 2.24: A multi-agent scenario used of simulation evaluations, combining obstacle and agent-agent
avoidance. The scenario was also extended by adding more agents to each side of the obstacle.

set up scenario for more and more added agents. This data can be seen in Figure 2.25, where
we ran the scenario for up to nine agents. The solver time shows both the average and maxi-

Figure 2.25: Computation times and constraint violations as the number of agents in the scenario is
scaled up.

mum throughout the simulations, where the interesting parameter is really the maximum e.g.
in the instants of intense avoidance where all penalty method iterations are applied. We can see
that the scheme could maintain solver times under the 50 ms bound for up to seven agents with
the eights just slightly above, using a prediction horizon of N = 30. An interesting result is that
the OpEn based solver showed a linear relationship between computation times and number
of agents, while a more standard SQP-based solver fmincon in another work showed an ex-
ponentially increasing solver time in a similar centralized scheme [94]. In terms of constraint
violations, which are divided into the agent-agent distances and agent-obstacle distances, the
scheme shows consistent results up to around seven agents where the violations start to in-
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crease significantly, perhaps denoting the limit of OpEn in terms of the size of the optimization
problem. As a note, for nine agents there would be 810 decision variables (3×N×Na), and
1080 agent-agent safety distance constraints (36×N) as we must form such constraints along
the horizon.

A second scenario where four agents are commanded to simultaneously move through a
center point such that all agents must avoid each other precisely, is visualized in Figure 2.26.
The figure also shows the resulting computation time which peaks right at the start when the
initial trajectories must be orchestrated and then rapidly drops off. We are using the previous
solution uuuk−1 to hot-start the solver which greatly speeds up the convergence after the initial
orchestration. The desired 0.4 m safety distances are very exactly maintained with very minor
constraint violations due to the added simulation noise, and the figure shows how at the critical
point in the simulation all agent almost perfectly align with the other agents at the desired 0.4 m
safety distance.

Figure 2.26: Simulation scenario with four agents all commanded to move through the center (left), and
the resulting computation times and agent-agent safety distances for all agent pairs.

The centralized scheme was also evaluated in laboratory hardware experiments. Figure
2.27 shows the experiment architecture where the Vicon MoCap system provides the position
and quaternion information for all agents, which trough a median filter for the velocities and
proper coordinate transforms provides the state vector x̂. The related references for all agents
are here given by an operator, but could be given by any higher level mission module that
coordinates the agents for inspection or other missions. Computation happens on a central
laptop, and each agents receives its control signals through a Bluetooth transmitter, using the
CrazyflieROS [95] client, based on the Robot Operating System (ROS) [96].

A series of experiments using the CNMPC can be found at: https://www.youtube.
com/watch?v=dJRe_ETvxx0, where four agents fly in formation and periodically swap
position with each other resulting in a stressful collision avoidance scenario. The framework
demonstrated very efficient and consistent avoidance while delivering smooth control behavior.
We increased the safety distance to 0.6 m in the experiments, and the agent-agent distances are
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Figure 2.27: Centralized set-up for experiments with four Crazyflie Nano Quadcopters.

shown in Figure 2.28 where we can see how during the most critical moments all agent-agent
distances almost perfectly maintain the desired 0.6 m distance, with a maximum violation of
the safety distance of 5 cm.

Figure 2.28: Agent-agent safety distances for all agent pairs during hardware experiment for centralized
collision avoidance using four MAVs.

2.8.2 Distributed Collision Avoidance
The final NMPC use-case included in this research thesis is a distributed formulation of agent-
agent collision avoidance. The underlying formulation from the NMPC side is close to identical
to the dynamic obstacle avoidance NMPC discussed in Section 2.7 for the so-called ego agent
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of interest, but instead of a obstacle prediction model the agents in the system share their
predicted trajectories with each other in real time providing detailed information about where
each agent plans to move in the future.

One of the central questions and contributions of this section is trying to solve the problem
of scalability for a NMPC-based avoidance scheme. A common limitation of existing MPC
approaches is that since the number of constraints (or potential-like terms) of the underlying
optimization problem must remain constant during runtime, there can be situations where there
are too many agents in proximity to the ego vehicle. Moreover, selecting the closest neighbors
(as in [66]) may disregard those — potentially more remote — agents that are on a direct
collision course with the ego agent. Assuming a system composed of Na agents, ideally each
agent should be able to form obstacle constraints with all other agents, such that the number of
obstacles Nobs = Na−1. Due to limitation in computation power and the speed of optimization
algorithms, this is not always possible for high numbers of agents. Instead, we need to choose
Nobs < Na−1 necessitating some kind of obstacle prioritization where the ego agent takes into
account a limited number of Nobs other agents. Assuming access to the predicted trajectories,
uuuobs,i

k−1 and measured states x̂obs,i
k of nearby agents, we want the prioritization scheme to be fully

based on the motion intentions of each agent. For this purpose we propose Algorithm 1 as the
obstacle prioritization scheme, which can be described as follows:

• Using the NMPC prediction model we can describe any xk−1+ j|k−1 from uuuk−1 and x̂k,
and similarly using the shared NMPC solutions uuuobs,i

k−1 and x̂obs,i
k to describe xobs,i

k−1+ j|k−1
for i = 1 . . .Na−1 denoting which agent is considered.

• Calculate the predicted Euclidean distances between the ego agent and all other agents
at the current and future time instants j = 0, . . . ,N

• An agent is prioritized if the distance is below a threshold specified by robs,i +din where
din represent the extra radius of influence of the prioritization scheme. This is done via
the following weighted sum as a gauge for the prioritization

wi =
N

∑
j=0

α(di, j,v
obs,i
k−1+ j|k−1)β ( j),

where di, j denotes the distance to the i-th agent at time instant j. Let α(di, j, vobs,i
k−1+ j|k−1)

and β ( j) be decreasing functions in di, j and j respectively, and as such the scheme
prioritizes agents that are at a closer predicted distance, and at fewer predicted time steps
into the future.

• We also add an extra safety protocol by adding a large number K to wi if the agents are
closer than the obstacle radius robs,i at the current measured positions ( j = 0) to always
prioritize agents that directly violate the obstacle constraint at the current time instant.

• Obstacle trajectories (ξ obs,i
j )i, j (the obstacle trajectory parameters used as an input to the

NMPC along the horizon) are then sorted by the corresponding values in www in descending
order, to prioritize the Nobs trajectories that produced the largest sums wi.
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For the weight functions we propose simple expressions with the desired functionality, and
in this article we are using α(d,v) = (1− d

robs+din
)2∥v∥ (velocity compensation since faster

moving obstacles spend fewer time instants in robs,i + din) and β ( j) = N
( j+1)a with a being a

tuning constant to describe the relative emphasis on closer versus more distant time instants.

Algorithm 1: Obstacle Prioritization

Inputs: x̂k,uuuk−1, x̂
obs,i
k ,uuuobs,i

k−1 ,Na,Nobs,rrrobs,din
Result: From the shared trajectories and measured states decide which Nobs agents

should be considered as obstacles
for i = 1,Na−1 do

for j = 0,N do
Compute pk−1+ j|k−1, pobs,i

k−1+ j|k−1 and vobs,i
k−1+ j|k−1

d←∥pk−1+ j|k−1− pobs,i
k−1+ j|k−1∥

vm←∥vobs,i
k−1+ j|k−1∥

if (d ≤ robs,i) and ( j = 0) then
wi← wi +K

else if d ≤ robs,i +din then
wi← wi +(1− d

robs+din
)2vm

N
( j+1)a

Sort in descending order: (ξ obs,i
j )i, j by corresponding element in wi

(ξ obs,i
prio, j)i, j← [(ξ obs,1

j ) j,(ξ
obs,2
j ) j, . . . ,(ξ

obs,Nobs
j ) j]

Output: (ξ obs,i
prio, j)i, j

Thus in the optimization problem, only the prioritized obstacle trajectories described by
ξ obs

prio are included in the optimization problem as collision avoidance constraints for dynamic
obstacles. In the following evaluations, we are using a low number of obstacle constraints
Nobs = 3 while using up to ten agents Na = 10 to validate the proposed prioritization scheme
for dense robotic swarms, while keeping the computational complexity low.

In this work we also used a different and novel way to solve for the collision avoidance con-
straints implemented in OpEn, namely an outer Augmented Lagrangian Method (ALM) [25]
that still uses PANOC to solve the inner problem. As the method is not a contribution of the
author of this thesis, but of a co-author to the published paper [97], this section will not in-
clude a detailed description. Instead the reader is directed to the OpEn [25, 98] and the related
work [97] for details. Fundamentally, we need to slightly re-define the spherical safety distance
constraint to fit into the ALM as:

Csphere(p,ξ obs) = (robs)2− (px−pobs
x )2− (py−pobs

y )2− (pz−pobs
z )2 ≤ 0, (2.27)

with ξ obs = [pobs,robs]. The obstacle avoidance requirement is equivalent to Csphere ≤ 0, that

45



ego agent position p is required to lie completely outside of the sphere defined by ξ obs. And
the resulting optimization problem P sovled by OpEn as:

P(xk|k) : Minimize
uuuk∈Z

f (uuuk;xk|k) (2.28a)

subject to:G(uuuk;xk|k)≤ 0, (2.28b)

where f ( · ;xk|k) : IR3N → IR is a continuously differentiable function with Lipschitz gradient
defined by the cost function and G( · ;xk|k) : IR3N → IRNNobs is a differentiable mapping with
Lipschitz-continuous Jacobian, that represents the collision avoidance constraints. Still fol-
lowing the sequential or single-shooting approach as before where the state sequence is elim-
inated. Another minor addition is to add a terminal state cost to the cost function in (2.3) as
∥xref− xk+N|k∥2

Qt
, which adds an extra cost to the state penalty but only at j = N.

The final addition to the general NMPC problem is an adaptive weights scheme for the
cost matrix Qx. Let us first of all define the vector of Lagrange multipliers as yyyk, described in
detail in [97]. On a general level, the multipliers correspond to the penalty parameter q previ-
ously discussed and visualized in Figure 2.5. The Lagrange multipliers can be thought of in a
similar way, where the optimal Lagrange multipliers, yyy⋆k (the multiplier once the optimizer has
converged), can be thought as indicators of how much the optimal trajectories need to ”bend”
to avoid the obstacles. The idea is to use yyy⋆k to update the reference tracking weights in real
time so that obstacle avoidance is prioritized over set point tracking for a smoother maneuver
that does not as aggressively try to reach the set-point reference during the avoidance. Let Qp
define the first three diagonal elements of positive-definite weight matrix Qx. We introduce a
scaling factor that adapts Qp from Qp,min to Qp,max based on Lagrange multiplier yyy⋆k as follows:

Qp = Qp,min +
Qp,max−Qp,min

∑
NobsN
l=0 Wly∗k,l +1

(2.29)

where Wl is some weight that is decreasing with respect to elements in y∗k,l (l just denoting the
length-index of the multiplier) that represents constraints at more distant future time instants,
which in our formulation results in Wl = b(1− l mod N

N ) where b is a tuning constant. This
heuristic seems to work well in practise. All elements in Qp are scaled by the same factor, but
it is enough for reducing the general emphasis on reference tracking. Note that the terminal
state penalty still promotes the UAV to be as close to its end goal as possible but only at j = N.

The distributed scheme is evaluated in laboratory experiments. As should now be stan-
dard for the reader, the best way to view the results is through the experiment video at:
https://www.youtube.com/watch?v=3kyiL6MZaag. Three scenarios are included
1) formation flight of nine agents that move one-by-one shown in Figure 2.29, 2) a scenario
with ten agents that all move at once creating a very stressful avoidance scenario shown in
Figure 2.30, and 3) a scenario where a non-cooperative velocity obstacle in included into the
scheme (and its velocity obstacle trajectory is included in the prioritization algorithm) using the
concepts from Section 2.7, where eight agents must avoid the non-cooperative obstacle while
also maintaining a safe distance to each other. The usual and most crucial parameter for evalu-
ations, the minimum agent-agent safety distances for all experiments, is shown in Figure 2.32.
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For the first two experiments, the 0.4 m desired safety distance is maintained with a maximum
constraint violation of 3 cm, while for the non-cooperative obstacle scenario, that necessarily
will have lower performance due to the trajectory information not being as accurate (velocity
obstacle vs. shared trajectories) for the non-cooperative obstacle, there was a violation of 7 cm.
This was still not enough to cause a collision among the agents, which in Figure 2.32 is denoted
as the safety-critical distance. In general, the obstacle prioritization scheme always correctly
assigns the prioritized obstacles to be the agents on the most dangerous collision course with
the ego agent despite the high number of agents and low number of constraints, demonstrat-
ing the scalability of the scheme. The distributed formulation demonstrated high-performance
collision avoidance in dense aerial swarms, always generating consistent maneuvering without
agents getting stuck or moving back-and-forth.

Figure 2.29: Experiment where agents move one-by-one while maintaining a formation.

As a final demonstration, the distributed NMPC was also deployed as part of a full mis-
sion scenario, on ground robot platforms. Here the higher level mission is related to reactive
real-time task assignment [91] for multi-agent systems, and the distributed NMPC acts as an
enabler for the experimental evaluation as a local agent-agent safety layer (while also acting
as the regular set-point tracking controller when no collisions are imminent). The exact same
NMPC problem is solved but for a very simple kinematic model of a ground robot. Ground
robots commonly accept high-level actuation commands as u = [uv,uω ], where uv is a for-
ward/backward velocity command and uω is an angular velocity command. As such, we can
use a simple nonlinear kinematic model of the robot as:

ṗx(t) = cosψ(t)uv(t)

ṗy(t) = sinψ(t)uv(t)

ψ̇(t) = uω(t) (2.30)

with p denoting the global-frame position coordinate and ψ denoting the heading angle state
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Figure 2.30: Two teams of five agents swap positions - stressing the prioritization scheme.

Figure 2.31: Introduction of a non-cooperative agent - now agents must avoid it and other agents in the
collaborative system.

e.g. the robot states are x = [px, py,ψ]. We note that the robot velocity actuation uv is in
its body-frame. The task assignment framework is not part of this thesis, but the follow-
ing video link: https://www.youtube.com/watch?v=ZdEkoOOlB2g&feature=
youtu.be demonstrates a real use-case where the distributed NMPC is the perfect fit for
reactive collision avoidance in tight spaces for multi-agent systems. The experiment set-up
scenario of task assignment in a maze-like laboratory environment is shown in Figure 2.33
with four ground robot agents that are tasked with ”pick up and deliver” tasks that are ran-
domly generated in the maze. Figure 2.34 also shows how the desired safety distances are
maintain through the experiment run, showing the minimum agent-agent distances at all times
during the mission.
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Figure 2.32: Safety distances for the three performed experiments, showing the momentary smallest
agent-agent distance throughout the experiments.

Figure 2.33: Mission set-up for task assignment: four ground robots are assigned ”pick and place tasks”
(red/blue boxes as available tasks and drop-off locations) at random points in the maze. While following
their planned paths (colored lines) the distributed NMPC scheme is used to avoid agent-agent collisions
during the high-level mission execution.

2.9 Concluding Remarks

This chapter has conclusively demonstrated through a variety of use-cases that a constrained
NMPC, where set-exclusion constraints represent obstacles in the environment, can deliver
high performance collision avoidance, control, and local predictive path planning for aerial,
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Figure 2.34: Minimum agent-agent safety distances for ground robots during the task assignment mis-
sion.

legged, and ground robots. Importantly, the chapter has also addressed the seamless integra-
tion of the NMPC framework with fully autonomous robotic systems where obstacle informa-
tion is provided by onboard perception systems. The perception-actuation link was demon-
strated for both static obstacles detected by 2D LiDAR, and dynamic moving obstacles in the
human-robot safety context with an RGB-D camera. The NMPC, based on the Optimization
Engine, also showed very promising results for multi-agent system safety, showing scalability
and applicability to dense robotic swarms. All these results are validated with real hardware
experiments with a focus on the NMPCs capability to maintain safety guarantees, not only in
theory but also in practise, through maintaining specified safe distances to obstacles and other
agents in the local environment. Although promising, a fundamental challenge for the use of
this type of framework for field deployment in real mission scenarios, is the reliance on good
obstacle information from the environment. Further research needs to be made on detection
and integration of 3D obstacles that can represent the surrounding environment geometry, or
linking the very general and commonly used occupancy map [99] to the obstacle avoidance
constraints, which would allow the NMPC framework to be deployed as a local path planner
in any environment. This main limitation segways well into Chapter 3, that focuses on fully
reactive obstacle avoidance and navigation behavior without the need for a dedicated percep-
tion layer through an Artificial Potential Field (APF)-like formulation, which despite perhaps
having lower performance than the works in this chapter, enables safe deployment in real field
conditions.
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CHAPTER 3

Navigation based on Fully Reactive
Artificial Potential Fields

3.1 Overview

This chapter will present the development and use-cases of a reactive artificial potential field
(APF) for collision avoidance and integrated navigation behaviors. The main attraction of this
framework, as opposed to the NMPC discussed in the previous chapter and to most other navi-
gation methods in the literature, is that it is formulated to operate directly on the raw sensor data
(3D LiDAR) therefore removing the perception layer completely from the navigation problem.
Doing so removes the largest error factor and the largest challenge when it comes to robot
navigation; unreliable or momentarily failing perception whether that is occupancy mapping,
object detection, or a momentarily poor scene recognition or unfamiliarity in a learning-based
framework, that might then lead to the robot colliding with its environment. Especially in UAV
missions, where one single interaction with the environment will lead to a crash and an end of
the mission, the method described in this chapter proved highly effective as a fail-safe collision
avoidance layer. The framework can be paired with any higher level module for inspection, ex-
ploration or other missions, and became an enabler for research into other navigation methods
in real-world experimentation, as it could ensure that there would be no collisions with the en-
vironment during testing allowing faster prototyping. This was the approach taken in the later
Chapters 4 and 5 where the framework described in this chapter was used as the local autonomy
and navigation stack. In addition to avoiding collisions with the environment, this chapter will
also investigate using this kind of fully reactive APF to manage multi-agent and mixed traf-
fic (human-robot) scenarios, as well as integrating both reactive exploration of subterranean
tunnels and infrastructure inspection behavior into the ”perception-free” navigation. This en-
ables the robot to execute relatively complex behaviors using one simple algorithm that does
not rely on assisting perception modules (occupancy mapping etc.). Additionally, due to the
fast nonlinear dynamics of UAV (rotor) flight, those systems are also particularly susceptible
to oscillating or twitching flight behavior while performing, for example, obstacle avoidance
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maneuvers. As such, the developed reactive APF and controller framework was developed to
facilitate smooth and stable flight behavior during maneuvering close to walls and obstacles,
while also keeping computation times low which is a must for a fail-safe collision avoidance
layer.

