

Variability and Customization
of Simulator Products

A Product Line Approach in
Model Based Systems Engineering

ii

iii

Linköping Studies in Science and Technology.

Dissertation No. 1427

Variability and Customization
of Simulator Products

 A Product Line Approach in
Model Based Systems Engineering

Henric Andersson

Department of Management and Engineering
Division of Machine Design

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköping 2012

iv

Variability and Customization of Simulator Products
A Product Line Approach in Model Based Systems Engineering

Linköping Studies in Science and Technology. Dissertation No. 1427
ISBN 978-91-7519-963-4
ISSN 0345-7524

Copyright © 2012 Henric Andersson
henric.andersson@liu.se
www.iei.liu.se/machine
Division of Machine Design
Department of Management and Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

Printed in Sweden by LiU-Tryck Linköping, 2012

v

Abstract

AIRCRAFT DEVELOPERS, like other organizations within development and manu-
facturing, are experiencing increasing complexity in their products and growing compe-
tition in the global market. Products are built from increasingly advanced technologies
and their mechanical, electronic, and software parts grow in number and become more
interconnected. Different approaches are used to manage information and knowledge of
products in various stages of their lifecycle.

"Reuse" and "Model Based Development" are two prominent trends for improving in-
dustrial development efficiency. The product line approach is used to reduce the time to
create product variants by reusing components. The model based approach provides
means to capture knowledge about a system in the early lifecycle stages for usage
throughout its entire lifetime. It also enables structured data management as a basis for
analysis, automation, and team collaboration for efficient management of large systems
and families of products.

This work is focused on the combination of methods and techniques within;
• modeling and simulation-based development, and
• (re)use of simulation models through the product line concept.

With increasing computational performance and more efficient techniques/tools for
building simulation models, the number of models increases, and their usage ranges
from concept evaluation to end-user training. The activities related to model verification
and validation contribute to a large part of the overall cost for development and main-
tenance of simulation models. The studied methodology aims to reduce the number of
similar models created by different teams during design, testing, and end-user support
of industrial products.

Results of the work include evaluation of a configurator to customize and integrate si-
mulation models for different types of aircraft simulators that are part of a simulator
product family. Furthermore, contribution comprises results where constraints in the
primary product family (aircraft) govern the configuration space of the secondary prod-
uct family (simulators). Evaluation of the proposed methodology was carried out in
cooperation with the simulator department for the 39 Gripen fighter aircraft at Saab
Aeronautics.

vi

När komplexiteten ökar, kommer Systems Engineering och spökar.

- Mehdi Tarkian

vii

Sammanfattning

FLYGPLANSTILLVERKARE LIKSOM andra industrier inom utveckling och till-
verkning, hanterar ökande komplexitet i sina produkter och upplever en större konkur-
rens på den globala marknaden. Produkter byggs från allt mer avancerad teknologi. In-
gående delar av mekanik, elektronik och mjukvara växer i antal och blir allt mer
integrerade. Olika metoder används för att hantera information och kunskap om produk-
ter i olika steg av dess livscykel.

”Återanvändning” och ”Modellbaserad utveckling” är två tydliga trender för att öka
effektiviteten inom industriell utveckling. Produktfamiljer används för att minska ledti-
der när man skapar varianter av produkter genom att återanvända färdiga komponenter.
Modellbaserade metoder ger möjlighet att tidigt i livscykeln samla kunskap om ett sy-
stem för att användas under hela systemets livstid. De ger också strukturerad hantering
av data som grund för analys, automatisering och samarbete mellan utvecklingsteam,
vilket är en förutsättning för effektiv hantering av komplexa system och produkter.

Detta arbete är fokuserat på en kombination av metoder och tekniker för;
• utveckling som baseras på modellering och simulering, och
• (åter)användning av simuleringsmodeller.

Med ökande beräkningsprestanda och effektivare metoder/verktyg för att bygga simule-
ringsmodeller så ökar antalet modeller och deras användning spänner allt från koncept-
värderingen till utbildning av slutanvändare. Arbetet med verifiering och validering av
simuleringsmodeller utgör en stor del av deras totala utvecklings- och underhållskost-
nader. De studerade metoderna syftar till att minska antalet liknande modeller som han-
teras av olika team för olika syften, som till exempel; utveckling, verifiering och som
stöd för slutanvändare.

Resultat av arbete inkluderar utvärdering av en konfigurator för att välja, integrera och
anpassa simuleringsmodeller för olika typer av flygplanssimulatorer i en simulatorpro-
duktfamilj. Dessutom bidrar arbetet med en metodik där begränsningarna i den primära
produktfamiljen (flygplan) begränsar konfigurationsutrymmet för den sekundära pro-
duktfamiljen (simulatorer). Utvärdering av den föreslagna metoden har genomförts i
samarbete med simulatoravdelning för flygplan 39 Gripen på Saab Aeronautics.

viii

Everything must be made as simple as possible. But not simpler.

- Albert Einstein

Model Based Development!? Wouldn’t it be better with Reality Based Development?

- August Andersson

ix

Acknowledgments

THE WORK PRESENTED in this dissertation was carried out as an industrial PhD
project at the Division of Machine Design at the Department of Management and Engineer-
ing (IEI) at Linköping University. Saab Aeronautics was the industrial partner and provided
the opportunity to relate the work to an innovative industrial environment.

There are several people I would like to thank for their support and advice. First, I want to
thank Erik Herzog for his guidance, academic views, and for being an inspiring co-author of
some of the publications. Thanks also to the industrial sponsors at Saab, especially Anders
Pettersson and Stefan Andersson who involved me in the MBSE program at Saab, and for
giving me the opportunity to start the research journey.

I am also grateful to my supervisors at the university, Prof. Petter Krus and Prof. Johan
Ölvander for your guidance and support. To Olof Johansson and Björn Lundén I show ap-
preciation for supervision during the first part of the work.

My managers at Saab, Ulrik Pettersson and Henrik Pettersson; you gave me important sup-
port and found time when I needed it. A special thank goes to Sören Steinkellner who in-
spired me and often took me down from the ‘abstract heights’. At Saab, there are many col-
leagues and co-authors that I want to thank; Ingela Lind, Magnus Carlsson, and many more.
Thanks also to Lars Karlsson, Magnus Jomander, Kristoffer Johansson, Robert Lindohf and
all of you in the EMMA team and at the Saab Simulator-Center who provided me with chal-
lenges, knowledge, and data for this research. I also wish to thank members of the Machine
Design and Fluid and Mechatronic Systems divisions for your friendship and valuable feed-
back. I am also grateful to the ProViking research school and all inspiring PhD students.

The results reported in this dissertation were inspired by and based on research funded by:
the Swedish Governmental Agency VINNOVA’s National Aviation Engineering Research
Programs, NFFP 2006-02705 and NFFP 2009-01359; the European Community’s Sixth
Framework Programme (FP6/2006-2009) SPEEDS (contract n° 033471); and the European
Community’s Seventh Framework Programme (FP7/2007-2013) CRESCENDO (grant
agreement n° 234344).

Finally, I thank my family; Christina, August, Axel, and Bertil for being so patient during
the periods of struggling and writing.

