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Abstract

Wireless sensor networks consist of many small nodes. Each node has a
microprocessor, a radio chip, some sensors, and is usually battery powered
which limits network lifetime. Applications of wireless sensor networks range
from environmental monitoring and health-care to industrial automation
and military surveillance.

Since the nodes are battery powered and communication consumes more
power than computation much of the research focuses on power efficient
communication. One of the problems is however to measure the power
consumption and communication quality.

Simulation of sensor networks can greatly increase development speed
and also be used for evaluating power consumption as well as communica-
tion quality. For application and system development, simulators can be
used to test code functionality and find software bugs. For research exper-
iments, simulators can be used to get easier access to fine grained results
than corresponding real world experiments. One problem with simulators is
that it is hard to show that a simulation experiment corresponds well with
a similar real world experiment.

This thesis studies how detailed simulation of wireless sensor networks
can be validated for power profiling accuracy and shows that detailed, emu-
lation based simulation is a useful tool for white-box interoperability testing.
Both power profiling and interoperability testing represent important topics
in today’s wireless sensor network research and development.

The results and main contributions of the thesis are the simulation
platform COOJA/MSPSim and that we show that three low-power MAC-
protocol experiments performed in our simulator COOJA/MSPSim corre-
spond well with experiments performed in our testbed. We also show that
using COOJA /MSPSim any software running in the simulation can be power
profiled, and that COOJA/MSPSim can be used for white-box interoper-
ability testing.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks consist of small autonomous nodes. Each node has
a small microprocessor, a radio chip, some sensors, and is usually battery
powered which limits network lifetime. Applications of wireless sensor net-
works range from environmental monitoring and health-care to industrial
automation and military surveillance.

To make sensor networks a technology that can be used in a large num-
ber of application areas it is important that the network nodes are low-cost.
Therefore, the network nodes are resource constrained and a typical micro-
processor is limited to a few MHz in processing speed, has a few kbyte of
RAM and some tens of kbyte storage for programs. The radio chip typically
has a communication range of up to a few hundred meters outdoors and less
indoors, and a few hundred kbit/s of communication speed.

Since the nodes are resource constrained, common operating systems,
communication stacks and development tools cannot be used. This has lead
to the development of small operating systems specifically designed for re-
source constrained networked embedded systems. The most well known op-
erating systems are Contiki OS [6], TinyOS [14], Mantis OS [1] and SOS [11].
They all have tools such as simulators, communication stacks, and are ported
to several hardware platforms.

The combination of resource constraints and lack of mature develop-
ment tools make programming wireless sensor network a challenge. Sensor
networks are typically expected to last several years, and since the sensor
nodes are battery powered, another challenge is to develop power efficient
communication protocols and applications.

The focus of this thesis is to develop and study detailed wireless sensor
network simulators and to investigate how they can be used in some appli-
cation areas such as power profiling and interoperability testing. The thesis
consists of three published papers; one motivates the work and the other



two describe and evaluate the simulator.

1.2 Wireless Sensor Network Simulators

A simulator is a software tool that imitates selected parts of the behavior
of the real world and is normally used as a tool for research and develop-
ment. Simulators exist for a wide variety of fields including physics, biology,
economics, and computer systems. Depending on the intended usage of the
simulator, different parts of the real-world system are modeled and imitated.
The parts that are modeled can also be of varying abstraction level. A wire-
less sensor network simulator imitates the wireless network media - the air
- and the nodes in the network. Some sensor network simulators have a
detailed model of the wireless media including effects of obstacles between
nodes, while other simulators have a more abstract model. In this thesis the
focus is mainly on simulators that have detailed node models.

During development of applications, systems and protocols for sensor
networks, a large part of the time is spent compiling, testing, debugging and
evaluating. Either a network of real sensor nodes or a wireless sensor net-
work simulator is used during the testing, debugging and evaluation. In the
research group I am working in, the Networked Embedded Systems group,
we develop the sensor network operating system Contiki OS [6] including
IPv6 communication stacks [8] and tools such as COOJA/MSPSim. By
using COOJA /MSPSim we have found both alignment problems and com-
piler bugs during development and porting of communication stacks and
other software. COOJA/MSPSim is also used for our automatic nightly
tests of the Contiki OS software library.

When using simulators for research experiments, the evaluation of the
experiment can be much less time consuming and information about nodes
and their communication can be measured at a high level of detail. It is also
possible to repeat the exact same experiment several times, something more
or less impossible when evaluating an experiment on real sensor networks.
In simulation it is also possible to control most aspects of the environment
such as number of nodes, mobility, packet loss ratio, etc.

Sensor network simulators can be used for a wide range of tasks. Some
of these are briefly introduced below.

Application and System Development

When developing applications or systems, simulators can be used as a tool
for testing the complete behavior of the system. By executing the application
or system in a simulator with support for debugging it is possible to find
software bugs before deploying the application on real nodes. Installing,
executing and debugging using a simulator can save a substantial amount of
time compared to using real nodes since it takes much less time to install and



execute in a simulator. It is also easier to get detailed information about
internal states and other debugging related information of the simulated
nodes than it is on real nodes.

Evaluation of new Communication Protocols

When developing new types of communication protocols for wireless sensor
networks it is necessary to evaluate some aspects of the protocol such as
energy consumption, throughput, reliability, etc. under varying conditions.
Simulators provide detailed evaluations as well as control and variation of
the conditions in the simulated environment. Evaluating in a simulator is
typically both easier and faster than on a real world deployment or testbed.

Power Profiling of Applications

Many sensor network applications have high lifetime requirements. Using
simulators it is possible to get an expectation of how long the batteries in
the nodes will last. It is, however, important that the simulator has a fine-
grained model of the nodes and that it is accurate in its power consumption
predictions.

1.2.1 Types of Sensor Network Simulators

Simulations can be performed at several different abstraction levels, from
generic simulation where only the most important aspects are simulated to
high detail simulations where many details are simulated. In this thesis I
classify the available simulators into the three different categories: generic
network simulators, code level simulators, and firmware level simulators as
shortly described below.

Generic Network Simulators

Generic network simulators simulate systems with a focus on networking
aspects. The user of the simulator typically writes the simulation applica-
tion in a high level language different from the one used for the real sensor
network. Since the focus of the simulation is on networking the simulator
typically provides detailed simulation of the radio medium, but less detailed
simulation of the nodes.

The application or protocol code is usually written in the same program-
ming language as the simulator itself. Most network simulators provide im-
plementations of network stacks, MAC protocols, radio medium simulation,
etc. Generic network simulators are useful for evaluating new types of com-
munication protocols, but less useful for interoperability testing or finding
software bugs in deployable code, since the code executed is not the same
as on real nodes.



Code Level Simulators

Code level simulators use the same code in simulation as in real sensor
network nodes. The code is compiled for the machine that is running the
simulator, typically a PC workstation that is magnitudes faster than the sen-
sor node. Typically code level simulators are operating system specific since
they need to replace driver code for the sensors and radio chips available on
the node with driver code that instead have hooks into the simulator.

Code level simulators provide implementation of the network stacks that
are available for the specific operating system since the code is the same as
on real nodes. The simulators also provide simulation of the radio medium
and in some cases simulation of sensors, etc. Code level simulators can be
used for finding some types of bugs in deployable code, logical error, buffer
overrun errors, etc. Bugs that relate to timing, CPU architecture or low-
level drivers are usually hard to find using code level simulators since they
do not simulate the hardware in detail. Code level simulators can be used
for interoperability testing, but since they are operating system specific the
tests will be limited to communication stacks within the same operating
System.

Firmware Level Simulators

These simulators are based on emulation of the sensor nodes and the software
that runs in the simulator is the actual firmware that can be deployed in the
real sensor network. This approach gives the highest level of detail in the
simulation and enables accurate execution statistics. This type of simulation
provides emulation of microprocessor, radio chip and other peripherals and
simulation of radio medium. Due to the high level of detail provided by
firmware level simulators, they are usually slower than code level or generic
network simulators.

Firmware level of simulation is useful when timing-sensitive software
such as MAC protocols or low level device drivers are tested, debugged and
evaluated. Most types of bugs can be found since the target CPU is emulated
with its specific properties such as word alignment and memory limitations.

While simulators are useful in many cases it is important to understand
the limitations of the simulator and the quality of evaluation results that
are the output of the simulations. Some aspects of the real world such as
weather effects or execution speed of nodes might not be simulated, and if
these aspects affect the simulated sensor network the results might not be
realistic and cannot be trusted.



1.3 The COOJA/MSPSim Simulator

Most of the work in this thesis is focused on COOJA/MSPSim, our sensor
network simulator and sensor node emulator. COOJA/MSPSim is a com-
bination of two separate tools into one cross-level wireless sensor network
simulator. These tools are introduced in the following sections.

1.3.1 The MSPSim Emulator

MSPSim [9] is a Java-based instruction level emulator of the MSP430 micro-
processor series. It emulates complete sensor networking platforms such as
the Tmote Sky [24] and ESB/2 [26]. MSPSim provides detailed simulation
with accurate timing and strong debugging support.

MSPSim combines cycle accurate interpretation of CPU instructions
with a discrete-event based simulation of all other components, both in-
ternal and external. MSPSim uses an event-based execution kernel that
enables accurate timing while keeping the host processor utilization as low
as possible.

The emulator provides a programming interface for integration with net-
work simulators such as COOJA. In addition, the emulator can be extended
with new mote types through a mote interface and I/0O interfaces that cor-
respond to the MSP430 I/O ports and serial communication ports.

MSPSim provides both debugging capabilities such as break points,
watches, logging, and single stepping as well as statistics about the operat-
ing modes of the emulated components, statistics such as how much time
the CPU has consumed in the different low-power modes. All features and
information can be accessed either via a command line interface, or via the
integration programming interfaces.

1.3.2 The COOJA Network Simulator

COOJA [22] is a flexible Java-based simulator initially designed for simulat-
ing networks of sensor nodes running the Contiki operating system. COOJA
simulates networks of sensor nodes where each node can be of a different
type; differing not only in on-board software, but also in the simulated hard-
ware. COOJA is flexible in that many parts of the simulator can be easily
replaced or extended with additional functionality.

COOJA can execute Contiki programs either by running the program
code compiled for the PC workstation CPU, or by running code compiled
for the sensor node in MSPSim. COOJA can also run nodes programmed
in Java. All different approaches have advantages as well as disadvantages.
Java-based nodes enable much faster simulations but do not run deployable
code. Emulating nodes allows control and retrieval of more fine-grained
execution details compared to Java-based nodes or nodes running PC host



code. Combining the different levels in the same simulation gives both a
fast simulation as well as fine-grained execution details on selected nodes.

We have extended COOJA with support for other operating systems
such as TinyOS and for emulating nodes based on the Atmel AVR micro-
controller.



Chapter 2

Challenges and Research
Questions

There are many challenges and open research questions in the area of wireless
sensor network simulation. Some of the important challenges are introduced
in this section together with a discussion on how this thesis addresses the
challenges.

2.1 Power Profiling in Simulators

Simulators are useful tools for studying many aspects of sensor networking
but without validating the simulator the results are of uncertain quality.
Two important aspects to validate are timing and the properties of the
radio medium. Timing validation and improvements of timing accuracy
have been made for some simulators such as TOSSIM but only for single
nodes and not for networked nodes. In this thesis the focus is on validating
the timing and power profiling on a network scale and study the accuracy
when nodes interact. This is done by comparing testbed results with results
from simulation in COOJA/MSPSim. This work is presented in paper B.

Validation of the radio medium and the radio chip is also important
and there is some work in this field [3]. Validation of the radio medium is
orthogonal to this thesis work on validation of timing accuracy.