3.2 Introduction
For any remote operation or fully autonomous robotic mission, one of the most critical com-
ponents has to be the ability for the robot to use onboard sensor data to avoid collisions with
the environment and to execute mission-completing navigation behavior, and as such obstacle
avoidance algorithms, reactive or local path planning, and any perception-based actuation have
been studied extensively [100]. There exist a wide range of solutions to the general robot safety
problem while some of the legacy approaches include the Dynamic Window approach [101]
and the classic Artificial Potential Fields [34], which is still the basis for continued research to-
day [102,103], and of course also the basis for the method described in this chapter. In the last
years though, the research is gravitating more towards modern state-of-the-art methods such
as barrier functions [104], MPC [105] or deep-learning [106]. In this context, it might be the
case that these methods, including the NMPC discussed in Chapter 2, theoretically outperform
the legacy methods such as the classic Artificial Potential Fields. But, a more complex method
can also require more or better perception information, and in harsh field environments where
robustness and resilience to degraded perception information is critical, simplicity can often be
undervalued.

For real robot deployment where one can not ”hack” the perception by Motion-Capture
systems or similar, one of the main underlying problems in safe robot navigation is linking
smart obstacle avoidance algorithms with onboard perception information, as for example: vi-
sual [107], LiDAR [108], learning methods using camera information [109], or novel fast local
map-based planning [110]. Many modern solutions perform exceptionally well, but for many
of them the question remains on how to reliably extract the necessary environment information
from the raw sensor data in order to make those methods work optimally, and what happens if
that extraction process (bounding box detection, obstacle classification, occupancy mapping)
momentarily fails in a critical moment. Similarly, the multi-agent safety algorithms both cen-
tralized [111] and distributed [97] presented in the previous chapter require a constant line of
communication between agents in the system and knowledge of their relative pose. Just as
momentarily poor object detection can cause an environment interaction, a momentary drop in
communication (pose and trajectory sharing) could cause a collision among agents.

In the same direction, almost all algorithms for robot exploration (navigating through un-
known territory) are based on occupancy maps of the environment where popular 3D version
are the OctoMap [99] and VoxBlox [112] frameworks. Robot exploration will be discussed in
more detail in Chapter 4, but in short the most commonly used methods are the frontier explo-
ration [113] and various sampling-based solutions [114]. These methods rely on classifying
areas in the map as high in information gain (unknown territory) and planning safe paths based
on a procedurally generated occupancy map of the area to the best such location (based on
some predefined heuristic). In this chapter we will present a different approach to robot explo-
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ration in subterranean environments, similar to the approaches described in [115] (which were
the main motivators for extending the APF to exploration behavior), that does not use a map of
the environment but instead generates continuous forward waypoints while the robot heading
is aligned to the open areas. In this chapter that behavior is achieved by generating repulsive
forces on the heading state from LiDAR hits in front of the robot. Especially in subterranean
tunnel areas this method proved highly effective (but less general than the frontier- or sampling
methods) while again doing so only based on the raw LiDAR pointcloud.

Finally, inspection of infrastructure is one of the main applications of autonomous robots.
Here the challenge is generating safe inspection trajectories around the structure. Doing so in
an offline approach assuming previous knowledge of the structure is very common, and has
seen use in field applications [116] of inspection of wind turbines. But this is not always pos-
sible, and inspection of unknown and geometrically fractured objects (e.g. not simple smooth
surfaces) can be very challenging. This can be achieved in a similar manner to exploration of
unknown areas, for example by generating frontiers with the goal of complete 3D coverage of
the structure [117, 118]. Other novel more reactive methods utilize the generation of safe vi-
sual viewpoint poses to follow a surface [119], which is more in line with the desired behavior
presented in this chapter. Here we will utilize a rotational potential field to generate smooth
and continuous safe waypoints that can inspect a fractured uneven structure.

3.3 Contributions
Towards providing fully reactive solutions to the above described scenarios, the contributions
of the work described in this chapters are:

• A generalized artificial potential field formulation that can work directly with raw point-
cloud data. This decouples the problem of robot safety from the reliance on any map,
object detection, or similar software. We also apply a series of practical additions to
the generated forces to further enforce smooth and stable navigation without introducing
oscillations (or similar) to the UAV flight behavior.

• We introduce an adaptive weight scheme that adapts the flight behavior based on the
generated repulsive forces, as the UAV should, in general, move more carefully when in
the presence of obstacles, humans, or other robotic agents. We also include an adaptive
safety radius that scales the radius of influence based on the velocity of the UAV. This
both allows the UAV to safely move with large velocities by increasing the radius of
influence, and at the same time helps the UAV to fit in-between obstacles without getting
stuck.

• The general APF solution is developed towards a series of use-cases. 1) Using the reac-
tive APF as an inner fail-safe collision avoidance layer, 2) demonstrating the use of the
fully reactive APF in human-robot scenarios and multi-robot scenarios, 3) An extension
of the general APF solution for reactive exploration of tunnel areas, 4) An extension
using a rotational APF for following surfaces to inspect infrastructure.
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• Finally, we evaluate the scheme in a variety of laboratory experiments and field trials
in order to demonstrate how this APF formulation can provide fail-safe navigation in
critical obstacle avoidance situations as an inner reactive safety layer for any higher-
level mission scenario, and towards mixed-traffic, exploration, and inspection missions.
To enable field deployment this chapter will also discuss a complete platform-sensor-
autonomy kit that will the the baseline both in this chapter and in following chapters for
field deployment.

3.4 Fully Reactive Collision Avoidance

3.4.1 Force Field Formulation
This work will focus on a similar force/potential formulation as in the fundamental works on
Artificial Potential Fields [34, 120], with the difference of not considering an obstacle as a
single point or surface, and instead considers that each point detected within a specified radius
of influence rF should generate a weak repulsive force, and then summing all such forces to
get the total. Assuming a pointcloud input, in this paper from a 3D LiDAR, as {PPP} consisting
of points relative to the LiDAR frame as ρ = [ρx,ρy,ρz]

T . The subset of such points inside
rF is ρρρF ∈ {PPP} where || ρ i

F ||≤ rF and i = 0,1, . . . ,NρF are the points that we want to use to
generate a repulsive force. The fundamental idea is to generate repulsive forces in the opposite
direction to the detected point inside rF , and we can denote this as the linear component to
the APF, always pushing the UAV away from obstacles/walls/etc. The expression for the linear
repulsive force is:

Fr,lin =

NρF

∑
i=1

Lr(1− || ρ
i
F ||

rF
)2 −ρ i

F
|| ρ i

F ||
, (3.1)

with Fr,lin = [Fr,lin
x ,Fr,lin

y ,Fr,lin
z ]T denoting the linear repulsive force and Lr = diag(Lr

x,L
r
y,L

r
z)

denoting a diagonal matrix of repulsive gains (someone experienced in APFs will see that this
term represents a collection of model-based terms that can be included in the problem, that are
not of interest here). From (3.1) it is also clear that values in Lr represents the maximum force-
per-point and that the repulsive force increases as the relative distance between the detected
point and the LiDAR decreases, while it is zero at the boundary of || ρ i

F ||= rF ensuring a
smooth transition into the radius of influence.

Next, we add an inner set of points defined by critical safety radius rc, such that ρρρc ∈ {PPP}
where || ρ i

c ||≤ rc and i = 0,1, . . . ,Nρc . The idea is to impose a large static force to any point,
again in the opposite direction, within the critical radius imposing a direct boundary on safety
distances. The sum of such static forces are defined as Fr,c, e.g. the critical repulsive force, as:

Fr,c =
Nρc

∑
i=1

Lc −ρ i
c

|| ρ i
c ||

, (3.2)

with diagonal matrix Lc as the critical static force-per-point inside rc. Clearly, Fr,c is an ab-
solute necessity for guaranteeing safety from smaller obstacles whose linear force response
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would not be sufficiently large to result in a proper avoidance maneuver (ex. hanging wires or
thin metal beams). Similarly, enforcing an inner safety radius is critical in interactions with
other robots or humans.

Only using linear components to the APF works very well for maintaining safe distances
to obstacles, but only being pushed away and not around obstacles decreases the ability for the
APF to on its own avoid and move past encountered obstacles. The idea is to add only a weak
rotational component in the xy-directions to help the UAV better move around obstacles, with
the magnitude being a fraction of the linear force in the other direction (x-y), and the sign of the
rotational force is determined by the sign of the linear force in the same direction. The result
is:

Fr,rot
x = Lrot sgn(Fr,lin

x )∥Fr,lin
y ∥, (3.3a)

Fr,rot
y = Lrot sgn(Fr,lin

y )∥Fr,lin
x ∥, (3.3b)

Fr,rot
z = 0. (3.3c)

One should mention that if the scenario only calls for the APF to act as a safety layer and
map-based path planning takes care of moving through the constrained environment, Lrot can
be set to zero.

To get the resulting repulsive force Fr from all these components, they are summed as:

Fr = Fr,lin +Fr,c +Fr,rot . (3.4)

Assuming the goal is to reach the next way-point wp= [wpx,wpy,wpz]
T , generated by some

higher level navigation module, we define the attractive force Fa = [Fa
x ,F

a
y ,F

a
z ]

T such that Fa =

wpB− p̂B, with wpB and p̂B denoting a yaw-compensated coordinate frame measurement of
the robot position p̂ and the next way-point goal wp. From an intuitive point of view this can
be seen as the attractive force Fa being the vector from the current position to the next given
way-point with an unitary gain, while the repulsive force Fr is the shift in the next way-point
required to avoid obstacles.

In order to promote smooth flight behavior and to make the scheme more resilient to state-
estimation jumps or incorrect way-point inputs we propose Algorithm 1 that places saturation
limits on the repulsive force, rate of change on the repulsive force, and normalizes the resulting
attractive force and summed total force F = Fa +Fr. This also means that the APF will work
just fine for maintaining a safe distance to obstacles even if wp is given very far away, inside
an impassable wall, etc. further promoting the fail-safe aspect of the APF.
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Algorithm 2: Force calculation
Inputs: Fa,Fr

k ,F
r
k−1

if || Fr
k ||> Fmax then

Fr
k ← sgn(Fr

k )Fmax
if || Fk−Fk−1 ||> ∆Fmax then

Fr
k ← Fr

k−1 + sgn(Fk−Fk−1)∆Fmax

if || Fa ||> 1 then
Fa← Fa

||Fa||
F ← Fr

k +Fa

if || F ||> 1 then
F ← F

||F ||
Output: F
A problem discovered in [121] with this type of APF (where it was used as a comparison

method) is the difficulty in moving in-between obstacles. APFs generally work better if the
radius of influence can be chosen relatively large so that the avoidance maneuver can start in
time to avoid the obstacle, without the need to impose large repulsive gains. The problem is
that choosing rF large means that the UAV will never be able to pass in-beween obstacles or
through narrow corridors, tunnels, etc. Towards solving this problem we propose an adaptive
radius of influence rF , and critical safety radius rc based on the estimated velocity v̂ of the
UAV. Equation (3.5) shows the proposed adaptive radii.

rF = rF0 + c1 log(|| v ||+1) (3.5a)

rc = rc0 + c2 log(|| v ||+1) (3.5b)

rF0 and rc0 denote the smallest but still safe radii of influence (based on the size of the UAV and
selection of repulsive gains), and as the velocity increases, the radii increase by the logarithm
of the magnitude of the velocity as well as tuning parameters c1,c2.

3.4.2 APF-Controller Pairing
The artificial potential field framework is paired with a NMPC full-state controller fundamen-
tally with the exact same formulation as in the previous Chapter 2, but without any of the
collision avoidance constraints. As such, it will not be described in detail in this chapter as
well, and in the following text we will use the same notation as in the previous chapter to de-
scribe aspects of the cost function/states etc. The only contribution to the controller pairing is a
method for adapting the weights in the cost function to achieve smoother and more careful ma-
neuvering around obstacles e.g. we want the control behavior to be slower when the repulsive
forces are higher.

In general, the desired flight behavior when flying in open areas should be to move as
quickly as possible, or at a specified desired velocity. But, when in the presence of obstacles,
the UAV should slow down and move much more carefully as to avoid ”bouncing”, or back-
and-forth behavior when in an obstacle-dense area. First, let us denote the state weight matrix
as Qx = diag(Qp,x,Qp,y,Qp,z,Qv,x,Qv,y,Qv,z,Qθ ,Qφ ), or specifically elements related to the
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position error as Qp and the velocity error as Qv. The idea is to adapt Qp and Qv based on
the magnitude of the repulsive force between a minimum and maximum value. This can be
seen as a ”switching” controller but with a grey area between the two modes of obstacle-free
or obstacle-rich areas. The selected expression for adapting Qp and Qv can be found in (3.6).

Qp = Qp,min +
Qp,max−Qp,min

1+ c3 || Fr ||
, (3.6a)

Qv = Qv,max−
Qv,max−Qv,min

1+ c4 || Fr ||
, (3.6b)

With only these terms, the system could become too slow in performing critical maneuvers
when in the presence of obstacles. As such we added a similar term, shown in (3.7), to adapt
the input change weight matrix Q∆u, resulting in faster optimal change of direction, but still
maintaining low velocity and careful movements. For all of these expressions c3,c4,c5 are
simply tuning constants in order to match the adaptiveness to the desired flight behavior change.

Q∆u = Q∆u,min +
Q∆u,max−Q∆u,min

1+ c5 || Fr ||
. (3.7)

The more careful movement in the proximity of obstacles, combined with the adaptive
radius of influence, greats assist the UAV in being able to smoothly navigate through narrow
areas such as tunnels, openings, or in-between encountered obstacles.

3.4.3 Local Autonomy Kit

As the point of the developed framework is its real-world utilization of reactive navigation, we
want to use a platform that can fulfill the onboard requirements for full autonomy, both in terms
of the sensor payload and onboard computation power. The utilized UAV is a custom built
quadrotor designed and built at Luleå University of Technology for full autonomous mission
execution can be found in Figure 3.1, together with the complete hardware-software architec-
ture used for fully autonomous experiments. The UAV has a maximal size radius of around
0.4m. The UAV is equipped with a 3D LiDAR (Velodyne Puck Lite VLP16 or Ouster OS1-32)
and a baseline Intertial Measurement Unit (IMU). Onboard computation is done via an Intel
NUC - NUC10i5FNKPA. For state-estimation (SLAM) in GPS-denied environments we are
using the tightly-coupled LiDAR-inertial odometry LIO-SAM [26] from which the framework
utilizes the state vector [px, py, pz,vx,vy,vz,ψ], while roll and pitch angles [φ ,θ ] are provided
by the onboard IMU. A downward-facing single-beam LiDAR measures the clearance R be-
low the UAV. After the proposed local APF-NMPC reactive framework, low-level commands
are fed to a Pixhawk Flight Control Unit (FCU) that generates motor commands for the UAV.
The utilized implementation of the APF is in Python and ROS [96]. The denoted waypoint
wp could come from any higher level module for exploration, path planning or inspection but
in the following experiments it is simply provided by an operator giving the robot a specific
waypoint goal to reach (with obstacles in the way).
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Figure 3.1: 3D-LiDAR equipped UAV, and the complete LiDAR SLAM and local navigation architec-
ture used during experiments.

3.4.4 Results

This section will detail the evaluation of the reactive APF for collision avoidance and safety.
All experiments are performed in fully autonomous mode with computation, sensing, state es-
timation etc. running onboard the robot. First, we test in a laboratory setting with the goal
of displaying and visualizing how each component introduced and added to the APF assists in
allowing smooth and efficient avoidance maneuvers. The task is moving past a simple obstacle
where the UAV is given a position reference waypoint on the other side of the obstacle. The
experiment was repeated three times: 1) using only linear components e.g. the classic APF
(Figure 3.2A), 2) with added force normalization, saturation, and rotational component (Fig-
ure 3.2B), 3) with adaptive weights and adaptive radii (Figure 3.2C). One can easily see the
progression from the classic APF where we get a sudden jump and twitch, to the smoother
and more rotational maneuver of the enhanced version. Adding the adaptive radii and adaptive
weights in the third run allows for a faster maneuver where the UAV can still break early, but
then move closer to the obstacle, as well as significantly speed up after the obstacle has been
passed.

Additionally, to showcase how the adaptive radii assists in moving in-between obstacles
Figure 3.3 shows an example experiment where the UAV is commanded to move through an
opening of 1.2m between two obstacles, first without (A) and then with the adaptive radii
(B). In the first run, the radius is selected as low as possible while still capable of maintaining
reasonable avoidance behavior (rF0 = 1.1m, rc0 = 0.7m), while in the second run we could
reduce rF0 to be as low as 0.8m and rc0 to as low as 0.55m, allowing the UAV to pass through
the 1.2m opening while still avoiding collisions.

We also evaluate the APF in the field, in this case in a subterranean tunnel environment,
that will be discussed to a greater extent in Chapter 5. In short, flying UAVs in subterranean
areas has gained an interest both in the context of search-and-rescue due to the DARPA Sub-
terranean Challenge [122, 123] but also for a variety of application in the mining sector [36].
Subterranean environments can be difficult to navigate due to narrow areas, and the constant
proximity to walls and obstacles. The following tests are performed in realistic GPS-denied
tunnel environment below Mjölkuddsberget, Luleå, Sweden.

These trials investigate two things: 1) a general obstacle course scenario in a real appli-
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Figure 3.2: Improvements in avoidance paths around a simple obstacle for a) legacy APF, b) rotational
and normalized, c) adaptive weights and radii.