Henric Andersson

Borensberg, March 2012

xi

List of appended papers

THIS DISSERTATION is based on the following seven papers, which are appended
and will be referred to by their Roman numerals. The papers are included in their origi-
nally published state except for changes in formatting and correction of minor errata.

[I] Andersson, H., Herzog, E., Johansson, G. & Johansson, O. (2010). Experience
from introducing Unified Modeling Language/Systems Modeling Language at
Saab Aerosystems. Systems Engineering, 13: 369-380. doi: 10.1002/sys.20156

[II] Lind, I. & Andersson, H. (2011). Model Based Systems Engineering for Aircraft
Systems – How does Modelica Based Tools Fit?. In Proceedings of the 8th Inter-
national Modelica Conference. Dresden, Germany. doi: 10.3384/ecp11063856

[III] Andersson, H. (2010) Variability and Configuration Principles for Simulation
Models in Product Line Development. In Proceedings of the 7th European Sys-
tems Engineering Conference, EuSEC 2010, Stockholm, Sweden.

[IV] Andersson, H., Steinkellner, S. & Erlandsson, H. (2010). Configuration Man-
agement of Models for Aircraft Simulation. In Proceedings of the 27th Interna-
tional Congress of the Aeronautical Sciences, ICAS. Nice, France.

[V] Carlsson, M., Andersson, H., Gavel, H. & Ölvander, J. (2012). Methodology for
Development and Validation of Multipurpose Simulation Models. In Proceedings
of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Fo-
rum and Aerospace Exposition, Nashville, TN, USA.

[VI] Andersson, H., Carlsson, M. & Ölvander, J. (2011). Towards Configuration
Support for Collaborative Simulator Development: A Product Line Approach in
Model Based Systems Engineering. In Proceedings of the 20th IEEE International
Conference on Collaboration Technologies and Infrastructures. Paris, France.
doi: 10.1109/WETICE.2011.74

[VII] Andersson, H., Herzog, E. & Ölvander, J. (2012). Experience from Model and
Software Reuse in Aircraft Simulator Product Line Engineering. Conditionally
accepted for publication in Information and Software Technology.

Out of the seven papers, Andersson is the main contributing author of papers [I], [III],
[IV], [VI], and [VII].

xii

The following papers are not appended but constitute a part of the background:

[VIII] Andersson, H. & Sundkvist, B.G. (2006). Method and Integrated Tools for Effi-
cient Design of Aircraft Control Systems. In Proceedings of the 25th International
Congress of the Aeronautical Sciences, ICAS. Hamburg, Germany.

[IX] Steinkellner, S., Andersson, H., Krus, P. & Lind, I. (2008). Hosted Simulation
for Heterogeneous Aircraft System Development. In Proceedings of the 26th In-
ternational Congress of the Aeronautical Sciences, ICAS. Anchorage, AK, USA.

[X] Hallberg, P., Andersson, H., Nåbo, M. & Krus, P. (2008). Modular sustainable
light multi-purpose vehicle. In Proceedings of the 3rd European Ele-Drive Trans-
portation Conference - EET-2008. Geneva, Switzerland.

[XI] Johansson, O., Andersson, H. & Krus, P. (2008). Conceptual Design Using Ge-
neric Object Inheritance. In Proceedings of the ASME International Design En-
gineering Technical Conference and Computers and Information in Engineering
Conference 2008, IDETC/CIE. Brooklyn, N. Y., USA.

[XII] Andersson, H., Weitman, A. & Ölvander, J. (2008). Simulink as a Core Tool in
Development of Next Generation Gripen. In Proceedings of Nordic Matlab User
Conference 2008. Stockholm, Sweden.

[XIII] Steinkellner, S., Andersson, H., Gavel, H. & Krus, P. (2009). Modeling and si-
mulation of Saab Gripen’s vehicle systems. AIAA Modeling and Simulation
Technologies Conference. Chicago, IL, USA.

[XIV] Herzog, E. & Andersson, H. (2009). Initial Experience in Contracts Based Sys-
tems Engineering. In Proceedings of the 19th annual international symposium of
International Council on Systems Engineering, INCOSE. Singapore.

[XV] Herzog, E., Andersson, H. & Hallonquist, J. (2010). Experience from Introduc-
ing SysML into a Large Project Organisation. In Proceedings of the 20th annual
international symposium of International Council on Systems Engineering,
INCOSE. Chicago, IL, USA.

[XVI] Steinkellner, S., Andersson, H., Gavel, H., Lind, I. & Krus, P. (2010). Modeling
and Simulation of Saab Gripens Vehicle Systems: Challenges in Processes and
Data Uncertainties. In Proceedings of the 27th International Congress of the
Aeronautical Sciences, ICAS. Nice, France.

xiii

Abbreviations

a/c Aircraft
CAD Computer-Aided Design
CI Configuration Item
CM Configuration Management
ECS Environmental Control System
ECU Electronic Control Unit
FMI Functional Mockup Interface
H/W Hardware
HILS Hardware In-the-Loop Simulation
KBE Knowledge Based Engineering
M&S Modeling and Simulation
MBD Model Based Development
MBSE Model Based Systems Engineering
PDM Product Data Management
PVM Product Variant Master
S/W Software
SCM Software Configuration Management
SPL Software Product Line
SysML Systems Modeling Language
XML EXtensible Markup Language
XSLT EXtensible Stylesheet Language

xv

Table of contents

1 Introduction 1
1.1 Background 1
1.2 Problem definition 4
1.3 Industrial objectives 5
1.4 Dissertation outline 6

2 Research methods 7
2.1 Research questions 7
2.2 Research environment and related projects 8
2.3 Research approach 10
2.4 Contribution 15

3 Model based development 17
3.1 Systems Engineering 18
3.2 Development process models and standards 19
3.3 Classification of models and modeling domains 24
3.4 Simulation of complex products 27
3.5 Simulation of what-if scenarios 33
3.6 Summary of model based development 35

4 Reuse and its application 37
4.1 Reuse principles 37
4.2 Product Line approach 38
4.3 Product families for models and simulators 43
4.4 Design and validation of multipurpose models 46
4.5 Analyses of product family changes 47
4.6 Summary of reuse and its application 49

5 Industrial application 51
5.1 Introduction to industrial application example 51
5.2 Simulation models 52
5.3 Legacy and third party components 53
5.4 Configuration and customization needs 54
5.5 Configurator prototype 57
5.6 Summary of the industrial application example 61

xvi

6 Results 63
6.1 Industrial experiences from modeling languages 63
6.2 Reuse and customization of simulator products 65

7 Discussion and Conclusions 71
7.1 Discussion 71
7.2 Research results versus the research questions 73
7.3 Contributions 74
7.4 Conclusions 75
7.5 Future work 75

References 77

xvii

Appended papers

[I] Experience from Introducing Unified Modeling Language/
Systems Modeling Language at Saab Aerosystems 85

[II] Model Based Systems Engineering for Aircraft Systems – How
does Modelica Based Tools Fit? 107

[III] Variability and Configuration Principles for Simulation Models
in Product Line Development 121