2.2 Level of Detail in Simulators

An important topic is how much level of detail should be used in different
simulations. Less detail usually give a faster simulation, while more de-
tails potentially give more accurate results. Heidemann et al. suggest that
simulation of wireless sensor networks needs more detail than for example
simulation of wired networks [13]. This is partly due to the characteris-
tics of the wireless medium, but also due to the focus of energy efficiency



which leads to very timing-sensitive energy optimizations. In Paper B we
suggest using emulation of sensor nodes to achieve a high level of detail in
the simulation, making detailed power profiling and fine-grained white-box
interoperability testing possible.

2.3 Interoperability Testing and Simulation of Het-
erogeneous Networks

Many standards for sensor networking are currently emerging, and inter-
operability testing is needed to ensure interoperability between different
implementations. Typically interoperability tests are performed by either
running the communication stack together with stacks that are correctly
implemented or with test-scripts that generate packets and study the re-
sponses. This will result in a low level of detail when answering if the stack
is compliant or not. In the worst case it will only give the answer “not com-
pliant” and no more information. When porting Contiki’s 6LoWPAN/IPv6
stack with HCO1 compression to the MSP430 microprocessor we used COO-
JA /MSPSim for interoperability testing. During the tests we found several
alignment bugs that caused interoperability problems. These bugs were
found by MSPSim’s alignment checker.

Since interoperability testing tests different implementations of commu-
nication stacks it is important that the simulator supports simulation of
heterogeneous sensor networks. COOJA/MSPSim can simulate heteroge-
neous networks and supports both several operating systems and several
CPU architectures.

Paper C studies the usage of emulator based simulators such as COO-
JA /MSPSim for interoperability testing. By using emulators it is easy to get
detailed execution traces and statistics which makes testing and debugging
of the communication stack a much easier task.

2.4 Self-Configuration

Many sensor network applications require some form of self-configuration
to perform optimally and adapt in a changing environment. There are sev-
eral proposals for self-configuration architectures for sensor networks such as
Generic Role Assignment [10] and Hood [32]. There are also some adaptive
and self-configuring communication protocols [2], but the self-configuration
mechanism is often specific for the given protocol. A challenge is to de-
velop generic methods that can find self-configuration rules or behavior for
a wide range of applications. Some of the candidates for these methods are
based on machine learning, and usually require lots of statistical data for
the learning process. Instead of or in addition to running these methods
on a live sensor network it is possible to use simulators. Using simulators
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will both speed-up the learning and make it easy to vary the environment
in a systematic way. These methods require a fast and accurate simulation
for getting good results. Paper A motivates the need for self-configuration
and paper B validates the accuracy of COOJA/MSPSim which is important
when learning and evaluating self-configuration policies.

2.5 Contributions and Results

The main contributions and results of this thesis are:

1) The design and implementation of COOJA /MSPSim and evaluation of
it as a detailed simulator for sensor network and its accuracy with respect to
power profiling of interacting nodes. Earlier work only evaluated simulation
accuracy on a per node basis.

2) Evaluation of COOJA/MSPSim as a tool for white-box interoper-
ability testing. Using an emulator-based simulator it is possible to perform
interoperability testing and get detailed information from the tests instead
of only getting yes/no answers. COOJA/MSPSim allows testing of hetero-
geneous sensor networks running different node types and different operating
systems.

Both MSPSim stand-alone and COOJA/MSPSim have been used by a
large number of people during development and evaluation. Some of the
uses include: debugging of the mspgcc compiler, automatic nightly tests
and algorithm profiling. The simulator is used both in academy and in
commercial companies.

11
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Chapter 3

Related Work

The discussion of related work is divided into the sections generic sensor
network simulators, code level sensor network simulators and sensor node
emulators.

3.1 Generic Sensor Network Simulators

There are many generic sensor network simulators available. Some of them
are network simulators with extensions for simulation of sensor networking;
others are designed for sensor network simulation. NS-2 is one of the most
wide spread network simulators [21]. NS-2 is an object-oriented discrete
event based simulator with support for TCP/IP simulation over both wired
and wireless links. NS-2 is extensible and new protocols can be implemented
in C++ and the simulator can be controlled via OTcl code. There are some
extensions related to ad-hoc networks and wireless sensor networks [5]. Sen-
sorSim [23] provides additional features for NS-2 such as sensor networking
protocols, power consumption models for sensor nodes and battery models.

OMNeT++ [31] is a discrete event simulator with focus on simulation
of communication networks. OMNeT++ is more efficient than NS-2 when
simulating wireless networks and has several extensions for sensor network
simulations including models of energy consumption of communication on
IEEE 802.15.4 networks [4]. MiXiM [16] extends OMNeT++ by combining
several sensor network related OMNeT++4 extensions into one more com-
plete package for simulation of wireless sensor networks.

GloMoSim [33] is another object-oriented discrete event simulator based
on the parsec library for parallel execution of the simulation. The focus is
on wireless networks and it has support for mobility.

J-Sim [30] is a component-based, real-time process-driven simulator.
Real-time process-driven simulation differs from discrete-event simulators
in that events consume time corresponding to the time they would consume
in the real word. J-Sim is Java-based and thus platform independent.

13



The generic network simulators can be used for some of the simulation
tasks that COOJA/MSPSim can be used for, but none of them are useful
for interoperability testing since that requires the same code in simulation
as on real nodes. Power profiling can typically not be done either, at least
not with the same accuracy as in emulation based simulators [17].

3.2 Code Level Sensor Network Simulators

There are a few simulators that use the same code as is used on real nodes.
These simulators are specific for one single operating system since this type
of simulator requires low-level drivers for hardware components, etc. to be
replaced by the corresponding code in the simulator.

TOSSIM [19] is a code level simulator for detailed simulation of TinyOS
based nodes, including simulation of interrupts and bit-based radio commu-
nication. TOSSIM provides simulation of radio stack and radio mediums,
etc.

POWERTOSSIM [27] is an extension of TOSSIM that adds an energy
model. This enables energy profiling of the simulated applications, but since
the node model is not executing the same compiled code as real sensor nodes
would do, the accuracy is not as good as if the nodes are emulated.

TimeTOSSIM [18] is another extension of TOSSIM that focus on ac-
curate timing without emulation. They improve accuracy by adding in-
strumentation to the source code. Their evaluation shows that they get
99% timing accuracy compared to the Avrora emulator without emulation.
TimeTOSSIM is claimed to be faster than emulation but several times slower
than TOSSIM without the instrumentation.

XMOS is Mantis OS’s [1] simulator which basically is a port of the Mantis
OS to the X86-platform so that multiple nodes can be run on x86 machines.

The code level simulators are more useful than generic network sim-
ulators for tasks such as interoperability tests since the code executed in
simulation is the same as on real nodes. Code level simulators, however,
typically support only one operating system which limits the availability of
communication stacks to test. Another problem is that compiling for an-
other CPU architecture might cause a different behavior than on the target
sensor node (typically a MSP430 or AVR microcontroller). Using COO-
JA/MSPSim it is possible to either perform tests on a code level or on
emulated nodes executing the same object code that is executed on a real
node. COOJA/MSPSim also has support for multiple operating systems
so that several different communication stacks can be tested. Code level
simulators do not have the same accuracy level as emulated node when it
comes to timing and power profiling.
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3.3 Sensor Node Emulators

Sensor node emulators provide a very detailed model of the sensor nodes
by emulating node hardware such as microprocessor and radio transeiver.
The COOJA/MSPSim simulator is a sensor node emulator and has many
features in common with other simulators in this category.

Avrora [29] is a cycle-accurate emulator of Atmel AVR-based nodes while
MSPSim emulates the Texas Instruments MSP430 architecture. Avrora has
a built-in radio medium model and can simulate many nodes. When ex-
ecuting more than one node, Avrora creates a Java thread for each emu-
lated node. Avrora uses selectable synchronization policies for keeping the
threads running at the same speed. COOJA/MSPSim handles scheduling
of each node explicitly instead of creating threads. While Avrora offers a
cycle-accurate simulation of AVR-based nodes, it did not initially have a
power profiler. For this purpose, Landsiedel et al. created the power an-
alyzer AEON [17] on top of Avrora. AvroraZ [3] is another extension of
Avrora that adds CC2420 and MicaZ emulation to Avrora which makes it
possible to execute applications running 802.15.4 based communication pro-
tocols (Zigbee [34], 6LoOWPAN [20], WirelessHART [12], ISA100 [15]). The
same radio chip CC2420 is emulated in COOJA/MSPSim and is used for
the Tmote Sky sensor node emulation.

ATEMU [25] is another emulator for Atmel AVR-based sensor nodes.
ATEMU is a tick based emulator unlike MSPSim and Avrora that are both
event based. Tick based emulators are typically slower since they call emu-
lated components each cycle or tick while event based emulators only call the
components when they request to be called. ATEMU supports the Mica2
sensor node which means that it does not have any 802.15.4 support that
both AvroraZ and COOJA/MSPSim have.

There are also more limited emulators that can be used for code and
algorithm testing. For example the debugger, GDB, usually comes with
emulators. The main differences between these emulators and COOJA /M-
SPSim are that they do not emulate external peripherals and only emulate
a single microprocessor.
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Chapter 4

Summary of the Papers

The thesis consists of the following papers.

4.1 Paper A: Experiences from Two Sensor Net-
work Deployments — Self-Monitoring and Self-
Configuration Keys to Success

Niclas Finne, Joakim Eriksson, Adam Dunkels, Thiemo Voigt. In Proceed-
ings of WWIC 2008, the 6th International Conference on Wired/Wireless
Internet Communications. Tampere, Finland, May 2008.

Summary. This paper describes two deployments of surveillance appli-
cations made together with the Swedish defense unit Markstridsskolan, and
two mechanisms for self-monitoring and self-management in sensor network
applications. During the deployments we discovered some problems caused
by failing hardware of the sensor nodes. Based on this experience we de-
signed two mechanisms for self-monitoring of hardware and software. These
mechanisms are presented and evaluated in the paper. The first mechanism
probes the hardware for errors by activating different hardware components
and measuring all sensors. If any sensor consistently reports unexpected in-
put while activating a component, a hardware error is assumed to be present.
The other mechanism monitors the software by using the built-in energy es-
timator in Contiki OS and compares the results with an application specific
power profile. When the estimated energy consumption deviates from the
profile a software error is likely. The first mechanism captures the problems
detected during the deployments, and the second mechanism captures soft-
ware errors such as forgetting to turn of the radio after sending/receiving
packets.

Contribution. The main contribution of this paper is to highlight
the importance of and provide mechanisms for self-monitoring and self-
management in wireless sensor networks. The paper serves as background
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and motivates the work on detailed and accurate simulation for evaluating
power profiling mechanisms as tools for bug detection.

My contribution. I performed both experiments together with Niclas
Finne, SICS and Mikael Axelsson, Swedish Defence. 1 am also co-author
of the paper and worked on design and development of the self-monitoring
system and experiments.

4.2 Paper B: Accurate Network-Scale Power Pro-
filing for Sensor Network Simulators

Joakim Eriksson, Fredrik Osterlind, Niclas Finne, Adam Dunkels, Nicolas
Tsiftes, Thiemo Voigt. In Proceedings of EWSN 2009, the 6th European
Conference on Wireless Sensor Networking. Cork, Ireland, February 2009.

Summary. In this paper we evaluate the accuracy of the combined sen-
sor network simulation tool COOJA/MSPSim that consists of COOJA, a
sensor network simulator, and MSPSim, a sensor node emulator. The eval-
uation is made using Contiki’s power profiler as base-line [7]. The power
profiler measures time spent in different modes for each chip on a node
and calculates power consumption by multiplying time with pre-measured
current draw and battery voltage. We compare experimental results mea-
sured on real sensor nodes with simulation results for three different MAC
protocols. The MAC protocols are of varying types, one is TDMA based
(CoReDac) and one is low power probing (LPP), and the final one is based
on low power listening (X-MAC). The results of the evaluation indicate that
COOJA/MSPSim enables accurate network-scale simulation of the power
consumption of sensor networks.

Contribution. The main contribution of this paper is that we evaluate
the accuracy of power profiling in simulation by comparing the results from
simulation with results from execution on real sensor nodes. We did this
evaluation on a network scale which differs from previous efforts that only
evaluate single nodes without any communication aspects. Another impor-
tant contribution is the simulation tool, COOJA/MSPSim that supports
accurate power profiling.

