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A B S T R A C T

Localization algorithms that rely on 3D LiDAR scanners often encounter temporary failures due to various
factors, such as sensor faults, dust particles, or drifting. These failures can result in a misalignment between
the robot’s estimated pose and its actual position in the global map. To address this issue, the process of global
re-localization becomes essential, as it involves accurately estimating the robot’s current pose within the given
map. In this article, we propose a novel global re-localization framework that addresses the limitations of
current algorithms heavily reliant on scan matching and direct point cloud feature extraction. Unlike most
methods, our framework eliminates the need for an initial guess and provides multiple top-𝑘 candidates
for selection, enhancing robustness and flexibility. Furthermore, we introduce an event-based re-localization
trigger module, enabling autonomous robotic missions. Focusing on subterranean environments with low
features, we leverage range image descriptors derived from 3D LiDAR scans to preserve depth information.
Our approach enhances a state-of-the-art data-driven descriptor extraction framework for place recognition
and orientation regression by incorporating a junction detection module that utilizes the descriptors for
classification purposes. The effectiveness of the proposed approach was evaluated across three distinct real-life
subterranean environments.
1. Introduction

In recent years, there has been a growing emphasis on the explo-
ration of GPS-denied environments using autonomous robots. These
environments pose unique challenges, including harsh conditions, poor
illumination, lack of structure, and uncharted territories. Consequently,
there is an increasing demand for robust algorithms that can effectively
navigate and explore these challenging environments while ensuring
the safety of human operators (Lindqvist, Karlsson, et al., 2022; Niko-
lakopoulos & Agha, 2021). In the context of exploration or navigation
missions, having access to a reliable global map is crucial. Such a map
provides valuable information for tasks such as path planning, coor-
dination of multiple robots, and localization of objects and survivors
in Search And Rescue (SAR) missions. However, even with a global
map, localization algorithms often encounter temporary failures due to
various factors, including sensor faults, dust particles, or drifting. These
failures can result in a misalignment between the robot’s estimated pose
and its actual position in the global map. To address this issue, the pro-
cess of global re-localization becomes essential, as it involves accurately
estimating the robot’s current pose within the given map. This enables
the resumption of missions in previously mapped environments or the
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correction of misalignment issues, ensuring the reliability and accuracy
of the robot’s navigation. While traditional approaches for place recog-
nition heavily rely on camera images due to their rich and descriptive
information, they often struggle with environment changes and are
not well-suited for low-light applications (Agha et al., 2022; Kominiak,
Mansouri, Kanellakis, & Nikolakopoulos, 2020). In contrast, LiDAR
sensors offer distinct advantages in challenging environments. They are
immune to appearance changes and variations in illumination, making
them highly reliable and robust sensing devices (Shan et al., 2020).
Moreover, recent advancements in deep learning techniques have fa-
cilitated the development of efficient data representations and feature
descriptors for LiDAR point clouds. These advancements have greatly
improved the performance of LiDAR-based methods in computer vision
tasks, including global re-localization (Du, Wang, & Cremers, 2020;
Schaupp, Burki, Dube, Siegwart, & Cadena, 2019). By leveraging these
LiDAR-based approaches, the limitations associated with environment
changes and low-light conditions can be overcome, making them a
viable and promising choice for addressing the challenges of global re-
localization and other computer vision tasks in complex and unexplored
environments (see Fig. 1).
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Fig. 1. (a) Initially, the LiDAR scan of the robot frame  and the point cloud map of the map frame  are not aligned. (b) During the re-localization process, the nearest submap
based on the indexes of the vectors in the 𝑘-d tree, highlighted in green, is selected to find the transform 𝑇 . (c) Finally, the LiDAR scan of the robot frame is aligned with the
map frame.
1.1. Related work

Predominantly, the global re-localization problem consists of two
stages: (a) place recognition, which identifies the frame in the map that
is topologically close to the current frame, and (b) pose estimation,
which calculates the relative pose from the map frame to the robot’s
current frame. Our proposed framework serves as a bridge between
descriptor extraction for place recognition and global pose estimation
within a prebuilt point cloud map. Therefore, we structure this section
into discussions of related work concerning learned descriptors for
place recognition and pose estimation, as well as available global
re-localization solutions in a point cloud map.

1.1.1. Learned descriptors
Descriptors can be categorized as handcrafted (He, Wang, & Zhang,

2016; Kim & Kim, 2018), learned-based (Du et al., 2020; Dubé
et al., 2018; Schaupp et al., 2019; Uy & Lee, 2018; Vidanapathirana,
Ramezani, Moghadam, Sridharan, & Fookes, 2021), or hybrid (Vidana-
pathirana et al., 2020). Handcrafted methods have the advantage
of not requiring re-training to adapt to different environments or
platforms. While methods like the well-known ScanContext by Kim and
Kim (2018) have demonstrated reliable performance across varying
scenarios, the discriminatory ability of such methods remains limited.
More recently, in the context of urban autonomous driving, Jiang
and Shen (2023) introduced Contour Context, a novel approach for
topological loop closure detection and accurate 3-DoF metric pose
estimation. The proposed method leverages the layered distribution
of structures within Cartesian birds’ eye view (BEV) images, obtained
from 3D LiDAR points. By extracting contour information from these
images and assessing their geometric consistency and similarity, the
approach achieves effective place recognition while optimizing relative
transforms.

Learned-based methods have shown promising results with the uni-
versal approximation function properties of neural networks (Hornik,
Stinchcombe, & White, 1989). In recent years, CNNs have become the
state-of-the-art method for generating learning-based descriptors due
to their ability to find complex patterns in data (Krizhevsky, Sutskever,
& Hinton, 2012). PointNetVLAD, proposed by Uy and Lee (2018), pio-
neered the use of an end-to-end trainable global descriptor for 3D point
cloud recognition. Extracted local features from PointNet (Qi, Su, Mo, &
Guibas, 2016) are deployed to the NetVLAD aggregator (Arandjelović,
Gronat, Torii, Pajdla, & Sivic, 2015) to form a global descriptor of the
scene. SegMap (Dubé et al., 2018) employs CNNs to encode small-
dimensional representations and decode them back to the original
input, as part of its core modules: segment extraction, description, local-
ization, map reconstruction, and semantic extraction, all contributing
to 3D point cloud localization and mapping. LoGG3D-Net (Vidana-
pathirana et al., 2021), for the first time, addressed the limitations
of first-order aggregation by introducing a training signal to the lo-
cal features and using differentiable second-order pooling for global
descriptor generation. High-order aggregation methods demonstrated
superior performance in visual recognition (Koniusz, Yan, Gosselin, &
Mikolajczyk, 2017; Li, Xie, Wang, & Zuo, 2017), previously applied to
3D place recognition (Vidanapathirana et al., 2020), though not in a
2