[IV] Configuration Management of Models for Aircraft Simulation 139

[V] Methodology for Development and Validation of Multipurpose
Simulation Models 155

[VI] Towards Configuration Support for Collaborative Simulator
Development: A Product Line Approach in Model Based
Systems Engineering 175

[VII] Experience from Model and Software Reuse in Aircraft
Simulator Product Line Engineering 193

xviii

1
Introduction

MOST PRODUCTS and systems evolve towards higher degrees of complexity con-
sisting of more advanced technologies with integrated mechanical, electronic, and soft-
ware parts. Products are increasingly defined in families, allowing variants and versions
of similar products to be offered to customers. Model Based Development (MBD) is
one approach to manage large, complex systems and families of products. It enables
structured data management to serve as a basis for analysis, automation, and collabora-
tion for example. MBD also provides a way, through the virtual product and system
simulations, to gain insights and understanding for engineers and others involved in the
development, verification, and maintenance of the products. Validated simulation mod-
els from systems development can be reused in simulator products to achieve training of
end users with high fidelity simulations in a virtual environment.

1.1 Background
Organizations developing and manufacturing high-end products have for decades relied
on engineering methods that are based on some kinds of models; and the use of model
based methods are increasing. In the management of large, complex products and their
related information, different product parts may in different degrees be based on the
modeling approach. The development lifecycle for a specific system (or some additional
system functionality) starts with a verbal formulation and evolves through system de-
sign to rollout for customer delivery and usage.

There are obviously different ways to execute the development, depending on the
choice of engineering means, as illustrated in Figure 1. Maturity of a system and its
functionality is reached through several activities, where modeling, analysis, and simu-
lation “get the function to mature” more rapidly compared to traditional document-
centric methods. Parts of both verification and validation are performed earlier with the
support of models and simulations, providing greater possibility to improve poorly
stated requirements early and to find defects/non-optimal designs.

2 Variability and Customization of Simulator Products

Figure 1. The basic idea of model based development is that a system's maturity in-
creases faster by enabling analysis and simulations of the system from an early stage.
The models support reuse of knowledge during initial operation of the system and
throughout its entire lifetime.

To support development of complex products, several methods and languages have
been proposed in the literature and evaluated in industry, as reported in Mar [1992] and
Stevens [1998]. In recent years, there has been much focus on MBD as means for man-
aging complexity by improving specification clarity, consistency, and validation sup-
port, see Alford et al. [1992], Oliver, Kelliher and Keegan [1997], Wymore [2002],
France and Rumpe [2007], Weilkiens [2008], and Friedenthal, Moore and Steiner
[2011].

Another prominent trend is reuse of artifacts such as design solutions and sys-
tem/software components, for reducing development and production cost while still
offering a range of similar products to the market. From the 1980s and onward, software
reuse is one of the main reasons for increased productivity for software-intensive sys-
tems [Boehm 2006]. A set of similar products that share components and are developed
and manufactured within a defined architecture constitutes a product family or a product
line. Companies who provide the market with products in several variants and versions
increasingly rely on the product line approach with explicitly defined product line ar-
chitecture.

Descriptions of approaches and methods for efficient utilization of reuse through prod-
uct lines and customization support have been provided in literature. For products in
general, see Simpson [2006], Ullrich and Eppinger [2008], and Hvam, Mortensen and
Riis [2008]. A somewhat different kind of product line approach has been defined for
software intensive systems/products, called Software Product Lines (SPL); see Weiss
and Lai [1999], Clements and Northrop [2002], van der Linden, Schmid and Rommes
[2007], and Jarzabek [2007].

Figure 2 illustrates some basic parts of a product line setting:
• reusable core assets/components with variations
• decisions about variation for specific products
• variation binding through an instantiation process

Verbal
definition

Documen-
tation

Modeling

Analysis

Review

Simulation

Prototype

Test Flight/
verification

Training/
Usage

Maturity
100%

60%

40%

20%

80% Model Based
Development

Traditional
Development

Introduction 3

Figure 2. The basics of a product line architecture where existing components are used
in a product instantiation process to create customized products. The product instantia-
tions are explicitly governed by configuration decisions. Based on Krueger [2004].

When the model based and product line approaches are utilized in combination, there is
a need for Modeling and Simulation (M&S) of a large number of product variants.
While computational performance increases, modeling techniques and tools mature and
engineers become more skilled in M&S, the number of models increases and manage-
ment of the models themselves defines a new domain of knowledge. Praehofer [1996]
discusses different approaches known from software engineering, in particular the ob-
ject-oriented technique, for enhancement of reusability in large-scale simulation sys-
tems. Principles for reuse of simulation models and code are covered by Praehofer
[1996], Harrison, Gilbert, Jeffrey, Lauzon, and Lestage [2004], Matharu [2006], and
Nagy and Cleophas [2011]. None of these takes, however, clearly up the relationship
between the models and the products they are supposed to represent. A knowledge gap
is identified for the variability and reusability of models with respect to variants and
versions of products and models.

The application example used in this work is simulation models and simulators for the
Saab 39 Gripen aircraft product family. There are specific characteristics of a simula-
tion model (family) for complex products such as aircraft:

• the properties of system safety require a robust methodology, for example change
control, traceability, verification and validation of models;

• a simulation model for an aircraft consists of several unique sub-models developed
by different teams, during different times, using different modeling techniques; and

• most of the simulation models are representations of another product family; viz
the aircraft.

The simulation components (models) do not in general have the same functionality as
the represented components (a/c equipment). The models are enhanced with for exam-
ple fault-simulation functions, but may be simplified in other respects. This implies that
variations and combinations of the simulation models are partly constrained or guided
by the variability rules of the aircraft’s components and functions. To increase the po-
tential for reuse, the simulation models are designed to be included in different kinds of
simulators, i.e., they are multipurpose models.

Storage for
validated
reusable
components

Core assets /
components
with variations

Decisions about
variations for a
product instance

Variation binding
and product instan-

tiation process

 PV000
 PV002
 PV003
 .
 PVn

Product Variants

4 Variability and Customization of Simulator Products

Saab Aeronautics has a long history of simulator development, mostly for in-house
usage, which is for early validation, development, and system verification. During the
last decade, development and delivery of training simulators for the Saab 39 Gripen has
become a business. It is now possible to support customers with up-to date simulator
versions synchronously with deliveries of new system versions of the aircrafts. The si-
mulators are e.g. based on embedded software used in aircraft. This method is denoted
the ‘design once approach’ and its aim is to increase the conformance and quality of
simulator updates. The intention is to continue and to expand the ‘design once ap-
proach’, by developing methods to make coordinated updates in different simulators for
several purposes.

1.2 Problem definition
Simulation models may be used in different contexts with specific objectives. Devel-
opment of the models has often been performed by different teams, which has resulted
in a wide range of types and variants. These models are used in different simulation
environments, based on different computer languages, and specified for specific operat-
ing systems [European Space Agency 2003]. Explicit usage contexts of simulation
models in the aircraft industry, and especially within Saab Aeronautics are [III]:

• Development; as a tool, for example for analysis and optimization of the design
• Verification; is the system safe? Does it satisfy the specified requirements?
• Training; to improve the operating skills of end users.