My Contribution. I am the main developer of MSPSim and I im-
proved it for better support of power profiling, improved CC2420 radio chip
emulation and extended the integration with COOJA. T also made some of
the experiments and wrote parts of the paper.
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4.3 Paper C: COOJA /MSPSim: Interoperability
Testing for Wireless Sensor Networks

Joakim Eriksson, Fredrik Osterlind, Niclas Finne, Nicolas Tsiftes, Adam
Dunkels, Thiemo Voigt, Swedish Institute of Computer Science, SICS.
Robert Sauter, Pedro José Marréon, University of Bonn and Fraunhofer TAIS.
In Proceedings of SIMUTools 2009, the Second International Conference on
Simulation Tools and Techniques. Rome, Italy, March 2009.

Summary. In this paper we show that COOJA/MSPSim can be used
for interoperability tests between different protocol stack implementations
in different sensor network operating systems. We also show that the built-
in power profiling in MSPSim is as accurate as the Contiki’s power profiler
and that it can be used for power profiling any application without any
power profiling support from the operating system in the node. We evaluate
COOJA/MSPSim for use in interoperability tests by adding support for
TinyOS and performing basic experiments where nodes based on TinyOS
communicate with nodes based on Contiki OS.

Contribution. The main contributions of this paper are that we show
that COOJA/MSPSim can be used as an interoperability testing tool and
that it accurately evaluates power consumption of the simulated nodes. In-
teroperability testing in COOJA/MSPSim gives the tester much more de-
tailed information than performing the same test on real nodes.

My Contribution. I improved MSPSim for better support of the radio
chip CC2420, specifically to meet the needs of TinyOS such as support for
SFD capture interrupt. I also performed experiments and wrote parts of the

paper.

19



20



Chapter 5

Conclusions and Future
Work

This licentiate thesis presents important steps towards simulating sensor net-
works with high level of detail and with support for accurate power profiling
and timing of interacting nodes. To achieve even more realistic simulations
a combination of detailed node models with accurate timing and improved
radio medium simulation such as AvroraZ [3] is needed. The thesis also
shows that this type of tools can be used for white-box interoperability tests
with high level of control and detailed information during the test runs.
White-box interoperability testing using COOJA/MSPSim can save much
time and effort when developing or porting implementations of standard
protocols such as 6LoWPAN /IPv6 and WirelessHART.

Another area where I will use COOJA/MSPSim is to study methods
that optimize performance and enable a higher degree of self-configuration
in sensor networks. I will study methods for learning self-configuration poli-
cies for sensor network applications and protocols. One promising method is
reinforcement learning [28]. By formulating a utility function for the sensor
network application it is possible to use reinforcement learning to learn con-
figuration policies that optimize the utility. A typical utility function for a
sensor network application includes parameters such as power consumption,
reliability, response time, etc. The challenges for using reinforcement learn-
ing for configuration in sensor networks are first to develop methods that
work in multi-agent settings and then to make the learned policies small
enough to fit in the very resource constrained sensor nodes.

I will also improve COOJA /MSPSim to better support fast and accurate
simulations that combine Java level simulation with firmware level simula-
tion to get high level of detail while simulating at a high speed.
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Chapter 6

Experiences from Two
Sensor Network Deployments
— Self~-Monitoring and
Self-Configuration Keys to
Success

Niclas Finne, Joakim Eriksson, Adam Dunkels, Thiemo Voigt.
Swedish Institute of Computer Science, SICS.
{nfi,joakime,adam,thiemo } @sics.se

6.1 Abstract

Despite sensor network protocols being self-configuring, sensor network de-
ployments continue to fail. We report our experience from two recently
deployed IP-based multi-hop sensor networks: one in-door surveillance net-
work in a factory complex and a combined out-door and in-door surveillance
network. Our experiences highlight that adaptive protocols alone are not
sufficient, but that an approach to self-monitoring and self-configuration
that covers more aspects than protocol adaptation is needed. Based on our
experiences, we design and implement an architecture for self-monitoring of
sensor nodes. We show that the self-monitoring architecture detects and
prevents the problems with false alarms encountered in our deployments.
The architecture also detects software bugs by monitoring actual and ex-
pected duty-cycle of key components of the sensor node. We show that the
energy-monitoring architecture detects bugs that cause the radio chip to be
active longer than expected.

29



6.2 Introduction

Surveillance is one of the most prominent application domains for wireless
sensor networks. Wireless sensor networks enable rapidly deployed surveil-
lance applications in urban terrain. While most wireless sensor network
mechanisms are self-configuring and designed to operate in changing condi-
tions [12, 16], the characteristics of the deployment environment often cause
additional and unexpected problems [8, 9, 11]. In particular, Langendoen
et al. [8] point out the difficulties posed by, e.g., hardware not working as
expected.

To contribute to the understanding of the problems encountered in real-
world sensor network deployments, we report on our experience from re-
cent deployments of two surveillance applications: one in-door surveillance
application in a factory complex, and one combined out-door and in-door
surveillance network. Both applications covered a large area and therefore
required multi-hop networking.

Our experiences highlight that adaptive protocols alone are not sufficient,
but that an approach to self-monitoring and self-configuration that covers
more aspects than protocol adaptation is needed. An example where we
have experienced the need for self-monitoring of sensor nodes is when the
components used in low-cost sensor nodes behave differently on different
nodes. In many of our experiments, radio transmissions triggered the motion
detector on a subset of our nodes while other nodes did not experience this
problem.

Motivated by the observation that self-configuration and adaptation is
not sufficient to circumvent unexpected hardware and software problems, we
design and implement a self-monitoring architecture for detecting hardware
and software problems. Our architecture consists of pairs of probes and
activators where the activators start up an activity that is suspected to
trigger problems and the probes measure if sensor components react to the
activator’s activity. Callback functions enable a node to self-configure its
handling of a detected problem. We experimentally demonstrate that our
approach solves the observed problem of packet transmissions triggering the
motion detector.

To find software problems, we integrate Contiki’s software-based on-line
energy estimator [5] into the self-monitoring architecture. This allows us
to detect problems such as the CPU not going into the correct low power
mode, a problem previously encountered by Langendoen et al. [8]. With two
examples we demonstrate the effectiveness of the self-monitoring architec-
ture. Based on our deployment experiences, we believe this tool to be very
valuable for both application developers and system developers.

The rest of the paper is structured as follows. The setup and measure-
ments for the two deployments are described in Section 6.3. In Section 6.4
we present our experiences from the deployments, including unexpected be-
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havior. Section 6.5 describes our architecture for self-monitoring while the
following section evaluates it. Finally, we describe related work in Section 6.7
and our conclusions in Section 6.8.

6.3 Deployments

We have deployed two sensor network surveillance applications in two differ-
ent environments. The first network was deployed indoors in a large factory
complex setting with concrete floors and walls, and the second in a combined
outdoor and indoor setting in an urban environment.

In both experiments, we used ESB sensor nodes [14] consisting of a
MSP430 microprocessor with 2kB RAM, 60kB flash, a TR1001 868 MHz
radio and several sensors. During the deployments, we used the ESB’s mo-
tion detector (PIR) and vibration sensor.

We implemented the applications on top of the Contiki operating sys-
tem [4] that features the ulP stack, the smallest RFC-compliant TCP/IP
stack [3]. All communication uses UDP broadcast and header compression
that reduces the UDP /IP header down to only six bytes: the full source IP
address and UDP port, as well as a flag field that indicates whether or not
the header is compressed.

We used three different types of messages: Measurement messages to
send sensor data to the sink, Path messages to report forwarding paths to
the sink, and Alarm messages that send alarms about detected activity.

We used two different protocols during the deployment. In the first ex-
periment, we used a single-hop protocol where all nodes broadcast messages
to the sink. In the second experiment, we used a multi-hop protocol where
each node calculates the number of hops to the sink and transmits messages
with a limit on hops to the sink. A node only forwards messages for nodes
it has accepted to be relay node for. A message can take several paths to
the sink and arrive multiple times. During the first deployment only a few
nodes were configured to forward messages, but in the second deployment
any node could configure itself to act as relay node.

After a sensor has triggered an alarm, an alarm message is sent towards
the sink. Alarm messages are retransmitted up to three times unless the
node hears an explicit acknowledgment message or overhears that another
node forwards the message further. Only the latest alarm from each node
is forwarded.

6.3.1 First Deployment: Factory Complex

The first deployment of the surveillance sensor network was performed in a
factory complex. The main building was about 250 meters times 25 meters
in size and three floors high. Both floors and most walls were made of
concrete but there were sections with office-like rooms that were separated
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by wooden walls. Between the bottom floor and first floor there was a
smaller half-height floor. The largest distance between the sink and the
most distant nodes was slightly less than 100 meters.

The sensor network we deployed consisted of 25 ESB nodes running a
surveillance application. All nodes were either forwarding messages to the
sink or monitored their environment using the PIR sensor and the vibration
detector. We made several experiments ranging from a single hop network
for measuring communication quality to a multi-hop surveillance network.

Single-Hop Network Experiment

We made the first experiment to understand the limitations of communi-
cation range and quality in the building. All nodes communicated directly
with the sink and sent measurement packets at regular intervals.

Distance . Sent Sent Reception ratio Signal strength
Node (meter) Walls Received (expected) (actual) (percent) (avg,max)

2 65 1C 92 621 639 15% 1829 2104
3 21 1w 329 587 588 56% 1940 2314
4 55 1C 72 501 517 14% 1774 1979
5 33 2 W 114 611 613 19% 1758 1969
6 18 1w 212 580 590 37% 1866 2230
7 26 2 W 347 587 588 59% 2102 2568
8 15 1W 419 584 585 1% 2131 2643
9 25 1w 194 575 599 34% 1868 2218
10 23 2 W 219 597 599 37% 1815 2106
11 17 1w 331 591 593 56% 2102 2582
50 27 2 W 230 587 594 39% 1945 2334

Table 6.1: Communication related measurements for the first experiment.

Table 6.1 shows the results of the measurements. The columns from
left are node id, distance from the sink in meters, number of concrete and
wooden walls between node and the sink, number of messages received at
the sink from the node, number of messages sent by the node (calculated
on sequence number), actual number of messages sent (read from a log
stored in each node), percentage of successfully delivered messages, and
signal strength measured at the sink. Table 6.1 shows that as expected the
ratio of received messages decreases with increasing distance from the sink.
As full sensor coverage of the factory was not possible using a single-hop
network, we performed the other experiments with multi-hop networks.

Multi-Hop Network Experiments

After performing some experiments to understand the performance of a
multi-hop sensor network with respect to communication and surveillance
coverage, we performed the final experiment in the first deployment during a
MOUT (Military Operation on Urban Terrain) exercise with 15-20 soldiers
moving up and down the stairs and running in the office complex at the top
level of the building.
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Figure 6.1: Screenshot from the final experiment in the factory deployment
illustrating placement of the sensor nodes during the surveillance and the
paths used to transfer messages. All levels of the factory are shown with the
top level at the top of the screenshot and the basement at the bottom. The
office complex is on the right side at the top level in the figure.

Node 110 (see Figure 6.1) was the most heavily loaded forwarding node
in the network. It had a direct connection to the sink and forwarded 10270
messages from other nodes during the three hour long experiment. During
the experiment the sink received 604 alarms generated by node 110. 27
percent of these alarms were received several times due to retransmissions.
Node 8 had seven paths to the sink, one direct connection with the sink,
and six paths via different forwarding nodes. The sink received 1270 unique
alarms from node 8 and 957 duplicates. Most of the other nodes’ messages
multi-hopped over a few alternative paths to the sink, with similar or smaller
delays than those from node 110 and 8. This indicates that the network
was reliable and that most of the alarms got to the server; in many cases
via several paths. With the 25 sensor nodes we achieved coverage of the
most important passages of the factory complex, namely doors, stairs, and
corridors.