trainable architecture. In DH3D (Du et al., 2020), a hierarchical 3D
descriptor learning approach was presented. A hierarchical network,
operating directly on a point cloud, delivers local descriptors, a key-
point score map, and a global descriptor in a single forward pass. The
success of deep learning is particularly noticeable in 2D images, where
convolutional kernels can be easily applied to the 2D grid structure
of the image. Schaupp et al. (2019), with OREOS, takes advantage of
this success by projecting a 3D point cloud into spherical coordinates,
yielding a 360-degree range image. The learned data-driven descriptors
are then used for fetching the nearest neighbor place and estimating
yaw discrepancy. Similarly to the preceding approaches, yet harnessing
a diverse array of cues encompassing range, normals, intensity, and
semantic classes, the OverlapNet framework by Chen et al. (2022) effec-
tively exploits spherical images derived from point cloud data, resulting
in a notable enhancement of its performance. Expanding upon this
foundational work, the advanced OverlapTransformer (Ma et al., 2022)
iteration introduces the integration of rotation-invariant features and
expedited inference capabilities. Achieving this is facilitated through
the incorporation of the attention mechanism derived from the Trans-
former (Vaswani et al., 2017) and the NetVLAD head (Arandjelović
et al., 2015).

Finally, as the name suggests, hybrid methods aim to unite
mathematical models with data-driven models to benefit from
both (Shlezinger, Whang, Eldar, & Dimakis, 2021). First demonstrated
by Locus (Vidanapathirana et al., 2020), an approach for LiDAR-based
place recognition mathematically models topological relationships and
temporal consistencies of point segments, while structural visual
aspects of the segments were encoded using a data-driven 3D-
CNN. Although it achieved state-of-the-art performance on the KITTI
dataset (Geiger, Lenz, Stiller, & Urtasun, 2013), it struggles to adapt to
environments where the extracted segments are structurally different
from its training data. With LocNet (Gidaris & Komodakis, 2015), Yin,
Tang, Ding, Wang, and Xiong (2017) used semi-handcrafted range
histogram features as input to a 2D Convolutional Neural Network
(CNN), demonstrating the power of Deep Neural Networks (DNNs) to
learn suitable data representations and exploit the most relevant cues
in the input data.

1.1.2. Global re-localization
Currently, only a limited number of ROS packages support global

re-localization in a 3D point cloud map. Koide, Miura, and Menegatti
(2019) has provided a series of packages that include global
re-localization as part of the localization and mapping process. The
localization process employs an Unscented Kalman Filter-based pose
estimation, fusing IMU and 3D LiDAR data. Subsequently, the scheme
performs Normal Distribution Transform (NDT) scan matching between
the global map and the input scan to correct the estimated pose. For
global re-localization, it offers three engines: Branch and Bounce Search
(BBS) (Hess, Kohler, Rapp, & Andor, 2016), FPFH+RANSAC (Buch,
Kraft, Kamarainen, Petersen, & Kruger, 2013; Rusu, Blodow, & Beetz,
2009), or FPFH+Teaser++ (Yang, Shi, & Carlone, 2021).

In the case of LIO-SAM (Shan et al., 2020), re-localization based on
LIO-SAM employs multiple factors, including IMU data, 3D LiDAR data,
and the loop closure process, to jointly optimize the factor graph. This
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Table 1
Comparison of the proposed framework against other available place-recognition solutions and re-localization frameworks.

OREOS PointNetVLAD 3DEG (OURS) LIO-SAM FAST-LIO HDL Localization

Input format Data sequences Data sequences PCD file PCD file PCD file PCD file
Initial guess Not required Not required Not required Required Required Required
Yaw regression ✓ ✗ ✓ NA NA NA
Top-k candidates ✓ ✓ ✓ ✗ ✗ ✗

Event-triggered NA NA ✓ ✗ ✗ ✗

(NA: Not Applicable).
O
t
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m
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pproach introduces key-frames and a sliding window scan-matching
trategy, where new key-frames are selectively registered to a fixed-
ize set of prior sub-key-frames to enhance real-time performance. The
ost recent package developed is based on FAST-LIO (Xu & Zhang,
021). It provides global pose estimation in a pre-built point cloud map
y combining low-frequency global localization and high-frequency
dometry. The feature extraction process involves extracting edge and
lanar features from the input 3D LiDAR scan, which, along with IMU
easurements, are fed into the state estimation module.

.2. Overview of the proposed approach

Our proposed re-localization framework, referred to as 3DEG, acts
s a pivotal link between existing place recognition methods and avail-
ble integrated re-localization solutions, as illustrated in Table 1. We
ddress the limitations of conventional place recognition methods,
hich often depend on sequential data rather than a global point cloud
ap. Within the context of subterranean environments, we expand the

pplicability of our framework by introducing a modular architecture
apable of adapting to specific environments based on their unique
eatures. This adaptability is crucial to tackle challenges posed by
ubterranean settings, which include reduced lighting, confined spaces,
nd irregular structural elements. Furthermore, our framework over-
omes the constraints of typical re-localization methods reliant on a
ingle global point cloud map file as input. These methods typically
ecessitate a manual initial guess or suffer from extended compu-
ational times. In contrast, our framework eliminates the need for

manual initial guess and significantly reduces computational time.
f particular importance, our proposed approach acknowledges the
ritical role of junctions, a key factor in establishing a complete au-
onomous pipeline. Junctions play a pivotal role in autonomously
riggering the re-localization process, ensuring seamless navigation
n complex subterranean environments. Through these advancements
nd adaptations, our proposed re-localization framework offers a com-
rehensive and efficient solution. It combines the strengths of place
ecognition methods and integrated re-localization solutions while mit-
gating their respective limitations. This holistic approach contributes
o improved accuracy, flexibility, and computational efficiency across
arious environments, ultimately leading to enhanced re-localization
erformance.

.3. Contributions

The contributions of this work can be summarized as follows:

1. We present a comprehensive framework for re-localization
within a given global 3D point cloud map. Our approach cap-
italizes on data-driven descriptors to facilitate efficient place
recognition. Significantly, as depicted in Table 1, our framework
integrates the capability to explore the top-k candidates, thereby
augmenting the overall system’s resiliency.