Assumptions and basic elements of the problem definition are as follows: There exists a
defined product family (e.g. a set of aircraft variants). This product family is modeled in
respect of:

• Configuration; for certification, delivery, and maintenance in a product data man-
agement context (results in a product configuration model)

• Behavior; for development, verification, and training in a simulation context (re-
sults in a set of simulation models).

Assume further that the unique sub-models are configurable, meaning that one model
may represent different variants of the product parts/components/subsystems or its envi-
ronment. The configurable models are developed, validated, reused, and maintained
within the same lifetime as the products.
Each simulation model included in any simulation system can be viewed as an inter-
changeable component. These components are stored in a library for easy access and
inclusion in different simulator configurations and must be able to be configured in at
least three dimensions: representation, usage, and implementation in the following
manner:

• A component will represent some part of the simulated product or its environment
• A component will be used in a context (development, verification or training)
• A component will be implemented for a specific simulation platform.

There are no proven concepts, verified methods, or mature supporting tools found to
handle configurable simulation models in the described context.

Introduction 5

Figure 3. Problem area and related research fields / engineering practices.

The subject of this dissertation covers some traditional areas of research and it is there-
fore of an interdisciplinary nature. The focus of the research relates to methods, tech-
niques, and engineering practices as shown in Figure 3.

1.3 Industrial objectives
The purpose of the work from an industrial perspective is to develop methods for reuse
of simulation models through knowledge about variability and compatibility in order to
customize simulator instances. The objectives are related to quality and response-time
in the process from a customer request (external or from company-internal customers)
to delivery of an a/c simulator. Special focus areas in this work from an industrial pers-
pective relate to methodologies to support:

• Transformation of a product portfolio into a product line by extracting knowledge
from legacy simulation software

• Design and implementation of sustainable simulation models for long-term reuse
potential

• Handling of non-functional properties and quality attributes
• Product line engineering for large, complex simulator systems
• Alignment with industry-standard Product Data Management (PDM) and Software

Configuration Management (SCM) systems
• Alignment with emerging standards and ongoing industrial related research in the

fields.

A central part of the dissertation is thus to formalize the engineering challenges that
arise when a model based approach is used together with the reuse of models within a
large organization that is responsible for complex industrial products.

Reuse
Product Lines
Software Product Lines
Knowledge Based Engineering
Customization
Optimization

Modeling & Simulation
Integration techniques
Model interoperability
Model validation

Product development
Aircraft simulation
Simulator architectures
Verification & test

Model Based Systems Engineering
Information Modeling
Modeling notations

Lifecycle Management
Product Data Management
Software Configuration Management

Area of this

dissertation

6 Variability and Customization of Simulator Products

1.4 Dissertation outline
This dissertation is written in an integrated-paper format and consists of an introductory
summary and seven appended papers. The remaining part of the introductory summary
is outlined as follows: Chapter 2 covers the research methods. Chapter 3 introduces the
theoretical frameworks of Model Based Development and Model Based Systems Engi-
neering. In chapter 4 Knowledge Based Engineering, configuration principles, and
available methods for simulation of products on an industrial scale are described. An
introduction to the industrial application example is provided in chapter 5. Finally,
chapters 6 and 7 cover results and discussion/conclusions respectively, and chapter 7
ends with identified areas for future work.

2
Research
methods

THE RESEARCH REPORTED herein is classified as applied research as it was per-
formed with relatively mature systems engineering techniques and in close relation to
an industrial organization. This chapter covers the research questions, research envi-
ronment, related projects, research approach, and contributions of the research work.

2.1 Research questions
By reuse of simulation models and integrating a configurator system in the simulator
development environment, providing input to the simulator build and installation
processes, it should be possible to deliver customized simulation kernels with specified
configurations in a shorter time.

Research question

“Are the principles of Product Customization applicable for modular simulation systems
in a software intensive product line context?”

Further sub-questions:
• To what degree is it possible to modularize the simulation model including parame-

ter sets and other simulation artifacts?
• What kinds of variation techniques for simulation model variability, including em-

bedded software, are applicable in the product instantiation process?
• How should compatibility constraints for simulation models be specified to be

maintainable in a large-scale product line?
• How to specify and build simulation configurator systems based on Product Data

Management (PDM) where environment models are not part of the product defini-
tion?

8 Variability and Customization of Simulator Products

Areas to be dealt with during the research are oriented towards simulation models of
vehicle systems, safety critical aspects, and existing products with legacy components.
For an overview of the vehicle systems area, see Moir and Seabridge [2004]. Areas
beyond the scope of the present work, and therefore not focused upon, include code-
generation techniques, multi-core computation, formal methods, early product concepts,
and consumer oriented mass customization.

2.2 Research environment and related projects
The work was performed part-time over seven years and it evolved in focus over time
from a broad perspective on Model Based Development (MBD) to a narrow focus on
software product lines and further to variability and customization of simulator prod-
ucts. There were five research projects related to this work, all within the area of MBD,
but with slightly different focus. The research program that financed each project to-
gether with other key data is included in Table 1.

2.2.1 System Engineering and Computational Design
Studies of how a product’s requirements over its lifecycle can be translated into re-
quirements concerning components were performed during the course of the project.
These included development of models and calculation modules used in simulation and
optimization at product level. Tools were built in the form of demonstrators in order to
show how the methods work in practice. Being part of the project was a good way to get
introduced to the problem domain and to an academic way of thinking. Linköping Uni-
versity was the project leader. An introductory paper [Andersson & Sundkvist 2006] on
industrial experiences from model based flight control modeling was also published.

2.2.2 Speculative and Exploratory Design in Systems Engineering
In the research project SPEEDS (Speculative and Exploratory Design in Systems Engi-
neering) [Engel, Winokur, Döhmen & Enzmann 2008] a great deal of the work was
performed in an industrial context together with aerospace industries, for example Air-
bus and Saab. Coordinator of the project was Airbus (Germany). Needs for large-scale
modeling and analysis were collected and analyzed, and an engineering environment
was developed and validated from requirements. The focus was on avionics develop-
ment in early phases. A meta-model for Heterogeneous Rich Components (HRC) was
developed as a means for contract based modeling, tool integration, and analysis capa-
bilities. Representing the needs of an industrial project partner (Saab), validation of the
environment with tools for contract-based modeling was included in the task. Expe-
rience from contract-based modeling was reported in Herzog & Andersson [2009].

2.2.3 Modeling technique for avionics design
In this project, a prototype of the FM-design tool (function-means-tree) was developed,
see [Johansson, Andersson & Krus 2008]. Different approaches to model development
and integrated (hosted) simulation were evaluated, see papers [Andersson, Weitman &
Ölvander 2008] and [Steinkellner, Andersson, Krus & Lind 2008]. A summary of the
first phase of the work was presented and published through a Licentiate Thesis [An-
dersson 2009]. Saab Aerosystems (now Saab Aeronautics) was head of the project.

Research methods 9

Table 1. Research projects participation. Work done as part of the dissertation within each project.