6.3.2 Second Deployment: Combined in-door and out-door
urban terrain

The second deployment was made in an artificial town built for MOUT
exercises. It consisted of a main street and a crossing with several wooden
buildings on both sides of the streets. At the end of the main street there
were some concrete buildings. The distance between the sink and the nodes
at the edge of the network was about 200 meters, making the network more
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than twice as long as in the first deployment.

The surveillance system was improved in two important ways. First,
the network was more self-configuring in that there was no need for man-
ually configuring which role each node should have (relay node or sensor
node). Each node configured itself for relaying if the connectivity to sink
was above a threshold. Second, alarm messages also included path infor-
mation so that information of the current configuration of the network was
constantly updated as messages arrived to the sink. Even with the added
path information in the alarm messages, the response times for alarms in the
network were similar to the response times in the first deployment despite
that the distant nodes were three or four hops away from the sink rather
than two or three. Using 25 nodes we achieved fairly good sensor coverage
of the most important areas.

6.4 Deployment Experiences

When we deployed the sensor network application we did not know what to
expect in terms of deployment speed, communication quality, applicability
of sensors, etc. Both deployments were made in locations that were new
to us. This section reports on the various experiences we made during the
deployments.

Network Configuration

During the first deployment the configuration needed to make a node act
as a relay node was done manually. This made it very important to plan
the network carefully and make measurements on connectivity at different
locations in order to get an adequate number of forwarding nodes. This was
one of the largest problems with the first deployment. During the second
deployment the network’s self-configuration capabilities made deployment a
faster and easier task.

The importance of self-configuration of the network routing turned out
to be higher than we expected since we suddenly needed to move together
with the sink to a safer location during the second deployment, where we
did not risk being fired at. This happened while the network was deployed
and active.

Unforeseen Hardware Problems

During radio transmissions a few of the sensor nodes triggered sensor read-
ings which cause unwanted false alarms. Since we detected and understood
this during the first deployment, we rewrote the application to turn off sens-
ing on the nodes that had this behavior. Our long term solution is described
in the next section.
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Parameter Configuration

In the implementation of the communication protocols and surveillance ap-
plication there are a number of parameters with static values set during early
testing with small networks. Many of these parameters need to be optimized
for better application performance. Due to differences in the environment,
this optimization can only partly be done before deployment. Examples of
such parameters are retransmission timers, alarm triggering delays, radio
transmission power level, and time before refreshing a communication link.

Ground Truth

It is important for understanding the performance of a sensor network de-
ployment to compare the sensed data to ground truth. In our deployments,
we did not have an explicit installation of a parallel monitoring system to
obtain ground truth, but in both deployments we received a limited amount
of parallel feedback.

During the first deployment, the sensor networks alerted us of movements
in various parts of the factory but since we did not have any information
about the soldiers’ current locations it was difficult to estimate the time be-
tween detection by the sensor nodes and the alarm at the sink. Sometimes
the soldiers threw grenades powerful enough to trigger the vibration sensors
on the nodes. This way, we could estimate the time between the grenade
explosions and the arrival of the vibration alarm at the sink. During the sec-
ond deployment we received a real time feed from a wireless camera and used
it to compare the soldiers’ path with the alarms from the sensor network.

Radio Transmission

During the first deployment we placed forwarding nodes in places where we
expected good radio signal strength (less walls, and floors). We expected the
most used path to the sink via forwarding nodes in the stairwells. However,
most messages took a path straight through two concrete floors via a node
placed at the ground floor below the office rooms where the sensors were
deployed.

Instant Feedback

One important feature of the application during deployment was that when
started, a node visualized its connection. When it connected, the node
beeped and flashed all its leds before being silent. Without this feature we
would have been calling the person at the sink all the time just to see if
the node had connected to the network. This way, we could also estimate a
node’s link quality. The longer time for the node to connect to the network,

35



the worse it was connected. We usually moved nodes that required more
than 5 - 10 seconds to connect to a position with better connectivity.

6.5 A Self-Monitoring Architecture for Detecting
Hardware and Software Problems

To ensure automatic detection of the nodes that have hardware problems, we
design a self-monitoring architecture that probes potential hardware prob-
lems. Our experiences show that the nodes can be categorized into two
types: those with a hardware problem and those without. The self-probing
mechanism could therefore possibly be run at start-up, during deployment,
or even prior to deployment.

Application
Energy profile
v

Hardware Software
Self- monitoring monitoring
monitoring Probes Activators (enangy profiling}

A A A [

h | 4

Hardware Sensors Actuators | Communication

Figure 6.2: Architecture for performing self-monitoring of both hardware
and software. Self-tests of hardware are performed at startup or while run-
ning the sensor network application. Monitoring of the running software is
done continuously using the built-in energy estimator in Contiki.

6.5.1 Hardware Self-Test

Detection of hardware problems is done using a self-test at node start-up.
The goal of the self-test is to make it possible to detect if a node has any
hardware problems.

The self-test architecture consists of pairs of probes and activators. The
activators start up an activity that is suspected to trigger problems and the
probes measure if sensors or hardware components react to the activator’s
activity. An example of a probe/activator pair is measuring PIR interrupts
when sending radio traffic. The API for the callbacks from the self tester
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for probing for problems, executing activators and handling the results are
shown in Figure 6.3.

int probe();
void execute_activator();
void report(int activator, int probe, int percentage);

Figure 6.3: The hardware self-test API.

With a few defined probes and activators, it is possible to call a self-test
function that will run all probe/activator pairs. If a probe returns anything
else than zero, this is an indication that a sensor or hardware component has
reacted to the activity caused by the activator. The code in Figure 6.4 shows
the basic algorithm for the self-test. The code assumes that the activator
takes the time it needs for triggering potential problems, and the probes just
read the data from the activators. This causes the self-test to monopolize
the CPU, so the application can only call it when there is time for a self-test.

/* Do a self-test for each activator */
for(i = 0; i < activator_count; i++) {
/* Clear the probes before running the activator */
for(p = 0; p < probe_count; p++) {
probe [p]->probe () ;
probe_datalp] = 0;
}
for(t = 0; t < TEST_COUNT; t++) {
/* run the activator and probe all the probes */
activator[i]->execute_activator();
for(p = 0; p < probe_count; p++)
probe_datal[p] += probel[p]l->probe() ? 1 : 0;
¥
/* send a report on the results for this activator-probe pair */
for(p = 0; p < probe_count; p++)
report(i, p, (100 * probe_datalp]l) / TEST_COUNT);

Figure 6.4: Basic self-test algorithm expressed in C-code.

The self-test mechanism can either be built-in into the OS or a part of the
application code. For the experiments we implement a self-test component
in Contiki on the ESB platform.

A component on a node can break during the network’s execution (we
experienced complete breakdown of a node due to severe physical damage).
In such case the initial self-test will not automatically detect the failure.
Most sensor network applications have moments of low action, and in these
cases it is possible to re-run the tests or parts of the tests to ensure that no
new hardware errors have occurred.
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6.5.2 Software Self-Monitoring

Monitoring the hardware for failure is taking care of some of the potential
problem in a sensor network node. Some bugs in the software can also
cause unexpected problems, such as the inability to put the CPU into low
power mode [8]. This can be monitored using Contiki’s energy estimator [5]
combined with energy profiles described by the application developer.

ENERGY_PROFILE(60 * CLOCK_SECOND, /* Check profile every 60 seconds */
energy_profile_warning, /* Call this function if mismatch */
EP(CPU, 0, 20), /* CPU 0%-20% duty cycle */
EP(TRANSMIT, 0, 20), /* Transmit 0%-20% duty cycle */
EP(LISTEN, 0, 10)); /* Listen 0%-10% duty cycle */

Figure 6.5: An energy profile for an application with a maximum CPU duty
cycle of 20 percent and a listen duty cycle between 0 and 10 percent. The
profile is checked every 60 seconds. Each time the system deviates from the
profile, a call to the function energy_profile_warning is made.

6.5.3 Self-Configuration

Based on the information collected from the hardware and software moni-
toring the application and the operating system can re-configure to adapt
to problems. In the case of the surveillance application described above the
application can turn off the PIR sensor during radio transmissions if a PIR
hardware problem is detected.

6.6 Evaluation

We evaluate the self-monitoring architecture by performing controlled ex-
periments with nodes that have hardware defects and nodes without defects.
We also introduce artificial bugs into our software that demonstrate the ef-
fectiveness of our software self-monitoring approach.

6.6.1 Detection of Hardware Problems

For the evaluation of the hardware self-testing we use one probe measuring
PIR interrupts, and activators for sending data over radio, sending over
RS232, blinking leds and beeping the beeper. The probes and activators
are used to run the tests on ten ESB nodes of which two are having the
hardware problems.

A complete but simplified set of probes, activators and report functions
is shown in Figure 6.6. In this case, the results are only printed instead of
used for deciding how the specific node should be configured.
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/* A basic PIR sensor probe */
static int probe_pir(void) {
static unsigned int lastpir;
unsigned int value = lastpir;
lastpir = (unsigned int) pir_sensor.value(0);
return lastpir - value;

}

/* A basic activator for sending data over radio */
static void activator_send(void) {
/* send packet */
rimebuf_copyfrom(PACKET_DATA, sizeof (PACKET_DATA));
abc_send(&abc) ;
}

/* Print out the report */
static void report(int activator, int probe, int trigged_percent) {
printf ("Activator %u Probe %u: %u’%\n", activator, probe, trigged_percent);

}

Figure 6.6: A complete set of callback functions for a self test of radio
triggered PIR sensor.

As experienced in our two deployments, the PIR sensor triggers when
transmitting data over the radio during the tests on a problem node. On
other nodes the PIR sensors remain untriggered. Designing efficient acti-
vators and probes is important for the self-monitoring system. Figure 6.7
illustrates the variations in detection ratio when varying the number of trans-
mitted packets and packet sizes during execution of the activator. Based on
these results a good activator for the radio seems to be sending three 50
bytes packets.

Detection of hardware problems
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Figure 6.7: Results of varying the activator for sending radio packets on
a problem node. Sending only one packet does not trigger the PIR probe,
while sending three packets with a packet size larger than 50 bytes always
triggers the problem. On a good node no PIR triggerings occur.
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6.6.2 Detection of Software and Configuration Problems

Some of the problems encountered during development and deployment of
sensor network software are related to minor software bugs and misconfigu-
rations that decrease the lifetime of the network [8]. Bugs such as missing
to power down a sensor or the radio chip when going into sleep mode, or
a missed frequency divisor and therefore higher sample rate in an interrupt
driven A/D based sensor can decrease the network’s expected lifetime. We
explicitly create two software problems causing this type of behavior.

The first problem consists of failing to turn off the radio in some situa-
tions. Figure 6.8 shows the duty cycle of the radio for an application that
periodically sends data. XMAC [1] is used as MAC protocol to save energy.
XMAC periodically turns on the radio to listen for transmissions and when
sending it sends several packet preambles to wake up listeners. Using the
profile from Figure 6.5 a warning is issued when the radio listen duty cycle
drastically increases due to the software problem being triggered.

In the second problem the sound sensor is misconfigured causing the A /D
converter to run at twice the desired sample rate. The node then consumes
almost 50% more CPU time than normal. This misbehavior is also detected
by the software self-monitoring component.
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Figure 6.8: Duty-cycle for listen and transmit. The left part shows the
application’s normal behavior with a low duty cycle on both listen and
transmit. The right part shows the behavior after triggering a bug that
causes the radio chip to remain active. The dashed line shows the listen duty
cycle estimated using the same mechanism as the energy profiler but sampled
more often. The next time the energy profile is checked the deviation is
detected and a warning issued.
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6.7 Related Work

During recent years several wireless sensor networks have been deployed the
most prominent being probably the one on Great Duck Island [9]. Other
efforts include glacier [11] and water quality monitoring [2]. For an overview
on wireless sensor network deployments, see Rémer and Mattern [13].

