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Over the past two and a half decades,
covariance intersection (CI) has provided
means for robust estimation in scenarios
where the uncertainty information is in-
complete. Estimation in distributed and
decentralized data fusion settings is typi-
cally characterized by having non-zero cross-
correlations between the estimates to be
merged. Mean square error (MSE) optimal
estimators such as the Kalman filter (KF)
are limited to data fusion where these cross-
correlations are fully known. Keeping track
of cross-correlations is unfortunately not al-
ways possible. To quantify confidence in the
estimate’s uncertainty, the concept of conser-
vativeness has been introduced. A conserva-
tive estimator guarantees that the computed
covariance matrix is not smaller than the
actual covariance matrix. It turns out that CI
guarantees conservativeness for any degree
of unknown cross-correlations as long as the
estimates to be fused are conservative. It
should be noted that, in the CI literature,
the notion of covariance consistency is often
used to characterize conservativeness. In this
work, we use the latter term.

Estimation under unknown correlations
is a common issue in decentralized data fu-
sion (DDF). Modern application areas in-
clude air surveillance, autonomous vehicles,
and vehicle-to-everything (V2X, [1]) net-
works. A V2X scenario is illustrated in Fig-
ure 1, where multiple autonomous vehicles
use local sensors to measure other agents’
states of the scene, for example, the posi-
tions of other vehicles and pedestrians. Mea-
surements are preprocessed into local track

estimates. The estimates are exchanged and,
after that, fused in other agents. There is also
broadcasting of information from pedestrians
and ground stations, and datalink communi-
cation between infrastructure, satellites, and
cloud services. The essence of Figure 1 is the
vast amount of data that is required to be
exchanged, which means that it quickly be-
comes impossible to keep track of which sen-
sor has actually extracted what information.
More technically, preprocessing and commu-
nication of estimates and information give
rise to correlations, and these correlations
are generally impossible to maintain knowl-
edge about. If the correlations are neglected,
fusion of a local estimate with another es-
timate using, for instance, a naïve fusion
rule produces an estimate with an incorrect
uncertainty such that the error covariance
matrix does not conservatively bound the
actual error. This issue is circumvented if
instead CI is used.

CI has proven to be relevant in numer-
ous and diverse application areas. A typi-
cal example is the object tracking setting,
for instance, in [2], but it does not end
there. Simultaneous localization and map-
ping (SLAM) applications using CI are stud-
ied in [3]–[6]. CI has further been used
for problems ranging from localization of
multi-robot systems [7] and cooperative lo-
calization of robot swarms [8] over time-of-
arrival localization [9] to automotive track-
ing, human tracking [10], data validation [11],
and medical application [12]. Below we shall
see what unites the applications mentioned
above and what awaits CI in the future. An
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overview of estimation techniques applicable
for distributed and decentralized estimation
is provided in Sidebar: A Brief Survey of
Distributed and Decentralized Estimation.
Conservativeness

We start by formally defining conserva-
tiveness. Let x be an unknown state to be
estimated. An estimate of x is given by x̂
and an error covariance matrix P, where P
captures the uncertainty of x̂. The estimate
x̂ is conservative if

P ⪰ E[x̃x̃T] , (1)

where E is the expectation operator, x̃ = x̂−
x is the estimation error and A ⪰ B means
the difference A − B is positive semidefinite.
The special case P = E[x̃x̃T] means that the
estimate’s uncertainty is exactly known.

To illustrate the relationship, let E(S) =
{z ∈ Rn | zTS−1z ≤ 1} denote the ellipsoid of
an n × n positive definite matrix S centered
at the origin. A geometric interpretation of
(1) can be seen in Figure 2, where two el-
lipses E(P) and E(E[x̃x̃T]) are illustrated.
The relation P ⪰ E[x̃x̃T] is equivalent to
E(P) ⊇ E(E[x̃x̃T]).
Optimal and Conservative Fusion

To illustrate the data fusion problem,
assume that x is a 2D state vector. Two state
estimates x̂1 and x̂2 are available, which are
related to the state x through

x̃1 = x + x̂1, P1 = E[x̃1(x̃1)T],
x̃2 = x + x̂2, P2 = E[x̃2(x̃2)T],

where x̃i = x̂i − x is the error and Pi

is the error covariance matrix of the ith
estimate. The cross-covariance matrix P12 =

E[x̃1(x̃2)T] describes the correlations between
x̂1 and x̂2. Fusion aims at determining the
gains K and L = I − K such that the
combination

x̂fus = K x̂1 + L x̂2

results in an optimal error covariance matrix

Pfus = E[x̃fus (x̃fus)T]
= KP1KT + KP12LT + L(P12)TKT + LP2LT ,

(2)
where

x̃fus = x̂fus − xfus = K x̃1 + L x̃2

is the estimation error, and optimality typi-
cally refers to minimizing the mean square
estimation (MSE) error given by tr(Pfus).
If the cross-covariance matrix is known, an
MSE optimal fusion result is attained using
the Bar-Shalom–Campo formulas [13] with
the specific gains

KBC = (P2 − (P12)T)
(
P1 + P2 − P12 − (P12)T

)−1
,

(3a)

LBC = (P1 − P12)
(
P1 + P2 − P12 − (P12)T

)−1
.

(3b)

The fused estimate then becomes

x̂BC = KBCx̂1 + LBCx̂2 = x̂1 + LBC
(
x̂2 − x̂1

)
,

(4a)
PBC = KBCP1(KBC)T + KBCP12(LBC)T (4b)

+ LBC(P12)T(KBC)T + LBCP2(LBC)T

= P1 − LBC
(
P1 + P2 − P12 − (P12)T

)−1
(LBC)T ,

which also has the smallest covariance matrix
PBC ⪯ Pfus of all possible fusion results (2).
A consequence of this property is that PBC
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estimate by car

estimate by bus

fused estimate

Figure 1: In a vehicle-to-everything network as shown on the front cover, multiple vehicles
measure the surroundings and preprocess the measurement information locally for situational
awareness. Local estimates are communicated to, for instance, other vehicles, ground
stations, and cloud services. Information flows in arbitrary directions and cross-correlations
between local estimates are hard to keep track of. With CI, information from different sources
can be fused reliably.

and, thus, KBC and LBC are optimal for
the trace, determinant, and all other cost
functions J that have the property PA ⪯
PB ⇒ J(PA) ≤ J(PB). Each possible cross-
covariance matrix P12 yields a different result
PBC, where each E(PBC) lies in the intersec-
tion of E(P1) and E(P2). Figure 3 illustrates
this relationship for two 2D estimates and
different admissible P12.

Many DDF systems encounter the prob-
lem of an incorrectly determined cross-
covariance matrix P12 or are even ignorant
about it. The task is then to compute a fused
estimate x̂ and its covariance matrix P from
x̂1 and x̂2 given that P12 is unknown. CI as
proposed by [14] preserves conservativeness
irrespective of any underlying correlations

and fuses two estimates by

x̂CI = PCI
(
ω(P1)−1x̂1 + (1 − ω)(P2)−1x̂2

)
,

(5a)

PCI =
(
ω(P1)−1 + (1 − ω)(P2)−1

)−1
, (5b)

where ω ∈ [0, 1] is found by optimiz-
ing J(PCI). In contrast to the Bar-Shalom–
Campo fusion, the optimal CI estimate is not
unique for different criteria J . For instance,
minimizing the trace or determinant leads to
different estimates (5). The results of fusing
x̂1 and x̂2 are visualized in Figure 3 revealing
the geometrical interpretation of CI: E(PCI)
encloses the intersection of E(P1) and E(P2),
which gives it the name covariance intersec-
tion. To be clear, the actual (yet unknown)
error ellipse E(E[(x̂CI − x)(x̂CI − x)T]) of x̂CI

does not need to be inside the intersection.
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P, conservative bound
E[x̃x̃T]

E(E[x̃x̃T]) ⊆ E(P)

P, non-conservative bound

E(E[x̃x̃T]) ̸⊆ E(P)

Figure 2: Geometric interpretation of con-
servativeness. The colored ellipses represent
the covariance matrix computed by an es-
timator, and the hatched area represents
the covariance matrix of the actual error.
Left: Conservative bound where E(P) ⊇
E(E[x̃x̃T]). Right: Non-conservative bound
for which E(P) ̸⊇ E(E[x̃x̃T]).

However, it is conservatively bounded by
E(PCI), that is, the green ellipse in Figure 3,
meaning that CI is conservative for all ad-
missible values of P12 and hence

PCI ⪰ E[(x̂CI − x)(x̂CI − x)T]

is guaranteed.
This and other critical properties of CI

are discussed in the first part of this article.
We will identify several challenges in apply-
ing CI and provide an overview of current
approaches and solutions, and try to find
answers to the question: Are correlations still
unknown?

P1

P2

PBC given P12 = 0
PBC given P12 ̸= 0
PCI

Figure 3: Geometric interpretation of co-
variance intersection. The example illustrates
fusion of two estimates with covariance ma-
trices P1 and P2. Multiple PBC are gener-
ated based on different assumptions on P12,
including the uncorrelated case P12 = 0. The
covariance matrix of a conservative estimate
is given by PCI where the ellipse of PCI

encloses the intersection of P1 and P2, in-
cluding the ellipses of all possible PBC. Here,
CI uses the trace to determine ω.
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Covariance Intersection
The primary benefit of centralized data

fusion over DDF is that optimal estimation
is possible. Hence, it is possible to design
the data fusion network to allow for opti-
mal information utilization. However, cen-
tralized data fusion exhibits a single criti-
cal point of failure. Critical functionality is
not distributed and therefore the complex-
ity of large-scale systems quickly explodes.
Network topologies and their properties are
further discussed in, for example, [15]–[18].

With the applications mentioned at the
beginning, distributed and even fully decen-
tralized data fusion is gaining increasing im-
portance. DDF scenarios in which no corre-
lations are present and CI is irrelevant are
rare. The reason is that CI conservatively
handles any degree of cross-correlations, and
cross-correlations are an intrinsic part of al-
most every DDF problem. The motivation
for developing DDF networks even in the
presence of such dependencies is: (i) Ro-
bustness. There is no single critical point of
failure, the DDF network is fault-tolerant.
(ii) Modularity. Large-scale systems can be
decomposed into smaller modules, which are
self-contained and, hence, reduce the system
complexity. (iii) Flexibility. Addition, modi-
fication, and removal of agents are possible
on the fly. These are major advantages over
centralized structure and motivate the study
and use of CI.