R
es

ea
rc

h
as

 p
ar

t o
f t

he
 d

is
se

rt
at

io
n

A
ss

es
sm

en
t o

f M
&

S
te

ch
ni

qu
es

 (D
ES

,
O

D
E,

 D
A

E)
 a

nd
 o

pt
im

iz
at

io
n.

Sp
ec

ifi
ca

tio
n

of
 n

ee
ds

 fo
r l

ar
ge

 sc
al

e
m

od
el

in
g

en
vi

ro
nm

en
ts

. V
al

id
at

io
n

of

co
nt

ra
ct

 b
as

ed
 m

od
el

in
g

an
d

to
ol

 in
te

-
gr

at
io

n.

D
ev

el
op

m
en

t o
f t

he
 F

M
 d

es
ig

n
to

ol
.

C
om

pa
ris

on
 o

f M
&

S
te

ch
ni

qu
es

. D
ef

in
i-

tio
n

of
 th

e
M

od
el

in
g

D
om

ai
n

fra
m

e-
w

or
k.

R
eq

ui
re

m
en

ts
 e

lic
ita

tio
n

fo
r c

ol
la

bo
ra

-
tiv

e
en

gi
ne

er
in

g
in

 a
er

os
pa

ce
 d

ev
el

op
-

m
en

t i
nc

lu
di

ng
 c

er
tif

ic
at

io
n.

 M
od

el
 in

te
-

gr
at

io
n

an
d

sc
al

e-
up

 m
ea

ns
.

A
rc

hi
te

ct
ur

es
 fo

r v
irt

ua
l t

es
tin

g.

In
te

gr
at

io
n

of
 si

m
ul

at
io

n
m

od
el

s f
ro

m

di
ff

er
en

t d
om

ai
ns

. C
om

pa
tib

ili
ty

 a
nd

co

nf
ig

ur
at

io
n

su
pp

or
t f

or
 la

rg
e

sc
al

e
si

-
m

ul
at

io
n.

 V
al

id
at

io
n

of
 c

on
fig

ur
at

or
 p

ro
-

to
ty

pe
.

M
et

ho
ds

 &
 te

ch
ni

qu
es

▪ s
ys

te
m

 si
m

ul
at

io
n

▪ e
ng

in
ee

rin
g

de
si

gn
 o

pt
i-

 m
iz

at
io

n

▪ h
os

te
d

si
m

ul
at

io
n

▪ a
na

ly
si

s t
ec

hn
iq

ue
s,

H
R

C

▪ t
oo

l i
nt

eg
ra

tio
n

▪ S
ys

M
L

▪ p
ro

du
ct

 m
od

el
in

g
▪ f

un
ct

io
n-

m
ea

ns
 tr

ee

▪ h
os

te
d

si
m

ul
at

io
n

▪ M
od

el
ic

a,
 S

ys
M

L

▪ v
irt

ua
l t

es
tin

g
▪ t

oo
l i

nt
eg

ra
tio

n
▪ c

ol
la

bo
ra

tiv
e

en
gi

ne
er

in
g

▪ p
ro

du
ct

 d
at

a
ha

nd
lin

g
▪ M

od
el

ic
a,

 F
M

I

▪ l
ar

ge
 sc

al
e

si
m

ul
at

io
n

▪ k
no

w
le

dg
e

en
gi

ne
er

in
g

▪ p
ro

du
ct

 li
ne

 e
ng

in
ee

rin
g

▪ X
M

L
an

d
sc

he
m

as
; X

SD

▪ f
ea

tu
re

 m
od

el
in

g
▪ c

on
st

ra
in

t p
ro

gr
am

m
in

g

Y
ea

rs

20
03

-
20

07

20
06

-
20

10

20
07

-
20

08

20
09

-
20

12

20
09

-
20

12

Pr
oj

ec
t n

am
e

Sy
st

em
 E

ng
in

ee
r-

in
g

an
d

C
om

pu
ta

-
tio

na
l D

es
ig

n

Sp
ec

ul
at

iv
e

an
d

Ex
pl

or
at

or
y

D
es

ig
n

in
 S

ys
te

m
s E

ng
i-

ne
er

in
g

M
od

el
in

g
Te

ch
-

ni
qu

e
fo

r A
vi

on
ic

s
D

es
ig

n

C
ol

la
bo

ra
tiv

e
&

R

ob
us

t E
ng

in
ee

rin
g

us
in

g
Si

m
ul

at
io

n
C

ap
ab

ili
ty

 E
na

bl
in

g
N

ex
t D

es
ig

n
O

pt
i-

m
is

at
io

n

H
et

er
og

en
eo

us

M
od

el
in

g
an

d
Si

-
m

ul
at

io
n

te
ch

ni
qu

e

Pr
og

ra
m

 /
Pr

oj
ec

t

Sw
ed

is
h

Fo
un

da
tio

n
fo

r
St

ra
te

gi
c

R
es

ea
rc

h,

Pr
oV

ik
in

g
/ S

E
C

D

Eu
ro

pe
an

 U
ni

on
 S

ix
th

Fr

am
ew

or
k

Pr
og

ra
m

m
e

/ S
PE

E
D

S

Sw
ed

is
h

N
at

io
na

l A
er

o-
na

ut
ic

s R
es

ea
rc

h
Pr

o-
gr

am
m

e
4

/ N
FF

P4

Eu
ro

pe
an

 U
ni

on
 S

e-
ve

nt
h

Fr
am

ew
or

k
Pr

o-
gr

am
m

e
/

C
R

E
SC

E
N

D
O

Sw
ed

is
h

N
at

io
na

l A
er

o-
na

ut
ic

s R
es

ea
rc

h
Pr

o-
gr

am
m

e
5

/ N
FF

P5

10 Variability and Customization of Simulator Products

2.2.4 CRESCENDO
CRESCENDO [2010] is a large project divided into several subprojects and use-case
definitions. It has a focus on collaborative engineering with support from standardized
methods/tools and covers a large part of the product lifecycle including virtual testing
and support for aircraft certification. Evaluation of simulation techniques with Modelica
based tools was reported in paper [II]. A paper on methodology for development and
validation of multipurpose simulation models has been published [V]. Airbus (France)
is coordinator of the project.

2.2.5 Heterogeneous Modeling and Simulation technique
A good opportunity was given to finalize the PhD studies/dissertation through the
NFFP5 project Heterogeneous Modeling and Simulation technique. Recognition of the
model management problem was made in earlier projects and here the focus was on
solutions to the “simulation model variation and customization problem”. Problem defi-
nitions were published in papers [III] and [IV]. In this project, a research approach with
shorter increments was used in order to conduct Plan-Act-Observe-Reflect [Williamson
2002] cycles with practitioner interaction. A “towards” paper [VI] was published, re-
porting on initial findings from the configurator prototype development. The final report
from the industrial setting and the validation results are provided in paper [VII]. Saab
Aeronautics was head of the project.

2.2.6 From a broad to a narrow research field
The research studies were performed in two major phases with a different broad focus.
The first phase (up to the licentiate thesis), had a broad focus and in the second phase
the research field was substantially narrower.