Despite efforts to increase adaptiveness and self-configurationin wireless
sensor networks [10, 12, 16], sensor network deployments still encounter
severe problems: Werner-Allen et al. have deployed a sensor network to
monitor a volcano in South America [15]. They encountered several bugs in
TinyOS after the deployment. For example, one bug caused a three day out-
age of the entire network, other bugs made nodes lose time synchronization.
We have already mentioned the project by Langendoen that encountered se-
vere problems [8]. Further examples include a surveillance application called
“A line in the sand” [6] where some nodes would detect false events exhaust-
ing their batteries early and Lakshman et al.’s network that included nodes
with a hardware problem that caused highly spatially correlated failures [7].
Our work has revealed additional insights such as a subset of nodes having a
specific hardware problem where packet transmissions triggered the motion
detector.

6.8 Conclusions

In this paper we have reported results and experiences from two sensor net-
work surveillance deployments. Based on our experiences we have designed,
implemented and evaluated an architecture for detecting both hardware and
software problems. The evaluation demonstrates that our architecture de-
tects and handles hardware problems we experienced and software problems
experienced during deployments of other researchers.
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Abstract

Power consumption is the most important metric in wireless sensor net-
work research, but existing simulation tools for measuring or estimating
power consumption are either impractical or have unclear accuracy. We
present COOJA/MSPSim, a practical simulation-based tool for network-
scale power estimation based on Contiki’s built-in power profiling mecha-
nism, the COOJA sensor network simulator and the MSPSim sensor node
emulator. We compare experimental results measured on real sensor nodes
with simulation results for three different MAC protocols. The accuracy of
our results indicates that COOJA/MSPSim enables accurate network-scale
simulation of the power consumption of sensor networks.
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7.1 Introduction

Power consumption is the most important metric in wireless sensor networks
because reduced power consumption leads to increased network lifetime.
Many different mechanisms for reducing the power consumption for sensor
networks have been proposed. Energy has been reduced with more efficient
topology management [4], routing [20] and medium access [1, 24]. Most
power-saving mechanisms focus on reducing radio on-time because radio
communication and idle listening are the most power-consuming task in
wireless sensor networks [8, 18]. To evaluate the efficiency of power-saving
mechanisms, researchers must be able to quantify the energy consumption
at the network scale.

Software-based power profiling has enabled non-intrusive and scalable
power profiling in real sensor networks [7]. The technique is based on mea-
suring the time that each component is active and multiplying that time by
the component’s power consumption. This method of measuring energy is
accurate, but by the nature of testbeds, it is typically limited in scale and
mobility. Testbed experiments require setup, instrumentation and infras-
tructure. Furthermore, the arrangement of the nodes is usually fixed and
difficult to change. Simulations, on the other hand, scale well and handle
mobility and repeatability with ease. There exist a number of simulators
for sensor networks. Some of them are able to estimate power consumption
but their accuracy has only been demonstrated in node-local experiments.

In this paper we present COOJA/MSPSim, a power profiling tool that
enables accurate network-scale energy measurements in a simulated environ-
ment. Our tool combines the sensor network simulator COOJA [16] with
the MSPSim hardware emulator [9] and Contiki’s software-based power pro-
filer [7]. By using the detailed instruction level emulation of the MSP430
processor, we can obtain accurate power profiles of simulated networks in
COOJA /MSPSim.

The contributions of this paper are the presentation and the evaluation of
COOJA/MSPSim. Our results demonstrate that COOJA /MSPSim enables
accurate network-scale power profiling for sensor networks. Our evaluation
consists of three case studies. In each case study we use a different MAC
protocol to explore power profiling nuances as far down as possible in the
network stack. The MAC protocols are Low Power Probing [15], X-MAC [1],
and a TDMA-based data collection protocol called CoReDac [25]. Our case
studies demonstrate that the power measurements for both transmission
and listen power in testbed and simulation match very well. CoReDac’s
transmission power is simulated with an accuracy of around 0.6uW. Using
LPP, we simulate the power consumption in high packet transmission rate
scenarios that matches the testbed results with a difference of less than
0.8%. For the more complicated X-MAC protocol, the difference between
the experimental and simulated results is typically below 2%.
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The remainder of this paper is outlined as follows. We explore related
work in Section 7.2. Then we describe our tool for network-scale power
profiling in Section 7.3. In Section 7.4 we experimentally evaluate the accu-
racy of COOJA/MSPSim through a set of case studies with different MAC
protocols. Section 7.5 concludes our work.

7.2 Related Work

There are many sensor network simulators with energy estimation abili-
ties [12, 13, 21], but their accuracy has only been demonstrated in node-
local experiments. Avrora [22] is a machine code level simulator similar to
MSPSim. While it offers a cycle-accurate simulation of AVR-based nodes,
it does not have a power profiler. For this purpose, Landsiedel et al. have
created the power analyzer AEON [12] on top of Avrora. AEON is limited
to TinyOS, however. Furthermore, the authors do not compare simulation
with testbed results for multi-hop applications. In contrast, our work is
aimed at power profiling at a network scale.

PowerTOSSIM [21] is an extension of TOSSIM [13] designed to estimate
the power consumption of Mica2 sensor nodes. Since TOSSIM operates
at the operating system level, its granularity with respect to timing and
interrupt properties is not sufficient when nodes interact [22]. Our measure-
ments of the radio power consumption show that a very detailed model of the
node is required to obtain accurate results. Trathnigg et al. [23] improve
the accuracy of PowerTOSSIM, but for a single node only. Colesanti et
al. [5] evaluated the accuracy of a multi-node simulation using metrics such
as packets sent and received. They got inaccurate results and concluded
that a more sophisticated node model is required. By using emulated nodes
in the simulation, COOJA/MSPSim uses a very detailed node model that
considerably improves the power measurement accuracy.

Haq and Kunz compare emulated testbed results with simulation results
for mobile ad-hoc network routing protocols [10]. While their results match
in low traffic scenarios, the results differ in scenarios with higher traffic rates.
In contrast, COOJA /MSPSim maintains the accuracy in high traffic. Cavin
et al. compare simulation results obtained with several simulators for mobile
ad-hoc networks [3]. They discovered large divergences for packet delivery
rates, latency and message overhead when simulating an intentionally simple
flooding algorithm in different scenarios.

Ivanov et al. show that after careful simulation parameter adjustment,
NS-2 accurately models packet delivery ratios in a wireless mesh testbed [11].
The parameter adjustment did not improve the accuracy regarding con-
nectivity and packet latencies, however. COOJA /MSPSim allows accurate
power profiling of arbitrary nodes in the network, and is orthogonal to that
of an accurate radio model.
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7.3 Simulation-based Network-scale Power Profil-
ing

We develop COOJA/MSPSim for network-scale power estimation by com-
bining three existing tools: Contiki’s power profiling [7], the COOJA sensor
network simulator [16], and the MSPSim sensor node emulator [9].

7.3.1 Contiki Power Profiler

The built-in power profiler in Contiki estimates the power consumption of
sensor nodes in a real network. Thereby it enables scalable measurements of
the power consumption. The power profiling mechanism measures the time
that hardware components spend in different operating modes. This data
is then combined with detailed pre-measured data of power consumption
for these components into power consumption estimations. This mechanism
can be implemented on most microprocessors with very small overhead.

7.3.2 COOJA

The other important component of our power profiling software is the COOJA
simulator, a Java-based sensor network simulator. COOJA has the ability
to mix simulations of sensor devices at multiple abstraction levels. These
levels are application level, OS level, and hardware level. In the application
level the simulated nodes run the application logic reimplemented in Java -
the native language of COOJA. In the OS level the nodes use the same code
as real nodes, but compiled for the host machine running COOJA. Finally in
the hardware level the nodes run the same compiled code that can be used
in real nodes, e.g. the same system image. The hardware level is provided
by MSPSim that emulates systems based on the MSP430 processor family.
By using MSPSim underneath, COOJA allows simulated nodes to execute
the same system image as the one used on the real nodes. The nodes at
different abstraction levels communicate with each other using one of the
three radio propagation models available in COOJA.

7.3.3 MSPSim

MSPSim is an instruction level emulator of MSP430-based sensor network
nodes. MSPSim targets cycle accurate emulation of both the MSP430 CPU
core and built-in peripherals such as timers, serial communication and analog
to digital converters. Furthermore, MSPSim emulates external components
such as the radio chip CC2420, sensors, and flash memories. MSPSim also
provides emulation of complete sensor devices such as the Tmote Sky [17]
and Scatterweb ESB [19].
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Figure 7.1: The architecture of the COOJA/MSPSim simulator. MSPSim
is integrated into the COOJA simulator and Contiki’s built-in power profiler
provides estimation of power consumption.

7.3.4 A Network-Scale Power Profiler

We combine the three tools presented above into an accurate network-scale
power profiler. Figure 7.1 shows the integrated COOJA /MSPSim architec-
ture with COOJA controlling MSPSim and the power profiler in Contiki
that provides COOJA with the estimation of energy consumption. It also
shows the sensor nodes’ radio communication via the emulated CC2420 and
COOJA’s radio medium simulation. Several improvements of the involved
tools are necessary to achieve an accurate power profiling. We ensure that
the components emulated in MSPSim have the same timing as in real nodes.
In addition, we integrate MSPSim more tightly with COOJA including a
more fine-grained connection between the emulated nodes’ radio chips. In
order to increase the power profiling accuracy we extend the timer emula-
tion, and improve the timing precision of the SPI bus and the CC2420 radio
transmissions.

We estimate the power consumption on a network scale in COOJA us-
ing Contiki’s built-in power profiling mechanism, and we run the Contiki
application on emulated hardware using MSPSim. In this paper our simu-
lations make use of hardware-emulation for all nodes since we need accurate
power profiling for the complete network. Hence, we benefit both from
COOJA’s ability to simulate network behaviour and the on-line energy esti-
mation in Contiki. Furthermore, MSPSim’s sophisticated and detailed node
model provides fine-grained timing and interrupt modeling which is impor-
tant for the accuracy when estimating power consumption. Figure 7.2 shows
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a screenshot of our COOJA /MSPSim simulator during one of the evaluation
experiments.

[sanmn

Figure 7.2: Screenshot of power profiling in the COOJA /MSPSim simulator.

7.4 FEvaluation

To evaluate the accuracy of our simulation-based approach, we compare the
results of the energy estimation obtained through simulation with results
obtained through testbed experiments. For the testbed experiments, we
implement all software in the Contiki operating system [6] and run it on
Tmote Sky nodes. The nodes use Contiki’s software-based method to mea-
sure power consumption as described in Section 7.3.1. We perform the first
experiments with a tree-based data collection protocol CoReDac. Then we
experiment with the MAC protocols Low Power Probing [15] and X-MAC [1]
to evaluate our power profiling accuracy on the lowest levels of the network
stack. To compute the power consumption, we assume a voltage of 3V and
a current draw of 20mA for listening and 17.7mA for radio transmissions,
as measured on Tmote Sky nodes by Dunkels et al. [7].

7.4.1 Case Study: Data Collection with CoReDac

Protocol Overview For this case study we use CoReDac, a TDMA-based
convergecast protocol [25]. In contrast to other convergecast protocols such
as Dozer [2], CoReDac builds a collection tree that guarantees collision-free
radio traffic.

To achieve low delay, CoReDac borrows the idea of staggered communi-
cation from D-MAC [14] as shown in Figure 7.3. In D-MAC packets from
nodes on the same level can cause collisions, whereas CoReDac parent nodes
avoid collisions among packets from their children by assigning time slots
for transmission to their children. The information about the assignment is
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Figure 7.3: Staggered communication in CoReDac

contained in the acknowledgements. Acknowledgements play a pivotal role
since they are also used for synchronization and on-demand slot assignment.
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Figure 7.4: On-demand slot assignment to avoid collisions.