Problem Intuition
To get an intuition for how CI works

and performs in different situations, we use
a simple case where x is 2D. To begin with,

consider that two estimates x̂1 and x̂2 of x
are available with covariance matrices P1 and
P2 as defined by their ellipses in Figure 4,
which are of the same shape but have differ-
ent orientations. It is assumed that P12 = 0.
In the left part, the ellipses of P1 and P2

are almost aligned, and to the right they
are perpendicular. Merging the two estimates
using CI optimized on trace yields PCI. Also,
PBC given P12 = 0 is computed. As it
can be seen, if P1 ≈ P2 then tr(PCI) ≈
tr(P1) = tr(P2) and there is no significant
gain from merging x̂1 and x̂2. On the other
hand, for the geometry in the right part, the
information gain is significant, and tr(PCI) <

tr(P1) = tr(P2). However, PCI = 2PBC as CI
respects any possible cross-covariance matrix
P12.

This example demonstrates how the
alignment of the uncertainties affects the
performance of CI as compared to optimal
fusion with BC. The discrepancy between CI
and BC is reduced when the intersection area
is small, as in the right part of Figure 4.
Hence, CI typically performs well when error
covariances have different orientations: The
errors of an estimate x̂1 are small in direc-
tions where estimate x̂2 has large errors and
vice versa. The worst performance is seen for
P1 ≈ P2, and when P1 ⪯ P2 or P1 ⪰ P2.
In the latter two cases, CI will simply select
x̂1 or x̂2, respectively, meaning that either
ω = 1 or ω = 0 is computed in (5). CI has to
account for the possibility of fully correlated
estimates, which justifies this result. In these
cases, one can choose other cost functions J

than the trace to find an ω that lies between 0
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and 1.

P1, P2

PBC
PCI

Figure 4: Impact of the geometry on the
fusion result when using covariance intersec-
tion. Left: P1 ≈ P2 and the fusion gain is
small, that is, tr(PCI) ≈ tr(P1). Right: If P2

is equal to P1 rotated by 90◦ the fusion gain
is increased such that tr(P1) ≫ tr(PCI).

Mathematical Background
In data fusion, the information form [19]

is a convenient way of representing an es-
timate x̂ with covariance matrix P. The
information form uses the information vector
P−1x̂ and the information matrix P−1. For
example, consider an MSE optimal estimator
with P12 = 0. In this case, (3a) and (3b)
become

K = P2(P1 + P2)−1 =
(
(P1 + P2)(P2)−1

)−1

=
(
P1(P2)−1 + I

)−1
=

(
(P1)−1 + (P2)−1

)−1
(P1)−1

and L = ((P1)−1 + (P2)−1)−1(P2)−1, respec-
tively. Hence, the fusion result (4) reduces to

x̂ = P(P1)−1x̂1 + P(P2)−1x̂2, (6a)

P =
(
(P1)−1 + (P2)−1

)−1
, (6b)

which becomes

P−1x̂ = (P1)−1x̂1 + (P2)−1x̂2 , (7a)
P−1 = (P1)−1 + (P2)−1 (7b)

in the information form. The result is optimal
for zero cross-correlations. If these fusion
formulas are erroneously used in the presence
of non-zero cross-correlations P12 ̸= 0, fusion
method (6) is typically referred to as naïve
fusion.

As provided in [14], the CI formulas
in (5) have the corresponding information
form

(PCI)−1x̂CI = ω(P1)−1x̂1 + (1 − ω)(P2)−1x̂2,

(8a)
(PCI)−1 = ω(P1)−1 + (1 − ω)(P2)−1 (8b)

with ω ∈ [0, 1]. The resemblance between
the naïve fusion rule (6) and CI is strik-
ing. The formulas are equivalent except for
the parameter ω. The constraint ω ∈ [0, 1]
means that (PCI)−1 is a convex combination
of (P1)−1 and (P2)−1. It should noted that
while [14] is the original paper suggesting
CI, the basic ideas behind the method are
actually developed already in [20] under the
name Gaussian intersection.

The solution in (5), and equivalently in
(8), is parametrized by ω ∈ [0, 1]. As a result,
a family of solutions to the fusion problem is
produced [21], as shown in Figure 5. To deter-
mine a particular value for ω, a loss function
J(PCI) is minimized. Common choices of
J are the trace tr(·) and the determinant
det(·), where tr(PCI) is related to the MSE of
x̂CI and det(PCI) is related to entropy [22].
Strictly speaking, finding the optimal value
of ω is equivalent to solving

minimize
ω∈[0,1]

J
((

ω(P1)−1 + (1 − ω)(P2)−1
)−1

)
.

(9)
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P1, P2

PCI, ω = 0.1
PCI, ω = 0.3
PCI, ω = 0.5
PCI, ω = 0.7
PCI, ω = 0.9

Figure 5: Visualization of how PCI depends
on the weight parameter ω. Three cases with
different P1 and P2 are illustrated. For each
case, covariance intersection yields a family
of solutions where each solution corresponds
to a particular value of ω.

In the special case of merging 1D estimates,
choosing ω is trivial. For example, assuming
P1 = 1 and P2 = 4 yields

PCI = 1
ω + (1 − ω)1

4
,

which is monotonic in ω ∈ [0, 1]. In this case,
tr(PCI) is minimized for ω = 1 which means
that x̂CI = x̂1 and PCI = P1. No actual
fusion is hence performed.

Another important tool to study corre-
lations and model fusion problems is a joint
state-space representation. Two estimates x̂1

and x̂2 are expressed as the joint state
x̂J =

[
(x̂1)T (x̂2)T

]T
with the corresponding

joint covariance matrix

PJ = E[x̃J(x̃J)T] =
 P1 P12

(P12)T P2

 ⪰ 0 ,

(10)
where x̃J =

[
(x̃1)T (x̃2)T

]T
is the joint

error. This form will be used frequently in
the subsequent sections. The optimal fusion
rule (4) can now be formulated as a weighted
least-squares problem (WLS) [23]x̂1

x̂2

 = HJ x + x̃J

with HJ =
[
I I

]T
, and has the solution

(PBC)−1x̂BC = (HJ)T(PJ)−1x̂J , (11a)
(PBC)−1 = (HJ)T(PJ)−1HJ . (11b)

This joint state-space formulation also ex-
hibits the advantage that it can also
express more complex relationships be-
tween estimates and state through HJ =[
(H1)T (H2)T

]T
, for example, in case of fu-

sion of unequal state vectors [24]–[27].
The naïve fusion result is obtained when

P12 = 0 is used in (10) to ignore possible
correlations. The joint covariance for CI is
similarly given by

PJ,CI =
P1

ω
0

0 P2

1−ω

 , (12)

which also sets the off-diagonal blocks to zero
but inflates the diagonal blocks. As noted by,
for instance, [21], [28], [29], these expressions
result in (8), that is,

(PCI)−1x̂CI = (HJ)T(PJ,CI)−1x̂J

= ω(P1)−1x̂1 + (1 − ω)(P2)−1x̂2 ,

(13a)
(PCI)−1 = (HJ)T(PJ,CI)−1HJ

= ω(P1)−1 + (1 − ω)(P2)−1 .(13b)
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We can use the joint state-space rep-
resentation to conclude the mathematical
background with a simple proof of CI’s
conservativeness. Completely unknown cross-
correlations are mathematically equivalent to
saying that P12 can be any matrix such that
the joint covariance matrix (10) is positive
semidefinite. Since

S ⪰ R =⇒ (HJ)T S HJ ⪰ (HJ)T R HJ ,

(14)
it is sufficient to show PJ,CI ⪰ PJ to con-
clude that CI is conservative. For ω ∈ (0, 1),
we first note that positive semidefiniteness
of (10) is equivalent to P1 ⪰ 0 and P1 −
P12(P2)−1(P12)T ⪰ 0, where the latter is the
Schur complement. Hence,

PJ,CI − PJ =
 P1

ω
− P1 −P12

−(P12)T P2

1−ω
− P2


=

 1−ω
ω

P1 −P12

−(P12)T ω
1−ω

P2

 ⪰ 0

is equivalent to 1−ω
ω

P1 ⪰ 0 and
1 − ω

ω
P1 − 1 − ω

ω
P12(P2)−1(P12)T ⪰ 0

⇐⇒ P1 − P12(P2)−1(P12)T ⪰ 0 ,

where it was used that (1 − ω)/ω > 0. The
last statement is true because (10) is positive
semidefinite, and therefore CI is conservative
for any possible P12. The cases ω ∈ {0, 1}
are handled trivially since in these cases there
is no actual fusion. CI in the form (13) can
be interpreted as covariance inflation with
PJ,CI ⪰ PJ .

Relationship (14) has strong implica-
tions to the design and study of conservative
fusion methods: A WLS-based fusion (11)

becomes a conservative fusion method if PJ

in (11) is replaced by an inflated version
Pinfl, such that Pinfl ⪰ PJ holds for any
possible P12.

Disturbing Disturbances
Data fusion depends on dependencies,

and dependencies are quantified by correla-
tions between estimates. In the following, we
look at how it is possible to have P12 ̸=
0 while initially having uncorrelated esti-
mates. Three main sources of correlations
can be identified: common process noise,
common information, and correlated sen-
sor noise. Identifying situations where cross-
correlations arise is crucial to be able to
properly account for the cross-correlations.
Further discussions of how to identify and
handle dependencies are, for instance, pro-
vided in [30], [31]. The three considered cases
are illustrated in Figure 6.

Common Process Noise: Recursive
formulas of cross-correlations are presented
in [32]. Two estimates of the same state be-
come correlated due to common process noise
[33] even if otherwise independent agents
compute them. At first glance, this might
seem confusing, but consider two estimates
x̂1

k|k and x̂2
k|k of a dynamic state xk, where k

is a time index. Assume P12
k|k = 0 and that

xk evolves according to

xk+1 = Fkxk + wk ,

where Fk is the state transition model and
wk is a zero-mean process noise with Qk =
E[wkwT

k ]. The predicted state estimates in
the Kalman filters used by the two agents
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kw

kw
kw

((a)) Common process noise.

sha
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 inf
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((b)) Common information.

inte
rfer

enc
e

((c)) Correlated sensor noise.

Figure 6: The figure illustrates the three main causes of cross-correlations. (a) The process
models of the two nodes are affected by the same process noise. (b) An exchange of
information means that information is shared by the two nodes. (c) Sensor noise may be
correlated if sensors interfere each other.

become

x̂1
k+1|k = Fkx̂1

k|k , x̂2
k+1|k = Fkx̂2

k|k ,

and hence

P12
k+1|k = E[(x̂1

k+1|k − xk+1)(x̂2
k+1|k − xk+1)T]

= E
[
(Fk(x̂1

k|k − xk) + wk)(Fk(x̂2
k|k − xk) + wk)T

]

= Fk E[(x̂1
k|k − xk)(x̂2

k|k − xk)T]FT
k + E[wkwT

k ]

= FkP12
k|kFT

k + Qk

= Qk ,

where in the third step it was used that
E[(x̂i

k|k − xk)wT
k ] = 0. The conclusion is

that despite being uncorrelated at time k,
the two estimates have become correlated at
k+1 since the same process noise affects both
estimates.