Figure 3.3: Moving through a narrow entrance (ca. 20cm clearance) first without (left) and then with
(right) adaptive radii. Safety distances are selected to the minimal safe radius of influence to avoid
collision in both cases.

cation environment and its associated challenges, and 2) the ability to withstand failure and
incorrect waypoint generation from higher level modules exemplified by an experiment where
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we give random waypoints very close to or inside the walls in a narrow subterranean tunnel
area. These experiment runs can be seen in Figure 3.4, where the minimum measured dis-
tance from the environment was 0.88m. For the obstacle course, the adaptive APF provided
safe and effective navigation when given a single goal waypoint on the other side of the obsta-
cles. In the random waypoint experiment, the UAV was given sampled xyz-position and yaw
waypoints in a box of size 6× 6× 2m every 10 seconds for 70 seconds while tuned to move
quickly/aggressively, in a 3.5m wide subterranean tunnel area (as to generate waypoints inside
or too close to the walls). The combination of force rate saturation and adaptive weights keeps
the UAV stable despite the impossible-to-reach waypoint command. This is an underrated
evaluation scenario in the literature, and in the field context when other modules are added on
top of the APF to execute complex missions, as it is also the most likely scenario where the
reactive avoidance layer has to save the robot from a crash.

Figure 3.4: Field evaluations in a subterranean environment of APF-based reactive avoidance. Through
an obstacle-filled tunnel (left), and in a scenario where random waypoints are generated in the tunnel
too close or inside the walls (right) and a safe distance must be maintained.

Finally, the reactive collision avoidance framework is evaluated in scenarios of mixed traffic
in two separate experiments: 1) a scenario for human-robot safety where a human ”worker” is
sharing the same operational space as the autonomous robot and is actively entering its local
space, and 2) a scenario with two fully autonomous UAVs that are tasked to swap positions
in a constrained laboratory environment. In general, the APF formulation is identical to the
previous experiments but due to safety concerns the radius of influence has been increased,
and in the multi-agent scenario the rotational gain Lrot was increased to facillitate a smoother
avoidance maneuver as the two agents approach each other. It should again be noted that the
two agents share no data and are in two completely separated global frames of reference, and
the avoidance maneuver is generated solely from the 3D LiDAR repulsive forces as a result of
LiDAR hits on the other agent. These two experiments are relatively hard to visualize in still
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images as there are multiple moving parts, and as such the reader should place higher emphasis
on the real-time behavior shown in the following video links for 1) human-robot interactions
which can be viewed at https://www.youtube.com/watch?v=3ViSPCbW9Rg, and
2) for the scenario with two autonomous vehicles in the same operating space at https:
//www.youtube.com/watch?v=cY6ISNW4dcw. The experiment set-up can be seen in
Figure 3.5. In both scenarios the APF generates safe collision avoidance maneuvers for the
moving obstacles. We note that in the multi-agent scenario the two powerful UAVs are flying
very close to each other and to the ground which creates air disturbances on them both, which
can be seen as the slightly more unstable flight behavior in the video.

Figure 3.5: Mixed-traffic scenario evaluations. A human worker walks into the operating space of the
UAV and avoidance maneuvers are executed (left). Set-up for multi-agent experiment: two large-scale
3D LiDAR equipped UAVs are flying in close proximity and are tasked to swap positions in a confined
space (right).

In addition to the experiments discussed in this chapter, a large contribution to this fail-
safe avoidance layer is its use in a variety of other publications and works. The framework
can be seen as an enabler to more quickly go to the experiment stage for other navigation
methods as it can provide a fail-safe in case the other ”higher level” module or its assiciated
mapping/detection layer malfunctions, while also providing an efficient state-estimation and
controller framework that can be used for almost any mission. The local autonomy kit has been
used to enable path planning evaluations [124], frontier exploration of unknown areas [125–
127], subterranean search-and-rescue [128, 129], and inspection of infrastructure [130]. It is
also the core kit used in the upcoming Chapters 4 and 5.

3.5 Integrated Exploration & Inspection Behavior

This section will detail an extension of the collision avoidance methodology of using raw Li-
DAR data to generate repulsive forces into two other navigation behaviors namely reactive
exploration of subterranean tunnels and inspection of infrastructure, meaning the ability navi-
gate around the structure by following its surface. It should be highlighted right away that it is
not likely that these methods can outperform the state-of-the-art exploration or inspection plan-
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ners due to the simple reason that there is no higher level planning layer nor the use of a map
of the area. The point is to provide alternative efficient local navigation methods that are very
robust, simple, and only utilize the raw instantaneous sensor data to navigate. These could
then be paired with higher level modules of mission planning for a more complete mission
execution framework.

The integrated exploration behavior will utilize a ”carrot chasing” approach where the UAV
is provided continuous forward position references as an attractive force while the heading state
is aligned to move towards the open areas (in this case the tunnel direction). Combining that
with the previously discussed collision avoidance generates the motion primitive of ”explore
forwards towards the most open area while avoiding obstacles along the way”.

We can consider the attractive force on the position states as Fa,exp = [pB
x +La,exp, pB

y , pm
z −

pl
z], simply a giving body-frame forward attraction, with La

exp having an appropriate magnitude
to match the desired forward velocity. In this case La

exp = 1 for simplicity, since we still apply
the force normalization of Alg 2. pm

z denotes the desired mission height above the ground, and
pl

z denotes the local z-coordinate as the clearance height provided by the single-beam LiDAR
measurement R.

The real addition to the method comes from applying a repulsive force on the heading state
ψ from LiDAR hits in a conical shape in front of the LiDAR.

The subset of {PPP} of interest is ρρρψ ∈ {PPP} where arccos(
ρ i

ψ,x

||ρ i
ψ ||

) ≤ θco and || ρ i
ψ ||≤ dψ .

Here θco represents the cut-off angle for the width of the cone in front of the UAV, and dψ is
simply the maximum distance from the LiDAR we are interested in. Representing the number
of points that pass both conditions i = 0,1, . . . ,Nρψ

. Utilizing a very similar force field function
as before

Fr,ψ =

Nρψ

∑
i=1

Lψ(1−
|| ρ i

ψ ||
dψ

)2 sgn(−ρψ,y), (3.8)

with Lψ as the repulsive gain. The direction of the force is in the opposite direction of the sign
of the y-coordinate of ρ i

ψ e.g. the heading state is repulsed to ”look away” from obstacles or
walls in front of the robot.

There is no specific attraction force for the heading state, and as such the heading references
passed on to the controller becomes ψre f = ψ̂ +Fr,ψ .

Two examples are given in the Figure 3.6. The left image shows the UAV being repelled
in its position by the wall (red) while the heading regulation (white) aligns its heading state
with the tunnel direction. The red arrow denotes the pose reference (position and heading) sent
to the controller. The right image shows how the heading state is repulsed from the structures
ahead of the UAV towards the more open area.

The exploration-APF was evaluated in the same subterranean tunnel area as the experiments
in Figure 3.4. Here we provide no operator waypoint wp but instead let the forward attraction
and heading repulsion combined with the normal collision avoidance APF guide the UAV
through the tunnel. The resulting exploration path can be seen in Figure 3.7 where we explored
a curving tunnel that also included an area with obstacles along the walls and an open void-like
area. The resulting exploration path was around 140 meters. We performed another shorter
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Figure 3.6: Examples of combined avoidance plus heading regulation. The red pointcloud denotes
points ρρρF in the repulsive avoidance force, while the white points ρρρψ denote the points included in the
repulsive heading force.

run in a more narrow upward sloping tunnel, where the UAV also starts in a junction and has
to enter the narrower area. This can be seen in Figure 3.8. In both instances the complete
APF keeps the UAV safe in the middle of the tunnel and away from walls and obstacles while
the heading repulsion technique aligns it towards the more open areas. A video demonstrating
the real-time flight behavior can be found at https://www.youtube.com/watch?v=
c5knu3asy-c.

Figure 3.7: Exploration path and generated pointcloud map from APF-based exploratory navigation in a
subterranean tunnel environment (left). Snapshot images (right) from the mission showing an obstacle-
rich area, where the red arrow denotes the current pose reference (pre f ) and ψre f ) sent to the controller.

We can apply similar ideas to achieve a surface following behavior, or inspection behav-
ior. Assuming an unknown structure that we would like to inspect both through 3D LiDAR
reconstruction and visual inspection with a camera, we would like to formulate an attractive
force field that guides the robot around or along the structure while aligning its heading to-
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Figure 3.8: APF exploration into a more narrow and upward sloping tunnel. Exploration path (left) and
a snapshot from the onboard camera showing the UAV enter into the tunnel.

wards the structure. At the same time, the previously described avoidance repulsion maintains
a safe distance from the environment. Towards that, we first need to describe an attraction in
both position and heading states that pulls the robot towards the structure while aligning its
heading towards it as well. We apply the same conical shape for the subset of points: ρρρa ∈ {PPP}
where arccos(

ρ i
a,x
||ρ i

a||
) ≤ θco and || ρ i

a ||≤ da. Let Nρa again denote the number of points inside
that cone. The strategy will be to use a static attraction per point linearly towards the struc-
ture, whose magnitude does not increase or decrease in distance, to compete with the repulsion
from the collision avoidance, resulting in an equilibrium between them at the desired inspection
distance from the surface:

Fa,lin =
Nρa

∑
i=1

La ρ i
a

|| ρ i
a ||

(3.9)

The attractive gain-per-point La is selected based on Lr to achieve the desired inspection
distance from the structure under the assumption that once the robot is close to the structure
a majority of points in ρρρa will also be in ρρρr, and Fr,lin will increase as the robot gets closer
but Fa,lin will remain close to static. We could define an attractive heading force the same
way as the repulsive one defined in (3.8) but since the attractive inspection force Fa,in already
encodes the direction towards the structure as the mean direction to all points in ρρρa, a more
straightforward way is that the yaw reference sent to the controller should be ψre f = ψ̂ +

arctan Fa,in
y

Fa,in
x

. Finally, we deploy a similar ”carrot chaing” approach as for exploration behavior

to the rotational surface-following component as Fa,rot = [pB
x , pB

y +La,rot , pm
z − pl

z], and Fa =

Fa,lin +Fa,rot . We define again a set distance to the ground by pm
z for the inspection to be

executed at.
In total, the waypoint reference is a combination of attraction and repulsion towards the

surface resulting in an equilibrium distance, while the heading is aligned also to the surface (e.g.
the body X-axis is aligned to the surface). At the same time the robot is guided perpendicular
to the surface by Fa,rot .

The inspection-APF was evaluated in a laboratory environment, where the UAV was tasked
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to inspect a fractured structure with an uneven shape. As the APF has no concept of need-
ing a discrete surface type to follow or a map of the structure, this is a good example of
where this inspection navigation can shine as it is only using the raw LiDAR data to gener-
ate the desired behavior. As the inspection-APF is not designed to ”find” the structure first,
the mission is initialized with the UAV facing the structure. For a more complex mission,
obviously the APF would need to be paired with a higher level mission planner, as it is only
executing reactive navigation behavior. The resulting inspection trajectory around the struc-
ture can be found in Figure 3.9, where the robot maintains a safe distance from the structure
throughout the mission. The figure also shows the generated current reference pose (red ar-
rows) at two instances during the mission. The inspection trajectory is relatively smooth with
minimal unnecessary maneuvering despite the fractured shape of the structure and the con-
strained space the mission was executed in. The real-time flight behavior can be found at:
https://www.youtube.com/watch?v=13dW_zgrM4A.

Figure 3.9: APF-based inspection trajectory in a laboratory environment, showing the current UAV pose
(coordinate frame) and the current pose reference generated for inspection behavior (red arrow). The
right image shows the geometrically fractured and not-smooth object to be inspected.

3.6 Concluding Remarks

The chapter has introduced and evaluated a fully reactive APF, with the motivation to generate
robust navigation behavior in a series of scenarios while only relying on the direct sensor (3D
LiDAR) data to navigate. As such these behaviors are executed without the classical percep-
tion or mapping layer, which are often a source of unreliability and error when it comes to
autonomous navigation. Similarly, in safety-critical scenarios such as human-robot and multi-
agent operational situations, any moment of poor perception or communication loss could lead
to a crash or injury. As the APF is fully reactive it does not have the ability to on its own
execute more complex missions, but in the authors opinion the evaluations listed in this chap-
ter provide an argument for combining reactive local navigation with higher level directives
from a mission planner that can utilize a list of reactive behaviors to execute complex tasks, as
opposed to always relying on occupancy maps and/or global path planning.

The reactive APF was deployed for fail-safe collision avoidance maneuvers for both static
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obstacle and mixed-traffic, and extensions were made to demonstrate the exploration of sub-
terranean tunnels, and the inspection of structures. The APF framework was evaluated both
in a laboratory setting, and in realistic field environments, and it could generate efficient and
reliable navigation behaviors in all scenarios.

66



CHAPTER 4

Combined Exploration-Planning in
3D Environments

4.1 Overview

This chapter will discuss the development and evaluations of a tree-based combined exploration-
planning algorithm: Exploration-RRT (ERRT). Exploring previously unknown areas is a criti-
cal use-case for autonomous robots, for search-and-rescue purposes or for autonomously map-
ping unknown unstructured areas that have not yet been mapped. In short: while navigation in
known environments has its own set of challenges, exploring and navigating through unknown
areas places very high demands on the onboard intelligence of the robot. The robot has to take
decisions not only on how to get to the desired waypoint in a trade-off between a short and
safe path, but also on the more abstract question of which area in the unknown environment
it should go to in order to explore it. In this chapter we will discuss a method of combining
those two questions of ”where to go next” and ”how to get there” through the use of Rapidly-
Exploring Random Trees (RRT). The idea is to generate many goal waypoints where if the
robot was to navigate there, it would increase its known space, then leveraging the RRT to find
robot-safe paths to all those goals. Those paths can then be evaluated on the predicted explored
volume along the path, the length of that path, and the model-based actuation (”effort/energy”)
required of the robot to get there. The outcome is a general algorithm that when applied to a
robotic platform will guide it to explore any 3D environment autonomously, where the explo-
ration and path planning problem are unified. This chapter will initially describe the problem
formulation of the combined exploration-planning problem, then go through the algorithmic
implementation, and finally offer significant simulation and in-the-field experiments to verify
its efficiency. As will be demonstrated ERRT has the ability to efficiently and intuitively ex-
plore vast unstructured 3D environments in simulations, and can be run on a real robotic (UAV)
platform using only onboard sensing and computation resources.
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4.2 Introduction

As a general principle, robotic exploration is fundamentally based around guiding the robot
towards unknown areas, while continually and procedurally building a map of explored or
known territory around it through onboard sensors. The most common conceptualization for
achieving such a behavior is the discretization of the space around the robot into an occupancy
map [99,112] that encodes information about if a certain 2D pixel or 3D voxel is free, occupied,
or unknown. The legacy works then coined the boundary between the free and the unknown
space as frontier points [131–133]. As opposed to the tunnel following exploration APF from
Chapter 3 that is simply attracted to open areas whether they have already been explored or not,
the frontier provides a discrete measure for an area that is of interest for the robotic explorer.
Another way to state that, is that by travelling through the free space to the frontier point, the
robot will increase its information gain, as new unknown areas will come into sensor view
and will update the state of affected voxels from unknown to free or occupied. The process of
exploration then becomes straight forward: from the current state of the occupancy map and the
robot estimated position - evaluate the best frontier point to go to, and once it is reached (or at a
set update rate) re-evaluate the best frontier to go to next based on the now updated map of the
environment. Assuming that the ”perception problem” of deciding the occupancy state of the
map is working sufficiently well (which is its own separate research question), the remaining
problem is then to decide which frontier is best. Commonly, this is done by a heuristic function
that evaluates each frontier on some pre-defined criteria like the number of other frontier points
around it and the euclidean distance from the robots current estimated position to that frontier.
In this way the problem of ”where to go” and ”how to get there” are solved separately. This
line of thinking continues to be expanded in the state-of-the-art in modern works: The method
in [134] formulated a Neural Network that could classify the frontier point with the highest
probability of information gain and use a A∗ planner [135] to generate the path to that frontier.
The work in [113] selects frontiers not from a perspective of maximizing information gain,
but from a perspective of fuel efficiency and a continued forward exploration, while a risk-
aware grid-search algorithm [136] plans the path to both local and global frontiers. The work
in [137] generates frontiers and plans a global route as a travelling salesman problem, while
local kinodynamic paths are planned via B-Spline planning [138]. The work in [139] also
include concepts related to semantic environment representations in classifying frontier points
for a more ”human-like” exploration process.

A separate line of methods in the state-of-the-art does not directly try to evaluate which
frontier point to go to, but instead samples many poses around the robot and based on a model
of the robots onboard sensor(s), evaluates which of these randomly sampled poses it should
go to in order to maximize its information gain. These methods are often denoted as Next
Best View (NBV) methods [140] [141], and were used to both explore areas and for coverage
planning e.g. generating the navigation behavior as to sense/measure/reconstruct an unknown
structure of interest. One of the foundational works on NBV in modern times, found in [118],
utilizes a RRT structure to build a search tree in the free space around the robot. Each node in
the generated tree is evaluated for its predicted information gain and the summed path length
of that particular branch, and the the search tree is expanded until a sufficiently good branch is
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found (which the authors denote as a receding horizon problem). This is relatively computa-
tionally heavy as each new node added to the tree has to be evaluated but the result is a solution
to the combined exploration-planning problem for exploring and mapping an unknown area.
This type of method gained popularity in the latest years, and the method that will be described
in this chapter follows a similar direction. The method described in [110] tackled the problem
of agile navigation in constrained spaces by sampling acceleration directly, and by considering
the robot as a volumetric object as to generate robot-safe paths. The works in [114, 142–144]
apply a similar methodology and generate graphs of sampled positions in the free (and safe)
space around the robot and the edge nodes in the graph are evaluated for information gain,
where then a graph-search algorithm can be used to find the shortest paths between nodes in
the graph.