Figure 7.4 shows how CoReDac assigns transmit slots. The figure shows
that the sink announces that N2 receives the transmit slot before N1. The
sink’s acknowledgement also signals when the sink’s next receive slot starts,
namely in sleep; seconds. This way, the acknowledgements contain all infor-
mation to achieve a collision-free communication schedule between a parent
node and its children. This scheme is recursively applied towards the whole
tree. In order to avoid collisions between nodes on different levels, we set a
maximum number of children per node. Based on this maximum number,
its position in the tree and the receive slot of its parent, a node can compute
its unique receive slot.

Setup and Results We measure CoReDac’s energy-efficiency both on
real hardware with Contiki’s built-in power profiling mechanism and with
COOJA/MSPSim as described in Section 7.3. In these experiments, the
maximum number of children is set to three and sleep; is set to 30 seconds.
We compare networks of different sizes namely with 4 and 15 nodes. We also
simulate a network of 40 nodes. Due to the limited size of our testbed, we can
simulate a network consisting of only 15 nodes. We are able to simulate more
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than 40 nodes, but then we need to increase sleep; to guarantee collision-
free trees. The length of the receive slot is not dependent of the number
of nodes in a network. In our CoReDac implementation, there is a small
difference between the length of the slots of the children of the same parent
that depends on the order of the children. Therefore, we expect that the
power consumption is independent of the size of the network but not exactly
constant.
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Figure 7.5: The results from a testbed measurement of the power consump-
tion of CoReDac (Real) and the simulation runs (Sim) agree with each other.
The left graph shows the power consumption of the radio in listen mode and
the right graph the power consumption of the radio in transmission mode.
Note that the scales are different.

The left graph in Figure 7.5 shows CoReDac’s average power consump-
tion per node of the radio in listen mode that we call RX power consumption.
Real n denotes results from a testbed measurement with n nodes, whereas
Sim n denotes simulation results with n nodes. The figure shows that the
measured power consumption on real nodes matches very well with the power
consumption estimated with COOJA /MSPSim. In particular, the difference
between the results does not increase with the size of the network.

The right graph in Figure 7.5 presents the average power consumption
per node for transmissions.The figure shows that the power consumption
for transmitting packets in CoReDac is less than 1% of the power consump-
tion for listening and receiving packets which confirms the measurements by
Dunkels et al. [7]. As for power consumption of the radio in listen mode, the
results obtained by simulation and experiments with real hardware match
well. The difference of the power consumption for transmitting packets is less
than 0.6uW. Further, the difference between the results does not increase
with the size of the simulated networks. These results show that COOJA /M-
SPSim accurately power profiles networks of nodes running TDMA-based
MAC protocols.
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7.4.2 Case Study: Low Power Probing

Protocol Overview Low power probing (LPP) is a power-saving MAC
protocol [15]. As shown in Figure 7.6, LPP receivers periodically send small
packets, so called probes, to announce that they are awake and ready to
receive a data packet. After sending a probe, the receiver keeps its radio
on for a short time to listen for data packets. A sender that has a packet
to be sent turns on its radio waiting for a probe from a neighbour it wants
to send to. On the reception of a probe from a potential receiver, the node
sends an acknowledgement before the data packet.

data packet

Ipp sender
probes Jdata
Ipp receiver offtime time

Figure 7.6: Low Power Probing

The LPP implementation in Contiki contains two important parame-
ters. Ontime determines how long a receiver keeps the radio on after the
transmission of a probe. Offtime is the time between probes. Nodes modify
offtime with random offsets in order to avoid synchronization effects. The
random offsets are distributed uniformly between %x offtime and gx offtime.

Results: Sender-Receiver Scenario In the first scenario we have one
LPP receiver and one LPP sender. We vary the packet rate at which the
sender hands data packets to the MAC layer. In the experiments, we set
ontime to ﬁ seconds and offtime to 0.25 seconds.

The results of this experiment are shown in Figure 7.7 and Figure 7.8.
The top graph of Figure 7.7 depicts the RX power consumption for the re-
ceiver when the transmission rate of the sender increases from zero packets
to four packets per second. The figure shows that the basic power consump-
tion of an LPP receiver is about 1.75 mW, namely 1.78 mW in the simulator
and 1.725 mW on real nodes. Note that this is very close to the theoretical
value that is % x 20mA x 3V = 1.818mW with the assumptions above.
The power is consumed for keeping the radio on after the transmission of
the probes. The power consumption increases when more packets need to
be received since the packet reception requires the radio to be turned on
longer than ontime. The figure also shows that the estimated power con-
sumption in the simulator matches the power consumption measured with
real hardware.

With a packet rate of four packets/s, the sending rate is higher than
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the probing rate and hence packets need to be dropped. Nevertheless, both
the energy consumption and the packet reception are accurately simulated.
In the simulation the packet rate is 87.9% on real nodes while it is 89.9%
in simulation. The energy consumption with 4 packet/s is very accurate
with a difference of less less than 4% for the receiver and less than 0.8%
for the sender. The results clearly demonstrate that we do not encounter
the problems that Haq and Kunz observed when comparing simulation and
emulation of mobile ad hoc routing protocols, namely a large quantitative
and qualitative difference under high traffic load [10]. The difference for
lower packet rates is much smaller: for a packet rate of 0.25 packets/s less
than 0.3% for the receiver.
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Figure 7.7: With LPP as the underlying MAC protocol the results of the

RX power consumption of the receiver (top graph) and the sender (bottom

graph) is accurately simulated.

The bottom graph of Figure 7.7 depicts the RX power consumption of the
sender. Again, the results obtained by simulation match the results obtained
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with real hardware very well. The figure also shows that as expected the
power consumption of the sender increases with a higher packet sending
rate. With a higher sending rate, the overall time a sender has its radio on
waiting for probes increases which causes higher RX power consumption.
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Figure 7.8: With LPP as the underlying MAC protocol also the TX power

consumption of the receiver (top graph) and the sender (bottom graph) are
accurately simulated.

Figure 7.8 shows that also the TX power consumption of both sender and
receiver are accurately simulated despite that the TX power consumption is
very low and hence only small timing differences could cause large relative
discrepancies.

Results: Multi-hop scenario In the next experiment, we place a sender,
a forwarder and the sink in radio range of each other. All nodes run LPP
with the same configuration parameters as above. The sending rate of the
sender is set two packets/s. During our experiments, we do not experience

95



any packet drops, i.e. all packets arrive at the sink.
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Figure 7.9: The difference between simulated and measured RX power con-
sumption for a two-hop network is small.

Figure 7.9 shows the difference of the RX power consumption between
the simulation and the experiments on real nodes. For the sink, the differ-
ence is below 2%. For the other two nodes, the difference is higher. When
transmitting a packet, these nodes need to keep the radio on until they
receive a probe. Probes are not sent at constant intervals to avoid synchro-
nization effects, which is one possible reason for the larger difference between
simulation and results with real nodes for nodes that transmit packets.

7.4.3 Case Study: X-MAC

Protocol Overview X-MAC is a power-saving MAC protocol [1] in which
senders use a sequence of short preambles (strobes) to wake up receivers.
Nodes turn off the radio for most of the time to reduce idle radio listening.
They wake up shortly at regular intervals to listen for strobes. When a
receiving node wakes up and receives a strobe with its receiver address, the
receiver replies with an acknowledgement indicating that it is awake. On
the reception of the acknowledgement, the sender transmits the full packet.

The X-MAC implementation in the Contiki operating system contains
two important parameters, namely ontime that determines how long a re-
ceiver keeps the radio on when listening for strobes, and offtime, the time
between two listening times.

During the tests ontime is set to ﬁs and offtime is set to %s. During the
evaluation experiments the sending application sends data at a fixed packet
rate but with small variations in order to avoid synchronization between the
sender and receiver that would lead to a constant number of strobes before
the receiver wakes up. By doing this the average number of strobes required

56



data packet

sender
1 >
strobes ack | data
YV VY VY A 4 >
- |—P H
receiver off time on time time

Figure 7.10: X-MAC: the sender strobes until the receiver is awake and can
receive a packet.

before wake-up of the receiver is half the maximum strobes, which gives an
average wake-up time of offtime/2.

Results: X-MAC Sender and Receiver The set-up of our first exper-
iment with X-MAC consists of two nodes, one sender and one receiver. We
use several different packet rates ranging from one packet per two seconds
to four packets a second. The latter is also the maximum speed with the
used X-MAC configuration. Figure 7.11 shows the result of the measure-
ments for both simulated and real nodes. The top graph shows the power
consumption of the radio while being in receive mode, whereas the bottom
graph shows the transmission power. The difference between the average
energy consumption in simulated nodes and real nodes is small, typically
around two percent. The result for a packet rate of four packets/s differ
more. Initial experiments indicate that the main problem is the speed of
communication between the microprocessor and the radio chip for reading
out received packets.

During the initial runs on real sensor nodes we observed a packet loss
below one percent. This packet loss was not simulated causing a small differ-
ence in packet loss between simulation and real nodes. Since the packet loss
is below one percent this difference does not affect the results significantly.

The results depicted in Figure 7.11 from both the simulations and real
nodes show that the average energy consumption for a X-MAC sender cor-
responds well with our expectation of sending strobes for half the offtime
before waking the receiver.

7.4.4 Power Profiling Accuracy

Our experiments suggest that the results obtained through simulation match
the results obtained through testbed experiments and Contiki’s power pro-
filing mechanism for different MAC protocols including TDMA-based pro-
tocols, low power probing and X-MAC low power listening. The results
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Figure 7.11: X-MAC power consumption of radio listen (top graph) and
radio transmissions (bottom graph). Both real nodes and simulated nodes
have very similar behaviour for the senders and receivers when varying the
packet ratio. This shows that the simulation has a good accuracy when
simulating X-MAC.

demonstrate that COOJA can accurately estimate the energy consump-
tion of interacting nodes. For the TDMA-based CoReDac protocol we have
shown that the simulation results also match results obtained in our testbed.

Our results also confirm the findings of Colesanti et al. that argued
for better node models for improved accuracy [5]. Indeed, the results in
Figure 7.8 initially differed with 50%, i.e. the power consumption was 0.1
mW on real nodes compared to 0.15 mW in simulation. Since transmitting
a packet is inherently fast, even small inaccuracies can be responsible for the
divergence of the results. By improving the accuracy of the timer system and
the radio chip emulation in MSPSim, we were able to almost eliminate the
discrepancy and achieve a difference of less than 0.6uW between simulation
and testbed results.

As mentioned in Section 7.2, our goal is not to validate the accuracy of
the radio models in COOJA but the radio power consumption caused by
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the interaction of nodes. The TDMA-based CoReDac protocol is collision-
free by design and hence there are no collisions between nodes after the
initialization phase. Therefore, we were able to validate CoReDac’s sim-
ulated power consumption also in the testbed. For LPP and X-MAC the
actual power consumption depends very much on the delivery rate, the risk
of packet collisions and other factors that are influenced by the environ-
ment. Therefore, we have constrained ourselves to demonstrate COOJA’s
ability to accurately simulate behaviour that relies on fine-grained timing
and interrupts when nodes interact. Nevertheless, our results indicate that
when appropriately modeling the surroundings, COOJA enables accurate
simulation of the power consumption of large-scale sensor networks.

7.5 Conclusions

In this paper we have presented COOJA/MSPSim, a tool for simulation-
based network-scale power profiling that combines Contiki’s on-line power
profiling mechanism, the COOJA sensor network simulator and the MSPSim
sensor node emulator. We have shown that the results obtained with COO-
JA/MSPSim correspond well with the results obtained through measure-
ments on real hardware. Our results demonstrate that COOJA/MSPSim
enables accurate simulation of the power consumption of sensor networks.

Acknowledgements

This work was financed by VINNOVA, the Swedish Agency for Innovation
Systems, and the Uppsala VINN Excellence Center for Wireless Sensor Net-
works WISENET, also partly funded by VINNOVA. This work has been
partially supported by CONET, the Cooperating Objects Network of Ex-
cellence, funded by the European Commission under FP7 with contract
number FP7-2007-2-224053.