Common Information: One benefit
of network-centric data fusion is that infor-
mation is allowed to be shared, thus improv-
ing the accuracy of estimates. Sharing in-
formation, however, can lead to correlations

since multiple estimates contain the same in-
formation after information has been shared.
This is the common information problem. For
example, assume that we have two estimates
x̂1 and x̂2 with P1 = E[x̃1(x̃1)T], P2 =
E[x̃2(x̃2)T], and P12 = E

[
x̃1(x̃2)T

]
= 0.

Assume that node 2 sends its estimate to
node 1. Since the estimates are uncorrelated,
an optimally fused estimate in node 1 is, in
this case, given by

x̂ = P
(
(P1)−1x̂1 + (P2)−1x̂2

)
,

P =
(
(P1)−1 + (P2)−1

)−1
.

After fusion, the correlations become

E
[
x̃(x̃2)T

]
= E

[
P

(
(P1)−1x̃1 + (P2)−1x̃2

)
(x̃2)T

]

= P(P2)−1 E
[
x̃2(x̃2)T

]
= P(P2)−1P2

= P .

The fused estimate at node 1 is now cor-
related with the estimate at node 2. The
actual information that is common to x̂ and
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x̂2, in this case, is (P2)−1 due to P−1 =
(P1)−1 +(P2)−1. Common information is not
exclusively due to fusion of estimates. Similar
expressions, for example, are obtained if both
nodes access the same sensor, and x̂1 and x̂2

would be updated with the same measure-
ment.

Double counting [34] of information is
intuitively visualized using common informa-
tion. Assume that x̂1 and x̂2 are

(P1)−1x̂1 = A−1â + Γ−1γ̂ , (P1)−1 = A−1 + Γ−1 ,

(15a)
(P2)−1x̂2 = B−1b̂ + Γ−1γ̂ , (P2)−1 = B−1 + Γ−1 ,

(15b)
where γ̂ with Γ is the common information
shared by both estimates, while â, b̂, and
γ̂ are mutually uncorrelated. Then, naïve
fusion of x̂1 and x̂2 results in

P−1x̂ = (P1)−1x̂1 + (P2)−1x̂2 = A−1â + B−1b̂ + 2Γγ̂ ,

P−1 = (P1)−1 + (P2)−1 = A−1 + B−1 + 2Γ ,

where γ̂ with Γ is counted twice. The convex
combination (8) directly shows how CI avoids
double counting [35]. Hence, CI incorporates
γ̂ with Γ only once.

An important aspect of devising fusion
methods is that common process noise and
common information cannot be treated as
separate entities if they are simultaneously
present. For instance, common information
γ̂k|k in (15) at a time step k gets blended
with the process noise wk after prediction,
which leads to

P1
k+1|k = FkP1

k|kFT
k +Qk = Fk

(
A−1

k|k+Γ−1
k|k

)−1
FT

k +Qk

and corresponding P2
k+1|k. Hence, common

information from former time steps cannot
be represented in the form (15) anymore. An
implication is that fusion methods cannot
treat process noise and common information
separately after multiple time steps.

Correlated Sensor Noise: A com-
mon assumption in data fusion is that the
noises from different sensors are indepen-
dent. In some scenarios, this assumption
cannot be guaranteed [36], [37], and cross-
correlated sensor noise has to be taken into
consideration. Consider two uncorrelated es-
timates x̂1

k|k−1 and x̂2
k|k−1, that is, P12

k|k−1 =
E[x̃1

k|k−1(x̃2
k|k−1)T] = 0. For each estimate,

a Kalman filter update is performed with
a measurement yi

k = Hi
kxk + vi

k, i = 1, 2,
where Hi is the measurement mapping and
vi is the zero-mean sensor noise with Ri

k =
E[vi

k(vi
k)T]. A typical assumption is that the

sensor noises are uncorrelated. However, if
both sensors interfere with each other, non-
zero correlations R12

k = E[v1
k(v2

k)T] ̸= 0
will be present. The corresponding Kalman
updates yield

(Pi
k|k)−1x̂i

k|k = (Pi
k|k−1)−1x̂i

k|k−1 + (Hi
k)T(Ri

k)−1yi
k ,

(Pi
k|k)−1 = (Pi

k|k−1)−1 + (Hi
k)T(Ri

k)−1Hi
k
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and entail the cross-covariance structure

E
[
x̃1

k|k(x̃2
k|k)T

]
= E

[
P1

k|k

(
(P1

k|k−1)−1x̃1
k|k−1 + (H1

k)T(R1
k)−1v1

k

)

×
(
(P2

k|k−1)−1x̃2
k|k−1 + (H2

k)T(R2
k)−1v2

k

)T
P2

k|k

]

= E
[
P1

k|k(H1
k)T(R1

k)−1v1
k(v2

k)T(R2
k)−1H2

kP2
k|k

]

= P1
k|k(H1

k)T(R1
k)−1R12

k (R2
k)−1H2

kP2
k|k .

Hence, correlated sensor noise causes correla-
tions among x̂1 and x̂2 even though they are
processed on independent nodes. This third
case can be viewed as a generalization of
common information if Hi = I, Ri = Γ, and
vi = γ̂ for i = 1, 2.
Consequences of Cross-Correlations

For a practical example of what hap-
pens when cross-correlations are neglected,
consider the simulated scenario depicted in
Figure 7. Three vehicles approach a three-
way junction. The target vehicle of interest
(white van) follows the dashed trajectory
intends to turn left at the junction. The
orange truck and blue car, each equipped
with a sensor and an EKF, track the target
vehicle. To further improve their estimates,
they exchange their local track estimates and
fuse them.

The estimates are fused using naïve fu-
sion where cross-correlations are neglected
and using CI based on the same noise realiza-
tion. The results are shown in Figure 8, where
only estimates computed in the blue car are
shown. Initially the naïve fusion rule per-
forms relatively well but as time progresses

and double counting of information starts to
dominate, the naïve fusion estimate (yellow)
becomes too optimistic. The consequence is
that the estimate overshoots the turn of the
target. Meanwhile, the same effect is not
seen in case of CI (green) which is robust to
double counting of information. An estimate
which only uses local information is provided
for comparison (blue).

The specific results of Figure 8 is only
one simulated example. Nevertheless, these
results are typical and characterize the ef-
fect of neglecting cross-correlations by dou-
ble counting information. That is, the naïve
estimator becomes too confident of the esti-
mate and hence becomes partly incapable of
incorporating new measurements.

Optimality of Conservative Fusion
An important question is whether and

in which regard CI is an optimal fusion rule.
Optimality typically refers to known cross-
covariances P12, which enable the computa-
tion of the fusion result (4). In the special
case P12 = 0, optimal fusion simply yields
the fused covariance matrix

P−1 = (P1)−1 + (P2)−1 ,

which equals naïve fusion. If we instead apply
CI, we obtain far too conservative results
PCI ≻ P as the gap between the green and
red ellipse in Figure 4 indicates. This is no
surprise, CI is derived for the case when
P12 is unknown. In the case of completely
unknown P12, it however turns out that CI
is indeed optimal.

To study the optimality of CI, we need
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Figure 7: Scenario used to illustrate the effect of neglecting cross-correlations. A target
vehicle, the white van, is tracked by sensors located in two other vehicles, the blue car and
the orange truck. All vehicles follow the dashed trajectories and approach the three-way
junction.

to scrutinize the corresponding error

x̃CI = x̂CI − x = KCI x̃1 + LCI x̃2

for the CI estimate in (5a) with

KCI = ωPCI(P1)−1 , LCI = (1 − ω)PCI(P2)−1 ,

and I = KCI + LCI. The actual error covari-
ance matrix then becomes
E

[
x̃CI(x̃CI)T

]
= KCIP1(KCI)T + KCIP12(LCI)T

+ LCI(P12)T(KCI)T + LCIP2(LCI)T ,

(16)
which is unknown to the fusion algorithm
because P12 is unknown. However, Figure 9
reveals that CI tightly circumscribes the
union of all ellipses E

(
E

[
x̃CI(x̃CI)T

])
. This

illustration provides an intuition for CI’s op-
timality. Note that CI uses different gains
KCI and LCI than BC. Therefore, Figure 4
showing the ellipses for BC neither illustrates
conservativeness nor optimality of CI while
Figure 9 shows PCI as bound on the possible
actual errors (16).

As noted in [21], [29] PCI is the small-
est covariance for any estimate computed
linearly from x̂J with covariance PJ,CI ac-
cording to (13). However, as pointed out
in [38], this is not sufficient for proving CI is
optimal. A key result is given in [38] showing
that there is no tighter bound on E[x̃(x̃)T]
than PCI if P12 is completely unknown. More
specifically, they show that CI is optimal
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Figure 8: Results of the neglecting cross-
correlations scenario. The estimates are fused
using naïve fusion and covariance intersec-
tion. The results of only using local in-
formation are also plotted. The estimated
trajectories of the naïve fusion, covariance
intersection and local information only are
given by the yellow, the green and the blue
lines, respectively. The double counting of
information present in case of naïve fusion
produces an estimate having a too optimistic
covariance with the consequence that the
estimate overshoots the turn of the target.

with respect to a strictly monotonically in-
creasing loss function J . The work in [39]
suggests focusing on the trace of the fused co-
variance matrix. In doing so, a smaller covari-
ance matrix can be computed by bounding
tr

(
E[x̃x̃T]

)
instead of E[x̃x̃T] and, hence, the

trace of E[x̃x̃T] is bounded directly. However,
with this tighter bound, it follows that the
conservativeness criterion may be violated.

P1

P2
WPJWT for different P12 ̸= 0
PCI

E(PCI) tightly encloses E(P1) ∩ E(P2)

Figure 9: Geometrical interpretation of opti-
mality of covariance intersection. Let W =[
KCI LCI

]
. It is known from the subsequent

section that the ellipses E(PBC) fills the inter-
section E(P1)∩E(P2). Hence, since CI tightly
encloses E(P1)∩E(P2) and at the same time
E(PCI) ⊇ E(WPJWT) for all admissible PJ ,
CI is an optimal conservative estimator.
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Computational Aspects and
Multiple Estimates

While the optimal fusion in (4) is given
in closed form when correlations are known,
the fusion result of CI in (5) depends on the
parameter ω. The fusion result of CI forms a
family of possible solutions (5), and the opti-
mal choice of ω typically requires a numerical
approach when the trace or determinant is
the considered cost function. This compu-
tational overhead has triggered further re-
search on new approaches to determining the
weight parameter ω, and particular attention
is required when multiple estimates are fused
using CI, either sequential or batchwise.