2. By conducting comprehensive real-world field experiments, we
showcase the strong performance of our framework in achieving
reliable re-localization within demanding subterranean environ-
ments. Notably, our approach sets itself apart by eliminating the
requirement for a manual initial estimate, a feature that distin-
3

guishes it from other ROS-based packages utilizing comparable p
input formats (Stanford Artificial Intelligence Laboratory et al.,
2018), including relocalization methods like LIO-SAM (Shan
et al., 2020), FAST-LIO (Xu & Zhang, 2021), and hdl global
localization (Koide et al., 2019).

3. We present a novel modular architecture that empowers descrip-
tors to adapt to specific events or tasks. This is accomplished by
integrating a classification module, which enables the robot to
autonomously initiate the re-localization process through event
detection, such as recognizing a junction. This strategy enhances
the probability of successful outcomes and extends the robot’s
exploration autonomy.

4. We showcase a data-handling process that facilitates the transi-
tion from large public datasets and place recognition solutions
to learning from a limited amount of field mission data. Ad-
ditionally, we propose a direct semantic global re-localization
approach, which, to the best of the authors’ knowledge, is absent
from the current literature. We describe various techniques em-
ployed in this process, including joint training, negative mining,
fine-tuning and label smoothing.

verall, these contributions provide a comprehensive and innova-
ive framework for re-localization, addressing key challenges in the
ield and demonstrating improved performance in challenging environ-
ents.

. The proposed approach

The goal of this article is to introduce a global re-localization
lgorithm that is able to yield a rigid transform 𝑇 ∈ 𝑆𝐸(3) so that
he current robot frame  is transformed to the global map frame .

Considering a robot 𝑟 operating in R3 space, it generates 3D point cloud
LiDAR scans,  ∈ R3, with respect to the robot frame . Given a known
point cloud map 𝑀 in the global map frame  and its corresponding
trajectory 𝑇 𝑟, denoted as:

𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑛},

𝑇 𝑟 = { 𝑝1, 𝑝2,… , 𝑝𝑘},
(1)

where 𝑚 ∈ R3 are sets of points and 𝑝 ∈ R3 are sets of poses 𝑝𝑘 =
(𝑥𝑘, 𝑦𝑘, 𝑧𝑘), we are looking for the homogeneous rigid transformation
of the special Euclidean group, defined as:

𝑇 =
[

𝑅 𝑝
0 1

]

∈ 𝑆𝐸(3), (2)

where 𝑅 ∈ 𝑆𝑂(3) is the rotational matrix and 𝑝 ∈ R3 is the translational
vector. To tackle this problem and acquire the transform 𝑇 , we follow
the steps depicted in Fig. 2, which can be summarized as: (a) Map
Partitioning, (b) Point Cloud Projection, (c) Descriptor Extraction, (d)
Initial Pose Estimation, and (e) Pose Refinement.

2.1. Map partitioning

To work with a point cloud map, we must partition it into individual
scans. Let the point cloud map be denoted as 𝑀 , and let the trajectory
of the robot be represented as a sequence of 𝑛 points, {𝑝1, 𝑝2,… , 𝑝𝑛}. We
create a 𝑘-d tree database of the visited places to enable efficient search
using descriptors. We partition 𝑀 into 𝑛 scans by transforming the

oint clouds according to the corresponding trajectory points. Let 𝑀𝑖
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Fig. 2. The overall pipeline of the proposed architecture. The red arrows follow the workflow of the current scan 𝑡, while the green arrows follow the workflow of the given
point cloud map.
denote the point cloud map for the 𝑖th scan. We transform 𝑀 according
to 𝑝𝑖 to obtain 𝑀𝑖, such that each point 𝑚 in 𝑀𝑖 is expressed with
respect to the robot frame and not the map frame. Mathematically, we
can write:

𝑀𝑖 = {𝑇𝑝𝑖 (𝑚) | 𝑚 ∈ 𝑀}, (3)

where 𝑇𝑝𝑖 (𝑚) denotes the transformation of point 𝑚 according to 𝑝𝑖.
Essentially, we are creating a 𝑘-d tree database of the visited places,
which we can later search efficiently with the descriptors. By providing
the point cloud map along with the discrete trajectory, we partition the
map into 𝑛 scans, where 𝑛 is the number of points in the trajectory. Then
we transform the point clouds according to the corresponding trajectory
points, so we always have the partitioned map points in respect to the
robot frame and not the map frame.

2.2. Point cloud projection

The primary purpose of the Point Cloud Projection submodule is
to convert the LiDAR point cloud scan data 𝑘 at each time step 𝑘 or
each submap 𝑀𝑘, into a 2D depth image 𝑘 using a spherical projection
model. This transformation is accomplished by projecting a list of point
coordinates 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 onto a 2D spherical grid, as illustrated in
Fig. 3. The pixel value of each point in the grid is determined by its
range 𝜌 from the sensor’s frame, as described by the equations:

𝜙 = 𝑎𝑡𝑎𝑛( 𝑝𝑥𝑝𝑦
)

𝜌 = 𝑎𝑠𝑖𝑛(
𝑝2𝑥+𝑝

2
𝑦

√

𝑝2𝑥+𝑝2𝑦+𝑝2𝑧
)

(4)

Converting LiDAR point cloud scans into range images has significant
advantages over using raw point cloud data. The panoramic 360◦ view
obtained from range images enables the production of orientation-
invariant descriptors that can be used for various applications, includ-
ing object detection and classification. Using a 2D CNN on range images
can be particularly beneficial because of their computational efficiency
and ability to handle large datasets. Additionally, 2D CNNs are suitable
for capturing translational invariance in the data, which is useful for
detecting and classifying features from different viewpoints. However,
there are some limitations to using range images. One of the main
disadvantages is that they capture a less dense view of the surroundings
compared to depth sensors, which can make it challenging to extract
detailed features from converted range images, especially for tasks that
require high accuracy and precision.