99



60



Bibliography

1]

M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks. In
SenSys ’06: Proceedings of the 4th international conference on Embed-
ded networked sensor systems, pages 307-320, Boulder, Colorado, USA,
2006.

N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: ultra-low
power data gathering in sensor networks. In IPSN “07, 2007.

D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of MANET
simulators. In Proceedings of the second ACM international workshop
on Principles of mobile computing, Toulouse, France, 2002.

A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor
Networks Topologies. IEEE TRANSACTIONS ON MOBILE COM-
PUTING, pages 272-285, 2004.

U.M. Colesanti, C. Crociani, and A. Vitaletti. On the accuracy of om-
net++4 in the wireless sensornetworks domain: simulation vs. testbed.
In Proceedings of the 4th ACM workshop on Performance evaluation of
wireless ad hoc, sensor, and ubiquitous networks, pages 25-31, Chania,
Greece, October 2007.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Workshop on
Embedded Networked Sensors, Tampa, Florida, USA, November 2004.

A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based on-
line energy estimation for sensor nodes. In Proceedings of the Fourth
Workshop on Embedded Networked Sensors (Emnets IV), Cork, Ireland,
June 2007.

P. Dutta, D. Culler, and S. Shenker. Procrastination might lead to a
longer and more useful life. In Proceedings of HotNets-VI, Atlanta, GA,
USA, November 2007.

61



[9]

[10]

[13]

[14]

J. Eriksson, A. Dunkels, N. Finne, F. C)sterlind7 and T. Voigt. Msp-
sim — an extensible simulator for msp430-equipped sensor boards. In
Proceedings of the Furopean Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands, January 2007.

F. Haq and T. Kunz. Simulation vs. emulation: Evaluating mobile
ad hoc network routing protocols. In Proceedings of the International
Workshop on Wireless Ad-hoc Networks (IWWAN 2005), London, Eng-
land, May 2005.

S. Ivanov, A. Herms, and G. Lukas. Experimental validation of the
ns-2 wireless model using simulation, emulation, and real network. In
Proceedings of the Jth Workshop on Mobile Ad-Hoc Networks (WMAN
2007), 2007.

O. Landsiedel, K. Wehrle, and S. G6tz. Accurate prediction of power
consumption in sensor networks. In Proceedings of The Second IEEFE
Workshop on Embedded Networked Sensors (EmNetS-11), Sydney, Aus-
tralia, May 2005.

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and
scalable simulation of entire tinyos applications. In Proceedings of the
first international conference on Embedded networked sensor systems,
pages 126-137, 2003.

G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-
efficient and low-latency mac for data gathering in wireless sensor net-
works. In International Parallel and Distributed Processing Symposium
(IPDPS), 2004.

R. Musaloiu-E., C-J. M. Liang, and A. Terzis. Koala: Ultra-Low Power
Data Retrieval in Wireless Sensor Networks. In IPSN 08, 2008.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Proceedings of the First
IEEE International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp 2006), Tampa, Florida, USA, Novem-
ber 2006.

J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proceedings of The Fourth Interna-

tional Conference on Information Processing in Sensor Networks. 1P-
SN/SPOTS’05, Los Angeles, CA, USA, April 2005.

V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy
aware wireless microsensor networks. IEEFE Signal Processing Magazine,
19(2):40-50, March 2002.

62



[19]

[20]

[21]

[25]

J. Schiller, H. Ritter, A. Liers, and T. Voigt. Scatterweb - low power
nodes and energy aware routing. In Proceedings of Hawaii International
Conference on System Sciences, Hawaii, USA, 2005.

R.C. Shah and J.M. Rabaey. Energy aware routing for low energy ad
hoc sensor networks. In Proc. IEEE Wireless Communications and
Networking Conference (WCNC), March 2002.

V. Shnayder, M. Hempstead, Chen B., G.W. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network ap-
plications. In 2nd International Conference on Embedded Networked
Sensor Systems (ACM SenSys), November 2004.

B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network
simulation with precise timing. In Proceedings of the jth international
symposium on Information processing in sensor networks (IPSN), April

2005.

T. Trathnigg, J. Moser, and R. Weisse. A low-cost energy measurement
setup and improving the accuracy of energy simulators for wireless sen-
sor networks. In Proceedings of REALWSN 2008, April 2008.

T. van Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of the first interna-
tional conference on Embedded networked sensor systems, Los Angeles,
California, USA, November 2003.

T. Voigt and F. Osterlind. CoReDac: Collision-free command-response
data collection. In 13th IEEE Conference on Emerging Technologies
and Factory Automation, Hamburg, Germany, September 2008.

63



64



Chapter 8

COOJA /MSPSim:
Interoperability Testing for
Wireless Sensor Networks

Joakim Eriksson, Fredrik Osterlind, Niclas Finne, Nicolas Tsiftes, Adam
Dunkels, Thiemo Voigt

Swedish Institute of Computer Science
{joakime,fros,nfi,nvt,adam,thiemo } @sics.se

Robert Sauter, Pedro José Marrén
University of Bonn and Fraunhofer IAIS
{sauter,pjmarron}@cs.uni-bonn.de

abstract

Wireless sensor networks are moving towards emerging standards such as 1P,
ZigBee and WirelessHART which makes interoperability testing important.
Interoperability testing is today performed through black-box testing with
vendors physically meeting to test their equipment. Black-box testing can
test interoperability but gives no detailed information of the internals in the
nodes during the testing. Black-box testing is required because existing sim-
ulators cannot simultaneously simulate sensor nodes with different firmware.
For standards such as IP and WirelessHART, a white-box interoperability
testing approach is desired, since it gives details on both performance and
clues about why tests succeeded or failed. To allow white-box testing, we
propose a simulation-based approach to interoperability testing, where the
firmware from different vendors is run in the same simulator.

We extend our MSPSim emulator and COOJA wireless sensor network
simulator to support interoperable simulation of sensor nodes with firmware
from different vendors. To demonstrate both cross-vendor interoperability
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and the benefits of white-box interoperability testing, we run the state-
of-the-art Contiki and TinyOS operating systems in a single simulation.
Because of the white-box testing, we can do performance measurement and
power profiling over both operating systems.

8.1 Introduction

Wireless sensor networks are distributed systems consisting of small, often
battery-powered sensing devices that communicate using low-power wire-
less radios. Wireless sensor networks enable numerous applications ranging
from water [27] and bridge monitoring [20] to predictive maintenance in
industry [17].

The resource constraints of sensor devices have driven researchers to
focus on performance rather than on modularity [23]. Consequentially, a
number of highly efficient vertically integrated solutions such as Koala [21]
and Dozer [2] have been developed. These low power data gathering appli-
cations operate on radio duty cycles less than 1%. The vertical integration,
however, is by design non-interoperable and it is therefore difficult to ex-
change layers to achieve interoperability.

A vast body of research on sensor networks has yielded numerous dif-
ferent communication architectures and protocols. The rapid acceptance of
sensor networks for industrial applications has, however, driven focus to-
wards standardization and interoperability. Due to the proven industrial
potential of wireless sensor networks, a number of standards have emerged
during recent years. These include WirelessHART [15], ZigBee [28], and
IPv6-based sensor networks [10].

The standardization of sensor networks makes interoperability a new re-
quirement when implementing communication stacks and applications. In-
teroperability is difficult to verify, however, since sensor network simulators
and prototyping tools lack the possibility to simulate heterogeneous sensor
networks. For example, the widely used TOSSIM simulator [19] only simu-
lates nodes running the TinyOS operating system [14]. These tools are thus
unable to test the requirements that have arisen with the vision of an Inter-
net of Things [9]. Instead, vendors are today required to physically meet to
perform black-box testing of their equipment.

To meet the need for white-box testing of interoperability, we extend the
Contiki simulator COOJA [22] and MSPSim, an instruction level emulator
that is integrated in COOJA. Our simulator extensions enable simulations
of heterogeneous sensor networks that consist of different operating systems
and sensor devices. We also extend MSPSim with a power profiling mech-
anism similar to the software-based power profiler of the Contiki operating
system [7]. Our experiments demonstrate that our combined simulator is
not only a feasible tool for interoperability testing; it is also able to power
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Figure 8.1: COOJA simulating a hierarchical, heterogeneous sensor network
of TinyOS and Contiki nodes

profile nodes running different operating systems.

We evaluate our simulator with two state-of-the-art sensor node oper-
ating systems: Contiki and TinyOS. The Contiki operating system was the
first operating system to support IP for sensor networks [4] and currently the
only system that fulfills all the IPv6 Ready compliance requirements [10].
The TinyOS operating system is popular in academia and has been used to
implement standard protocols [13].

The contribution of this paper is the design and evaluation of a het-
erogeneous simulator environment for interoperability testing, with which
we demonstrate how white-box testing enables accurate and non-intrusive
power profiling of different operating systems.

The rest of this paper is structured as follows. We describe the two
simulators that we combine and the operating systems that we simulate
in our experiments in Section 8.2. We outline the technical aspects of our
implementation in Section 8.3. In Section 8.4, we evaluate the accuracy and
ability of MSPsim and COOJA in heterogeneous sensor network simulations.
Thereafter we discuss related work in Section 8.5, and conclude the paper
in Section 8.6.

8.2 Background

Our white-box interoperability testing system builds on the COOJA and
MSPSim simulators [22, 11]. COOJA is a cross-level sensor network simula-
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while (running) {
/* ezecute events x/
executeCycleEvents(cycles);
executeTimeEvents (currentTime );

/% fetch instruction to execute x/
op = memory [pc++] | (memory[pc++]| << 8)

instruction = decodelnstruction (op);
switch(instruction) {
case MOV:

dst = readSrc(op);
cycles 4= MOV_CYCLES;
break ;

case ADD:

Figure 8.2: The core emulation loop of MSPSim in pseudo-code. After
handling queued events, the program counter (PC) is increased and the
next instruction is decoded and executed.

tor. MSPSim can be used through COOJA to emulate sensor devices based
on the popular MSP430 processor. We describe each of these two simulators
as well as the two sensor network operating systems that we mainly target
for testing interoperability.

8.2.1 The MSPSim Simulator

MSPSim [11] is a Java-based instruction level emulator of the MSP430 mi-
croprocessor series. In contrast with CPU-level emulators, it emulates com-
plete sensor networking platforms such as the Tmote Sky [24] and ESB/2 [25].
MSPSim targets both realistic simulation with accurate timing for use as a
research tool, and good debugging support for use as a development tool.
MSPSim combines cycle accurate interpretation of CPU instructions
with a discrete-event based simulation of all other components, both internal
and external. MSPSim uses an event-based execution kernel that enables
accurate timing while keeping the host processor utilization as low as possi-
ble. We show an outline of the main execution loop in Figure 8.2.1. Before
interpreting instructions, MSPSim executes all pending events in both event
queues. Each queue handles events that are scheduled with a different per-
spective of time, with the first being based on CPU clock cycles, whereas the
other is based on a high resolution clock. Most of the internal components
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Figure 8.3: MSPSim emulating a Tmote Sky node running a program that
periodically turns on the radio and sends data packets.

of the MSP430, such as the USART and the analog-to-digital converter use
the event queue for clock cycles, while external components such as radio
transceivers use the event queue for the the high resolution clock.

The emulator provides a programming interface for integration with sim-
ulation frameworks such as COOJA. In addition, the emulator can be ex-
tended with new mote types through a mote interface and I/O interfaces
that correspond to the MSP430 I/O ports and serial communication ports.

MSPSim provides both debugging capabilities such as break points,
watches, logging, and single stepping as well as statistics about the operat-
ing modes of the emulated components, statistics such as how much time
the CPU has consumed in the different low-power modes. All features and
information can be accessed either via a command line interface, or via the
integration programming interfaces.

8.2.2 The COOJA Simulator

COOJA [22] is a flexible Java-based simulator initially designed for simu-
lating networks of sensors running the Contiki operating system. COOJA
simulates networks of sensor nodes where each node can be of a different
type; differing not only in on-board software, but also in the simulated hard-
ware. COOJA is flexible in that many parts of the simulator can be easily
replaced or extended with additional functionality.