Computation of the Weight Parameters

We have seen that CI provides a family
of estimates as a consequence of the free
parameter ω ∈ [0, 1]. While each ω ∈ [0, 1]
ensures a conservative estimate, for the per-
formance, it is however crucial to compute an
ω that yields a PCI which is as small as possi-
ble with respect to J(PCI). This task might
be difficult, computationally demanding, or
even intractable, given the actual system
design. Below we survey several techniques
that address this.

In [40], different principles to determine
ω are studied, namely, Shannon fusion and
Bhattacharyya fusion. Shannon fusion refers
to minimizing det(PCI) and is, in the Gaus-
sian case, the same as maximization of the
Shannon information. This criterion is jus-
tified by information theory [41]. In Bhat-
tacharyya fusion, ω is simply chosen as ω =

1/2, and (5) hence reduces to

(PCI)−1x̂CI = 1
2

(
(P1)−1x̂1 + (P2)−1x̂2

)
,

(PCI)−1 = 1
2

(
(P1)−1 + (P2)−1

)
,

which resemble naïve fusion (6) except for the
factor 1/2. This means that Bhattacharyya
fusion yields the same estimate x̂CI as naïve
fusion but with a twice as large covariance
matrix PCI. Such a simple choice does not
take into account the different contributions
of the two estimates, and therefore might
lead to undesirable results. For instance, con-
sider

P1 =
1 0
0 1

 , P2 =
10 0

0 0.5

 ,

and tr(·) as the loss function. Then, with the
trace optimal ω we get tr(PCI)/ tr(P1) < 1
which is a strict improvement. However, with
ω = 1/2 we get tr(PCI)/ tr(P1) > 1 which
actually is a performance degradation, with
respect to trace, compared to P1.

A fast CI algorithm is proposed in [42],
which provides closed-form expressions for
an approximate computation of ω based on
the individual covariance matrices. Fast CI is
based on a linear constraint weighted by the
trace of covariance matrices

tr(P1)ω − tr(P2)(1 − ω) = 0 ,

such that

ω = tr(P2)
tr(P1) + tr(P2) . (17)

Hence, fast CI utilizes a trace-based fusion
gain similar to the scalar gains computed
in [43].

An improved version of fast CI based
on determinant weighting is proposed in [44].
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The fast CI of [45], [46] relies upon Kullback-
Leibler divergence and is in fact robust even
in the case when one of the estimates to
be merged is not conservative. The latter
is accomplished by computing the weight
parameter ω in a subinterval [0, δ] ⊆ [0, 1],
where 0 < δ ≤ 1 is derived adaptively to
preserve conservativeness, and then replace
the weight (1 − ω) corresponding to (x̂2, P2)
by (δ − ω). The closed-form expressions de-
rived in the fast CI algorithm enable CI to
be deployed in real-world systems to cope
with implementations challenges: In [47] it
is shown that the fast CI algorithm of [42]
can be computed homomorphically for en-
crypted estimates. The resulting method is a
secure fast CI fusion scheme which is further
pursued in [48]. The problem of conservative
fusion of quantized estimates is studied in
[49], [50]. A benefit of data compression by
quantization is to reduce the communication
load which is a current topic in DDF. For
other examples of where CI is used in a
DDF under communication constraints, see
[51] where the exchanged covariances are ap-
proximated by diagonal matrices, and [52]–
[54] where dimension-reduced estimates are
exchanged.

If J is tr(·) or det(·), then the problem
in (9) is a convex optimization problem [22],
which implies desirable convergence proper-
ties when it comes to optimization of ω. For
unimodal J , for example, if J is strongly
convex, simple optimization algorithms such
as the golden section search [55] can be used.
In [56], closed-form expressions are derived
for low state dimensionalities n. The results

−0.2

−0.1

0

0.1

0.2

5 7 9 11 13 15 17 19

∆ω

n

mean(∆ωfast)
mean(|∆ωfast|)
mean(∆ωNewton)
mean(|∆ωNewton|)

5 6 7

−0.005

0.005

0.015

Figure 10: Comparison of weight parameter
computation methods. Fast CI and Newton
CI approximations for computation of ω are
based on sampling of P1 and P2 and trace
optimization. The function mean(·) denotes
sample mean and n is the dimensionality.
The performance of Newton CI is superior
the fast CI algorithm.

are exact, and the formulas are valid for
n ≤ 3 and n ≤ 4 in case of trace and deter-
minant, respectively. For larger dimensions,
the results of [22] can be used, in which two
iterations of Newton’s method yield approxi-
mative closed-form expressions. The approx-
imative expressions are applicable for both
trace and determinant minimization. This
Newton CI method effectively approximates
the optimal ω for entropy and variance cost
functions. It reaches close-to-optimal results
with comparably low computational costs,
which is demonstrated in the remainder of
this section.
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The weight parameter ω is derived based
on trace optimization, and P1 and P2 are
covariance matrices sampled from a Wishart
distribution W (I, n) [57]. Let ωfast be com-
puted according to (17) and ωNewton be
computed according to the trace optimiza-
tion approximation in [22]. Moreover, let
∆ωNewton = ωfast − ω and ∆ωNewton =
ωNewton − ω, where ω is the true value com-
puted as the solution to (9). For different val-
ues of n, ∆ωfast and ∆ωNewton are computed
for randomly generated P1 and P2. For each
n a number of 100 000 samples are generated.
The sample means of ∆ωfast and ∆ωNewton,
and |∆ωfast| and |∆ωNewton|, are illustrated
in Figure 10. The shaded areas visualized
the sample standard deviations of ∆ωfast and
∆ωNewton. The Newton CI algorithm clearly
outperforms fast CI. Both approximations
become more exact as n increases. It is also
seen that both ∆ωfast and ∆ωNewton are zero-
mean.

Fusion of Multiple Estimates

To merge N ≥ 2 estimates
x̂1, x̂2, . . . , x̂N it is always possible to
subsequently apply the CI formulas of (8).
For example, consider fusion of x̂1, x̂2 and
x̂3 where

P1 =
12 0

0 3

 , P2 =
 12 −5
−5 5

 , P3 =
4 3
3 10

 .

(18)

We can now, in a first step, fuse x̂1 and x̂2,
and then, in a second step, fuse the results of

sequential fusion

step 1 step 2

P1

P2

P3

batchwise fusion

Pseq
(12) Pseq

(123) Pbat

Figure 11: Fusion of multiple estimates using
covariance intersection. Sequential fusion is
compared to batchwise fusion of three es-
timates. In the sequential update P1 and
P2 are fused into an intermediate covariance
matrix Pseq

(12) which is then fused with P3. The
batch method fused P1, P2 and P3 simul-
taneously. In this example batchwise fusion
yields a smaller covariance with respect to
tr(·) compared sequential fusion.

the former step with x̂3, both using (8). Let

Pseq
(12) =

(
ωseq

(12)(P
1)−1 + (1 − ωseq

(12))(P
2)−1

)−1

=
 8.80 −2.20
−2.20 3.30


and

Pseq
(123) =

(
ωseq

(123)(P
seq
(123))

−1 + (1 − ωseq
(123))(P

3)−1
)−1

=
 4.43 −0.02
−0.02 3.99

 ,

where ωseq
(12) and ωseq

(123) were computed based
on trace minimization in each step. The re-
sults are illustrated in Figure 11. Since this
sequential approach involves optimizing for
ω in two steps and neither of the steps takes
into account all three estimates, the final
result is in general suboptimal compared to
optimizing ω for all three estimates simulta-
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neously. The best way is therefore to fuse all
three estimates batchwise.

Batchwise fusion using CI is formulated
as follows for the general case. Assume that
N estimates of x are available and that the
ith estimate is x̂i = x + x̃i. The estimation
error x̃i has the covariance matrix Pi =
E[x̃x̃T]. CI for batchwise fusion of N ≥ 2
estimates has the form

(PCI)−1x̂CI =
N∑

i=1
ωi(Pi)−1x̂i , (19a)

(PCI)−1 =
N∑

i=1
ωi(Pi)−1 , (19b)

where ωi ∈ [0, 1] and ∑N
i=1 ωi = 1. Fusion

of multiple estimates can also be expressed
in the joint form, which was introduced for
N = 2 in (10). In this case, the joint estimate
and joint covariance are given by

x̂J =


x̂1

x̂2

...
x̂N

 =


I
I
...
I

 x +


x̃1

x̃2

...
x̃N

 = HJx + x̃J ,

PJ =


P1 P12 . . . P1N

P21 P2 . . . P2N

... ... . . . ...
PN1 PN2 . . . PN

 = E[(x̃J)(x̃J)T] .

A conservative bound for actual but un-
known PJ is

PJ,CI =



P1

ω1
0 . . . 0

0 P2

ω2

. . . ...
... . . . . . . 0
0 . . . 0 PN

ωN

 ⪰ PJ , (20)

corresponding to (12). Analogously to (13),
the CI formulas in (19) can then be expressed
as

(PCI)−1x̂CI = (HJ)T(PJ,CI)−1x̂J , (21a)
(PCI)−1 = (HJ)T(PJ,CI)−1HJ ,(21b)

which are a weighted least squares (WLS)
representation of CI for multiple estimates.

In the previous example with P1, P2 and
P3 having the parameter (18), we obtain

Pbat =
(
ω1(P1)−1 + ω2(P2)−1 + ω3(P3)−1

)−1

=
 3.83 −0.58
−0.58 4.05

 ,

by using batchwise fusion (19), where ω1,
ω2 and ω3 are found by trace minimization.
Since tr(Pseq) ≈ 8.41 and tr(Pbat) ≈ 7.89 we
have

tr(Pseq) > tr(Pbat) ,

and hence batchwise fusion is superior to
sequential fusion. The results are illustrated
in the right part of Figure 11.