The method that will the described in this chapter, the ERRT algorithm, approaches the
problem slightly differently. As opposed to evaluating each branch for information gain and
other criteria, which can be very computationally heavy (and other methods sometimes sim-
plify this process through averaging), ERRT samples specific goal positions under certain cri-
teria (e.g. information gain greater than zero or above a set value) and only evaluates RRT-
branches that eventually lead to those goals to reduce the computational effort and enabling
more complex modules to be added on top (as the total number of paths to be evaluated is
pre-defined). In ERRT, those modules are 1) path optimization through iterative environment
collision checks to shorten the sampled paths, and 2) solving the predicted robot model-based
actuation along the paths as a NMPC (nonlinear model predictive control) problem, from which
we both generate dynamics-based paths and have the ability to include the robot actuation along
the path in the path evaluation process. The rest of this chapter will detail the general prob-
lem formulation of the ERRT algorithm, and its implementation into an executable algorithm
that also utilizes real-time sensor data. A large emphasis is also placed on evaluating the al-
gorithm. This is done in the context of exploring large subterranean environments in realistic
simulations, taken from the DARPA Subterranean Challenge [122], and also through field ex-
periments in relevant subterranean tunnel environments.

4.3 Contributions
This chapter will present contributions to the general field of robot exploration methods in the
form of the ERRT algorithm:

• The development of a novel combined exploration-planning method that is fully utiliz-
ing random trees (RRT). ERRT will take into account the predicted information gain, the
total path length, and the model-based robot actuation, to evaluate the ”next best trajec-
tory” for exploration purposes. The method samples candidate goal positions and uses
a 3D LiDAR model to predict which unknown areas will come within sensor view by
travelling along branches to those goals, as a measure of the predicted information gain.

• The algorithm is designed to on its own execute complete exploration of a completely
unknown area, while also planning safe paths throughout the mission by considering the
robot as a volumetric object.
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• ERRT is coupled with the state-of-the-art occupancy mapper UFOMap [27] that maps
voxel states not only to free or occupied but also explicitly models the unknown space as
well. Through the UFOMap, ERRT can use real sensor data and a continuously updated
3D occupancy map of the environment to generate exploration trajectories.

• ERRT is evaluated extensively first in small-scale simulations that check for the cosis-
tency of perforance, and then in large-scale simulation environments some of which were
real scanned environments from the DARPA SubT Challenge Final Stage [122].

• Finally, ERRT is evaluated in the field using a real UAV platform equipped with a 3D
LiDAR, using only onboard computation power. The field experiments are performed in
narrow subterranean tunnel areas that are very challenging, especially for robot safety.
As will be demonstrated ERRT can generate safe and dynamical paths that provide con-
sistent exploratory behavior with minimal backtracking.

4.4 Exploration-RRT

4.4.1 Problem Formulation
The momentary combined exploration-planning problem can be seen as a maximization of
information gain, and a minimization of total path length, the actuation required to follow
the path, and the traversability or risk cost associated with following that trajectory. We can
formulate this problem in the following way:

Minimize
trajectory χχχ

Cd(χχχ)+Cr(χχχ)+Cu(uuu(χχχ))−Ci(ν(χχχ)) (4.1)

subj. to: χχχ ∈Vfree

ν(χχχ)> 0

Here, χχχ represents the state-trajectory to be solved for (the solution to the problem), while
Cd(χχχ) is a cost associated with the path length, Cr(χχχ) a cost associated with the risk or
traversability of χχχ , Cu(χχχ) is the cost related to the model-based actuation along χχχ , and−Ci(ν(χχχ))
is the revenue or negative costs from the sensor-based information gain ν along χχχ . ν(χχχ) > 0
is the constraint that forces solutions to the minimization to generate exploration behavior.
Here, Vfree denotes the free space as a subset of Vmap that describes an occupancy grid of the
space around the robot divided into free,occupied, and unknown space. We can state this to be
the ”real” exploration-planning problem whose optimal solution would be the best trajectory
(based on the tuning) to follow to optimize the momentary robot exploration problem. Note:
the over-time exploration process is often described as a reduction of map entropy, but we
are more interested in describing the momentary exploration-planning minimization of ”what
is the next best trajectory?”. Equation (4.1) is an extremely hard problem to formulate for a
piece of optimization software, and as such we are forced to look for sampling-based solutions
instead. In the ERRT algorithm, the ”actual” problem being solved is:
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χχχ
∗ = argmin

(χχχ j) j

(Cd(χχχ j)+Cu(uuu(χχχ j)−Ci(ν(χχχ j)) j, (4.2)

j = 1, . . . ,ntraj

where χχχ j ∈Vsafe

ν(χχχ j)> 0

where ntraj denotes the number of sampled candidate trajectories that satisfy ν(χχχ)> 0. Based
on the formulation of the problem in (4.1) and a high enough number of sampled trajectories
ntraj, we denote the output as the approximate optimal next-best-trajectory χχχ∗. For an UAV that
can move freely in 3D, the risk-cost Cr(χχχ) can be simplified into the statement that χχχ should
be in Vsafe where Vsafe ⊂Vfree such that for all safe and free voxels {Fs} in Vsafe:

|| {Fs}i−{O}closest ||> rrobot (4.3a)

|| {Fs}i−{U}closest ||> rrobot (4.3b)

with {O}closest and {U}closest denoting the position of the closest occupied or unknown voxel to
{Fs}i and rrobot denotes the size-radius of the robot (e.g. for all trajectories in Vfree any non-free
part of the environment should be a distance rrobot away from the robot).

Figure 4.1: The ERRT concept - candidate goals are generated under certain conditions, candidate
trajectories are generated to them, and the approximate next-best-trajectory is selected.

Equation (4.2) defines the desired outcome of the ERRT algorithm, as a simplified sampling
solution to the real problem (4.1), and a concept figure of the ERRT process can be seen in
Figure 4.1. The following section 4.4.2 will overview the code implementation and describe
how ERRT solves that problem.
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4.4.2 Implementation
Algorithm Overview

This section will serve as a high level description of ERRT. The implementation of ERRT fol-
lows a multi-stage approach where the various components in (4.2) are calculated in sequence
and will be explained in more detail in the following Sections. The stages can be summarized
in order as: (1) Candidate Goal Sampling, (2) Robot-safe RRT∗ tree expansion and candidate
branch generation, (3) Computation of model-based actuation trajectories, and 4) Computation
of information gain and trajectory evaluation. The process is visualized in the Figure 4.2.

Figure 4.2: The ERRT architecture: candidate goal sampling, tree generation, calculation of actuation
trajectories, and trajectory evaluation. ERRT is coupled with a 3D LiDAR as well as the UFOmap
occupancy mapper, and generates state references to a controller.

We can leverage the ERRT concept of generating a set ntraj number of candidate branches
to deploy more computationally heavy processes, in this case the iterative path improvement
by volumetric collision checks, and also computing actuation trajectories as a NMPC problem
both to ”smooth out” the trajectories as to be described by how the robot it actually actuated
and to be able to evaluate the actuation cost Cu(uuu(χχχ j) along the trajectory. The tree-based
exploration process is applied only on a local subset of the whole map space as RRT-based
solutions lose their efficiency relatively quickly for larger areas. As such Vmap is replaced
with local map V l

map in (4.1), which in the implementation implies extracting a subset of the
occupancy map confined by bounding box of the desired sampling volume centered on the
estimated robot position p̂. As such, in this implementation, ERRT on its own should be
considered a local exploration-planning framework, but as will be seen in Section 4.6 ERRT
still enables the exploration of large-scale environments.

Candidate Goal Sampling

The ERRT algorithm starts by the generation of candidate goals. This process starts by gen-
erating candidate goal poses gc, which based on (4.2) are ntraj in number, all have ν(gc) > 0,
and all lie in the local safe space gc ∈V l

safe. Sampled points P are randomly generated in V l
map

and checked for these conditions to see if it is a valid candidate goal gc. To ensure an efficient
and more even distribution of candidate goals we apply Poisson disk sampling such that all
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candidate goals must be a set distance dgc from each other, and a set distance from the robot
position p̂. To compute ν(gc) > 0 a volumetric check is made on a sampled point P based on
a 3D LiDAR field-of-view with sensor range Sr and vertical field-of-view Sθ such that ν(P)
returns the number of unknown voxels {U} that are in field-of-view and not blocked by any
occupied voxels {O}. If all such conditions are met, the sampled point is added as a candidate
goal gc. Additionally, although ν(gc) > 0 is the condition for continued exploration and the
code can exit the check when any unknowns are found, in the implementation we allow the
user to select also a ν(gc) > νmin but this comes at a cost of computational efficiency as total
information gain must be calculated for each sampled goal that goes through the initial check
gc ∈V l

safe (not just that it is non-zero).

Tree Expansion and Candidate Branch Generation

Rapidly-Exploring Random Trees have been around for a while now [23] as one of the many
methods for robot occupancy-based path planning, and still sees research today towards devel-
oping the RRT tree-expansion itself [31, 145, 146]. In ERRT, we will be applying a relatively
standard RRT∗ algorithm. As the tree-building closely follows the legacy method it will not
be described in great detail here. In short (and generalizing), RRT algorithms are based on
sampling points in the occupancy-space around the robot, checking if the sampled point can be
attached to the current configuration of the tree without the straight line between them entering
into any occupied cells, and then discarding the point or attaching it to the tree. The process
then rapidly repeats, expanding the tree to cover the free space in the occupancy map. We can
then ask if a certain ”goal” in the map can be attached to the tree, or if it is already part of it.
The branch that the goal is attached to can then be traced back to the root of the tree (at the
robot position), and a path between the robot position and the goal has been found.

First, initialize the tree NNN with a root node at the robot current position p̂ = [px, py, pz]. In
our implementation, random points P = [Px,Py,Pz] are generated in the local sampling space
V l

map. P is checked against its occupancy state in V l
map to ensure that it is in V l

safe by performing
a volumetric spherical collision check with robot radius rrobot centered on P. Then, we search
through NNN to find the closest node Nclosest ∈ NNN in the tree, and check if the straight line P→
Nclosest ∈V l

safe by collision-checking the cylindrical volume between Nclosest and P with radius
rrobot. If all checks pass, P is added as a child node to Nclosest in the complete tree NNN, and
the process is repeated. We found that adding P to NNN directly as opposed to the more usual
”step” from Nclosest towards P was more efficient for searching a smaller local space with fewer
iterations. After a set number nodes have been added to NNN we compute which branches in NNN
can be extended by the candidate goals gc by checking all nodes and goals for the conditions
N → gc ∈ V l

safe, and | N− gc |< dextend (as to limit the number of nodes to test for). We then
extract the shortest such branches to each goal node and we can denote them as NNNgc

j where
j = 1,2....ntraj. As such the total search tree NNN has been reduced to a set of ntraj candidate
branches that have guaranteed information gain in them since ν(gc

j) > 0 (and each branch
leads to a separate goal).

The second step is attempting to optimize and shorten all NNNgc

j through iterative collision
checks. This is classically not used in a RRT∗ set-up but in ERRT the idea is to make a more
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sparse tree that might not have optimally short branches, and instead try to optimize those NNNgc

j .

The program starts by checking if Ngc

j,1→ Ngc

j,n j
∈ Vsafe e.g. if the straight line from the robot

position p̂ to the candidate goal gc
j is collision-free and safe. If it is, as the straight line is

the shortest possible path, all other nodes are redundant and are removed. If not, the process
continues with checking if Ngc

j,2 → Ngc

j,n j
∈ V l

safe etc. If a path improvement is found between

index i and the end node, the process is restarted with checking Ngc

j,1→ Ngc

j,i ∈ V l
safe and so on.

We can denote the resulting tree as NNNgc

reduced. The path shortening step is then repeated but
with added nodes at a set distance from each other in the resulting NNNgc

reduced, as an additional
possibility at connecting the nodes and making branches with a smaller total path length. This
last step is to make smoother paths, and to shorten paths around corners or obstacles. The end-
result are the ntraj optimized (shortened) candidate graphs/branches, with a specified distance
between nodes, where each branch has its end-node at the candidate goal position. For the
sake of notation in the following Section 4.4.2 let us denote them as the reference position
trajectories XXX ref

j = [X ref
j,1,X

ref
j,2...X

ref
j,n j

].

Actuation Trajectories

We are interested in computing the model-based actuation of the robot required to follow a
specific candidate trajectory. There are three main reasons how doing so can assist in generating
the desired exploration behavior. First, as posed by (4.1), the actuation cost as a gauge for the
energy/effort required to follow a trajectory is of great interest. A trajectory with a higher
actuation requirement will require more effort from the robot to execute, and, in the context
of an UAV, rapid direction changes or aggressive maneuvering makes the trajectories harder to
follow and can result in unwanted flight behavior. Second, the resulting actuation-trajectory
will be within the dynamic constraints of the platform and reflect how the robot can move
based on its available mode of actuation. Third, penalizing high-effort direction changes also
penalizes backtracking and changing the direction of exploration, which will lead to favoring
trajectories that not only minimize path length but also minimize unwanted maneuvering for a
continued forward exploration. In other works on robot exploration this behavior is hard-coded
as part of frontier selection [113], is part of the acceleration sampling [110], or due to ”carrot-
chasing” approaches to robot exploration [128] (also the case in the exploration in Chapter 3).
In ERRT, the actuation trajectories are solved for as a NMPC problem (following the approach
in previous works [47, 69, 80]), that fully considers the nonlinear model of the UAV and its
dynamical constraints. This almost exactly follows the approach described in Chapter 2, and
as such we will not describe it in detail here as well. The only difference in the following
formulation is that we replace the state reference xref with our state reference trajectory XXX ref

j .
For the sake of notation, let us define that k+ l | k implies a prediction l time steps forward
produced at time step k, where the rest of the notation follows the previous Chapter 2. We now
formulate the objective function J(χχχk,uuuk) as:
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J(χχχk,uuuk) =
N

∑
l=0
∥X ref

l − χk+l|k∥2
QX

+ ∥uref − uk+l|k∥2
Qu

+ ∥uk+l|k − uk+l−1|k∥2
Q∆u

. (4.4)

Let us also right away define constraints on the control inputs umin ≤ uk+l|k ≤ umax to realisti-
cally restrict the thrust and attitude commands based on the utilized UAV platform’s dynamical
constraints.

We feed in the optimized RRT-branches XXX ref as state references along the horizon (with
velocity and angle references set to zero) and output the predicted and dynamically constrained
state trajectory χχχ and the actuation vector uuu. The resulting optimization problem can be written
as:

Minimize
uuuk,χχχk

J(χχχk,uuuk) (4.5a)

s. t.: χk+l+1|k = ζ (χk+l|k,uk+l|k),

l = 0, . . . ,N, (4.5b)

umin ≤ uk+l|k ≤ umax, l = 0, . . . ,N, (4.5c)

χk|k = x̂k. (4.5d)

where the initial state χk|k is the full UAV model state x̂ = [ p̂, v̂, θ̂ , φ̂ ] estimated by onboard
state-estimation. The problem is solved by the nonlinear nonconvex parametric optimization
software Optimization Engine [25] and the PANOC [68] algorithm. The NMPC problem is
solved for all reference trajectories XXX ref

j to generate the optimally actuated (based on objective
function (4.4)) trajectories χχχ j and actuation vectors uuu j that track χχχ j. The result is the full
state trajectory χχχ j. It should be noted that a clear limitation is that maximally N steps in the
original trajectory XXX ref

j can be computed in this way, but for a reasonable local sampling space
and desired velocity (e.g. based on sampling time in the NMPC problem and distance between
nodes in XXX ref

j ) it is rarely a limitation. For example, using δt = 0.4s, and a branch step size
of 0.4m (e.g. we generate trajectories with an average exploration speed of 1m/s), and a
horizon N = 50, the trajectories can cover 20m. The added computation time from the NMPC
optimization is around 3ms per trajectory.

Trajectory Evaluation

The final step of the ERRT algorithm is evaluating the generated candidate trajectories/branches
according to the minimization in (4.2) in order to select the next-best-trajectory χχχ∗. To calcu-
late the information gain along χχχ j we require a sensor model. In this work, a simple 3D
LiDAR model is used with only two parameters: the sensor range Sr and the vertical field-of-
view angle Sθ . Through the UFOmap code library one can extract all unknown voxels {U}
in a ”frustrum” (camera-like field-of-view) from the robot position or from any point in the
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trajectory. That subset of unknown voxels {U}fov in V l
map can then be analyzed if they are in

line-of-sight of the sensor e.g. that χ j,i → {U}fov ∈ V l
free for each {U}fov. We can perform

four such checks in each cardinal direction (x,-x,y,-y), with π/2rad horizontal field-of-view,
Sθ vertical field-of-view, and range Sr, with the center point at a certain position in the tra-
jectory, to mimic the field-of-view of a 3D LiDAR and to extract all unknown voxels within
that field-of-view. Here, ERRT supports two modes: 1) calculating the information gain at the
candidate goal gc

j which is the most common approach in the literature, or 2) leveraging the
fact that we are only working with a set relatively low number of candidate trajectories (not the
whole graph/tree), and evaluating information gain along the trajectories at a higher computa-
tional cost. Computing information gain at each equidistant point in χχχ j is too difficult and has

significant overlap. Instead the information gain can be calculated at each node in NNNgc

reduced that
exceed a specified distance apart, and any duplicate/overlapping unknown (seen from multiple
nodes) is removed. This generates a better approximation of the total information gain along
the trajectory as opposed to only evaluating at the end-point. We then denote the resulting
total non-duplicate number of {U} along NNNgc

reduced,j as the information gain for that trajectory

assuming that ν(NNNgc

reduced,j)∼ ν(χχχ j). The information gain revenue is calculated as:

Ci(ν(χχχ j)) = Kiν(χχχ j), (4.6)

where Ki denotes a gain related to the relative emphasis on the information revenue parameter.
As such Ci(ν(χχχ j)) represents the predicted sensor-based information gain along the trajectory.