2.3. Descriptor extraction

The Descriptor Extraction module is responsible for generating a
concise representation of the surrounding topological characteristics,
which includes place recognition, orientation regression, and classifi-
cation information. In this study, we employ a Convolutional Neural
Network (CNN) that takes 2D range images,  , as input and produces
4

𝑘

2 × 64 vector sets, namely 𝑞 and �⃗�, which will be further discussed in
Section 3 and are denoted as:

𝑄 = {𝑞1, 𝑞2,… , 𝑞𝑛 ∶ 𝑞𝑖 ∈ R64}, (5)

𝑊 = {�⃗�1, �⃗�2,… , �⃗�𝑛 ∶ �⃗�𝑖 ∈ R64} (6)

The vector 𝑞 captures orientation-invariant information that is specific
to each place, while the vector �⃗� serves as a compact representation
of rotation-variant information. The latter is utilized for estimating the
yaw discrepancy in a subsequent stage of the pipeline (Schaupp et al.,
2019). To build a comprehensive understanding of the environment,
we utilize the place-specific vectors 𝑄, generated from the partitioned
map scans 𝑀𝑖. By employing the aforementioned approach, we extract
essential information from the topological characteristics, allowing for
effective place recognition, orientation regression, and classification
tasks.

2.4. Initial pose estimation

In the Initial Pose Estimation module, we make use of the afore-
mentioned descriptive vectors to construct a 𝑘-d tree. Subsequently,
with the current scan from the robot 𝑡, we predict the vector 𝑞𝑡 and
query the 𝑘-d tree to identify nearby potential places. The querying
process tries to identify the vector 𝑞𝑖 from the vector set 𝑄 that has the
minimum distance from the vector 𝑞𝑡, in the vector space. The process
is denoted as:

𝑖 = arg min
𝑖∈N

𝑓 (𝑞𝑖, 𝑞𝑡) where 𝑞𝑖 ∈ 𝑄, (7)

where 𝑓 (𝑎, 𝑏) is a function that returns the Euclidean distance between
two multidimensional vectors 𝑎 and 𝑏, described as:

𝑓 (𝑎, 𝑏) =
√

(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 +⋯ + (𝑎𝑛 − 𝑏𝑛)2 = ‖𝑎 − 𝑏‖ (8)

Once the 𝑘-d tree has been queried with the current vector 𝑞𝑡, we obtain
the indexes of the nearest neighbors, along with the corresponding
vectors 𝑞𝑖 and �⃗�𝑖 from the vector set 𝑄. This retrieval allows us to
obtain the trajectory points associated with these neighbors, facilitating
the acquisition of the initial translation vector 𝑝𝟎. The top-𝑘 indexes
of the nearest neighbors are returned from the search, and the index
corresponding to the minimum distance is selected as the primary
candidate for re-localization. This choice is based on the assumption
that the nearest neighbor with the least distance is more likely to yield
an accurate re-localization result. However, it is important to note that
in cases where the first candidate fails to provide the desired outcome,
the remaining top-𝑘 indexes can be utilized as alternative candidates,
allowing for resiliency in cases of challenging localization scenarios.
The subsequent step involves feeding the orientation estimation module
with the rotation variant vectors �⃗�𝑡 and �⃗�𝑖. This module is responsible
for estimating the yaw discrepancy 𝛿𝜃 between the query point cloud
and the nearest retrieved candidate from the partitioned map. With the
calculated 𝛿𝜃, we can construct the rotation matrix 𝑅0(𝛿𝜃), which rep-
resents the initial estimation. Combining this rotation matrix with the
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Fig. 3. (A) The original LiDAR scan 𝑘. (B) The result of the spherical projection. (C) The depth image 𝑘 obtained by mapping the range of each point to its corresponding
image pixel.
initial translation vector 𝑝𝟎, we obtain the complete initial estimation
denoted as:

𝑇0 =
[

𝑅0 𝑝0
0 1

]

∈ 𝑆𝐸(3) (9)

This process allows us to align the query point cloud with the nearest
candidate from the partitioned map, providing an initial estimation that
incorporates both translation and rotation information.

2.5. Pose refinement

Using the obtained initial pose estimation, we can enhance the
accuracy of the pose by utilizing it as a prior condition in the reg-
istration algorithm, Iterative Closest Point (ICP) (Zhang, 2014). This
algorithm iteratively aligns the query point cloud with the nearest
candidate from the partitioned map, progressively refining the pose
estimation. Additionally, the distance between the two vectors 𝑞𝑡 and 𝑞𝑘
can be leveraged to establish a distance threshold for the registration
method. By incorporating this threshold, we can aid the registration
process by discarding potential matches that exceed the threshold.
By integrating the initial pose estimation and utilizing the distance
information between the vectors, we can achieve a more accurate and
efficient refinement of the pose estimation through the ICP registration
algorithm.

2.6. Event-based triggering

In order to enhance the autonomy of our robots during field ex-
ploration missions, we utilize the classification module to identify
instances when the robot reaches a junction. This classification capa-
bility serves as a crucial trigger for the global re-localization process,
particularly in scenarios involving multi-robot exploration, where mul-
tiple robots need to share the same map (Stathoulopoulos, Koval,
Agha-mohammadi, & Nikolakopoulos, 2023). By providing the current
vector 𝑞𝑡 as input, the classifier is capable of distinguishing between
different configurations, such as a straight tunnel, a junction, or a turn.
The event of reaching a junction serves as the trigger point for initiating
the global re-localization process. This is due to the fact that junctions
tend to exhibit more distinctive features and offer a higher likelihood of
success in accurately re-establishing the robot’s global position within
the environment.

3. Neural network

According to the aforementioned related work, we have decided to
work with a network architecture based on 2D range images generated
from 3D LiDAR scans, and not with the point clouds directly, since the
deep learning advancements in feature extraction from images have al-
ways demonstrated a robust result. Therefore, our network architecture
and descriptor extraction process is based on (Schaupp et al., 2019) and
is adjusted following the principles described in Appalaraju and Chaoji
(2017), Simonyan and Zisserman (2014), as well as our own proposed
addition for driving learned descriptors to certain features.
5

3.1. Network architecture

The architecture of the proposed CNN is composed of 2D convolu-
tional layers followed by Max Pooling layers. Then, the Fully Connected
layers compress the features and map them into a compact descriptor
representation, as depicted in Fig. 4. We start with 64 filters for the
first convolutional layer and a 5 × 5 filter size, since we want a larger
area to compensate for the sparse nature of our depth images. For
the other two layers, we move down to 32 filters with a 3 × 3 filter
size. The output of the descriptor extractor are 2 × 64 × 1 vectors, 𝑞
and �⃗� respectively. As mentioned before, the vector 𝑞 encodes place
dependent information and is invariant to orientation changes, while
�⃗� is an orientation specific vector and is used to decrease the angle
discrepancy (Schaupp et al., 2019). This process is handled by an extra
orientation estimation module, which takes as an input two vectors �⃗�
and outputs a 2 × 1 vector 𝑦𝑦𝑎𝑤, after two fully connected layers and a
tanh activation function. The third module of the presented network is
a classifier and is consisted of two fully connected layers and a softmax
activation function. In this case, we use the classifier to detect the
topological characteristics of the surrounding environment and more
specific, to classify among: (a) a straight tunnel, (b) a junction, or (c) a
turn. The classification process is performed based on a derived vector 𝑞
and depending on the mission, the classifier can be trained on detecting
other characteristics, for example pipelines or shafts.