• Broad research focused on literature studies, assessment of industrial state of the art
(SECD), but also validation of the hosted simulation technique (SPEEDS and
NFFP4). The results were summarized in a Licentiate thesis in March 2009, [An-
dersson 2009]

• Narrower research focused on large-scale simulation, the management of simula-
tion models, and validation of a configurator prototype for customization and inte-
gration of simulation models. The second phase was connected to CRESCENDO
and NFFP5.

2.3 Research approach
The research reported in this dissertation was conducted as an industrial PhD project,
which means that the researcher has a strong relation to the industry and the research is
inherently classified as applied research.

2.3.1 Relationship between development and research
Similar methods are used for development of products and for research on development
methods. This research work does not penetrate techniques used in products (such as
choice of material, components, or technical solutions) in depth, but covers techniques
and tools that can support engineers in building and using models for product develop-
ment. This can be viewed as the meta2 activity according to Muller [2011], see Figure 4.

Research methods 11

Meta0 is the actual systems development and product creation, meta1 is the development
methods1used to create and manage the product. Meta2 is the focus of this dissertation; a
study of available methods and tools for the meta1 activities. At meta3, the research me-
thod for comparing tools and methods at meta2 is defined.

Figure 4. Research method formulation for method research adopted from Muller
[2011]

Methods traditionally used for research can also be applied to support development, see
[Borg 2009], where the traditional Case Studies research method was used as a method
in systems development. In this work, the systems/software development method
known as Scrum, [Schwaber 1995; Kniberg 2007] is used to support validation of the
research results. This use of Scrum is further described below.

2.3.2 Description of the research
The first part of the research was carried out as a survey of existing methods and tools
within model based development. Modeling Domains are defined for classification of
modeling techniques, and how the tools within the domains can be interconnected, e.g.
using the hosted simulation technique. An implementation and evaluation of hosted
simulation was carried out at the department for vehicle systems at Saab.

In the second part, which focuses on model reuse, the problem area was defined through
inventories and interviews at Saab, and by means of literature studies. It was decided to
implement means for reuse of simulation model in a configurator prototype, and eva-
luate the results in interaction with the simulator group at Saab. Studies of build
processes (checkout, compile, link, and instantiate) for software intensive systems show
the importance of binding time [Krueger 2004], which is also true of integrated simula-
tion models. Features can be bound (selected/deselected) during different parts of the

Exploration
of new ideas

Application
of technology

Consolidation
of know how

Develop-
ment

method

Development
method research

Research
method

Meta0

Bottom line:
Product
creation

Meta1

Enabling:
Development
method

Meta2

Pro-active:
Research of
development
method

Meta3

Scientific foundation:
Method to research
development
method

12 Variability and Customization of Simulator Products

build process. Binding describes where in the process a decision controls the inclusion
of a specific feature.

Analysis clarifies in what part different configuration information is needed. Informa-
tion models of product representation in two domains, the Product Data Management
(PDM) domain, and the simulation domain are elaborated. Information from interviews
and quantitative data is collected and analyzed in order to create an information model.
The configurator prototype is developed based on the information models and collected
data. Support for the final design of configuration rules and customization solution is
based on technology from Sales Configuration Systems, using constraint-based feature
modeling and descriptive constrain programming.

The application example in the work consists of simulation models in simulators for the
Saab 39 Gripen lightweight fighter aircraft. The Saab Gripen project is analyzed pros-
pectively and typical activities performed at the industry site are:

• inventory of aircraft variants
• inventory of models and their properties from a customization perspective
• inventory of simulator variants
• analysis of the relationships between aircrafts, models, and simulators.

Inventories are made using both quantitative and qualitative methods. The Scrum re-
trospective method is used to validate the results.

2.3.3 Industry-as-laboratory
This is an industrial PhD dissertation with a focus on industrial large-scale application
of both emerging and proven techniques, and with prototype development included. The
approach may be defined as “Industry-as-laboratory”, as described by Potts [1993]; see
Figure 5. By conducting the research in close interaction with industry and iteratively
implementing and evaluating results in the industrial setting, new knowledge from the
industrial context is fed back to the researcher. Evaluations of suggested and tested so-
lutions are typically made by prototyping.

Figure 5. Industry-as-laboratory research approach [Potts 1993]

Problem
(version 1)

Research
(version 1)

Problem
(version 2)

Research
(version 2)

Problem
(version 3)

Research
(version 3)

Problem
(version 4)

Research –
solutions domain

Application –
problem domain

Gap bridged by empirical
data and hard transferred
technology

The solutions are developed
in incremental steps

Research methods 13

Industry-as-laboratory stresses both the industrial and the academic relevance of the
research, meaning that it should provide useful results to academia (by gaining new
knowledge) and to industry (improved quality and reduced cost & time). This approach
is qualitative and can be classified as a kind of Interactive Research because of the
strong interaction between researcher and practitioner. It typically involves a Plan-Act-
Observe-Reflect cycle [Williamsson 2002], which is similar to the Scrum methodology.
This is the reason for choosing an approach to conduct systems development research
(with influence from the interactive research method) in the industrial team where
Scrum had been used for approximately three years when the research started.

2.3.4 Scrum as method to support interactive research
Scrum can be described as an agile, iterative, and incremental development method with
structured planning and feedback by means of retrospectives. It has a set of practices
and components and the predefined roles of the method are:

• ScrumMaster, maintains the workflow and lead the daily meetings
• Product Owner, represents the stakeholders and prioritizes incoming work
• Team, performs the actual analysis, design, implementation, testing, documenta-

tion, and live demonstration of progress achieved.
During each sprint, typically a period of a few weeks, the team creates a product incre-
ment. The set of features that go into a sprint come from the product backlog, which is a
prioritized set of tasks to be done. How many backlog items go into the sprint is deter-
mined during the sprint-planning meeting. During this meeting, the Product Owner par-
ticipates and finalizes the priority for the coming sprint. The team determines how much
they can commit to complete during the sprint, and records this in the sprint backlog.
During a sprint, the sprint backlog is fixed, meaning that the requirements are frozen for
that sprint. Development is time-boxed such that the sprint ends on time. After each
sprint, the team demonstrates completed work and a sprint retrospective is performed
where the team goes through good and bad experiences from earlier work and agrees on
improvements to implement.

In the research setting, sprint retrospectives were used as a basic method to collect qua-
litative data from the team. A questionnaire with issues relevant for validation was pre-
pared prior to each increment, and answers were collected and stored for analysis and
evaluation. The outcome of the questionnaire also influenced the planning of the com-
ing iterations. This way of creating and using feedback is described in Salo and Abra-
hamsson [2007] where sprint retrospectives are used for improvements and knowledge
transfer. They propose an improved method for Software Process Improvement enabled
by Post Iteration Workshops, even though it is not related to interactive research.

On six occasions, during the regular Scrum retrospectives, questionnaires were used to
collect experiences from the respondents. After a further three months, a final question-
naire was used, followed by individual discussions around the responses. The team was
informed about the research project from a methodology perspective and everyone had
the option to participate or not in the questions session.