Evaluating the distance cost Cd(χχχ j) is done by simply summing the distance between con-
secutive positions in the actuation-based trajectories χχχ j as:

Cd(χχχ j) = Kd

n j

∑
i=2
|| χ j,i−χ j,i−1 || (4.7)

with Kd denoting the relative emphasis on the length of the trajectory. Finally, computing the
actuation cost is done by feeding the actuation vector uuu j back into (4.4) as:

Cu(uuu(χχχ j)) = Ku

N

∑
i=0
∥uref−u j,i∥2

Qu
+∥u j,i−u j,i−1∥2

Q∆u
. (4.8)

The resulting Cu(uuu(χχχ j)) represents the (nonlinear) model-based actuation cost along each full
trajectory χχχ j. With all trajectories generated in V l

safe and all costs computed, the ERRT program
can now evaluate the expression in (4.2) to find the approximate next-best-trajectory χχχ∗.

4.5 Initial small-scale simulation
The first stage of evaluations are performed in a simple simulation environment where ERRT is
evaluated separately from the supportive modules of the UFOmap and onboard sensors. Due to
the simplicity of the simulation, we are also not considering the robot size in the problem and
as such Vsafe =Vfree. The goal is to assess if ERRT can consistently and efficiently fully explore
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a small fully unknown 3D environment, without getting stuck or generating undesirable explo-
ration behavior. The environment as well as snapshots of candidate branch generation from a
simulation run can be seen in Figure 4.3, but the best visualisation of the exploration behav-
ior can be found in the following video link: https://drive.google.com/file/d/
1v3vg3Z9iB2DR-Oec3MxWUg_39d3lIj1F/view, where the viewer can see the real-
time exploration of the environment. ERRT efficiently explores the 3D unstructured environ-
ment by generating trajectories that have unknown (green) voxels in sensor view. An important
criteria for a purely sampling based algorithm is the ability to consistently generate good per-
formance without significant outliers. The ERRT algorithm was run in the same environment
from the same starting position for ten runs with two different tunings (one more greedy priori-
tising information gain, and one conservative prioritising low actuation paths). Figures 4.4 and
4.5 show the time and total exploration path length for 90% coverage and full exploration of the
environment, showing that ERRT was consistent over many runs when it comes to exploration
efficiency in this limited simulation study.

77



Figure 4.3: Environment for initial small-scale simulations, and an example of an exploration progres-
sion in that environment. Green are unknown but free voxels while the blue represents the occupied
areas.
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Figure 4.4: Testing the consistency of the algorithm. Showing the total time and distance travelled to
explore 90% and fully exploring the small-scale environment over ten runs with a greedy tuning.

Figure 4.5: Testing the consistency of the algorithm. Showing the total time and distance travelled to
explore 90% and fully exploring the small-scale environment over ten runs with a more ”conservative”
tuning.
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4.6 Realistic Simulations in large-scale Subterranean Envi-
ronments

The next step was deploying ERRT in a more realistic and large-scale simulation. Here we are
using the Gazebo simulator, where both the UAV size (and environment interactions), dynam-
ics, and the onboard sensors are included in the simulation. The UAV platform as well as the
dynamics and attitude controller are from the RotorS package [147]. The selected simulations
worlds are from the DARPA Subterranean Challenge [122], where we are using both worlds
from the simulation challenge, as well as a scanned map from the final stage competition.
These environments include complex tunnels and junctions, open caves, narrow entrances, as
well as tight and obstacle-rich areas, presenting a significant challenges to onboard navigation
and exploration behaviors. In the simulations, ERRT is coupled with a full state reference
tracking controller, namely the NMPC described in Chapter 2. The simulated UAV is equipped
with a 32◦ vertical field-of-view velodyne VLP16 3D LiDAR.

As ERRT is focusing on efficient information-gain maximizing behavior, is designed to be
a local exploration module, and since real UAVs have limited flight time, we set up simulation
runs in each world where we let the UAV explore for a number of minutes at realistic navigation
speeds of 0.5−1m/s. As such full coverage of the area will never be achieved as the worlds are
huge, but instead the main goal should be efficient local exploration behavior that continually
guides the UAV into information-rich areas.

In Figure 4.6 the over-time exploration progress is visualized for a run in the DARPA
final stage world, and a video visualisation of that simulation run can be found at https:
//www.youtube.com/watch?v=EAXsn-KjW-k.

Figure 4.7 shows the general ERRT concept and program; 3D robot-safe tree expansion in
the local safe space V l

safe, the computation of improved (shortened) actuation trajectories χχχ j
extended to the sampled gc with ν(gc) > 0, and finally the selected χχχ∗ with a visualisation
of the predicted explored volume (red markers highlighting which unknown voxels will be in
sensor view) that will be achieved by following that trajectory.

Figure 4.8 shows two more exploration runs in the final stage simulator, going into other
areas of the map.

These simulations highlight ERRTs capabilities in very narrow and constrained areas, where
robot safe navigation is of high importance, and generating continued forward exploration
through narrow areas that have limited sensor visibility (for information gain calculations).
Figure 4.9 also shows a visualisation of the tree expansion in a warehouse-like area of the final
stage map, with significant cluttering and obstacles. We can see the robot-safe tree completely
cover the volume and find paths to all of the local gc.

As opposed to the very narrow obstacle filled tunnels and junctions of Figure 4.6 the fol-
lowing simulation runs focus more on open voids and caves as well as large-scale tunnels, from
the DARPA Virtual Competition and from the Cave Circuit. The ERRT exploration missions
can be seen in Figure 4.10 and Figure 4.11.

These are massive simulation worlds, with many junctions and branching areas (not very
visible in the maps). The goal is a continued greedy forward exploration without getting stuck
fully exploring the massive voids and caves which can be a waste of time in a time-limited
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Figure 4.6: Local Exploration over 6 minutes in the DARPA Final Stage gazebo world - mimicking the
conditions of the real competition. Figures highlighting the progress of exploration at set times. Total
exploration path length was around 250m.

mission, and is a very challenging problem for many similar frameworks as ERRT. A video
of those two simulation runs can be found at: https://www.youtube.com/watch?v=
RKV-sbq79OU&. ERRT selects paths with efficient information-gain maximizing behavior
and 3D exploration in the wide interconnected cave areas, while maintaining safe navigation,
efficiently moving from cave to cave without significant unnecessary maneuvering or back-
tracking.

While the ERRT framework can be tuned to fit a desired computational effort; number of
nodes in the tree, number of sampled goals, sensor range (more voxels to iterate through), voxel
size, using ν(gc) > νmin etc. all of these experiments were run with configurations resulting
in a computation time of 0.8s up to peaks of 2s. While 2s might sound significant, the vast
majority of time is spent following trajectories, not calculating, so the average exploration
speed is not significantly affected.

4.7 Field Trials
To demonstrate ERRTs ability to run on onboard hardware for computation and sensing, field
experiments were performed with a custom built UAV platform in a subterranean environment,
namely the same platform (and the same subterranean environment) as in the previous Chapter
3. In fact, we are completely using the local autonomy kit developed and described in Chapter
3, where ERRT simply sends state references (position, velocity) to the APF-NMPC pairing,
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Figure 4.7: The ERRT process - 1) local robot-safe Tree Expansion filling V l
safe, 2) pseudo-random goal

sampling gc (yellow dots) and improved actuation-paths χχχ j (green), and 3) selected path χχχ∗(green) with
marked unknown voxels that will be discovered along the ”next-best-trajectory” (red) (bottom).

and where state estimation is enabled through the LiDAR-Inertial Odometry (LIO) package
LIO-SAM [26]. Two experiments are performed, where samples of the environments can be
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Figure 4.8: Two more ERRT exploration runs into different parts of the area, with varying kinds of
environments from urban warehouse like areas to tunnels and caves.

found in Figure 4.12; one in a curving tunnel that also has a cluttered void, and one in a very
narrow and constrained tunnel.

Figure 4.13 shows the exploration run in the curving tunnel, where ERRT consistently
provides information-generating behavior without any backtracking or poor side-to-side ma-
neuvering.

Another example of ERRT trajectory generation and selection can be found in Figure 4.14
as the UAV is entering the junction area from a narrower tunnel.

The next trajectory is selected deep into the middle of the junction to maximize information
gain per distance travelled. Figure 4.15 shows two momentary trajectory selection in the clut-
tered void area where robot-safe, efficient, and dynamical paths are generated around obstacles
in the environment.
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Figure 4.9: Robot-safe 3D Tree expansion in an obstacle-rich and complex warehouse-like area (top),
and selected exploration ”next-best-trajectory” (green line) (bottom)

The second experiment is visualized in Figure 4.16, where ERRT guides the UAV in a very
narrow and constrained tunnel. Here the most challenging aspect is the limited visibility due
to the narrow tunnel and the fact that only a very limited part of the tunnel could be considered
robot-safe. ERRT could still manage to explore the tunnel, keeping the UAV in the middle of
the tunnel and exploring forward until the junction. At the junction the UAV first went into one
tunnel but then found a more information-rich path. The mission had to be terminated at that
point due to the limited testing flight area.

4.8 Concluding Remarks

This chapter has introduced and described the ERRT algorithm for the combined exploration-
planning problem. The goal of the algorithm is to find the ”next best trajectory” for exploring
a fully unknown and unstructured 3D environment in a trade-off between maximizing infor-
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Figure 4.10: Explored area after 16 minutes in the DARPA Cave World - approx. 10-15m wide tunnels.

Figure 4.11: Explored area after 16 minutes in the DARPA Virtual Competition World - long cave-like
tunnels.

mation gain, while minimizing the distance travelled and the robot actuation required to follow
the trajectory. ERRT follows a sampling and tree-based approach where a RRT is used to find
branches to candidate goals for exploration. A trajectory shortening method is applied, and the
shortest branch to each candidate goal is extracted and evaluated on the aforementioned crite-
ria. The ERRT algorithm was designed and evaluated mainly for subterranean environments
where robot-safe paths are paramount as well as maintaining efficient continuous exploration
behavior without backtracking. This is extensively demonstrated first in a simple simulator,
then in realistic large-scale simulations with integrated sensors, and finally in real field envi-
ronment on a custom built UAV platform. ERRT demonstrated efficient and safe navigation
in all evaluation scenarios, from narrow and cluttered tunnels to open cave-like voids. The
presented results show a promising direction for combining the exploration-planning problem
but there are both limitations and future works. ERRT should be extended with a globalisation
strategy that could use the already constructed tree of accessible areas and information-rich

85



Figure 4.12: Field Evaluation Environments for the two performed experiments. Narrow constrained
tunnel (left), open but cluttered area with connected tunnels (right).

Figure 4.13: Exploration path from local exploration in the field, in curving tunnel area with a larger
void. Exploration path length is around 160m.

candidate goals. The fact that this stage was not reached limits the possible evaluation sce-
narios as ERRT can not handle a dead-end that is far enough from an unexplored area such
that it is not included in the local V l

map. But it should be noted that the local sampling space
can, and was, selected relatively large as compared to other local planners, and as such the
ERRT program rests somewhere in between a purely local and a fully globalised program.
Also, following the approaches in Chapter 2 the NMPC module could be used to solve for
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robot-safe trajectories (including obstacle avoidance in the NMPC problem) although it is not
straight-forward to go from an occupancy map representation to something that the NMPC
can utilize for obstacle constraints. Another future work is implementing a more advanced
sampling algorithm both for the goals and for generating the tree. With a uniform sampling
in a simple bounding box, many many random points are discarded or of poor quality, which
wasted computational effort. Something like the work in [145] where the authors use a neural
network to perform non-uniform sampling for more efficient tree expansion which could see a
great application in an ERRT-like program.

87



Figure 4.14: The ERRT stages in a field environment with a junction. 1) Tree expansion, 2) candidate
goals and candidate trajectories, and 3) selected exploration trajectory with expected explored volume
(red).
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Figure 4.15: ERRT dynamic and robot-safe trajectory generation around small/complex obstacles in
obstacle-rich and narrow environments in the field.

Figure 4.16: ERRT exploration path in a very constrained and narrow field environment with a total
exploration path of 170m (top), and samples of tree expansion in the juction and path selection in an
extra narrow section during the exploration run (bottom)
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CHAPTER 5

Field Deployment in Subterranean
Environments

5.1 Overview

This Chapter will detail the developments and efforts towards the use of autonomous robots
in real applications in subterranean environments. For the reader this should not come as a
surprise, as underground applications are a mainstay throughout this thesis, where the works
both in Chaper 3 and Chapter 4 are evaluated in subterranean environments. The signifi-
cant difference is that this chapter will not focus on one singular developed component to
be tested, but the goal of the following presented works is instead the application outcome and
the research into advanced field capabilities of autonomous robots as a whole. The chapter
will delve into two use-cases, namely autonomous search-and-rescue missions inspired by the
DARPA (SubT) Robotics Challenge, as well as inspection and surveying missions in under-
ground mines. The work on underground mine inspection is the outcome of multiple national
and European projects together with significant partners in the mining industry, which enabled
evaluation not only in realistic environments, but in actual underground mines where some tests
were executed at over 1200m under ground. In general, subterranean caves, mining areas, and
other tunneling infrastructure (trains, construction etc.) present massive use-case opportunities
for autonomous robots when it comes to safety for workers performing dangerous tasks, and
for efficiently performing routine inspection and maintenance. This chapter will also describe
the deployment frameworks, hardware and sensors, and autonomy architectures that were used
to achieve fully autonomous mission execution. Most missions are centered around the COM-
PRA (Compact Reactive Autonomy) framework, that uses a fully reactive autonomy stack for
tunnel navigation. The COMPRA-enabled UAV is also extended and deployed from both an
integrated base-station, and from a legged robot (Boston Dynamics Spot) forming a multi-
modality combined robot framework for complex mission execution. This chapter will also
introduce an operator guided waypoint inspection framework, centered around a risk-aware
gridsearch algorithm, that was deployed for visual safety inspection after blasting and gas con-
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centration measurement missions. The goal and long-term aim of the hardware- and platform-
supported autonomy architectures, and the demonstration experiments themselves, is to further
the state-of-the-art and raise the industry interest in the area and use of autonomous inspections
in underground mines. Finally, it should be clear to the reader that the works presented in this
Chapter are collaborations where the author of this thesis did not on their own develop all the
presented components. From both the hardware and software side there is a combination of
in-house developments together with the use of industry and open-source components, all with
the end-goal of achieving the best mission capabilities and demonstrations.

5.2 The Subterranean Environment

5.2.1 Introduction and Applications
Due to their large size, inaccessibility, and inherent risk to humans from cave-ins, the use of
autonomous robots in subterranean environments has been a hot topic for some time. With
the introduction of smaller-scale sensors and electronics, and now with novel smart algorithms
for localization and navigation, the industry is more ready for the adoption of these new tech-
nologies. As developed on the academic side, the application areas range from mapping and
inspecting caves [11,148], inspection and safety in the mining industry [10,36], monitoring for
natural disasters [149] or even in the search for extraterrestrial life in subterranean systems on
other planets or asteroids [150,151]. There are many reasons for full autonomy when it comes
to subterranean areas, but the main one is the almost impossibility of maintaining connectivity
to a teleoperated robot outside of certain areas. Once the robot is out of line of sight, a com-
prehensive installed infrastructure is needed to enable teleoperation. The solution is of course
to make the robots fully autonomous, such that they do not need any operator input after the
mission is started. Seismic events, or the result of man-made excavation can do severe damage
to such types of environments, as depicted in Figure 5.1. That possibility may block human
workers from exiting dangerous areas, and makes it dangerous for human teams to carry out
rescue operations in case of an accident. It is also not uncommon for persons to get stuck or
go missing in natural caves. Both finding them and performing rescue operations presents a
significant risk to any personnel involved in the operation. The same is true in case of natu-
ral disasters or war, where subterranean infrastructure like metros or road tunnels are highly
risky to enter in case they are damaged. In conclusion, autonomous robots can reduce the risk
to humans workers that perform a variety of tasks, and the rest of this Chapter will focus on
two different types of tasks; robotized routine inspection missions, as well as missions in the
context of search-and-rescue scenarios.

5.2.2 Navigation in Subterranean Field Environments
The harsh underground environment presents many challenges for deployment of autonomous
robots, but it also presents several opportunities in what those robots can accomplish. From
a robotics perspective, these environments heavily challenge the onboard perception systems.
Complete darkness limit the use of any visual sensors, as even with onboard illumination their
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Figure 5.1: Examples of rockfalls after seismic events in the underground mines [152]

performance is significantly degraded. The high levels of dust can also disrupt most sensor de-
vices such as LiDAR systems or cameras (and LiDAR dust filtering and de-noising is a very ac-
tive topic [153, 154]). Additionally, tunnel environments are very self-similar which can cause
issues for onboard SLAM systems when performing map-based loop closure. Exploratory nav-
igation in narrow or curving tunnels is also challenging due to the limited field-of-view of, for
example, 3D LiDARs. Floor and ceiling planes will have limited visibility as most LiDAR
beams will be hitting the tunnel walls, and completely mapping them for a complete recon-
struction might necessitate dangerous maneuvering in the narrow space (e.g. by flying close
to the ceiling or walls). For aerial robots, propeller downwash can kick up excessive amounts
of dust if the robot navigation system takes it too close to the ground, and for ground robots
many areas will be inaccessible due to the ground terrain traversability (water, mud, sand-like
rock dust). On the same note, natural caves or damaged man-made mines can have very narrow
and unstructured openings that require careful 3D navigation to pass through. Some of these
environment challenges are exemplified in Figure 5.2.

Figure 5.2: Navigation Challenges in subterranean caves and mining environments; high levels of dust
and water combined with narrow constrained passages.

As such, significant effort has to be placed on the selection of sensors and the tuning of
SLAM algorithms when deploying robots in large-scale subterranean areas. Onboard naviga-
tion systems are also heavily stressed by the constrained tunnel areas as there is limited space
for collision-free motion, and a collision is always only a couple of meters away in case there
is a failure in any perception or localization system (which is likely to occur at some point
due to the above listed perception challenges) and as such robust collision avoidance is heavily
stressed (which was a motivator for the development of the APF in Chapter 3). In man-made
underground tunnels, and mines specifically, irregular wind gusts are also a constant presence
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due to the ventilation systems that are needed for humans to be able to access these massive
underground tunneling areas, and onboard control systems have to be resilient to disturbances
and tuned accordingly.