3.2. Loss functions

The overall network is composed of three different modules, where
each one of them pursues a different goal. The descriptor extraction mod-
ule needs to find two orthogonal vectors 𝑞 and �⃗�. These orthogonal vec-
tors are crucial for achieving distinct objectives within the subsequent
modules of the system. The orientation estimation module estimates the
yaw difference from two compact vectors, �⃗�, ensuring that this vector’s
orientation-specific information is separated from other components.
Similarly, the classifier has the goal of predicting the correct class
based on a descriptor vector 𝑞. This concept of vector orthogonality,
as introduced in the work by Schaupp et al. (2019), emerges due to
the divergent objectives pursued by the two vectors, each striving for
distinct and independent goals. Specifically, one vector is designed to
be place-dependent while remaining orientation-invariant, whereas the
other vector is orientation-specific yet place-independent. The ensuing
orthogonal relationship is established as a consequence of these dif-
fering design principles. For each of these three goals, a loss function
is defined, denoted as 𝐿𝑝𝑟 for the place-recognition loss, 𝐿𝜃 for the
orientation loss, and 𝐿𝑐 for the classifier’s loss. The choice of orthogonal
vectors aligns well with the principle that orthogonal vectors often arise
when capturing different aspects or features that are independent of
each other. In our case, 𝑞 and �⃗� represent distinct sets of features, each
encoding unique characteristics of the data. This design choice ensures
that the vectors do not overlap in their information content, preventing
redundancy and correlation. By making sure that these vectors are
orthogonal, we enhance the ability of your system to focus on the
specific aspects relevant to each module’s task, thus contributing to the
overall efficiency and effectiveness of your approach.
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Fig. 4. The Siamese network consists of three convolutional layers followed by max pooling and then two fully connected layers, as proposed by Schaupp et al. (2019). The
number of filters and the kernel size have been adjusted to the considered testing environments and sensor utilized, and in addition we have an extra classifying module that
boosts the descriptor extraction process.
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Starting with 𝐿𝑝𝑟, in order to train our network for the task of place
recognition, we use the triplet loss method (Hoffer & Ailon, 2014).
As demonstrated in Fig. 4, we feed the neural network with three
types of images: anchor images, which serve as the reference points
for comparison, similar images to the anchor images, and dissimilar
images, denoted as 𝐼𝐴, 𝐼𝑆 and 𝐼𝐷 respectively. These anchor images
provide a fixed foundation for evaluating the similarities and differ-
ences between the other image pairs, playing a crucial role in our
approach for descriptor extraction and subsequent analysis. We also
define 𝑑𝑆 as the Euclidean distances between the descriptors 𝑞𝐴 from
𝐼𝐴 and the descriptors 𝑞𝑆 from 𝐼𝑆 . The same applies for 𝑑𝐷 and the
descriptors 𝑞𝐷 from 𝐼𝐷. The loss function is designed so that similar
nd dissimilar point cloud pairs are pushed close together and far apart
n the derived vector space. The parameter 𝑚 is a margin distance for

distinguishing between similar and dissimilar pairs. The triplet loss is
defined as follows:

𝐿𝑝𝑟(𝑑𝑆 , 𝑑𝐷) = ‖𝑓 (𝐼𝐴) − 𝑓 (𝐼𝑆 )‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑆

− ‖𝑓 (𝐼𝐴) − 𝑓 (𝐼𝐷)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝐷

+𝑚 (10)

The orientation estimation loss 𝐿𝜃 is a regression loss function that is
computed based on the orientation estimation module’s output 𝑦𝑦𝑎𝑤 and
the ground truth 𝛿𝜃𝑔𝑡. For predicting the orientation discrepancy, we
only make use of the orientation dependent vectors �⃗�𝐴 and �⃗�𝑆 . The
orientation loss is defined as:

𝐿𝜃(𝑦𝑦𝑎𝑤, 𝛿𝜃𝑔𝑡) =
1
2

((𝑦𝑦𝑎𝑤,0−cos (𝛿𝜃𝑔𝑡))2

+ (𝑦𝑦𝑎𝑤,1 − sin (𝛿𝜃𝑔𝑡))
2)

(11)

s mentioned in Schaupp et al. (2019), by transforming the ground
ruth yaw angle 𝛿𝜃𝑔𝑡 into the Euclidean space, we avoid the ambiguity
etween 0− 360◦ which could lead to false corrections during training.
he last loss function we need to define is the classification loss 𝐿𝑐 . For
his, we choose the Hinge Loss function, defined as follows.

𝑐 (𝑠𝑗 , 𝑠𝑙𝑖 ) =
∑

𝑗≠𝑠𝑖

max (0, 𝑠𝑗 − 𝑠𝑙𝑖 + 1) (12)

ssentially, the Hinge Loss function is summing across all the incorrect
lasses (𝑖 ≠ 𝑗) and comparing the output of the predicted vector 𝑠
eturned for the 𝑗th class label (the incorrect class) and the 𝑙𝑖-th class
the correct class).