14 Variability and Customization of Simulator Products

2.3.5 The researcher’s role in industrial research
In industrial research when the researcher interacts with practitioners in a development
project, it is important to be clear about and reflect over the roles in different situations.
It is possible to define three roles that are typically involved in an industrial PhD project
and that the PhD candidate may potentially play during periods of the project:

• Practitioner – performs systems and product development with the objective to de-
liver products or services to downstream groups or to an end customer

• Method engineer – has a focus on introduction (or improvement) of methods and
their related processes and tools in the industrial environment in order to increase
quality or reduce cost/lead-time. Usually, several factors change during a project li-
fecycle, imposing a ‘continuous change management’ where the method engineer
should play a central role

• Researcher – has a focus on building knowledge for academia and for industry, to
suggest new or modified methods / techniques based on insights from analysis and
influences from other research.

As the PhD research was performed part-time with other obligation in the company
during the rest of the time, it was essential to keep the researcher, methods engineer,
and practitioner roles separate. The separation of roles was simplified by a geographical
separation; three different offices/desks were available, one at Linköping University,
one at the Saab Simulation-Center, and a third at the Method & Tool department at Saab
Aeronautics.

2.3.6 Overview and summary
An overview of the research from a methodology view related to systems development
is shown in Figure 6. Each paper is positioned in the systems development V-model,
[INCOSE 2010].

Figure 6. The V-model used to visualize the position of each paper during development
of the configurator prototype. Paper [I] and [II] constitutes a part of the background.

Paper I
Experience
UML / SysML

Paper IV
Problem
definition

Paper VII
Validation
Results

Paper III
Formulation
of needs

Paper II
Experience
Modelica

Paper V
Solution
principles

Paper VI
Prototype
description

Implementation

Dissertation
Compilation
Summary

Research methods 15

To summarize the research methods description; System Development is used as the
main research approach, and the last phase of the work is well aligned with “Industry-
as-laboratory”. The results of the prototype-implementation are validated through
Scrum retrospectives.

2.4 Contribution
In summary, this research provides contribution to the interdisciplinary area:

• model based systems engineering, mainly modeling and simulation
• knowledge based engineering and product line management
• product data management / software configuration management

In the first phase, the main contribution is the definition of the Modeling Domain
framework that enables classification of modeling methods and tools in large-scale sys-
tems and product development, see [Andersson 2009]. The contribution from the
second phase is more industry-oriented and provides solutions to enable large-scale
model based development and management of simulation models in order to shorten
lead-time and improve quality. Contributions are covered in more detail in section 7.3.

2.4.1 Scientific Contribution
The scientific contribution of this work is basic principles for reuse of knowledge and
data in the combination of model based and product line engineering. Products are tradi-
tionally handled in Product Data Management (PDM) system. Such systems are de-
signed for collaboration between traditional engineering domains. The simulation do-
main, however, is not yet fully supported. By developing an information model and
demonstrating a prototype tool for mapping of simulator information from the PDM to
the simulation domain, knowledge is gained about configurability and collaboration
effects. One idea is the definition of primary and secondary product lines. This descrip-
tion clarifies industrial needs and constitutes a basis for further research and develop-
ment in the field of methods to support product line engineering of ‘multi-product lines’
and complex industrial products.

2.4.2 Industrial Contribution
Many research programs in this area can present powerful techniques and methods with
small examples or with a specific or narrow problem to solve, but scaling them up to
industrial usage is sometimes of less concern. In this work, scalability is one of the un-
derlying areas of interest, with the assumption that results should be usable for a wider
range of employees, not only graduates or specialists. Engineering configurators is fore-
seen to be a basic capability of future product development as companies strive for
product line architectures.

3
Model based
development

MODELS OF SYSTEMS and products increase in value as more and more know-
ledge is kept within models. Models may be of many different kinds, from cost estima-
tion to spare part logistics. The focus in this dissertation is on models representing a
system (e.g. an aircraft’s fuel or navigation system), that is composed of hardware,
software and, where applicable, human interaction, as shown in Figure 7. A complete
aircraft model is in turn made up of several such system models, but is still a system
model, even though at a higher level of complexity. At an abstract level, these system
models define the names and relationships between parts: these are collectively called
system architecture or structure. When details of functionality, flows, and physical equ-
ations are added, the model can be used to predict performance and dynamic behavior;
it becomes a simulation model.

Figure 7. A system model represents a system. The composition of the system model is
preferably a replication of the system composition.

System System
Model

Hard-
ware

Soft-
ware

Human
Inter-
action

Hard-
ware
Model

Soft-
ware
Model

Human
Inter-
action

Represents

Consists of Consists of

18 Variability and Customization of Simulator Products

3.1 Systems Engineering
In this dissertation, Systems Engineering (SE) is interpreted as the engineering activities
that are general regardless of technical discipline. It includes integration of the engi-
neering and project management interface, but also integrates work in the different
technical disciplines, as illustrated in Figure 8.

This understanding of SE is mainly based on INCOSE definitions and the INCOSE Sys-
tems Engineering Handbook, [INCOSE 2010].

Figure 8. Illustration of systems engineering in relation to other engineering and man-
agement disciplines.

Activities included in SE are typically:
• Specification & Requirements Management
• Product breakdown & architecture
• Management of engineering budgets; Weight, Power, Cooling
• Modeling, Simulation & Optimization techniques
• Risk Status and Control
• Subcontractor Management
• “-ilities”, e.g. Safety, Availability, Reliability, Maintainability, Reusability
• Planning; Writing the Systems Engineering Management Plan

The planning of engineering methods/activities is most important in a project’s start-up
phase, but has to be ongoing throughout the project as it includes activities in a product
lifecycle perspective, which are not all possible to set at an early point. Here a just-in-
time approach is preferable; decisions, descriptions, and education in each respective
activity/practice are done just ahead of when they are required in the project.

To be able to plan and perform expansion of the capacity of the various SE tasks re-
quires good understanding and knowledge about the existing organization. A conceptual
model that illustrates the overall organizational performance and weaknesses of certain
abilities is the balanced barrel of SE, se Figure 9.

O
th

er
 d

is
ci

pl
in

es

M
ec

ha
ni

cs

El
ec

tro
ni

cs

So
ftw

ar
e

Fl
ui

d
dy

na
m

ic
s

A
er

od
yn

am
ic

s

H
um

an
 in

te
rf

ac
es

Program/Project management

Systems Engineering

Model based development 19

Figure 9. A conceptual model; the balanced barrel of systems engineering. Each seg-
ment represents the value of a systems engineering activity. How much wine the barrel
may contain represents the overall performance of the organization and is thus dependent
on the shortest segment in the barrel. In this example, “independent test” and “decision
analysis” are potential activities not yet implemented formally.

A well-documented collection of best practices with the aim of helping organizations to
improve their development processes is the CMMI® (Capability Maturity Model Inte-
gration), e.g. the CMMI for Development [CMMI Product Team 2010]. CMMI has a
focus on maturity and balanced introduction of practices in an organization. According
to CMMI for example, it is not recommended to invest in Causal Analysis and Resolu-
tion before Configuration Management has been established.