In [28], it is shown that CI produces
conservative estimates also if N > 2. Fusion
of multiple estimates simultaneously does,
however, not preserve optimality. The main
downside of using CI batchwise is the in-
creased computational complexity due to re-
placing the 1D problem of optimizing for
ω with the multidimensional problem of de-
termining ω1, ω2, . . . , ωN−1, where ωN is ex-
cluded since it is given by ωN = 1−∑N−1

i=1 ωi.
A comprehensive analysis of batch CI com-
pared to sequentially applying CI to two
estimates is provided in [58].
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Finding the optimal weighting parame-
ters is even more challenging for the fusion
of multiple estimates. One advantage of fast
CI is that it is order-invariant and also ap-
plicable for batchwise fusion. In the N ≥ 2
case, there are N − 1 constraints

tr(Pi)ωi−tr(Pi+1)ωi+1 = 0 , i = 1, 2, . . . , N−1 ,

which, using ςi = tr(Pi) and including∑N
i=1 ωi = 1, yield the linear system of equa-

tions

ς1 −ς2 0 . . . 0
0 ς2 −ς3

. . . ...
... . . . . . . . . . 0
0 . . . 0 ςN−1 −ςN

1 . . . 1 1 1





ω1

ω2
...

ωN−1

ωN


=



0
0
...
0
1


.

(22)
Solving (22) finally yields

ωi =
1
ςi∑N

j=1
1
ςj

=
1

tr(Pi)∑N
j=1

1
tr(Pj)

,

which shows that fast solutions for the fusion
of multiple estimates are also attainable.
Other Practical Aspects

In some cases, the choice of a loss func-
tion J(PCI), like the trace or determinant,
may lead to an undesirable jumping between
estimates. As discussed earlier in section
Problem Intuition, CI chooses the estimate
with a smaller covariance matrix when P1 ⪰
P2 or P2 ⪰ P1 holds. If this relationship
switches, for example, every other time step,
the fusing result will jump accordingly be-
tween the two estimates. This is, in partic-
ular, a problem in one dimension and is an
argument for considering different criteria for
choosing ω in such cases. One alternative is

to consider set-membership methods. A set-
theoretic interpretation of CI was originally
given in [59]. By associating information
with ellipsoids, [46], [60] propose to employ
the Chebyshev center to compute optimal
weights ω1, . . . , ωN for N ≥ 2 estimates.
In [61], the set of possible correlation coeffi-
cients is considered and studied. In a subse-
quent step, the same coefficient is assumed to
be uniformly distributed and is marginalized
out to obtain a fusion result.

Especially in object tracking scenarios,
CI needs to handle fusion of estimates over
multiple time steps in a dynamic environ-
ment. This is not an issue since any cross-
correlations originating from common pro-
cess noise, sharing of information, or any
other source are handled conservatively by
CI. However, recursive application of CI over
time may lead to unnecessarily large covari-
ances as shown in [62]. Therefore, MSE opti-
mality is not preserved when using CI recur-
sively in dynamic systems [63]. Several fusion
schemes involving CI have been developed to
better preserve information over time. The
algorithms in [64] and [65] are based upon fu-
sion without and with memory, respectively,
and feedback mechanisms to more efficiently
use information in dynamic systems. Differ-
ent robust fusion mechanisms for merging of
multiple estimates in time-varying systems
are studied in [66], [67], where CI is compared
to different fusion techniques using the joint
covariance.

From a user’s perspective, Sidebar:
Practitioner’s Point-Of-View provides a
guideline and discusses how to find a proper
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choice of a fusion method. Alternatives
and derivatives of CI are the subject of the
following section.
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Derivatives and Alternatives to
Covariance Intersection

CI is conservative for all possible cross-
correlations. When two estimates have com-
pletely unknown cross-correlations, CI yields
the optimal fusion result in the sense that it
has the tightest bound on the actual error.
However, partial knowledge about the cross-
correlations or their sources is available in
many situations. In such cases, CI becomes
overly conservative, and less conservative al-
ternatives should be considered instead. The
recent study [68] further discusses fusion un-
der partially known cross-correlations and
introduces the notion of conservative linear
unbiased estimation (CLUE). In essence, the
methods described in the following are in-
stances of a CLUE. In this context, CI is
an optimal CLUE if two estimates are con-
sidered and P12 is completely unknown [38].
The following methods are optimal under dif-
ferent assumptions on partially known cross-
correlations. Figure 12 provides a coarse clas-
sification of the underlying assumptions that
allow for less conservative fusion results. In
the following, we highlight those significant
contributions in a chronological order.
Federated Kalman Filter

The federated Kalman filter (FKF, [69],
[70]) was proposed a decade before CI. It can
however be regarded as a special case of CI
tailored to cope with common process noise.
The FKF accomplishes this by inflating the
joint covariance. It assumes that N local
filters are initialized with the same estimate
x̂0|0, which has the covariance matrix P0|0.
Hence, the local estimates are fully corre-

lated, that is, E[x̃i
0|0(x̃

j
0|0)T] = P0|0. The

FKF is a centralized scheme, in which each
node has a local filter processing local esti-
mates, and a central node collects and fuses
the local results. The central node can also
reinitialize the local filters with the fusion
result. Local measurements are assumed to
be uncorrelated, but each filter is affected
by the same process noise in the prediction
step as discussed in Disturbing Disturbances.
To address correlations, the FKF makes the
following adaptations to the local filters: The
initialization at k = 0 or reinitialization at a
time step k become

x̂i
k|k = x̂k|k, (Pi

k|k)−1 = βiP−1
k|k , (23)

and the prediction step is altered to

x̂i
k+1|k = Fk x̂i

k|k ,

Pi
k+1|k = Fk Pi

k|k FT
k + 1

βi

Qk (24)

for each node i = 1, . . . , N with βi >

0,
∑n

i=1 βi = 1. More precisely, an inflation
parameter βi has been introduced in the
covariance matrix equations, which corre-
sponds to the bound

E
[
x̃J (x̃J)T

]
=


Pi

k|k · · · Pi
k|k

... . . . ...
Pi

k|k · · · Pi
k|k

⪯


1

β1
Pi

k|k · · · 0
... . . . ...
0 · · · 1

βN
Pi

k|k



on the joint error covariance matrix for
the (re-)initialization (23) of the local filers,
where x̃J = [(x̃1)T, . . . , (x̃N)T]T is the joint
estimation error. For the common process
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noise, the FKF uses the bound

E
[
wJ

k (wJ
k )T

]
=


Qk · · · Qk

... . . . ...
Qk · · · Qk

 ⪯


1

β1
Qk · · · 0
... . . . ...
0 · · · 1

βN
Qk



with wJ
k = [wT

k , . . . , wT
k ]T, which justifies

the inflated covariance matrices in (24). The
inflation is the same technique CI uses for
the inflated joint covariance matrix (20).
The FKF assumes a central dedicated fusion
center, although generalizations are possible.
However, it does not consider the problem
of common information or correlated sensor
noise.
Split CI and Bounded Correlations

Split CI is based on the assumption that
each estimate can be split into an indepen-
dent part and a dependent part [3], [10], [71],
[72]. The estimates are assumed to have the
form x̂1 = x̂1

e + x̂1
d and x̂2 = x̂2

e + x̂2
d, where

x̂1
e and x̂2

e are uncorrelated, and x̂1
d and x̂2

d

have unknown correlations. In other words,
E[x̃1

e(x̃2
e)T] = E[x̃1

d(x̃2
e)T] = E[x̃1

e(x̃2
d)T] = 0

while x̂1
d and x̂2

d are correlated to an unknown
degree. A simple example is the fusion of two
estimates after local measurement updates,
which allows us to exploit the conditional
independence of the measurements [73]. In
split CI, the joint form (10) can again be
exploited to find the bound

E
[
x̃J(x̃J)T

]
=

P1
e 0

0 P2
e

 +
 P1

d P12
d

P21
d P2

d


⪯

P1
e 0

0 P2
e

 +
 1

ω
P1

d 0
0 1

1−ω
P2

d
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Figure 12: Coarse classification of alterna-
tive approaches to CI that require differ-
ent knowledge about the fusion problem. If
correlations are completely unknown, CI is
optimal. If correlations can be constrained,
split CI or the largest ellipsoid (LE) method
can be considered. Information about the
sources of correlations can be utilized in
the federated Kalman filter (FKF) and in-
verse covariance intersection (ICI). The for-
mer handles common process noise; the latter
is tailored to unknown common information.

with ω ∈ [0, 1], Pi
e = E[x̃i

e(x̃i
e)T] and Pi

d =
E[x̃i

d(x̃i
d)T], and P12

d = (P21
d )T = E[x̃1

d(x̃2
d)T].

Hence, the bound is only applied to depen-
dent parts.

Split CI indirectly assumes a bound on
the maximum possible cross-covariance ma-
trix P12 between the estimates x̂1 and x̂2,
which is characterized through

(P12
d )T(P1

d)−1P12
d ⪯ P2

d .

The authors of [74] and [75] independently
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have proposed to utilize a similar form of a
bound

(P12 − D)T(P1)−1(P12 − D) ⪯ r2
maxP2 .

for P12 with rmax ∈ (0, 1]. This relationship
specifies how much the unknown P12 can
differ from a known D. If such D and rmax are
known, the joint cross-covariance matrix (10)
can then be bounded by

PJ ⪯

(1 + α · rmax)P1 D
DT (1 + rmax

α
)P2


with α = 1

ω
− 1, which can then be

used in (13) for conservative fusion. Specific
bounds and limiting cases are studied further
in [76].

While split CI uses an additive split-
ting of the estimates, [77] studies a splitting
along the state components. For instance,
if the state estimates have the form x̂1 =
[(x̂1

a)T (x̂1
b)T]T and x̂2 = [(x̂2

c)T (x̂2
d)T]T, where

only x̂1
b and x̂2

d have unknown correlations
and all other correlations are known, the
bound

PJ =


P1

aa P1
ab P12

ac P12
ad

P1
ba P1

bb P12
bc P12

bd

P21
ca P1

cb P2
cc P2

cd

P21
da P21

db P2
dc P2

dd



⪯


P1

aa P1
ab P12

aa P12
ab

P1
ba

1
ω

P1
bb P12

bc 0
P21

ca P21
cb P2

cc P2
cd

P21
da 0 P2

dc
1

1−ω
P2

dd


highlighted in red can be utilized. In [78] it
is noticed that this bound is overly conserva-
tive, which is due to the fact that the known
correlations of the other state components
limit the correlations between x̂1

b and x̂2
d. The

same work demonstrates how to find a tight
bound that can be exploited for fusion.

A related concept is the factorized co-
variance intersection (FCI, [79]–[81]) method
that exploits a joint diagonalization [79], [82]
for reducing the conservativeness of tradi-
tional CI. To illustrate the general concept,
we again assume estimates of the form x̂1 =
[(x̂1

a)T (x̂1
b)T]T and x̂2 = [(x̂2

a)T (x̂2
b)T]T. After

a joint diagonalization, it is assumed that
they have the joint covariance matrix

PJ =
 P1 P12

P21 P2

 =


P1

a 0 P12
a 0

0 P1
b 0 P12

b

P21
a 0 P2

a 0
0 P21

b 0 P2
b

 .