5.2.3 The DARPA Subterranean Challenge

The area of autonomous subterranean search-and-rescue has grown significantly in the last
years due to the fact that it was the focus and primary selected application area of the DARPA
Robotics Challenge [122]. The goal of the challenge was to deploy teams of robots, both tele-
operated and autonomous, into tree different types of fully unknown subterranean areas. The
three target areas were: tunnels (mines), urban areas (metro), as well as natural caves. In those
selected challenge ”circuits”, specific artefacts of interest had been placed or hidden inside,
mimicking a person to be saved, a lost piece of equipment, or a gas leak. Scoring for the com-
peting teams was done based on how many artefacts they could find and locate within a desired
localization accuracy, highly stressing the onboard SLAM (Simultaneous Localization and
Mapping) modules as well as object detection in highly sensor-degraded environments. During
the challenge, the two critical robotics problems of onboard SLAM [155–157] and exploratory
navigation [129, 142, 158] saw multiple novel directions and extensions, and multiple teams
have published works overviewing their complete deployment frameworks [123, 159, 160].
The presented results in this Chapter in Section 5.5 on the topic of search-and-rescue can be
seen as part of the NeBula autonomy framework [123,155,158] and the Team CoSTAR [161],
although they were not deployed as part of the competition itself. But, as the reader will see,
the mission set-up, specifications, and the desired outcome of the demonstrations are heavily
influenced by the SubT Challenge objectives.

5.2.4 Underground Mines

Although obviously similar in its challenges, the use of autonomous robots in underground
mines must serve a specific purpose that benefits the mine. Due to the above listed chal-
lenges for subterranean navigation, one might assume that this environment is not suited for
autonomous robot missions, and autonomous UAVs specifically, due to the challenges when
it comes to dust, darkness, and constrained navigation. But, as reviewed in the following
survey [162], UAVs have significant applications in the mining industry as well. Manually
operated UAVs have been used for gas concentration measurements [163], visual and thermal
inspection of rock mass characteristics [164], inspection of the distribution of rock fragmen-
tation (or muck piles) after blasting [165], and for providing visual inspection of unreachable
areas [166]. And as the reader will see, this Chapter will provide demonstration experiments
of several of these use-cases as well, executed via fully autonomous missions. Interestingly,
the survey lists two of the main challenges for UAVs in underground mines as; communication
and connectivity for out of line of sight operations [167, 168] and the inability for drone pilots
to access nearby safe areas to operate from. Both of these challenges can be answered by au-
tonomous deployment as the operator is fully removed and autonomous vehicles can operate
completely without communication links after the mission is initiated. In conclusion; the sig-
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nificant advantages and applications of autonomous UAVs make up for the related challenges,
and drive the development of systems robust to such harsh environments.

5.3 Contributions
The contributions presented in this chapter consist of the development of two autonomy ar-
chitectures, and their very extensive evaluations in search-and-rescue scenarios, and in the
autonomous inspection of mines. The contributions are as follows:

• The development of the COMPRA framework. A reactive navigation stack specifically
designed to efficiently explore and navigate through mining tunnel areas. The frame-
work is designed around rapid deployment and fast navigation using only local reactive
components and is completely free of occupancy-map based path planning. The frame-
work is made complete by the addition of necessary components such as LiDAR-Intertial
SLAM and a simple return-to-base capability.

• Towards the SubT Challenge concept, COMPRA is also extended with a pipeline for
object detection, localization, and validation, with the goal of detecting and localizing
objects of interest in a global frame of reference during the exploration process.

• COMPRA is also extended to be deployed from a legged Boston Dynamics Spot robot,
for complex mission execution where the legged robot acts as a carrier for the aerial
platform in order to reach previously unreachable (for the legged robot) areas. Simi-
larly, COMPRA is deployed from an in-house designed base-station platform towards
having UAVs as part of the mining infrastructure. Here, COMPRA is also extended
with a vision-based guided landing sequence to land back into the platform after mission
completion.

• The COMPRA stack is extensively evaluated first in search-and-rescue scenarios in real-
istic tunnel environments, and then towards the routine inspection and mapping of mining
areas which is demonstrated in real operational mines. COMPRA is also demonstrated
to navigate and inspect areas not safe for human workers after a simulated rockfall.

• The second field deployment framework is centered around the risk-aware DSP path
planner [136], and will be denoted as the RIA (Routine Inspection Autonomy) frame-
work. This framework was designed as an operator guided general inspection framework
of previously mapped environments. Here, an operator provides a set of waypoints to be
inspected, which are optimized via a travelling salesman problem. The waypoints are
then navigated to safetly by a combination of DSP and the local control and avoidance
stack from Chapter 3.

• The inspection framework is deployed for the use-cases of visual safety inspection after
blasting, and for autonomous gas concentration missions, which are two application mis-
sions of high interest from the industry as they present significant risk to human workers.
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In general, the use-case demonstrations of autonomous robots executing application-driven full
missions in real field environments contributes to both the general academic research in field
robotics, but through the related collaborations and research projects also increases the trust
from the industry in these novel technologies and can serve as part of a road-map towards full
industry integration of autonomous inspection robots.

5.4 The COMPRA Framework

5.4.1 Framework Overview & Motivation

The COMPRA (Compact Reactive Autonomy) was put together as a kit with the capability of
executing a complete inspection mission into a previously unmapped area. The idea is simple;
leverage the environment to your advantage and simplify the tunnel navigation problem into
the motion directive of ”follow the tunnel centroid while avoiding obstacles”, the same idea as
presented in Section 3.5 where repulsive forces regulate the position and heading states of the
vehicle to do just that. After a certain time has passed, follow the travelled breadcrumb path
back to where the mission was initiated. Generalizing, the COMPRA kit is composed of the
local autonomy (control & avoidance) framework described in Chappter 3 and the same source
of state-estimation [26], with some additional modules added on top. The local kit is combined
with a tunnel following algorithm denoted as the Deepest-Point Heading Regulation (DPHR)
technique, a pipeline for detecting objects of interest, as well mission executions behaviors.
The UAV platform used can be seen in Figure 5.3 with all its sensors (as a note: The Ouster
OS1 was swapped with a Velodyne Puck Lite in some of the missions), onboard computer, and
other hardware. The complete COMPRA architecture can be found in Figure 5.4, showing all
the autonomy components and the mission behavior design. Notably, the two operator inputs to
the system are: the time duration of the exploration mission until return is triggered Texplore and
the desired mission height from the ground the UAV should fly at pm

z (the z-reference so-to-say)
based on the local measurements pL

z from an onboard single-beam LiDAR.

It should be highlighted that the COMPRA framework is fully focused on rapid deployment
and quick navigation, not full coverage of the area. As will be demonstrated the simple mis-
sion structure of COMPRA enables very consistent and robot-safe mission execution in tunnel
environments. The operator also has control of which initial tunnel/direction the UAV should
follow as opposed to the UAV freely selecting that based on, for example, an optimal frontier.
The fully reactive nature of COMPRA also means that navigation speed can be significantly
pushed, which will be demonstrated in the following experiments, as the next waypoint gen-
eration happens in real-time and is independent on transitioning from one generated trajectory
to the next, which means consistent smooth navigation. In general the COMPRA kit proved to
be very efficient and consistent when deployed in critical scenarios, where specific capabilities
(ex. inspecting an area after a rockfall) was to be demonstrated.
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Figure 5.3: The utilized custom-built UAV for field missions. 1 - Ouster OS1 3D LiDAR, 2 - Intel
NUC, 3 - Intel Realsense D455, 4 - Pixhawk Cube Flight Controller, 5 - Garmin singlebeam LiDAR, 6-
Telemetry module, 7 - LED strips, 8- T-motor MN3508 kV700, 9- 12.5in Properllers, 10 - Battery, 11 -
Roll cage, 12- Landing gear

Frame Notation

For the sake of ease and clarity in notation in the following sections about COMPRAs ad-
ditional modules, let us define specifically the frames of interest. The previous parts of the
thesis has not particularly been detailed on this, but as these modules work on camera data it
is a necessity. The world frame W is fixed with the unit vectors {xW ,yW ,zW } following the
East-North-Up (ENU) frame convention. The body frame of the aerial vehicle B is attached
on its base with the unit vectors {xB,yB,zB}, representing the rotated global coordinates W
in along the z-axis. The zB is antiparallel to the gravity vector, xB is looking forward the plat-
form’s base and yB is in the ENU convention. The onboard camera frame C has unit vectors
{xC ,yC ,zC }. Furthermore, yC is parallel to the gravity vector and zC points in front of the
camera. The image plane is defined as I with unit vectors [xI ,yI ]. Figure 5.5 depicts the
utilized main coordinate frames of the aerial platform.

5.4.2 Depth-based Reactive Exploration
The exploration behaviour in this work considers the generation of local reference waypoints
pB

re f in 3D, as well as local yaw references ψre f .
The exploration waypoints follow the heuristic concept of constant value ”carrot chasing”

in the bodyframe x-axis of the platform, while we utilize a fully reactive heading regulation
technique to align the MAV body x-axis with the tunnel direction. More specifically, the gen-
erated way-points pB

re f always add a constant value ahead of the x-axis, while the motion in
the y-axis in B frame depends only on the potential fields input. The waypoints are defined
as wpB = [pB

x +1, pB
y , pm

z ], and are then fed to the potential field to generate the obstacle-free
pB

re f . The local altitude reference pm
z (or the mission altitude) is kept constant and selected be-
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Figure 5.4: The COMPRA Autonomy Architecture and mission behavior. The COMPRA mission is ini-
tialized with the desired Tm and pz

m, and explores the tunnel area until the exploration time Texplore = Tm,
at which point a return to base is triggered and the UAV backtracks back to the initial deployment point
p0. From LiDAR pointcloud P and IMU data Π (gyroscope, accelerometer) Lidar-Ineratial Odome-
try generates the robot state x̂ (position, velocity, Euler angles), while a single-beam LiDAR measures
the distance to the ground pLz (local z-coordinate). DPHR generates heading references ψre f from a
depth-image D for continuous forward exploration following the waypoint wp. The APF generates
collision-free state references to the control system xre f , that are translated to optimal control inputs in
thrust, roll, pitch, and yawrate signal as u = [T,θre f ,φre f , ψ̇re f ] to the onboard flight control unit (FCU).

fore the mission starts, and the measured local z-position is defined by the range measurements,
Rsbl , from the single-beam LiDAR as pLz = Rsbl cosθ cosφ , e.g. the distance to the ground.

The sensor information used in the DPHR method is the instantaneous depth image DC (xI ,yI )
provided by the onboard RGB-D sensor, where xI and yI denote the pixel coordinates. At
each iteration the pixel information from DC is processed and converted into yaw rate com-
mand (rad/s) without keeping past sensor information. DC is initially preprocessed into D̃C

with a morphological closing operation [169] using a rectangular kernel structuring element
of size 20. This operation is considered a filtering step used to remove noise caused from
hardware sensor imperfections or environmental conditions and enhance the pixel intensities
of the most distant areas in the tunnel. After the filtering step the D̃ is segmented into a discrete
number of regions denoted as Nclusters ∈Z that are populated with pixels with high similarities.
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Figure 5.5: Coordinate frames, where W , B, L , C and I denote world, body, LiDAR, camera and image
coordinate frames respectively.

The multiple clusters are generated using a k-means method in an environment related number
of cluster centers Ci, [i = 1,2,3, . . . ,Nclusters] ∈ R2, where COMPRA defaults to Nclusters = 10.
Each Ci includes pixels with similar intensity levels, which are used to calculate its mean in-
tensity value. The cluster selection part is based on the mean intensity value of each cluster,
converting the grayscale image to binary image D̃C

binary(xI ,yI ) by thresholding Ci with the
maximum mean intensity. The xI pixel coordinate of the cluster centroid is then considered
since the rate of change of sI

x is mainly affected when the camera is undergoing a yaw motion
ψ . Finally, the cluster centroid (sx,sy) is calculated based on the binary image moments Mpq
as shown in Equation(5.1)

Mpq = ∑
xI

∑
yI

xI pyI qD̃C
binary(xI ,yI ) (5.1)

using sx =
M10
M00

where M10 is calculated with p = 1 and q = 0 and M00 is calculated with
p = 0 and q = 0. Finally, sx is normalized and transformed with respect to the image principal
point s̄x and converted to a yaw rate reference ψ̇re f ∈ [min max], using ψ̇re f = s̄x ∗ l, where l
maps linearly the yaw rate to min and max values. Figure 5.6 showcases a snapshot from the
implemented deepest point extraction process.

5.4.3 Object Detection & Localization
For the mission as defined by the DARPA subterranean challenge, and in general for a mis-
sion centered around finding objects of interest such as a search-and-rescue mission, a critical
capability is detecting and localizing objects. This section will present a pipeline for object
detection, localization, and finally validation, that can be seen in Figure 5.7. The framework is
utilizing the visual RGB data I, the depth image stream D, as well as the estimated robot states
x̂, where specifically p̂ is in the world frame coordinates.

The object detection part is based on the tiny and Intel hardware optimized version [170]
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Figure 5.6: snapshots of the DPHR methodology depicting: on the left the extracted centroid (marked
black circle) of the open tunnel area and on the right the binarized image of the segmented area with the
higher depth values.

Figure 5.7: The pipeline for detecting, localizing, and validating objects of interest or ”artefacts” in the
environment during the COMPRA mission.

of the state of the art CNN object detector Yolo V4 [86]. We trained the network to detect
and classify 6 classes CL ∈ [1, · · · ,6] defined by the SubT competition using a custom dataset
consisting of approximately 700 images for each class. The input size of the images is 416 ×
416 and the output of the algorithm are the detected bounding boxes and the class probabil-
ity PrCL ∈ [0,1]. The other component of the pipeline is the object localizer, which receives
the bounding box BB = (xI

min,y
I
min,WdI ,HtI ) measurements of one of the predefined object

classes from the RGB image stream I, where xI
min and yI

min denote the minimum xI and yI axis
pixel coordinates and WdI ,HtI denote the width and height in pixels. The localizer trans-
fers the identified bounding box in the aligned depth image stream D and extracts the relative
position of the object in the camera frame C , defined as pC

ob ject = [pC
x , pC

y , pC
z ]. Frequently,

the extracted bounding boxes include part of the background with the object of interest, thus
to avoid this issue we calculate the object position considering only a 3×3 window around the
centroid of the bounding box. The main assumption is that the centroid always is projected
to the object of interest. Finally the object location is converted in the global world frame
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W , defined as pW
ob ject , using the transformation pW

ob ject =
W TC pC

ob ject , where W TC denotes
the transformation matrix from C to W , defined as W TC = [R|t]. The final component is the
object validation, structured around two subcomponents, i) the buffer of measurements and
ii) the processor of buffered measurements. The buffer stacks artifact positions using a two-
step outlier rejection process. Initially, it accepts only bounding boxes with class probability
above a specified threshold (PrCL ∈ [Prthreshold,1]) and are located inside a sphere with radius
of 5 meters (based on the depth camera range) and secondly, removes detections when their
metric bounding box width bounds are outside a fixed width interval for each known object
WdW ∈ [WidthCL

min,WidthCL
max], to address false positive inputs with high class probabilities but

where the size of the object does not match an assumed already known size interval. After-
wards, the processor of buffered measurements is initiated once a specified time window from
the last observation in the buffer has passed. During this process, the buffered values for each
class are clustered based on Euclidean distance and the mean value of the positions of each
cluster is calculated. Additionally, the current clusters are compared against already localized
objects using Euclidean distance to deduce whether it will belongs to previously seen object or
it will be reported as a new observation. Once this step is finished the buffer is cleaned. This
architecture can handle multiple observations of the same class at different locations in the
same buffer session. The localizer returns a list OL = {⃗03×1, pW

ob ject1, pW
ob ject2, . . . , pW

ob ject,n},
where n is the number of detected objects. Figure 5.8 presents the overall architecture on the
strategy related to the object detection and localization. Some examples of false-positive de-
tection hits can be seen in Figure 5.9, where the object validation rejects them based on the size
of the object and class probability, which was very common in the dark, and in this case also
graffiti-filled, subterranean tunnels.

5.4.4 Mission Behavior & Return-to-base

The final subcomponents of the COMPRA mission are the baseline switching mission behav-
iors, and the return-to-base after the mission is completed. In a COMPRA mission, these are
not complex systems, and rely mainly on the mission duration as compared to the desired ex-
ploration time Texplore. The COMPRA return to base relies on following a breadcrumb trail
of waypoints back to the place where the mission was initiated while the potential field still
provides collision-free motion. Obviously there can be scenarios where the optimal return
path is not the same as the exploration path, but using this simple method we ensure that the
robot returns by navigating through areas that are already visited and confirmed safe, while
also preventing state-estimation drift by only traversing already known areas for map-based
loop closure. We can also keep the COMPRA navigation occupancy-map free where we do
not risk any issues related to traditional path planners, removing a possible source of mission
failure. The return-to-base records a list of breadcrumb waypoints at a certain time interval as
BW = [BW 1,BW 2, . . .] with each waypoint consisting of position and heading (yaw) ref-
erences as [ p̂x

W , p̂y
W , p̂z

W , ψ̂ + π], e.g. following the previously travelled path but with the
heading in the opposite direction as to increase the chance of detecting a previously obscured
artefact on the way back.

The mission behavior of COMPRA can be found in Figure 5.4 and consists of four stages:
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Figure 5.8: Visualization of the object detection pipeline: The YOLO modules provides bounding boxes
with artefacts and the localizer combines depth camera images and the global-frame robot pose estimate
to localize artefacts in the generated map.

Figure 5.9: Examples of false positive detections during COMPRA missions, which are the reasons for
the object validator. The validator rejects these detection hits on the basis of size of the object and the
detection confidence.