.3. Training the descriptors

In the training process of our network, we employ a technique
nown as joint training. Joint training involves simultaneously opti-
izing the weights and parameters of multiple interconnected neural
etwork modules. This approach is beneficial in machine learning
raining for several reasons. Firstly, joint training facilitates the creation
f synergistic relationships between different modules, enabling them
o collectively learn and adapt to complex patterns and interactions
resent in the data. By training the entire network holistically, informa-
ion and insights obtained from one module can be shared and utilized
6

y other modules, leading to improved overall performance. Moreover,
oint training promotes the development of a cohesive and unified
epresentation of the input data. As different modules influence each
ther’s learning processes, the network can more effectively capture
ntricate relationships and dependencies within the data, resulting in

more comprehensive understanding of the underlying patterns. Ad-
itionally, joint training can help mitigate issues related to overfitting,
s the modules are optimized together, they collectively strive for a
alanced solution that generalizes well to unseen data, reducing the
isk of overfitting to individual modules. This approach also encourages
he network to learn more discriminative and transferable features,
nhancing its ability to handle various scenarios and data variations.
n the context of our specific network, joint training enables us to
chieve multiple objectives simultaneously, namely, enhancing local-
zation recall, achieving precise yaw angle estimation, and ensuring
obust classification performance. By jointly optimizing the weights of
he three Neural Networks, we create a unified learning framework
hat leverages the strengths of each module while fostering synergies
etween them. This holistic optimization approach contributes to the
ffectiveness and efficiency of our network’s performance across vari-
us tasks. For this, we combine all three loss functions, defined as 𝐿:

= 𝐿𝑝𝑟 + 𝐿𝜃 + 𝐿𝑐 (13)

e sample the training point cloud data and then based on the mar-
in 𝑚 and their ground truth poses, we characterize a similar and a
issimilar to the anchor point cloud, in order to prepare the triplets
or the three-tuple shared network. As a data augmentation step, we
andomly rotate the point clouds around the yaw axis, making sure
hat the orientation between anchor and the similar point clouds is
ifferent while still being from a similar place. The three point clouds
re converted to the range images and then are fed to the descriptor
xtractor network that outputs the three corresponding pair-vectors,
𝑞𝐴, �⃗�𝐴), (𝑞𝑆 , �⃗�𝑆 ) and (𝑞𝐷, �⃗�𝐷). The three place dependent vectors are
sed to compute the 𝐿𝑝𝑟 loss, while �⃗�𝐴 and �⃗�𝑆 are passed to the
orientation estimation network and the corresponding output 𝑦𝑦𝑎𝑤 along

ith 𝛿𝜃𝑔𝑡 are used to compute the 𝐿𝜃 loss. The vector 𝑞𝐴 is also
passed to the classifier, where the output 𝑠 with the labels are used
to compute the 𝐿𝑐 loss. The combined loss 𝐿 is then evaluated and
with the ADAM (Kingma & Ba, 2014) learning optimizer the weights
are updated.

4. Experiments and results

In this section, we will go through the experimental results, starting
from evaluating the performance of the Neural Network architecture,
as well as comparing it to its base version. Then we will further eval-
uate the complete proposed framework and compare it to the existing
ROS available solutions. All experiments are carried out in real-world

settings with a focus on subterranean environments.
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Fig. 5. From map A, only the recordings from the upper branch are used for training, while the rest are used for the evaluation. Map B and C are only utilized for evaluation.
4.1. Neural network evaluation

4.1.1. Datasets
For the training and evaluation process, we use three dataset col-

lections. The first dataset collection (Koval, Karlsson, Mansouri, et al.,
2022) contains recordings from an underground tunnel located in
Luleå, Sweden, as seen in Fig. 5. For this area, we have record-
ings from two different robotic platforms. The first is with Spot from
Boston Dynamics (Dynamics and Robotics), equipped with an auton-
omy package (Koval, Karlsson, & Nikolakopoulos, 2022), that includes
the Velodyne VLP16 PuckLite 3D LiDAR, the Vectornav VN-100 IMU
sensor and an Intel NUC on-board computer. The NUC has an Intel Core
i5-10210U, 4-core processor with Intel UHD Graphics and 8 GB of RAM.
The second robotic platform is a custom-built quadrotor (Lindqvist,
Kanellakis, et al., 2022) and is equipped with the same 3D LiDAR and
on-board computer as Spot. It is important to mention that even though
both platforms have similar sensors, the acquired data may differ due
to movement noise, dust and accuracy of the IMU, as one is a ground
quadruped robot and the other is a flying robot. The main difference
can be seen on the registered point clouds, as well as the generated
range images, since they are operating in different heights and with
different form of vibration due to walking or flying. The cumulative
distance covered by the robots within the mapped environment spans
approximately 0.5 km, signifying a considerable exploration effort. This
extensive traversal yielded a comprehensive representation composed
of an approximate total of 3 ⋅ 105 points, capturing the features and
layout of the environment. The subsequent dataset, represented as Map
B in Fig. 5, stems from an authentic subterranean mining site. In con-
trast to the initial dataset, this collection encompasses more expansive
tunnels, reaching widths of up to 10 m. Within this environment, mul-
tiple intricate junctions coexist amidst a relatively featureless setting,
presenting a distinct set of challenges for robotic exploration and map-
ping. Spanning an area of 0.5 km, this environment contributes to the
creation of a map containing an estimated 1.6 ⋅106 points. The intricate
complexities of the larger tunnels and junctions further augment the
richness of the mapped data. This dataset serves as a valuable resource
for evaluating the efficacy and robustness of our proposed approach
within diverse subterranean settings, highlighting its adaptability to
a spectrum of real-world environments. The third and last dataset
collection is from the same underground tunnel as the first one but from
a different passage, and it is depicted on Fig. 5 as Map C. Within this
particular context, the environment takes on a more constrained config-
uration, resembling a corridor that is both narrower and more linear in
nature. This corridor stretches across a length of approximately 150 m,
characterized by its distinct geometric attributes and confined spatial
characteristics. In terms of data density, the environment contributes a
collection of data points totaling approximately 1.2 ⋅105. The intricacies
of this corridor-like setting pose unique challenges for mapping and
navigation, allowing us to examine the adaptability and effectiveness
of our proposed approach in constrained and specialized subterranean
scenarios. From all datasets, we make use of the 3D LiDAR scans and
the odometry data in order to train our models. The labels for training
the junction detection module were handcrafted on all datasets. It
7

is important to highlight the process behind acquiring the maps A,
B, and C showcased in Fig. 5, as these maps lay the foundation for
the subsequent re-localization process in our experiments. In both
scenarios, the generation of these maps relied on the utilization of LIO-
SAM (Shan et al., 2020), a Simultaneous Localization and Mapping
(SLAM) algorithm. SLAM is a fundamental capability that empowers
autonomous systems to concurrently estimate their own position (local-
ization) and construct a map of the environment they are navigating.
LIO-SAM leverages both 3D LiDAR scans and IMU measurements to
perform this dual task. In the case of Map A, manual control was em-
ployed to guide the robot and build the map, ensuring a meticulously
crafted initial representation. Map B, on the other hand, is a product of
merging multiple maps generated from distinct autonomous missions.
This map merging process was facilitated by FRAME (Stathoulopou-
los et al., 2023), a map-merging algorithm. Lastly, the creation of
the final map C was orchestrated through the autonomy framework
COMPRA (Lindqvist, Kanellakis, et al., 2022). COMPRA facilitated the
autonomous exploration of the tunnel, enabling the robot to venture
forth, comprehensively map the environment, and safely return. In
essence, SLAM plays a pivotal role in generating accurate maps that
serve as the bedrock for subsequent localization and navigation tasks.
It allows to concurrently estimate the robot’s location and construct a
comprehensive map of its surroundings. The combined efforts of SLAM
algorithms and autonomous frameworks contribute significantly to the
reliable and informed navigation of robotic systems within complex
environments.