(25)
If this factorization holds, it is possible to
handle the a (red) and b (blue) block com-
ponents separately. An estimate x̂ can then
be computed using FCI as

x̂ =
x̂a

x̂b

 =
Pωa

a (ωa(P1
a)−1x̂1

a + (1 − ωa)(P2
a)−1x̂2

a)
Pωb

b (ωb(P1
b)−1x̂1

b + (1 − ωb)(P2
b)−1x̂2

b)

 ,

P =
Pωa

a 0
0 Pωb

b


with

Pωa
a =

(
ωa(P1

a)−1 + (1 − ωa)(P2
a)−1

)−1
,

Pωb
b =

(
ωb(P1

b)−1 + (1 − ωb)(P2
b)−1

)−1
,

and ωa, ωb ∈ [0, 1] are found by optimizing
Pωa

a and Pωb
b separately. As noted in [81] it is

sufficient to have the block structure in (25)
after a joint transformation of x̂1 and x̂2.
Largest Ellipsoid Methods

While CI focuses on the bound of the
intersection as shown in Figure 4, a famous
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class of conservative fusion algorithms stud-
ies the largest ellipsoid inside the intersec-
tion. This idea was initially proposed in
[83] and has later on been given different
names. In [84] it is named internal ellipsoid
approximation and in the same paper it is
pointed out that the fused estimate mean
has not been derived correctly in the initial
work. The authors of [85], [86] use the name
ellipsoidal intersection and, in [87], [88], it
goes by the name safe fusion. While they all
introduce systematic ways to derive the fused
estimates, there are some differences between
how the state estimates are computed, which
are not further elucidated. The LE method
formulation of [82] is used here.

An intuitive description of LE is ob-
tained through a joint diagonalization of the
estimates. Let

ẑ1 = Tx̂1, (D1)−1 = T(P1)−1TT,

ẑ2 = Tx̂2, (D2)−1 = T(P2)−1TT

be the estimates after applying a transforma-
tion T that yields diagonal D1 and D2. In
essence, T scales and rotates both ellipsoids
E(P1) and E(P2) to be axis aligned. Such
a diagonalization is, for instance, desribed
in [86]. To fuse both estimates, LE selects the
elements with the smallest covariance entries,
that is,

[ẑLE]i =


[ẑ1]i , if [D1]ii < [D2]ii ,

[ẑ2]i , if [D1]ii > [D2]ii ,

1
2

(
[ẑ1]i + [ẑ2]i

)
, if [D1]ii = [D2]ii ,

[DLE]ii = min
{
[D1]ii, [D2]ii

}
.

where [D]ii is the ith diagonal entry of ma-
trix D and [z]i the ith entry of vector z.
The fusion result is finally obtained by the
back transformations x̂LE = T−1ẑLE and
PLE = T−1DLET−T. The equations show
that LE computes the maximum-volume el-
lipsoid, also called Löwner–John ellipsoid,
that fits into the intersection E(P1) ∩ E(P2).

The LE method can also be expressed
in terms of the assumption that the two esti-
mates x̂1 and x̂2 share common information
γ̂ with covariance matrix Γ as in (15), that
is,

x̂1 = P1
(
(P1

e)−1x̂1
e + Γ−1γ̂

)
,

x̂2 = P2
(
(P2

e)−1x̂2
e + Γ−1γ̂

) (26)

with
P1 =

(
(P1

e)−1 + Γ−1
)−1

,

P2 =
(
(P2

e)−1 + Γ−1
)−1

,
(27)

where x̂1
e, x̂2

e, and γ̂ are mutually uncorre-
lated. The estimates x̂1 and x̂2 are correlated
through the common information such that
P12 = E[x̃1(x̃2)T] = P1Γ−1P2. Optimal
fusion, in this case, implies

x̂fus = P
(
(P1)−1x̂1 + (P2)−1x̂2 − Γ−1γ̂

)
(28a)

= P
(
(P1

e)−1x̂1
e + (P2

e)−1x̂2
e + Γ−1γ̂

)
,

Pfus =
(
(P1)−1 + (P2)−1 − Γ−1

)−1
(28b)

=
(
(P1

e)−1 + (P2
e)−1 + Γ−1

)−1
,

meaning that x̂1
e, x̂2

e, and γ̂ are fused op-
timally. Since γ̂ and Γ are unknown, the
LE method selects γ̂ with the largest in-
formation matrix Γ−1 in terms of volume.
It hence subtracts the maximum possible
common information.
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The LE method’s effectiveness is shown
in empirical case studies [85] and [87]. A com-
parison with CI is conducted in [89]. In [68],
it is shown under which assumptions on P12

LE is an optimal CLUE. However, the LE
method provides conservative estimates only
in certain rather restrictive cases [90]. The
reason is that LE refers only to the largest
possible common information in terms of the
volume of E(PLE), that is, the determinant
of PLE, but there can be instances of com-
mon information such that E(PLE) will be
exceeded in some directions.

Inverse Covariance Intersection
Inverse covariance intersection (ICI,

[90]) addresses the problem of unknown com-
mon information by providing a conservative
bound on all possible instances of common
information and, thus, can also handle those
that are not captured by the LE method. ICI
refers to the same decomposition as the LE
method in (26) and (27). ICI exploits the
bound

Γ−1 ⪯
(
ωP1 + (1 − ω)P2

)−1
(29)

on all possible Γ−1 with ω ∈ [0, 1]. Note
the resemblance to PCI in (5b) of CI. The
difference lies in which domain this bounding
takes place. In case of CI, it is done in the
covariance domain and, in case of ICI, it is
done in the information domain. Fusion of x̂1

and x̂2 using ICI yields

x̂ICI = PICI
(

(P1)−1 x̂1 + (P2)−1 x̂2 − (ΓICI)−1 γ̂ICI
)

,

PICI =
(
(P1)−1 + (P2)−1 − (ΓICI)−1

)−1

with the bound on common information

γ̂ICI = ω x̂1 + (1 − ω) x̂2 ,

ΓICI = ωP1 + (1 − ω)P2 ,

where ω is computed by optimizing a loss
function J(P) like the trace of P. As it can
be seen by comparison to (28b), ICI uses the
bound (29) in place of the unknown Γ.

ICI guarantees conservative estimates
given that the decomposition in (26)–(27)
is satisfied. Moreover, it is shown that ICI
provides a tight bound on P and, hence, is an
MSE optimal conservative linear estimator,
which means that it minimizes the MSE
among all conservative linear estimators, un-
der these assumptions. In [91], a general-
ization of the decomposition in (26)–(27) is
derived. Different aspects of ICI and the fu-
sion of multiple estimates are studied in [92].
An alternative parameterization of the fusion
gains is provided in [93]. An empirical study
of ICI and comparison with CI is provided
by [88]. Formulas for a batchwise fusion of
multiple estimates using ICI are derived in
[94], and [95] studies iterative solutions. ICI
is an optimal CLUE given that the common
information decomposition [68].
Discussion and Other Alternatives

Figure 12 depicts that each method de-
scribed utilizes different assumptions regard-
ing the correlation structure. Split CI and
the LE method can exploit partial knowledge
or constraints on the joint covariance matrix.
This knowledge is only accessible in specific
cases, such as when the state comprises mul-
tiple objects and only some of the corre-
lations are unknown while the correlations
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between the other object states are avail-
able. The LE method assumes a maximum
possible common information shared by two
estimates and hence addresses the problem
of double counting in (15). Its generalization
ICI bounds all possible instances of common
information. Both methods struggle when
also common process noise is present and
blends with the common information. FKF
takes the opposite direction and is designed
explicitly for common process noise. There-
fore, it struggles with common information.
However, the inseparability of common infor-
mation and process noise over time does not
prohibit using these methods. For instance,
[91] shows that ICI can also handle common
process noise to some degree.

The discussed methods do not form a
complete list, and also alternatives have been
explored. In [96], a min-max formulation is
suggested where the MSE is minimized for
the maximum possible cross-correlations. A
game-theoretic approach is considered in [97]
in terms of a two-player game, where one
player tries to minimize the MSE while the
other tunes the correlations to maximize the
MSE. A full maximum cross-covariance is
computed in [98]. These approaches have
in common that they try to represent the
maximum possible correlations. However, as
the maximum possible correlations typically
are not unique these approaches cannot in
general guarantee conservativeness. In [39],
a simple parameterization of fusion results
given a bound on the correlations is de-
rived, which ranges from the independent
case to full CI. Yet another approach is

the optimization-based approach suggested
in [68]. Using robust optimization it is possi-
ble to solve for an optimal CLUE in general
cases by explicitly defining the partial knowl-
edge about the cross-correlations as uncer-
tain constraints.

Many of the studied methods have also
counterparts for nonlinear fusion problems.
The implications and challenges in nonlinear
settings are briefly discussed in Sidebar: Con-
servative Non-Gaussian Fusion.
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Conclusions and Outlook
With the increasing deployment of de-

centralized data fusion (DDF) systems, a sig-
nificant portion of the research focus within
distributed and decentralized estimation is
being devoted to covariance intersection (CI)
and related algorithms. CI exhibits the re-
markable feature of producing conservative
and, thus, reliable estimates even though
dependencies among estimates to be fused
are unknown. This property leverages dis-
tributed and, in particular, DDF applications
like mobile sensor networks. In this article,
we have discussed the underlying theory and
essential properties such as optimality and
conservativeness of CI, and illustrated the
considered estimation problem using differ-
ent examples. CI has sparked several research
questions addressing computational aspects,
the exploitation of additional information,
and the reduction of over-conservativeness.
While the complexity and richness of CI-
related research have steadily increased, this
article hopefully provides easy access to CI
for both the practitioner and researcher. Un-
doubtedly, the appeal of CI lies in that it is
easy to implement and robustly handles any
possible cross-correlations between estimates
to be fused. The following and concluding
discussion summarizes past and present de-
velopment giving us an opportunity for a
future outlook.

Past to Present
Past and present research endeavors re-

lated to CI, its alternatives, and its applica-
tions primarily draw their motivation from
three key aspects: modularity, scalability, and

optimality.
Modularity. Developing technology with

a modular design will be even more crucial in
the future. Without modularity, the adverse
effects of legacy systems and system com-
plexity will eventually become overwhelming,
both for the design engineer and any other
personnel who maintains or operates the sys-
tem at hand. To this end, algorithms such
as CI have a clear advantage. CI is simple
to implement yet powerful enough to allow
for an overall modular design as it robustly
handles cross-correlations between estimates.
This opens CI up for a vast amount of DDF
applications.