1) Initialization and take-off. The UAV arms itself (goes into autonomous mode) and initiates
a take-off sequence based around not aggressively tracking the position and heading states
to limit excessive initial maneuvering as the risk of state-estimation drift is largest during the
initial upward acceleration if movevents are rapid. 2) Once stable in the air, the APF and DPHR
modules take over and the exploration stage is executed by reactively following the main tunnel
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branch by aligning the heading to the deepest visible area. 3) The mission timer Tm is equal
to the desired exploration duration Tm = Texplore the return-to-base is initiated. Breadcrumb
waypoints are followed while keeping the APF active for local navigation. 4) When the UAV
has reached the end of its return trajectory a landing command is triggered and the UAV lands
and disarms itself, ready to be collected or deployed again by an operator. This stage will also
be extended in Section 5.6.2 by a visual servoing based guided landing, for a precise landing
maneuver to land back into a deployment base station.

5.5 Search-and-Rescue
The following section will detail the experimental evaluation of COMPRA missions in the
search-and-rescue context. The missions are performed at an underground tunnel facility be-
low Mjölkuddsberget, Luleå, Sweden, as well as at a mining facility at the Epiroc Test Mine
near Örebro, Sweden. In general, these mission are constructed in the context of shorter di-
rected missions where artefacts of interest are placed further into the unknown environment,
and the goal is to navigate through the tunnels while mapping the area and detecting the arte-
facts. The experiments include narrow tunnels, wide tunnels, voids ,dust & darkness, and in
general present a variety of different navigation conditions. This section also includes the com-
bination of COMPRA with another autonomy framework [136, 171] for a legged robot, where
the legged robot acts as a carrier of the aerial robot, and the aerial robot provides the capabil-
ity to enter into unknown areas that could be blocked from entry by a ground-based platform.
Together they form what we denote as a multimodality robot framework, that can combine the
maneuverability of the UAV with the long battery life of the legged robot, for more complex
mission execution. This section will shortly summarize the multimodality framework and the
motivation behind it, before its field evaluation.

5.5.1 COMPRA Deployment
The COMPRA stack is deployed in fully autonomous complete missions into unknown sub-
terranean tunnel environments. The following video link provides the real-time navigation and
detection behavior for the following experiments to be presented (and a few more): https:
//www.youtube.com/watch?v=xHmeX7a8A3g. Figures 5.10-5.13 show the generated
pointcloud maps of the environment with the global-frame artefact detection hits, and the green
line highlights the exploration (and return) paths of the robot. The figures also show snapshot
images from the onboard camera for critical moments during the mission such as artefact hits
or moments of stressed collision avoidance.

Figure 5.10 shows a mission in a curving narrow tunnel, where many artefacts were placed
along the tunnel. Figure 5.11 shows a mission in a narrower tunnel, with multiple junctions
where the UAV stays in the main branch. That area also had difficult obstacles along the way
such as a metallic scaffolding (see snapshots in figure) where the reactive APF saves the robot
and maintains a safe distance. Figure 5.12 shows a shorter mission into a very narrow (less
than 2m in places) and upward sloping tunnel, where the COMPRA reactive system keeps
the UAV comfortably in the center of the tunnel despite the very difficult terrain. Figure 5.13
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Figure 5.10: COMPRA mission in a curving tunnel environment approximately 3 meters wide. The
figure shows the generated map with detected artefacts (top) and snapshots from the onboard camera
during the mission (bottom).

shows a mission from the Epiroc Test Mine, in significantly wider and more open tunnels of
around 10−12m. The video also shows two more missions in an open void area as well as at
the Callio Pyhäsalmi Mine, Pyhäjärvi, Finland. In all these missions the average exploration
speed was around 1m/s.

In general, 15 out of 17 artefacts (all missions in the video) were detected and found, and
there was zero false-positive detections that passed the object validation process. As can be
seen in the Figures there were also no duplicate detections of the same artefact. There was no
ground truth to validate the precision of the localization and object detection system though.
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Figure 5.11: COMPRA mission in a obstacle filled tunnel section and critical moments during the
mission. (A), (C), (E), (F) shows artefact detection hits while (B) and (D) show collision avoidance
situations during the mission.

Throughout all missions, the COMPRA navigation stack provided safe navigation where the
UAV is kept at the center of the tunnel, and provides smooth continuously forward exploration.
The closest the UAV ever got to an obstacle or wall was 0.54m, based on the LiDAR range
measurements. COMPRA is demonstrated to work well in a variety of tunnel environments
and has the capability to enter into and navigate through narrow constrained tunnels.

We performed an extra shorter experiment without artifacts in the curving tunnel area (the
area in Figure 5.10) trying to push the navigation speed. We could easily reach an average of
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Figure 5.12: Shorter COMPRA mission in a narrow cave of less than 2 meters width, with an upward
slope.

2.3m/s after the initial acceleration, and the velocity (magnitude) from that mission can be
seen in Figure 5.14. In the COMPRA framework, the mission velocity is not constrained by
computation time, map update rates, or similar navigation-related limitations due to its purely
reactive nature, and as such to increase the velocity we simply increase the weights related
to position reference tracking in the NMPC for a more aggressive following of waypoints.
As seen, the velocity can be kept relatively consistent throughout the mission as there are no
”transition points” from one trajectory to the next since the waypoint is continually updated
by the reactive exploration scheme. The dips seen in Figure 5.14 simply represent instants
where the adaptive weights scheme reduced the speed due to the proximity of an obstacle,
and the velocity never dropped below 1.6m/s. The smoothness of the navigation even at
high velocities in constrained environments (curving mining tunnel) is a major outcome of the
COMPRA framework.

High-speed navigation in narrow or constrained subterranean environments is a very dif-
ficult problem, and other related works are evaluated (in real-life constrained environments)
up to: 0.1m/s [10], 0.4− 0.5m/s [172], 0.5m/s [173], 0.5m/s [174], 0.75m/s [114], as
compared to the 0.9−1m/s full mission speed and the 2.3m/s of the high-velocity COMPRA
mission. As far as the author knows, the fastest field deployment subterranean flight outside
of COMPRA was 1.8m/s [110]. Although not a perfectly fair comparison as the COMPRA
navigation stack is specifically designed to reactively explore and navigate tunnels and can not
do much more than that, the comparison can highlight effectiveness of the reactive navigation
method.
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Figure 5.13: COMPRA mission in a wider tunnel at the Epiroc test site. Total mission length of around
200 meters. Detected reflective jackets were placed to mimic ”survivor” artefacts.

5.5.2 Multimodality Robotic Missions

Framework Overview

A separate line of research towards the DARPA SubT challenge objectives and robotic seach-
and-rescue focused on the combination and collaboration of different robotic platforms. Dif-
ferent platform types can bring different capabilities to the table such as payload, operational
duration (battery), terrain traversability, and of course the 3D maneuverability only aerial plat-
form bring to the table.

In contrary to ground robots, aerial robots have very limited battery endurance when equipped
with extra payload that incorporates a full sensor suite with onboard computation power. This
payload is required to allow them to execute a fully autonomous exploration or search-and-
rescue task and limits their maximum mission duration e.g. there is a sharp trade-off between
autonomy level and flight time [123]. However, for aerial robots the traversability level of
ground terrain is irrelevant, and access to blocked passages is only limited by the size of the
aerial robot. As discussed, subterranean terrain, especially after a seismic event or other dam-
age, can offer extreme challenges when it comes to traversability of the terrain (rocks, loose
gravel), and certain passages or tunnels that contain survivors or other objects of interest might
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Figure 5.14: Navigation velocity magnitude for a shorter mission in the curving environment shown in
Figure 5.10. COMPRA maintains a high velocity throughout the mission, and averages around

2.3m/s

.

be blocked off completely from ground robots.
Due to these kinds of challenges, hybrid locomotion and multimodal robots have shown

promising results in a variety of tasks where extending the terrain traversability of the robot
is critical, such as; wheeled-legged robots for inspection tasks in difficult terrain [175], or
for combining ground and aerial capabilities, robots such as the Drivocopter [176] have been
attempted as well.

This section of the thesis will present a different direction, where a legged ground robot
acts as the carrier of an aerial agent forming a multimodality combined robot system, seen in
their full sensor suits in Figure 5.15, thus mitigating the expended flight time to reach the de-
sired exploration location (e.g. the blocked passage, or hard-to-reach area) without sacrificing
mobility. As pictured, the legged robot is also equipped with a custom-built landing platform
that locks the UAV in place when it is not operational. The legged robot carries the same sensor
and computation kit as the aerial robot.

This thesis will not go into detail on the legged robot autonomy kit. Instead the reader
can find more information in the related works [136, 171] and in the published work on mul-
timodality robots [129], but a high-level description of the mission behavior execution can be
seen in Figure 5.16. In short, assuming a partially known map of the area an operator defines
a deployment point pdep that the legged-aerial system should navigate to, using the risk-aware
path planner DSP [136] in combination with the Cartographer localization framework [177].
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Figure 5.15: Multimodality robotic system for field deployment. The Boston dynamics Spot is com-
bined with a custom-built quadcopter.

The operator defines the tunnel direction that COMPRA should be deployed in as well as the
mission parameters Texplore and pm

z . Once pdep is reached, the aerial autonomy is initiated and
the COMPRA mission can begin. The legged robot, the UAV, and the landing platform com-
municate with simple commands and flags that define when a certain action is completed but
otherwise do not otherwise coordinate between them during mission execution.

Field Evaluations

The multimodality mission is evaluated in the same subterranean compound as the COMPRA-
only missions previously discussed. Two missions are included in this thesis that prioritize
different components of the combined mission: 1) A longer mission that simulates as well as
possible the DARPA SubT Challenge scenario. The robots start at the entrance to the com-
pound, and the deployment point is selected around 120m into the area in a junction. The
COMPRA framework is then directed to explore an unknown section of the tunnel where mul-
tiple artefacts have been placed and return to the deployment point. At the time of performing
these missions the capability to land back on the platform with high precision in the low-light
conditions was not yet developed, but a similar scenario is considered later in Section 5.6.2.
2) The second mission is a shorter mission where we target the blocked passage scenario. Here
an entry to a tunnel is blocked and not accessible to the legged robot. Instead, the UAV can be
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Figure 5.16: Simple mission execution workflow for the combined legged-aerial mission that was used
in the following field evaluation.

deployed over the barrier to find the survivor placed in the blocked tunnel.

For the longer mission, the reader should watch the real-time mission execution at the
following video link: https://www.youtube.com/watch?v=0p56NkUD_Q8. Figure
5.17 show mission snapshots during critical moments during the combined mission, while the
complete generated pointcloud map, that includes the traversed path and the detected artefact
can be found in Figure 5.18. Figure 5.19 shows the detected and localized artefacts discovered
during the mission.

The blocked passage mission can similarly be seen in Figure 5.20, where we have simulated
a blockage of one of the passages. The UAV maneuvers over the blockage and can reached
the constrained tunnel where the legged robot could not. The survivor artefact is located in
a place that could not be reached by a single robot, highlighting the unlocked capabilities
of the combined framework. Figure 5.21 shows the map generated by the robots, and the
total volumetric gain as the explored volume by both robots, again highlighting the extra area
reached by the deployed aerial agent.

In general: utilizing the presented legged-aerial quick deployment framework, the mission
was easily repeatable without inconsistencies in mission behavior and without any submodule
failures such as the robots getting stuck, environment interactions, or large state estimation
drifts or jumps.
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Figure 5.17: Snap shots from the full mission. Spot-UAV system approaching deployment point (top
left), deployment point reached (top right), aerial agent take-off (middle left), hard hat detection from
onboard camera during COMPRA mission (middle right), survivor detection (bottom left), and aerial
agent return to deployment point (bottom right).
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Figure 5.18: Generated pointcloud map and traversed path for the multimodality framework during the
mission, highlighting the start, deployment point, and location of artefacts.

Figure 5.19: Artefacts detected and localized during the mission.

5.6 Towards Routine Robotized Inspection of Underground
Mines

As has been discussed previously, underground mines present very challenging conditions for
autonomy, but due to the inherent risk to human workers performing routine inspection tasks
after blasting, or surveying a closed-off area after a seismic event, they also offer significant
industry-driven use-cases for autonomous field robots. This section will continue to present
the deployment of the COMPRA framework but in this case not for search-and-rescue mis-
sion but as a tunnel inspection and mapping framework. COMPRA will also be extended by
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Figure 5.20: Simple mission execution workflow for the combined legged-aerial mission that was used
in the following field evaluation.

Figure 5.21: Simple mission execution workflow for the combined legged-aerial mission that was used
in the following field evaluation.

the addition of a high-precision guided landing using a downward facing camera, such that
is can be deployed and land back into an integrated base-station. Finally, this section will
also overview another autonomy framework focusing on a more generalized approach to in-
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spection missions where an operator selects a series of waypoints to be inspected through a
GUI in a known map of the area. The thesis includes two evaluation scenarios for that frame-
work: visual safety inspection after blasting in a salt mine, and the autonomous monitoring
of gas concentration through an onboard sensor. As the following demonstration are much
more related to direct industry collaborations and research project, the author would like to
thank our collaborators in the mining industry for the rare opportunity in evaluating our au-
tonomy frameworks in realistic mining conditions; Epiroc Rock Drills AB, K+S Group, and
Luossavaara-Kiirunavaara AB (LKAB). Additionally, the research projects that enable such
a collaboration; illuMINEation [178], Next Generation Carbon Neutral Pilots for Smart In-
telligent Mining Systems (NEXGEN SIMS) [179], and the Sustainable Underground Mining
(SUM) Academy Programme [180].

5.6.1 Inspection and mapping of tunnels with COMPRA

Tunnel areas in underground mines can benefit from routine inspections, whether that is re-
mapping an area after a blast and drilling operation, creating the local map of the tunnel area if
it was not mapped beforehand, or surveying a damaged unsafe area. These inspection tasks can
be tedious, time consuming, and expensive when performed by workers carrying camera and
LiDAR sensors around, in addition to the potential danger when entering certain areas. This
section will demonstrate how the COMPRA framework can be deployed for that purpose. Two
environments are used for the evaluations: The Epiroc Test Mine near Örebro, Sweden, and in
the largest underground iron mine in the world, operated by LKAB in Kiruna, Sweden, where
tests were performed at over 1200m depth under the ground.

For an overview of three missions performed at the Epiroc Test Mine, the reader should
view the experiment video at: https://www.youtube.com/watch?v=4aXwCiOEfx4.
The three experiments were as follows: 1) A scenario where various rock piles and other ob-
stacles were added to a tunnel area that COMPRA was to navigate through that can be seen in
Figure 5.22, 2) A longer mission (without return) in a huge multi-branching tunnel area that
can be seen in Figure 5.23, and finally 3) A scenario that simulates a rockfall or tunnel collapse.
Here a large almost 2m high rock pile was added to block off the tunnel, and the COMPRA-
enabled UAV was sent to investigate and survey the area behind the simulated rockfall, where
no human worker would be allowed to enter. That mission is visualized in Figure 5.24. In all
three scenarios the reactive COMPRA framework provides smooth and consistent navigation
behavior through the tunnels, and provides a 3D reconstruction of the area combined with vi-
sual inspection data from the onboard camera. The UAV could easily navigate over and past
the blocked area and provided critical inspection data as to the state of the tunnel on the other
side. As the mission is easily directed towards the tunnel area to be explored and inspected, and
the flight relatively fast while always keeping in the center of the tunnel, the missions could
very quickly and rapidly be deployed to inspect the critical unsafe or unmapped areas.

Finally, we evaluate the COMPRA framework for its efficient and quick exploratory nav-
igation in an LKAB tunnel at over 1200 meters depth. The mission is to explore the tunnel
for as long as possible without returning to base, in order to evaluate the framework on a very
large scale. Due to COMPRA’s reactive nature, both its navigation speed and scalability are
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Figure 5.22: Resulting pointcloud reconstruction from fully autonomous exploration mission, and sam-
ple of visual inspection data from onboard camera. Exploration path for COMPRA autonomy (green).
Around 200m total flight path.

unrelated to computation times from grid-search path planning or similar. Figure 5.25 shows
the resulting surveyed tunnel area where the COMPRA stack explored over 800m of tunnel
fully autonomously, at a rapid 1.6m/s exploration speed. To the best of the authors knowl-
edge, this would constitute the largest subterranean area explored by a single UAV mission in
the literature and was executed in less than 10 minutes. The LIO-SAM [26] framework also
showed great scalability and resilience to self-similarity during this large-scale tunnel mission.

5.6.2 Deployment from integrated base-stations
A challenge when it comes to inspection of hazardous areas or as a disaster response is that due
to the massive size of the mines, an autonomous robot can not always reasonably be deployed
by an operator on the surface or from a distant safe area in the mine in order to perform the
safety inspection tasks. Instead, autonomous robots can become part of the infrastructure in the
mine, being deployed from integrated base-stations that offer protection from the environment
outside of operations while allowing faster access to the area of interest, charging, and data
transfer. This concept is already a reality and sees partial use in the mining industry [181]. This
section will extend the COMPRA framework to be deployed from a custom-built base-station
through a visual servoing based guided landing for high precision landing maneuvers. This
can also be seen as an addition to the previously discussed multimodality framework, where
landing back on the legged robot could become a possibility with this extension. Figure 5.26
shows a custom built and 3D printed demo-version of such a base-station capsule, specifically
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Figure 5.23: Resulting pointcloud reconstruction from a larger-scale COMPRA mission in a tunnel
environment. Exploration path for COMPRA (green).

Figure 5.24: Navigation over in a rockfall scenario (approx. 2m high rock pile placed to fully block the
tunnel), and resulting pointcloud reconstruction of the other side.

designed for the custom built quadcopter (Figure 5.3) that has been used throughout the thesis.
The landing system is using a downward-facing monocular camera, and a QR-code placed

on the landing platform, where we used the tracker in [182]. Additionally, simple commands
confirming task-completion are sent between the UAV and the capsule’s computer. The rea-
son guided landing is needed is that very slight drifts or errors in state-estimation during the
mission could lead to the origin pose no longer being perfectly aligned to the center of the
landing platform. Only a few centimeters of error could lead to an unsuccessful landing, espe-
cially when compounded with the general state-estimation noise and controller imperfections,
and as such loop-closure with a tracked target is needed. For adding guided landing to the
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Figure 5.25: COMPRA exploration of a large-scale mining tunnel. The complete map (top), navigation
path (in green) and reconstructed infrastructure (bottom left), and navigation past and reconstruction of
a rockpile (bottom right).