A simulated node in COOJA has three basic properties: its data memory,
the node type, and its hardware peripherals. The node type may be shared
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Execute Java nodes
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Figure 8.4: The main loop in COOJA executes nodes at different levels.

between several nodes and determines properties common to all these nodes.
For example, nodes of the same type run the same program code on the
same simulated hardware peripherals. Nodes of the same type are initialized
with the same data memory, except for the node id. During execution,
however, the data memories of the nodes will eventually differ after reacting
to external stimuli.

COOJA can execute Contiki programs in two different ways. FEither
by running the program code as compiled native code directly on the host
CPU, or by running compiled program code in MSPSim. COOJA is also able
to simulate nodes developed in Java at the application level. All different
approaches have advantages as well as disadvantages. Java-based nodes
enable much faster simulations but do not run deployable code. Hence, they
are useful for the development of e.g. distributed algorithms. Emulating
nodes allows control and retrieval of more fine-grained execution details
compared to Java-based nodes or nodes running native code. Finally, native
code simulations are more efficient than node emulations and still simulate
deployable code. Combining the different levels in the same simulation can
give both an efficient simulation as well as fine-grained execution details on
selected nodes.

8.2.3 Contiki

Contiki [5] is a sensor network operating system. Contiki supports three
communication stacks: Rime [6], a light-weight layered communication stack
that provides basic communication primitives on top of which more complex
protocols are built, ulP [4] is a fully RFC compliant TCP /IPv4 stack for
memory constrained systems, and uIPv6 [10], the world’s smallest fully RFC
compliant TCP /IPv6 stack.

Contiki has an on-line power profiling mechanism [8] which estimates
the energy consumption by measuring the duration each component is in
various modes such as low-power mode, transmitting.

8.2.4 TinyOS

TinyOS is a sensor network operating system popular in academia originally
targeting hardware with just 512 Bytes of RAM [14]. The main difference to
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other sensor network operating systems is the use of the specifically devel-
oped programming language nesC [12] that builds component abstractions
on top of standard C. This programming language has to be used by appli-
cation developers, since the application together with system components
are used to generate a single binary image to be programmed to the sensor
nodes. TinyOS is event-based, which is supported by special constructs in
nesC, and requires also the application developer to follow this programming
model.

The basic communication abstraction of TinyOS is a simple best-effort
one-hop message transmission service. In addition to the frame format of
the data link layer used by the radio chip, e.g., 802.15.4, TinyOS just adds
one byte — the Active Message Type — to differentiate among up to 256
different software components as the intended destination on the receiver.
Building on this abstraction, other protocols can be built. As an alternative
to this, a partial IPv6 stack [13] has been added in recent TinyOS releases.

No mechanism for on-line estimation of power consumption is available.
Instead, algorithms that require this information, e.g., for lifetime estima-
tion and adaption of functionality, require an extensive prior evaluation by
simulation to obtain estimates for inclusion in the deployment [18].

8.3 Implementation

By integrating MSPsim more closely into COOJA and adding some OS-
specific support, we get a simulation tool that can simulate sensor networks
consisting of both Contiki and TinyOS nodes.

8.3.1 Simulating TinyOS nodes

The main difference between simulating Contiki nodes and TinyOS nodes
is that they use different node ID variables. Contiki uses node_id for its
node ID while TinyOS uses the constant TOS_NODFE_I D and the mutable
Active Message address TOS_AM _ADDRESS. Initially, we added support
in COOJA for setting just the node id, but initial experiments indicated
that it is also practical to be able to set the Active Message address through
COOJA.

In MSPSim, we made the emulation of the MSP430 and the CC2420
radio chip to be more accurate and complete. The initial emulation was
limited to the subset of features used in only one of the operating systems.
One important addition is the SED capture interrupt that might be used
for time stamping, etc.
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Figure 8.5: COOJA/MSPSim correctly measures the power consumption of
both TinyOS and Contiki nodes

8.3.2 Power Profiling of all nodes

To get power profiling of non-Contiki firmwares in COOJA we also extended
MSPSim with more detailed statistics for external components such as the
C(C2420 radio chip. The mechanism is similar to the built-in power profiling
mechanism in Contiki. The information can be accessed per node from
COOJA when power profiling is needed.

8.4 Evaluation

In this section we present results from experiments with the COOJA /MSP-
Sim simulator.

8.4.1 Measuring Power Consumption

To evaluate whether the radio duty cycle measurement in MSPSim works
as expected for both Contiki and TinyOS nodes, we have written TinyOS
and Contiki applications that turn off the radio for 10%, 25%, 50%, 75%
and 100% of the time. We show that the simulator is able to measure the
radio duty cycle with the corresponding values.

Our results depicted in Figure 8.5 show that the differences between the
expected and the measured values are very small for both operating systems,
namely at maximum around 1%.
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Figure 8.6: Energy estimation with MSPSim and Contiki for two duty cycle
cases, 25% and 12.5%.

8.4.2 Measuring Power Consumption with MSPSim

To evaluate the accuracy of MSPSim’s built-in power consumption mea-
surements we compare with the energy consumption estimation provided by
Contiki’s power profiling.

The test application sends data packets at a regular interval and toggles
the radio transceiver on and off with a given duty cycle.

We measure the energy consumption in MSPSim by printing the duty
cycle of CPU active and the CC2420 radio listen and transmit modes as
shown below:

>duty 1 "MSP430 Core.active" CC2420
10.39 74.99 23.48 1.53
10.39 74.99 23.48 1.53
10.39 74.99 23.48 1.53

The columns in the output are percentages of CPU activity and the modes
of the CC2420 radio: power down, listen, and transmit. We calculate the
energy consumption by multiplying the time spent in each mode with the
respective power consumption in milliwatts.

The results in Figure 8.6 show that the energy estimations are very close
to each other in both duty cycle cases. Maximum difference is around two
percent on listen and CPU, but we observe a somewhat larger difference
when estimating the power consumption of transmissions. The reason for
this difference is that the built-in measurements in MSPSim have immedi-
ate knowledge when the radio switch over to transmission mode, while the
Contiki counterpart must read status registers and therefore gets delayed
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information about when transmission starts.

8.4.3 A Heterogeneous, Hierarchical Sensor Network

To demonstrate interoperability between Contiki and TinyOS in COOJA /M-
SPSim, we simulate a heterogeneous, hierarchical sensor network shown in
Figure 8.3. The hierarchical sensornet consists of both TinyOS and Contiki
nodes. The three TinyOS nodes placed in the right part of the top right
plug-in in Figure 8.3 act as data sources that periodically send a data mes-
sage with 20 bytes payload (“As”, “Bs” or “Cs”) to an aggregator node
running Contiki. The aggregator node aggregates the data and sends it via
a forwarder node in a multi-hop fashion to the sink (left-hand node in the
plug-in). Both the forwarder and the sink node run Contiki.

Since the TinyOS frame format differs from the Contiki frame format,
we have modified the Rime stack and the Chameleon module [6] to allow
Contiki to understand packets from the TinyOS nodes.

In our experiments we send 200 packets from each TinyOS node. The
aggregator node reduces the number of packets from 600 to 200. If this
reduction of the number of packets leads to energy savings depends to a
large extent on the MAC layer. In order to quantify the power savings, we
have measured the power consumption with and without aggregation over
two hops, i.e. from the aggregator node via the forwarder to the sink node.
In these results, the aggregator either sends one large packets with 60 Bytes
payload every three seconds or three shorter packets with 20 Bytes payload
every second.

We use low power probing (LPP) as the underlying MAC layer [21]. LPP
receivers periodically transmit probes. Essentially, probes are short packets
that announce that the node in question is awake and ready to receive a
data packet. After sending a probe, receivers keep their radio on for a short
time to listen for data packets. A sender that has a packet to be sent turns
on its radio waiting for a probe from a neighbor it wants to send to. On
the reception of a probe from a potential receiver, the node sends a small
hardware ACK that is followed by the actual data packet. We have used the
default LPP configuration available in Contiki that sends on average four
probes per second and that keeps the radio on for ﬁ seconds after each
probe.

Our results are shown in Figure 8.7 and Figure 8.8. Figure 8.7 shows
that the reduction of the number of packets also leads to reduced power
consumption for transmitting packets (TX power consumption) for the for-
warder and the aggregator nodes. The TX power consumption for the sink
nodes is not influenced which indicates that the reduced power consumption
is not caused by a change of the number probing packets but by the reduced
number of header bytes that needs to be transmitted.

As expected, the power consumption for the radio in listen mode (RX
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Figure 8.7: Aggregation reduces TX power consumption.

power consumption) is much lower than the TX power consumption. Using
LPP, a node that wants to transmit a packet needs to turn the radio on
and keep it in listening mode until it receives a probe from the receiver.
Without aggregation, the number of packets a node transmits increases and
hence the time a transmitter needs to keep the radio on. The results in
Figure 8.8 show that the power consumption more than doubles without
aggregation.

8.4.4 Interoperability Tests

To validate our simulation tool’s capability for interoperability tests we per-
form an experiment where we develop the same networked application in in
both TinyOS and Contiki.

We implement an application that broadcasts packets to its neighbors
and when it receives packets it counts all neighbors and show the neighbor
count on the leds. The application for TinyOS use the standard Active
Message communication framework and the Contiki application is designed
to replicate the TinyOS application. Since TinyOS use 802.15.4 we replace
the default Contiki MAC protocol with 802.15.4 and add the TinyOS active
message type as the first byte of the payload.
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Figure 8.8: Aggregation reduces RX power consumption

Figure 8.9 shows the result of the test. All nodes communicated and
counted neighbors as expected.

This interoperability test validates a very basic application protocol on
top of 802.15.4 but still shows that it is possible to perform interoperability
tests using COOJA /MSPSim.

8.5 Related Work

During recent years, a number of wireless sensor networking simulators have
been developed. Most of these cannot be used for interoperability testing.
Many simulators are developed for specific operating systems. An example
is the TOSSIM simulator [19] that only simulates nodes running the TinyOS
operating system [14]. These simulators usually run the same application
code, but it is compiled for the simulator’s host and not directly deployable
without recompilation for the sensor device hardware. Other simulators
such as Castalia [1] and MiXiM [16] do not simulate the operating system
and the application code, but simulate at a higher level and with a focus on
network related aspects.

Instruction level simulators such as MSPSim and Avrora [26] are able to
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Figure 8.9: Basic interoperability test with three TinyOS nodes and two
Contiki nodes communicating. Some of the nodes’ led-panels are shown,
and debug printouts are visible in the log window.

simulate nodes running different operating systems since they operate at the
instruction set level. Avrora emulates Mica2 sensor nodes and can emulate
several nodes simultaneously. It supports communication by emulating the
Chipcon CC1000 radio chip. AvroraZ [3] is an extension of Avrora that
provides a detailed emulation of the Texas Instruments Chipcon CC2420
radio chip including an indoor radio model. Avrora and AvroraZ run mul-
tiple nodes using Java threads while our simulation tool COOJA/MSPSim
schedules the nodes explicitly. In contrast to these efforts, we have shown
that COOJA/MSPSim can simulate nodes with different operating systems
in the same simulation and perform power profiling.

8.6 Conclusions

We present a simulation-based approach for white-box interoperability test-
ing in sensor networks. By combining simulations at network and hardware
layer, we enable white-box testing in heterogeneous sensor network envi-
ronments. Our approach makes interoperability testing more practical and
transparent by allowing repeatable and fine-grained control of experiments.
We demonstrate our simulation tool through experiments in which applica-
tions of two different operating systems exchange protocol data. Further-
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more, we show that the new white-box testing environment allows accurate
and non-intrusive power consumption measurements at the network scale.

More information about COOJA and MSPSim, including download links,
can be found at:

http://www.sics.se/contiki/

and

http://www.sics.se/project/mspsim/
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