Scalability. With the advent of afford-
able, integrated, and connected sensor tech-
nology, DDF systems have to handle a huge
number of measurements from sensors that
offer high availability and are abundant in
number. Moreover, with modern sensor sys-
tems, new algorithms, and more computa-
tional power, it is possible to measure new
quantities, generate more measurements and
estimate additional state components, which
leads to potentially high-dimensional state
estimates. Such estimates can be a challenge
even for small sensor networks, and these
estimates often scale poorly in large sensor
networks. In such configurations CI is an
attractive algorithm. CI does not require
exchanging anything more than a vector and
a matrix. In addition, CI requires neither a
mechanism to keep track of correlations nor a
particular communication or filtering scheme
to be deployed.

Optimality. CI is an optimal conserva-
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tive fusion algorithm given that the cross-
correlations are completely unknown. Opti-
mality means that no other conservative so-
lution with a smaller covariance matrix is at-
tainable. Yet, the conservativeness is a weak
spot of CI that could lead to fusion results
with a relatively marginal information gain.
When partial knowledge about the cross-
correlation structure is available, CI becomes
over-conservative, and less conservative fu-
sion results with a smaller covariance matrix
are possible. For this reason, a lot of work re-
lated to CI has been dedicated to alternatives
and derivatives that more efficiently exploit
available partial knowledge.

Some of the key milestones of the re-
search related to CI conducted so far are
summarized in Figure 13. During the first
time after the invention of CI in (the year
of) 1997, a primary focus resided on related
linear estimation methods during which al-
ternatives such as split CI and the largest
ellipsoid (LE) method were derived. Since,
at that time, computational resources were
more restricted than today, much of the
focus was on cheap and simple solutions,
for example, fast CI. Remarkably, the in-
terest and necessity in theoretical aspects
of CI is still unbroken. This is also true re-
garding linear fusion methods where inverse
covariance intersection (ICI) was developed
just a few years ago. Recently, a general-
ized methodology defining conservative lin-
ear unbiased estimators (CLUE) has been
suggested to capture estimation problems
under partially known covariances. These de-
velopments demonstrate the current trend to

exploit partial knowledge to compute fused
estimates more tightly.

Concerning applications, object tracking
and simultaneous localization and mapping
(SLAM) are the two main application ar-
eas. This is quite natural since decentral-
ized sensor networks are highly relevant in
these applications. In the last decade, CI has
been implemented successfully in the field
of robotics. Current developments indicate
that CI and its derivatives will become im-
portant in autonomous driving and vehicle-
to-everything (V2X) networks, motivated by
the huge amount of data transfer and the
high level of modularity in these configura-
tions.

Present to Future
CI shows significant potential to remain

a key topic of future research in the upcom-
ing 25 years. From a today’s perspective,
promising and prospective directions con-
cerning open problems are machine learning,
exploiting structure, nonlinear fusion, and
data efficiency.

Machine Learning. The extraordinary
spread of data-driven techniques, such as
machine learning methods, follows from their
ability to solve very complex problems in
diverse scientific fields. Their potential in
DDF is, for instance, emphasized in [99]. Two
of many subtopics within machine learning
which are only partially covered are (i) un-
certainty assessment and (ii) how to combine
classification and/or estimation results from
different sources, both of which depend on
correlations between parameters. Since CI
handles dependencies robustly, it is a poten-
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Figure 13: Summary of conducted research related to CI until now. Much of the attention,
both in the present and past, have been drawn to developing alternatives to CI that more
efficiently exploits the available information. Generalizations of CI and its derivatives for
the handling of arbitrary probability densities are also ongoing work. The main application
areas have been relatively constant, where object tracking and SLAM still are the most
studied ones. A summary of the future outlook is provided in the right part.

tial key ingredient for correct uncertainty as-
sessment and merging of information derived
using machine learning. Moreover, machine
learning allows us to partially learn and pre-
dict covariance structures and dependencies
present in different scenarios such that less
conservative alternatives of CI are applicable.
For example, [100] learns bounds on possible
correlations, and [101] addresses the compu-
tational costs using machine learning.

Exploiting Structure. Several alterna-
tives to CI rely on specific correlation struc-

tures, which are either assumed based on
the DDF problem at hand or reconstructed
under certain assumptions. These correlation
structures can be derived by extracting infor-
mation from the topology and communica-
tion structure of the DDF network, for which
factor graphs prove to be useful [102]. Also,
a sample-based reconstruction of correlation
structure can be an option [103]. As pointed
out above, an interesting direction is how to
use machine learning to partially learn the
correlation structure. If this is accomplished,
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it will be possible to obtain tighter fusion
results. Another direction can be the relax-
ation of the conservativeness constraint by
replacing the covariance bound with a proba-
bilistic constraint. For such an approach, the
stochastic optimization paradigm has a clear
potential similar to how robust optimization
is utilized in the general CLUE problem
studied in [68].

Nonlinear Fusion. As stated in Sidebar:
Conservative Non-Gaussian Fusion and the
references therein, applying CI to nonlinear
fusion problems remains challenging. Nonlin-
ear versions of CI and its derivatives have
been developed, but these are tailored to
specific problems where Gaussian estimates
cannot be obtained, and more general prob-
ability densities need to be considered. An
open problem is how to derive a nonlinear
counterpart of conservative fusion in general
settings. Still, such nonlinear fusion problems
lack a proper definition of conservativeness
and, thus, nonlinear fusion algorithms can-
not provide the same guarantees yet as CI
for the linear case. DDF with non-Gaussian
distributions leads to further problems as
they typically require more parameters than
a Gaussian density representation, and com-
putational aspects may become a significant
concern.

Data Efficiency. Besides nonlinear set-
tings, data volume will increase with ad-
vances in sensor technology and connectivity
that, for instance, allow for sharing tracking
results and maps in V2X applications. At
the same time, data efficiency becomes a
dominant aspect in long-range wide-area net-

works and battery-driven Internet-of-Things
applications, and it will become important
to optimize the data transfer, for instance,
by compressing data. Different aspects of
this data compression problem are investi-
gated in, for instance, [49], [51], [53], [54].
CI can significantly contribute to robust-
ness when data needs to be compressed,
and cross-covariance information is approx-
imated or ignored. Another technique is se-
lecting the most informative data when high-
dimensional state representations need to be
exchanged. Such preprocessing will alter the
possible correlations that can also be treated
by CI [52].
Correlations Still Unknown?

CI is a versatile method that fuses esti-
mates irrespective of any cross-correlations.
Yet, this article shows that fusion under
unknown dependencies is not solved. CI can
limit the information gain, and one may not
accept too conservative fusion results, so a
reasonable trade-off between informativeness
and conservativeness is to be found. Hence,
CI will form a toolset with its derivatives like
factorized CI, ICI, and the CLUE approach
and will flexibly adapt to the fusion problem
at hand. Future research will extend this
toolset. Besides the challenging field of non-
linear fusion, conservative fusion has to keep
pace with the current trends, where model-
based and data-driven sensor fusion come
together. The CI toolset will undoubtedly
be an indispensable backbone of future DDF
systems.
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Summary
Decentralized sensor networks offer a

robust and scalable infrastructure for solv-
ing data fusion problems. If done correctly,
decentralized data fusion achieves enhanced
estimation quality. However, doing it incor-
rectly leads to unreliable estimates, leaving
one with a false sense of estimation accu-
racy. A common reason for such overconfi-
dent estimates is the improper treatment of
correlations among the estimates to be fused.
Bookkeeping of correlations is cumbersome
and often impossible, sparking the invention
of covariance intersection a quarter-century
ago. In this paper, we take a comprehen-
sive tutorial-style path to revisit covariance
intersection by highlighting the challenges
in decentralized data fusion, scrutinizing the
conservativeness and generality of covariance
intersection, following its progress in the past
quarter-century, and pointing out recent and
future directions.
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Sidebar: A Brief Survey of
Distributed and Decentralized

Estimation
Estimation in distributed and decen-

tralized sensor networks has evolved into a
broad field, and various valuable methods
have been developed. The main problem
is handling cross-correlations between esti-
mates, which leads to the different underly-
ing assumptions for each method. Pioneer-
ing work focused on distributed implemen-
tations of the Kalman filter. The technical
report by [S1] outlines several formulations
of the Kalman filter algorithm for managing
multisensor data in a distributed setting.
The method in [S2] exploits the structure
of systems split into interconnected linear
dynamical subsystems in order to decompose
the Kalman filter, and [S3] has derived an
optimal distributed version of the Kalman
filter, which is extended in [S4] and [S5] and
is similar to the later derived distributed
Kalman filter in [S6]. Such methods represent
algebraic reformulations of the Kalman filter
and, as such, produce optimal estimates. Al-
though some relaxations like [S7] exist, they
require specific prerequisites that can limit
their use in complex network architectures
and, in particular, prohibit a fully decen-
tralized processing in which agents do not
know the other agents, their models, and
their number beforehand.

A widely used class of DDF algorithms
relate to hierarchical systems that imple-
ment tracklet or channel-filter fusion [S8]–
[S10]. These filters keep track of and explic-
itly subtract the common information from

the fusion result. By storing the state over
multiple time steps, correlations induced by
process noise can also be addressed to a
certain degree [S11], [S12]. Specific solutions
for common process noise reconstruct the
joint covariances [S13], for which sample-
based techniques prove effective [S14], [S15].
Another important class of DDF algorithms
is consensus filtering [S16]. Initial consen-
sus schemes did not reliably compute the
covariance matrix. By combining consensus
filtering with CI, [S17] have derived robust
and conservative methods, which have been
further developed, for instance, in [S18], to
increase robustness to network failures. Sim-
ilarly, [S19] have integrated CI into diffusion-
based distributed Kalman filters to provide
conservative estimates.

This brief excursion demonstrates the
broad scope of the field and the variety
of contributions. For further reading about
early contributions in the field of distributed
and decentralized filtering, the survey pro-
vided in [S20] is suggested. More recent
overviews, with a particular focus on target
tracking, are found in [S21]–[S24]. Multisen-
sor fusion for robotic systems is discussed
in [S25]. A broad review of multisensor data
fusion techniques is provided by [S26], which,
for instance, includes the handling of im-
precise information, outliers, and conflicting
data. A review with particular focus on net-
worked systems can be found in [S27]. In par-
ticular, research efforts dedicated to network-
induced effects like packet delays and losses
or quantization are studied. Distributed es-
timation is a key tool for multisensor data
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fusion: [S28] presents a broad overview of the
underlying theory and the required Bayesian
inference techniques. A concise discussion
and review of the past forty years of dis-
tributed estimation are presented in the work
of [S29]. Recent reviews of data fusion under
unknown correlations and data inconsistency
can be found in [S30], [S31].
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Sidebar: Practitioner’s
Point-Of-View

Recall the definition of a conservative
estimate

P ⪰ E[x̃x̃T].