COMPRA mission, the visual servoing module is handled through the same NMPC used dur-
ing the mission, where weak integrators are added to the roll, pitch, and yawrate commands
to slowly eliminate model-mismatch and steady-state errors such that the UAV over time is
perfectly aligned with the tracked QR code pose. The strategy to achieve high accuracy in
landing precision was slow movements as there is both state-estimation and tracking measure-
ment noise during the guided landing, exacerbated by low-light conditions. The landing is
triggered only if the average values of a buffer of distance and heading angle measurements of
the relative QR-code pose are below the desired accuracy bounds (here 4cm, and 0.05rad, to
ensure a successful landing and ”lock in”). The landing system was tested in an area the reader
should be familiar with at this point, that being a curving tunnel area at Mjölkuddsberget,
Luleå, Sweden, consisting of around 3.5m wide tunnels where the base-station capsule is
placed at a central juction area. The mission execution can be found in the following video
link: https://www.youtube.com/watch?v=fCht4aQfP2M, while figure 5.27 dis-
play critical moments during the mission. Through the guided landing maneuver, the UAV
smoothly lands back with only a few centimeters drift despite low light, estimation noise,
and the downwash effect from the rotors. This demonstration and addition to the COMPRA
framework shows the potential to add autonomous UAVs as part of the mining infrastructure
to enable inspection missions without any operators entering the mine.

Towards a similar direction, the guided-landing enhanced COMPRA mission was also de-
ployed from the mining machine itself. As the machines are already operating in the mine,
they can act as the carriers of the UAV platforms for their missions, or rather the UAVs can
act as the eyes of the machine to perform precise scouting och inspection tasks around the
machine. For example the autonomous planning of extraction operations after blasting could
utilize the UAV that is deployed from the mining machine to generate a reconstruction of the
area before the machine is sent in. COMPRA was deployed from an Epiroc machine at the
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Figure 5.26: Demo version of a base-station capsule for drone mission integration. The capsule opens
as the COMPRA mission is initiated, and closes as the guided landing sequence is completed. In case
the landing is imperfect, the design allows the UAV to be mechanically re-aligned to the start position. 1
- Canopy element, 2 - Push bar 3 - Push bar linear actuator, 4 - Push bar stepper motor, 5 - Canopy pivot,
6 - Canopy stepper motor, 7 - Limit switch (end stop), 8 - Landing plate, 9 - Side cover, 10 - Vibration
dampener, 11 - Main frame

Epiroc Test Mine and we used the guided landing to land back on a landing platform on top of
the machine, landing back with an accuracy of a few centimeters. The mission can be seen at:
https://www.youtube.com/watch?v=6KZTQVDWuQY.

5.6.3 A General Operator-guided Inspection Framework for Mining Ar-
eas

Framework Overview

This framework relates to performing inspection missions in a known and already mapped area,
which we will denote as the Routine Inspection Autonomy (RIA) framework. The problem
formulation that RIA is to solve can be seen as: from a set of operator provided waypoints or
view points in the known map, plan the safest and shortest route to visit all inspection points
fully autonomously while re-mapping the area and again providing inspection information from
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Figure 5.27: Simple mission execution workflow for the combined legged-aerial mission that was used
in the following field evaluation.

whatever sensor payload is onboard the UAV. This framework assumes that there exists an
occupancy map [99] of the area that is used for path planning, and a pointcloud map that is
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used for localization and for clicking the waypoints to be inspected. The complete framework
can be seen in Figure 5.28, with a descriptive caption, where the inputs to the framework is a
list of waypoints to be visited, as well as the occupancy and pointcloud maps of the area. In this
framework, the DSP [136] 3D gridsearch path planner is combined with a travelling salesman
problem (TSP) route optimization [90] and relocalization in pointcloud maps via the 3DEG
framework [183]. Supportive autonomy modules is the Octomap [99] occupancy mapper, and
the local autonomy presented in [184] (Chapter 3), with the exception that FAST-LIO [185]
is used for localization as it supports re-localization on a provided known map. Autonomous
UAVs have the potential perform inspection missions of active mining areas in order to, for
example, secure that the integrity of the mining face and hanging walls are maintained or
that gas concentrations are below dangerous levels, without the need for human workers to
enter the area and subject themselves to the potential risk. Additionally, routine inspections
in tunneling areas can provide operators with information regarding rockfalls, misplaced or
broken equipment, faulty pipes, water leakage, etc. in the inspected section of the mine, that
could then be used to update mine plans for more efficient operations.

Field Evaluations

Field trials were performed for two critical use-case scenarios, that being: 1) Visual and Li-
DAR inspection after a blasting operation to make sure that the hanging walls, mining face,
and the tunnel itself are safe for the mining machines and workers to enter. This scenario was
performed at the K+S Group Werra salt mine in Germany, in a large-scale mission scenario
where the UAV visits multiple drifts and mining faces. And 2) a scenario where the UAV has
been equipped with a gas measurement sensor (Dräger X-AM 5000), where we have simulated
a scenario with an increased carbon monoxide (CO) concentration to be located (one of the
critical gasses to be weary of after blasting in the mine) by running the diesel engine of a large
mining truck at the Epiroc Test Mine. Central to the demonstration is the ability to link the
real-time gas measurements with the onboard localization system such that each measurement
is associated with a position coordinate in the mine. The mission setup for the after blasting
mission can be seen in Figure 5.29 that shows the operator-provided inspection waypoints as
well as the 3D pointcloud map used for re-localization. The full mission can be seen in the
following video: https://www.youtube.com/watch?v=6QtFWSjXWf0, that high-
lights the extreme levels of dust in this specific mine which was a major challenge. Figure 5.30
shows the resulting optimized and safe inspection route from combining the DSP algorithm
with the travelling salesman route optimization, while Figure 5.31 shows some snapshots from
the mission execution and the resulting visual inspection.

The autonomous UAV successfully navigates through the area and visits the desired in-
spection points with a total mission length of over 350m at around 0.9m/s navigation speed,
while demonstrating robot-safe and efficient navigation throughout the mission via the DSP
path planner and the local autonomy kit. The constrained NMPC handled the wind gusts from
the ventilation system, and the APF collision avoidance system could handle the large amounts
of dust with some tuning efforts. The UAV enters areas that were deemed unsafe (as the ceil-
ing had not been secured by rock bolts yet in some areas of the drifts), and provides fully
autonomous inspection data to operators that could be located on the surface or kilometers
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Figure 5.28: The Routine Inspection Autonomy (RIA) and mission behavior. Assuming a known point-
cloud map {MMM} and occupancy gridmap {GGG} of the environment, the 3DEG relocalization framework
estimated the initial robot state x̂0, which is given as an initial guess to FAST-LIO. After an operator
provides a series of desired inspection waypoints wp1,wp2,wp3 . . .wpn, a route optimization generates
the optimal order of visiting waypoints, and after that the mission is initiated. The DSP path planner
plans robot-safe paths to each waypoint in order, and the local autonomy stack executes the path. After
all waypoints are visited, DSP plans the path back to the initial robot position p0.

away if. This type of mission, if fully integrated to the mining workflow, would enable the
mine managers and operators to much more quickly and efficiently orchestrate the extraction
process after blasting, and without having to send any human workers into potentially unsafe
areas. The gas concentration monitoring mission can be seen in Figure 5.32. This was a shorter
mission, designed more as a proof of concept of autonomous UAVs operating in underground
mining areas while equipped with gas sensors. Notably despite the propeller downwash the
higher gas concentrations were located with relatively high accuracy around the exhaust of the
mining vehicle, and despite low overall concentrations the sensor could easily pick up the dif-
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Figure 5.29: Pointcloud map used for planning and localization, and the desired inspection waypoints.
The teal line shows the planned path to the first waypoint. The momentary raw pointcloud scan is shown
in red.

Figure 5.30: The full optimized inspection route (green) solved for using a Travelling Salesman Problem
in combination with the DSP algorithm.

ference. This mission should be seen as an enabler for the measurement and localization of
high gas concentrations, for example after blasting, without the need for any human operator
to enter the mining area where the blast took place and expose themselves to potentially dan-
gerous gas levels, which has potentially massive impact for the efficiency and safety of mining
operations.
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Figure 5.31: Visual inspection of a mining drift with a muckpile from onboard camera (top left), UAV
during the autonomous inspection mission when entering a drift (top right), sample of pointcloud recon-
struction of the area from onboard 3D LiDAR (bottom).

5.7 Concluding Remarks

This chapter has demonstrated the potential that autonomous robots have in the context of de-
ployment in subterranean environments. These demonstrations were made possible through
the developed COMPRA framework, a fully reactive navigation and perception stack that was
deployed for a variety of missions and extensions, as well as the RIA framework used for an
operator-guided inspection of mining areas. The COMPRA mission was deployed for search-
and-rescue missions, with a focus on the context of the DARPA subterranean challenge, where
the UAV successfully could navigate the subterranean tunnel areas, as well as detect and lo-
calize objects of interest. The COMPRA mission was then also deployed for routine tunnel
exploration missions in real field mining environments. Additionally, the fully reactive naviga-
tion style of COMPRA allowed both very fast navigation (and as a result also very large-scale
missions), as well as navigation in narrow and constrained areas. Successful demonstrations
of extensions to the COMPRA framework were also included where the COMPRA-enabled
UAV was deployed first from a legged robot in the search-and-rescue context, and then from
an integrated base-station capsule where a visual-servoing guided landing could provide a suc-
cessful landing back into the base-station capsule. The RIA framework was deployed in very
harsh real mining conditions to perform visual inspection and remapping after blasting in a
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Figure 5.32: Simple mission execution workflow for the combined legged-aerial mission that was used
in the following field evaluation.

salt mine, as well as the monitoring of gas concentrations. In all instances the RIA navigation
stack provided robot-safe paths, and the UAV could enter unsafe areas to give operators a view
of the state of the mining face. While the academic contribution of this chapter also includes
the research into the autonomy modules that enable such missions, the major outcome can be
said to be the field work itself. It is quite rare in the literature for such extensive and realistic
evaluations to be performed, especially in the real field environments. The continued pursuit
of demonstrating use-case oriented missions, in collaboration with the mines, has massive po-
tential in presenting this novel technology to the industry. And through the adoption of this
technology, many safety risks can be reduced in routine inspection tasks in the mining indus-
try, as well as in the monitoring of subterranean areas after an accident for both surveying and
for assisting rescue teams in finding survivors.

124



CHAPTER 6

Conclusions

6.1 Summary of Obtained Results

This section will summarize the results and finding in Chapters 2-5, related to the stated goals
and contributions discussed in the introduction to this thesis. The stated vision of this thesis
was to ”further the application areas of completely autonomous robotic platforms by extend-
ing their navigation capabilities: towards avoiding obstacles in their environment both static
and dynamic, towards the critical perception-actuation link for reactive navigation, towards
exploring and planning dynamic paths through previously unknown areas, and towards the
coordination and safety in multi-agent robotic systems.”

Towards this overarching goal, the thesis has presented two collision avoidance frame-
works, one based on constrained NMPC and the other on Artificial Potential Field concepts.
Together, they have demonstrated collision avoidance of dynamic obstacles, safe human-robot
interactions, and safe navigation in field environments. Two different directions for the percep-
tion link to the avoidance systems are considered, where the NMPC used obstacle detection
via 2D Lidar and RGB-D cameras to form set-exclusion constraints, while the APF was cen-
tered around using the raw 3D LiDAR pointclouds to form repulsive forces. The APF was
briefly evaluated for multi-agent systems, and the NMPC much more conclusively where ten
agents demonstrated safe navigation in dense aerial swarms using a distributed trajectory shar-
ing approach. Out of the two, the NMPC demonstrated significant performance in generating
smooth proactive avoidance maneuvers in challenging scenarios, while maintaining the safety-
guarantees of the platform. At the same time, the APF saw significant use in field applications
in the later chapters due to the fail-safe nature of using only raw 3D LiDAR data, and it was
used in a variety of other works as a local autonomy stack as well.

On the topic of exploring unknown areas, this thesis has presented three different naviga-
tion methods. First, two reactive frameworks are demonstrated in subterranean field conditions.
One based on the reactive 3D LiDAR APF, and the other based on depth camera information
which we denoted as the Deepest-Point Heading Regulation Technique (DPHR). Reactive ex-
ploration ideas dominated the field work in chapter 5 in the context of subterranean search
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and rescue and inspection missions in underground mines through the COMPRA framework.
The reactive methodology to underground navigation enables very fast deployment, rapid nav-
igation, and most importantly very consistent navigation in the specific environment it was
developed for. The third method was more closely aligned with other state-of-the-art methods,
ERRT, using a tree-based method for ”next best view”-style exploration. ERRT was demon-
strated for large-scale simulations in the DARPA SubT Challenge worlds, in complex environ-
ments with narrow tunnels, junctions, and voids. The framework was also deployed on real
hardware in a subterranean field environment, there combining ERRT with the APF and local
autonomy kit developed in chapter 3, to form a complete navigation stack from the controller
to the exploration module that was developed completely in the works of this thesis.

All considered frameworks and algorithms have been evaluated on real hardware experi-
ments, which was another large focus of the thesis and its included works. While a large part
of the experiments in chapter 2 (except section 2.7.2) were demonstrated on smaller platforms
and with assistance frommotion-capture systems, all the works in chapters 3-5 were not only
evaluated in hardware experiments, but also in field environments. The robot and the related
algorithms operated in complete autonomy, not relying on operator input during run-time, nor
external sensing or computation. Instead, the robots are fully self-reliant in their autonomy
approach, furthering the stated goal of advancing the navigation capabilities for autonomous
robots in field application scenarios.

6.2 Limitations & Future Works
The limitations and future works are best presented chapter by chapter. The following bullets
summarize ideas, limitations, and extensions of the presented works:

• Chapter 2 - Nonlinear MPC for Obstacle Avoidance: A clear direction for extending
the frameworks is looking at different solvers and different MPC formulations such as
the chance-constrained MPC [186] or Tube MPC [187] which could offer advantages in
the context of obstacle and state uncertainty. Considering the additions to the baseline
framework, a better and more general coupling of perception systems to the obstacle
avoidance constraints needs to be considered, for example forming set-exclusion con-
straints from a local subset of an occupancy map, especially for 3D obstacles. Similarly,
towards trajectory prediction, boot-strapping methods [53] or potentially learning meth-
ods could generalize trajectory prediction for dynamic obstacle scenarios. Both of these
extensions attack the one limiting factor of the presented works: the difficulty in deploy-
ing the constraint MPC in real field environment which require reliable and generalized
perception solutions.

• Chapter 3 - Navigation based on Fully Reactive Artificial Potential Fields: The concepts
displayed in this chapter were, according to the author, very interesting and only investi-
gated on a surface level. The fundamental limitation was that the reactive navigation con-
cepts were never coupled with a higher level mission planner. Two direction are of inter-
est here: 1) combining a variety of fully reactive behaviors into more complex missions
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for example an explore-inspect mission [188], where the robot would perform a challeng-
ing mission type but only involve reactive components. 2) The combination of reactive
behavior to semantic understanding, scene graphs [189], semantic mapping [190] etc.
for a more human-like navigation process. We do not plan global exact routes when
moving from place to place, instead we use picture-memories and semantics maps of
our environment combined with locally avoiding obstacles and traversing terrain. This
type of navigation style could have great potential for robotic missions, and is a step in
the opposite direction of gridsearch-, graph-, or sampling-based path planning on global
occupancy maps.

• Chapter 4 - Combined Exploration-Planning in 3D Environments: The ERRT algorithm
has multiple direction for future works. An obvious one is integrating a globalization
strategy based on ”remembering” high information goals from previous tree-expansions,
coupled with utilizing a backtracking approach to reach those locations for new local ex-
ploration, again avoiding the need for global path planning. The general ERRT structure
is also very fitting for an extension into multi-agent or multi-modality exploration using
robots with different actuation/traversability or equipped with different sensors, which
could be reflected in their revenue functions for the sampled goals.

• Chapter 5 - Field Deployment in Subterranean Environments: As this chapter does not
evaluate some specific component, it is harder to state direct directions of future works.
The multi-modality framework could be extensively expanded in the ability for the robots
to collaborate. The prospects of using autonomous robots in mine rescue scenarios is
very promising, and further investigations into the ability to fly in smoke, the ability to
traverse collapsed tunnels, and sharper field demonstrations with a closer collaboration
with mine rescue personnel is desirable. The same for general mine monitoring and
inspection, where the technology is closing in on being able to achieve the real needs of
the industry. Other industries of interest are forestry and construction, with both similar
and different challenges, but where many concepts on increasing safety and efficiency of
inspection tasks remain the same. Field robotics is in an incredibly interesting stage at
the moment, with endless possibilities, but also with realistic visions for the near future.
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Agha-mohammadi, and G. Nikolakopoulos, “Multimodality robotic systems: Integrated
combined legged-aerial mobility for subterranean search-and-rescue,” Robotics and Au-
tonomous Systems, vol. 154, p. 104134, 2022.

[130] V. K. Viswanathan, S. G. Satpute, B. Lindqvist, C. Kanellakis, and G. Nikolakopoulos,
“Experimental evaluation of a geometry-aware aerial visual inspection framework in
a constrained environment,” in 2022 30th Mediterranean Conference on Control and
Automation (MED). IEEE, 2022, pp. 468–474.

[131] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings
1997 IEEE International Symposium on Computational Intelligence in Robotics and Au-
tomation CIRA’97.’Towards New Computational Principles for Robotics and Automa-
tion’. IEEE, 1997, pp. 146–151.

139



[132] ——, “Frontier-based exploration using multiple robots,” in Proceedings of the second
international conference on Autonomous agents. ACM, 1998, pp. 47–53.

[133] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collaborative multi-robot
exploration,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
vol. 1. IEEE, 2000, pp. 476–481.

[134] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning robot for
search and rescue applications: Exploration in unknown cluttered environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617, 2019.
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