4.1.2. Data sampling and training process
As mentioned in Section 3, the neural network is based on the triplet

network architecture and therefore requires sampling three tuples of
anchor, similar and dissimilar pairs. We consider two point clouds
as similar, if their ground-truth poses, defined as 𝑝, are within 3 m,
|𝑝𝐴 − 𝑝𝑆 | ≤ 3. In addressing the dissimilar pairs, our approach employs
a strategy known as hard-negative mining, to enhance the performance
of our network. This technique focuses on selecting dissimilar pairs,
which consist of point clouds that are not related to each other. To
achieve this, we employ a two-stage negative mining strategy. In the
initial stage, we randomly sample point clouds that are beyond a 3-
m radius from each other (|𝑝𝐴 − 𝑝𝐷| ≥ 3), ensuring a significant level
of dissimilarity between the selected pairs. As the training process
advances, we move on to the later stage, where we sample point clouds
within a radius of 3 to 6 meters from the anchor (3 ≤ |𝑝𝐴 − 𝑝𝐷| ≤
6). The essence of this strategy lies in the concept of ‘‘hard-negative
mining’’, a concept introduced by Bucher, Herbin, and Jurie (2016).
By introducing progressively more challenging negative samples during
the later stages of training, the network is exposed to point cloud pairs
that are difficult to distinguish, pushing its boundaries and honing
its ability to discern subtle differences. This process of incrementally
introducing harder-to-distinguish triplets helps the network adapt and
improve its performance in the advanced phases of convergence. The
benefits of negative mining are twofold. Firstly, it exposes the network
to a wider range of training examples, helping it learn from diverse
scenarios and enhancing its generalization capabilities. Secondly, by
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focusing on challenging triplets that are initially challenging to dif-
ferentiate, the network becomes more robust and capable of handling
complex and intricate variations in the input data. This strategic in-
tegration of negative mining contributes significantly to the network’s
ability to achieve higher performance levels and better representation
learning. Given the constrained availability of datasets from subter-
ranean environments, we adopt a strategic approach by utilizing data
solely from the initial dataset collection for neural network training.
Achieving a balanced dataset is crucial, particularly during the training
process of the classifier module. However, the inherent nature of the
dataset introduces a bias toward straight corridors due to the envi-
ronmental conditions. To address this issue, we adopt the concept of
fine-tuning, which proves beneficial for enhancing the network’s ability
to generalize across diverse scenarios. To commence this fine-tuning
process, we initiate training without the inclusion of the classifying
module. This initial phase allows the network to learn essential features
and patterns inherent in the subterranean environments, undisturbed
by the classification task. Following this, we strategically resample the
dataset to achieve balance among the three distinct classes: (a) straight
corridors, (b) junctions, and (c) turns. This balanced dataset enables the
network to learn from a diverse set of scenarios, capturing the subtleties
associated with each class. Subsequently, we initiate the fine-tuning
process, this time enabling the classifying module. By fine-tuning with
the balanced dataset, the network refines its understanding of different
classes, effectively adapting its learned features to align with the intri-
cacies of subterranean corridors, junctions, and turns. This fine-tuning
approach ensures that the classifier becomes adept at identifying and
classifying different environmental configurations, thereby enhancing
the overall accuracy and robustness of our network’s performance in
real-world scenarios with limited data availability. Furthermore, given
the inherent challenge of accurately determining the initiation and
termination points of junctions, we employ a regularization technique
known as label smoothing (Goodfellow, Bengio, & Courville, 2016;
Müller, Kornblith, & Hinton, 2019) to refine our training process. Label
smoothing entails modifying the target labels used in training to be
more softly distributed, rather than using the conventional binary 0 and
1 labels.

𝑙𝑎𝑏𝑒𝑙𝑠𝑛𝑒𝑤 = 𝑙𝑎𝑏𝑒𝑙𝑠𝑜𝑙𝑑 ⋅ (1 − 𝑎) + 𝑎
𝑁

(14)

This technique serves as a powerful tool to address the issues of over-
fitting and excessive confidence that may arise in the classifier module.

he mechanism of label smoothing, as described by Eq. (14), involves
ransforming the original hard labels (𝑙𝑎𝑏𝑒𝑙𝑠𝑜𝑙𝑑) by redistributing a
ortion ( 𝑎

𝑁 ) of the label probability mass uniformly among all classes.
The parameter 𝑎 governs the extent of this redistribution, while 𝑁 rep-
resents the number of classes. By introducing this smoothing process,
the classifier is encouraged to exhibit more cautious decision-making,
mitigating the risk of extreme overconfidence in its predictions. By
embracing soft labels that encapsulate the uncertainty and ambiguity
inherent in labeling complex features, we foster a more balanced and
adaptive learning process. In essence, when the classifier makes an
8

incorrect prediction, the use of soft labels results in a reduced loss
compared to the conventional binary case. Consequently, the model
learns from its mistakes in a more gradual manner, leading to a refined
understanding of the intricate features and patterns involved. This in-
tegration of label smoothing significantly contributes to enhancing the
generalization capacity of the model and its performance in scenarios
with inherently complex and uncertain decision boundaries.