It is known that if x̂ and P are computed us-
ing CI then this criterion holds as long as the
merged estimates are conservative and unbi-
ased themselves. Simulations and real-world
experiments however indicate that CI is often
overly conservative [51], [52], [88], [90]. The
reason for this is that the extreme cross-
correlations assumed in CI seldom occur in
typical data fusion problems [90]. Hence, a
practitioner that is about to deploy a fusion
rule for a given DDF problem should investi-
gate the applicability of different fusion rules
and analyze their performance with respect
to conservativeness. The scope of this section
is to exemplify a simple methodology for how
to reason when deciding for a fusion rule. The
methodology involves the following steps:

1) Specify sensors, local filters and commu-
nication parameters.

2) Specify considered fusion methods and
define a metric for conservativeness.

3) Define characteristic target trajectories
where xk is the state of the target at
time k.

4) Tune the local filters for the character-
istic trajectories.

5) Using Monte Carlo (MC) simulations,
evaluate each fusion method with re-
spect to both performance and conser-
vativeness.
The average normalized estimation error

squared (ANEES, [104]) is used to quantify
conservativeness. Let x̂i

k|k be an estimate of
xk computed by the ith MC run at time k.
Let Pi

k|k be the reported covariance of x̂i
k|k.

The ANEES εk given at time k is defined as

εk = 1
nM

M∑
i=1

(x̂i
k|k − xk)T(Pi

k|k)−1(x̂i
k|k − xk)

= 1
nM

M∑
i=1

(x̃i
k|k)T(Pi

k|k)−1x̃i
k|k, (S1)

where M is the number of MC runs. Ideally,
εk = 1 but in practice this is seldom the
case, especially in DDF problems. Still it is
desirable to have εk ≈ 1. Roughly speaking, a
too optimistic covariance matrix is indicated
by εk > 1 and εk < 1 characterizes an overly
conservative covariance matrix. If E[x̃i

k|k] =
0, then εk is approximately chi-square dis-
tributed according to εk ∼ χ2

nM

(
1

nM

)
[105],

where in this case χ2
nM

(
1

nM

)
is the central

chi-square distribution with nM degrees of
freedom scaled by a factor 1

nM
. Since nM

becomes large when running many MC sim-
ulations χ2

nM

(
1

nM

)
can fairly accurately be

approximated by a Gaussian distribution.
For this approximation two-sided confidence
intervals can be derived for εk. Approximate
95% and 99% confidence intervals are respec-
tively given by [105]([

1 − a − 1.96
√

a
]3

,
[
1 − a + 1.96

√
a

]3
)

,

(S2a)([
1 − a − 2.576

√
a

]3
,
[
1 − a + 2.576

√
a

]3
)

,

(S2b)
where a = 2

9nM
. Performance is evaluated

using root mean square error (RMSE)

RMSE =

√√√√ 1
M

M∑
i=1

(x̃i
k|k)Tx̃i

k|k.
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The methodology is exemplified using
the same DDF scenario as in the previously
used vehicle tracking example. A target ve-
hicle is tracked by two other vehicles. In
each vehicle local measurements are filtered
into a local estimate of the target using an
EKF with a constant velocity model for the
dynamics. The local estimates are exchanged
and the receiving vehicle merges the received
estimate with its own local estimate. The
process noise covariance is tuned such that
a local EKF (LKF) have ANEES close to 1.
The following fusion methods are evaluated:
naïve fusion, CI, ICI and the LE method.

The results from M = 1 000 MC sim-
ulations are plotted in Figure S1. Only
RMSE and ANEES corresponding to the po-
sition components have been computed. The
RMSE curves in presence of fusion for the
most parts are aligned. However, the naïve
fusion rule gives a relatively large increase in
RMSE at the turning phase, but more impor-
tantly severely underestimates the covariance
at this phase as indicated by the ANEES
plot. The high ANEES is mainly due to
double counting of information. CI is on the
other side of the spectra as it computes an
overly conservative estimate leading to low
ANEES. Somewhere in between naïve fusion
and CI with respect to ANEES falls ICI and
LE. LE in general follows the LKF curve and
mainly lies within the 99% confidence inter-
val while at certain cases lies above this inter-
val. ANEES for ICI is typically significantly
below 1. Depending on the situation and the
specific robustness requirements, ICI or LE
would be suggested for this configuration.
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Figure S1: Monte Carlo results of the simu-
lated vehicle tracking scenario. Only quan-
tities related to the position components
have been computed. Root mean square er-
ror (RMSE) is shown in the top plot. Av-
erage normalized estimation error squared
(ANEES), as defined in (S1), is shown in
the bottom plot where also 95% and 99%
confidence intervals are included.
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It should be emphasized that the out-
come of this type of simulation is strongly in-
fluenced on the communication pattern and
rate. If estimates are exchanged very seldom
then it could be the case that even a naïve
fusion method would yield ANEES values
close to 1. As always it is important to un-
derstand the problem at hand when choosing
a method.
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Sidebar: Conservative
Non-Gaussian Fusion

The Kalman filter does not require the
noise to be Gaussian to be a linear MSE
optimal estimator. The Gaussianity assump-
tion, however, comes into play to derive the
Kalman filter from Bayes’ rule [S32] with
all estimates and covariances interpreted as
parameters of Gaussian probability densities
and models affected by Gaussian errors. CI
possesses a corresponding relationship: On
the one hand, the conservativeness of CI
holds in linear fusion problems and relates to
the MSE without any assumption on Gaus-
sianity. On the other hand, an alternative in-
terpretation of CI is the exponential mixture
density (EMD)

pCI(x) = p1(x)ω · p2(x)(1−ω)∫
p1(x)ω · p2(x)(1−ω) d x

, (S3)

where p1 is a Gaussian density with mean
x̂1 and covariance P1, and p2 has the cor-
responding parameters x̂2 and P2. The re-
sulting parameters for pCI(x) then equal the
CI estimate (5). This density representation
in (S3) has been independently discovered
in [S33] and [S34]. The final step from the
CI’s Gaussian representation toward conser-
vative nonlinear fusion is simple: One can
apply (S3) to estimates with arbitrary non-
Gaussian representations p1(x) and p2(x). A
1D example of this is provided in Figure S2,
where pCI for three values of ω has been
computed.

The EMD fusion rule has experienced
much attention in the literature, which has
also established other terms for (S3) such as
normalised weighted geometric mean [S35],

p1(x) p2(x)

pCI(x), ω = 0.4
pCI(x), ω = 0.5
pCI(x), ω = 0.6

Figure S2: A 1D example of nonlinear fusion.
Two arbitrary densities p1(x) and p2(x) are
fused using the exponential mixture density
given in (S3). The density pCI(x) is computed
for three values of ω. Roughly speaking, the
parameter ω decides the extent to which each
of p1(x) and p2(x) are included in pCI(x).

Chernoff fusion [S36], [S37], and log-linear
pooling [S38]. Its generalization to multiple
densities is discussed in [S39] leading to the
weighted Kullback-Leibler average [S40] of
the densities p1(x), . . . , pN(x) given by

p(x) =
∏N

i=1 pi(x)ωi∫ ∏N
i=1 pi(x)ωidx

,

with ωi ≥ 0 and ∑N
i=1 ωi = 1. In the

Gaussian case, CI can hence be interpreted
as the Kullback-Leibler average. Moreover,
this result is important when it comes to
consensus on general probability densities.

Other conservative methods from sec-
tion Derivatives and Alternatives to Covari-
ance Intersection correspondingly have led
to non-Gaussian generalizations. A nonlin-
ear variant of the federated Kalman filter
has been developed in [S41]. Analogous to
split CI, EMD can handle dependent and
independent parts separately. Common in-
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formation shared by two probability den-
sities can be removed with the nonlinear
channel filter [S42] and log-density formula-
tions [S43]. A nonlinear generalization of ICI
has been derived in [S44].

While the Kalman filter and CI are ap-
plicable for fusion of non-Gaussian estimates,
the resulting estimates are only parameter-
ized by mean and covariance. In applications
where such an incomplete uncertainty is un-
acceptable, the formula in (S3) should be
used instead of the original formulation of
CI in (5). As a consequence, non-Gaussian
generalizations of CI are building up mo-
mentum, which is particularly fueled by the
demand in multisensor multiobject tracking
applications, see, for instance, [S45]–[S47].
However, although (S3) looks more general
than the CI formulas (5), the universality
is deceptive: The user must not underesti-
mate the computational complexity of apply-
ing (S3) to non-Gaussian densities and, most
importantly, a common misconception about
EMD fusion is that it inherits CI’s notion of
conservativeness.

The fusion of Gaussian mixture densi-
ties demonstrates the computational chal-
lenges of applying EMD fusion (S3), which
includes exponentiation, multiplication and
division [S48]. In [S49] and [S50] approxima-
tions for the powers of Gaussian mixture den-
sities are proposed. A different approach is
to apply CI compenentwise [S51], which has
been further studied and generalized in [S52].
State-space transformations can also simplify
the fusion process in specific scenarios [S53].
Particle representations also render EMD fu-

sion challenging as two particle sets cannot
simply be multiplied. Typical solutions reap-
proximate either p1 or p2 by a Gaussian or
Gaussian mixture density [S54], [S55]. An-
other challenge is the computation of an ap-
propriate weighting parameter, which is also
more challenging than for CI. The selection
of ω in (S3) typically relies on information-
theoretic measures [S56], [S57].

Nonlinear estimation is undisputably in
need of conservative fusion methods, but the
question remains: To which extent does the
EMD in (S3) guarantee conservativeness? As
noticed in [S58], [S59], EMD fusion inher-
its from CI that double-counting is avoided,
and common information is only incorpo-
rated once. Beyond this property, a notion
of conservativeness like (1) for CI is missing.
An initial approach to define conservative
densities has been proposed by [S35], which
uses differential entropy and a notion of order
preservation. The use of entropy is further
studied in [S60]. Minimum-volume sets have
recently been suggested by [S61] as an ef-
fective notion of conservativeness, which cir-
cumvents shortcomings of the entropy-based
notion and has a strong intuitive backing.
Another recent work [S38] reviews the fusion
of probability densities. These works take big
steps toward answering the question posed at
the beginning of this paragraph. Yet, it re-
mains to be studied how to characterize and
parameterize dependencies among p1 and p2

and how pCI can account for them. The
fusion of non-Gaussian estimates lacks a clear
definition of unknown dependencies, while CI
addresses the well-defined set of unknown
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cross-correlations.
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