4.1.3. Place recognition results
An advantage of frameworks like Schaupp et al. (2019) over the

other discussed re-localization frameworks, is that they offer the top-
𝑘 candidates for the place recognition problem. as seen in Fig. 6 and
in Table 2, the localization recall results show that 3DEG outper-
forms the OREOS in all scenarios, while in some cases the base model
performs better than the one with the extra classifying module. The
recall percentage is higher on the first map due to being the map
that we used part of to train the neural networks. In addition, we
notice that for the second map, that contains the most junctions, the
junction detection module provides a significant boost on the top-1,
with more than 10%. The results of Table 2, for the first two rows,
do not include the ICP refinement. It demonstrates the mean error of
the yaw discrepancy estimation before the refinement, between the
robot’s frame and the chosen submap frame. From our experience, if
two point clouds have a high rotational discrepancy (more than 15◦–
25◦), ICP fails to align them properly. On the other hand, after the yaw
estimation and the initial pose estimation performed by our framework,
the yaw discrepancy will be less than 20◦ and therefore the ICP can
align them successfully. As expected, there is no major difference in
the performance of the yaw estimation, with the mean and standard
deviation matching that of OREOS.

Moreover, we present the mean error of the final estimated pose
from the ground truth and the standard deviation. The results for each
map arose from running the relocalization process as the robot explores
the map, for approximately every meter traveled. In Table 2, we only
present them for 3DEG since the final estimation is performed by the
ICP registration.

4.2. Global re-localization results

A part of our contribution is that the proposed framework is a
complete global re-localization package that works with a given 3D
point cloud map and a trajectory, by utilizing a place recognition
framework, and thus we evaluate its performance against the available
re-localization ROS packages, mentioned in Section 1.1. In Table 3,
we present the time that each package needs to re-localize, as well
as the CPU load and the VRAM usage. The BBS engine from the hdl
global localization was not able to correctly re-localize in any of the
tested places, and consequently was not included in the table. For
the FPFH+RANSAC engine, both methods of DIRECT1 and DIRECT7
were tested, and we have included only the fastest one. Even though
Fig. 6. Performance comparison of the proposed framework 3DEG, our implementation of OREOS, as described by Schaupp et al. and our implementation of OREOS but with
adjusted network parameters as seen in Fig. 4, denoted as OREOS∗.



Expert Systems With Applications 237 (2024) 121508N. Stathoulopoulos et al.
Table 2
Comparison of the mean absolute error and the standard deviation in degrees for the yaw estimation, the recall percentage of the classifier and the mean and standard deviation
in meters for the final estimated pose.

Map A Map B Map C

METHOD 3DEG OREOS∗ OREOS 3DEG OREOS∗ OREOS 3DEG OREOS∗ OREOS
MEAN (deg) 14.98 13.53 14.47 14.72 15.22 15.38 17.44 16.45 16.59
STD (deg) 22.34 23.14 19.41 19.87 20.63 19.60 21.49 21.90 22.18
MEAN (m) 0.23 – – 0.25 – – 0.28 – –
STD (m) 0.12 – – 0.17 – – 0.19 – –
RECALL (%) 92.4 – – 89.1 – – 91.5 – –
Table 3
Experimental evaluation of the available re-localization packages, from Map A of Fig. 5, with comparison of the average computational time, CPU load, memory usage and mean
error.

Starting long corridor Lower corridor

METHOD FPFH+RANSAC LIO-SAM FAST-LIO 3DEG FPFH+RANSAC LIO-SAM FAST-LIO 3DEG
TIME (sec) 2.61+22.99 0.501 0.229 1.331 – – 0.205 1.212
CPU (%) 83.5 13.4 14.5 19.7 – – 9.3 15.3
VRAM (GiB) 1.87 1.96 4.01 5.00 – – 4.01 5.00
MEAN (m) 0.64 0.44 0.35 0.30 – – 0.37 0.28

1st junction 2nd junction

METHOD FPFH+RANSAC LIO-SAM FAST-LIO 3DEG FPFH+RANSAC LIO-SAM FAST-LIO 3DEG
TIME (sec) 1.26+24.61 1.018 0.164 1.294 12.62+23.22 0.552 0.132 1.113
CPU (%) 92.1 14.8 15.9 13.6 86.9 14.2 15.5 14.5
VRAM (GiB) 1.87 1.96 4.01 5.00 1.87 1.96 4.01 5.00
MEAN (m) 0.60 0.35 0.32 0.23 0.62 0.39 0.36 0.24
w
d
R
t

we noticed higher re-localization times and memory usage than LIO-
SAM based re-localization and FAST-LIO localization, it is worth noting
that the biggest delay in our pipeline is the final ICP registration for
refining the pose, which can be replaced with other faster registration
methods like Fast-ICP (Zhang, Yao, & Deng, 2021) or TEASER++ (Yang
et al., 2021). Throughout our experiments, only FAST-LIO localization
was able to keep a robust re-localization performance and that only
after a very precise initial guess, something that is not required by the
proposed 3DEG framework.

5. Limitations

Nevertheless, our approach still has limitations. Working in subter-
ranean environments, where the presence of dirt and dust is directly
translated into noise, significantly affects the low-resolution VLP16
scans. This results in the degradation of the resolution of the generated
range images, making it hard to train the descriptors. Another limita-
tion is the currently used registration method, which can either fail to
refine the pose or have a high time and computational cost, especially
if the distance threshold is not chosen properly. The angle regression
is only present in the yaw angle, providing a 4 DoF initial estimation
instead of 6 DoF. To accommodate a different type of environment, re-
training is needed with a new classifier, better capturing the features
of that environment. Last but not least, as a future step the implemen-
tation code should be optimized, which for the moment is not optimal
and highly affects the runtime and memory usage of the algorithm.

6. Conclusions

In this article, we have introduced the 3DEG framework, which
offers a comprehensive solution for global re-localization in a 3D point
cloud map setting. This novel framework leverages data-driven descrip-
tors and is designed to autonomously initiate the re-localization process
upon detecting a junction within the environment. By incorporating
this junction-based triggering mechanism, our framework provides an
effective means to address re-localization challenges. One significant
aspect of our proposed framework is its ability to provide resiliency
through the inclusion of multiple candidates. This semi-autonomous op-
eration enhances the success rate of critical missions such as search and
rescue. By offering multiple candidate options during the re-localization
9

process, our framework increases the robustness and reliability of the
system, allowing it to adapt to various scenarios and overcome poten-
tial failures. Overall, the primary objective of this paper is to present
a comprehensive re-localization pipeline specifically designed for chal-
lenging tunnel environments. Our framework stands out from existing
conventional methods, which often rely solely on place recognition
or pose estimation approaches that may struggle in such demanding
settings. Through our proposed 3DEG framework, we aim to provide an
effective and reliable solution for global re-localization in challenging
tunnel environments.
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