3.2 Development process models and standards
A range of defined models/processes exists for different activities within the industrial
development of complex products. Development models used in aerospace are adapted
from those and instantiated for specific needs. As the aerospace area is a wide one, fur-
ther other useful standards, for example in avionics, are adopted from the electronics
and communication areas. Interchange of knowledge and standards between the auto-
motive and the aerospace sectors in the area of methods development is in progress.
This section introduces some definitions to support systems and product development.

3.2.1 ANSI/EIA-632 - Processes for Engineering a System
The ANSI/EIA-632 [1999] standard “Processes for Engineering a System” from Ameri-
can National Standards Institute defines an approach to engineer (or re-engineer) a sys-
tem, incorporating industry best practices. The approach has three major parts:

a) A system is one or more end products and a set of related enabling products that
allow end products to meet stakeholder needs and expectations

20 Variability and Customization of Simulator Products

b) Products are an integrated composite of hierarchical elements, integrated to meet
the defined stakeholder requirements

c) The engineering of a system and its related products is accomplished by applying a
set of processes to each element by a team having the needed knowledge/skills.

A system consists generally of a product breakdown and specification structure as de-
scribed in Figure 10.

Figure 10. ANSI/EIA-632 definition of Enabling and End products.

Each product is broken into sub-systems in a hierarchical manner shown in Figure 11.
This explicitly means that each system at every level has its own set of enabling prod-
ucts, which in the model based case include the actual models of the end product(s).

Figure 11. Building blocks in layers according to ANSI/EIA-632.

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

Layer N Building Block

Layer N+1 Building Blocks

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

System

End
Product

Sub-system

Development
Products

Test
Products

Training
Products

Disposal
Products

Sub-system

Production
Products

Deplyment
Products

Support
Products

Layer N Building Block

Layer N+1 Building Blocks

System

End
Products

Enabling
Products

Operational
Functions

Associated
Process

Functions

Perform Perform

Consists of

Model based development 21

The ANSI/EIA-632 standard clearly distinguishes between “acquirer requirements” and
“other stakeholder requirements”. Sources of other stakeholder requirements include
government and industry regulations, international conventions, environ-mental con-
straints, and company directives. In general, other stakeholder requirements place con-
straints on the system development, both on the resulting product and the processes for
developing it. It is usually impossible to meet all requirements for a particular system
since they are conflicting relative to one another, so early and thorough requirements
analysis is crucial, preferably by means of modeling (and simulation when appropriate).

3.2.2 Product and system lifecycle
A widely used systems/software development model is the two-dimensional model with
system lifecycle phases versus process activities according to ISO/IEC 15288 [2008]. It
establishes a framework for describing the life cycle of systems by defining a set of
processes and associated terminology. In a multi-customer scenario with a product
family strategy, the traditional product lifecycle model should be enhanced with a sys-
tem lifecycle definition that includes the “system-phases” of a whole product family
seen from a development point of view. This definition may serve as a template when
designing or changing the engineering environment (selection of methods and tools).
Each system-phase requires different capabilities and performance of the engineering
environment.

Table 2. Definition of system-phases for a product family, from [Andersson 2009].

System
phase

Conception Core
development

New
variants

Enhancements Maintenance

Main
work

User needs
elicitation
Explore exist-
ing products
Trade-off study
Optimization

Definition,
specification,
design, imple-
mentation and
initial produc-
tion

Variant specifi-
cation and
verification.
Configuration
Production
automation

Rework of sys-
tem, integration
of new func-
tions/features
Obsolescence
management

Maintenance
and support of
system
Corrections
User feedback
handling

Main
objective

Defined scope
for products

First product
release

Defined prod-
uct family

Keep products
competitive

Keep customers
satisfied

The system lifecycle phases in Table 2 are used to analyze the long-term effects of dif-
ferent choices of development method and its supporting engineering environment.

3.2.3 Iterative and incremental methods
Developing and delivering a larger system in increments is a way of reducing risk. In-
cremental methods for model driven software development have a history dating back
to the early 1990s. Since then, a number of software development methods have ap-
peared, ranging from the waterfall method to highly-incremental methods like the ex-
treme programming (XP) method [Beck & Andres 2005]. The Scrum method is similar
to XP but has continuous improvement with retrospectives as a prescribed activity as
described in section 2.3.4 “Scrum as method to support interactive research” above.

22 Variability and Customization of Simulator Products

3.2.4 Standardized languages and modeling notations
There are many standardized modeling languages, but also tools with de-facto-standard
notations. Below, some languages and modeling notations most relevant for this disser-
tation will be described.

XML
The XML language, World Wide Web Consortium [2008] is widely used to capture
information and meta-data and for transformations. When the information structures are
defined, XML schemas (.xls) and transformations (.xslt) are standard features, enabling
information exchange across engineering domains/tools. Johansson [2003] shows that
simulation models can be specified in the XML format, and then transformed to a do-
main specific language, for example Modelica. Examples of XML-based standardiza-
tion for use in modeling, and exchange of product data are described below.

1) Interface Specification
In the area of model interface definition of modular architectures, the Functional Mock-
up Interface, FMI, standard provides specifications in XML format; see [Modelisar
2011]. This gives a tool to support integration in different frameworks. A model created
with a tool supporting FMI is thereby integrated easily in simulation environment with
respect to the signal interface definition. The FMI standard also provides a newly re-
leased PDM interface in order to handle “modeling, simulation, and validation informa-
tion” in the PDM systems.

2) Product data
Another defined XML-based format for exchange of information for Product Data
Management (PDM) is the PLMXML format, which is “a collabora-
tion/interoperability protocol designed to exchange pertinent PLM information” be-
tween data sources; see further [Siemens 2011].

Modelica

Modelica [Modelica Association 2011] is a descriptive, object-oriented modeling lan-
guage suited to physically based simulations and analysis of behavior and performance.
There are model libraries, both open source and commercial, typically supporting me-
chanical, electrical, electronic, hydraulic, thermal, electric power or process-oriented
components. An example of an ideal capacitor component is presented in the textual
model definition below.

model Capacitor
 Pin p;
 Pin n;
 Real v;
 Real i;
 parameter Real C "Capacitance";
equation
 0 = C * der(v) - i;
 0 = p.v - n.v - v;
 0 = p.i + n.i;
 0 = p.i - i;
end Capacitor;

Model based development 23

In this model, the parameter (C) is used to instantiate the model with different values of
its capacitance. This kind of parameter-sized component is well suited for reuse and
sharing between users through a model library. Experience from industrial usage of
Modelica in simulation of aircraft vehicle systems has been published in paper [II]. As
reference to modeling with Modelica, see [Fritzson 2004].

Unified Modeling Language and Systems Modeling Language
The standardization organization Object Management Group (OMG) has released speci-
fications for the Unified Modeling Language (UML®) [Object Management Group
2007], and the Systems Modeling Language (SysML™) [Object Management Group
2008]. Both are general-purpose object-oriented graphical modeling languages for spe-
cifying, analyzing, designing, and verifying complex systems. UML provides graphical
notation with a semantic foundation for modeling behavior and structure. SysML
represents a subset of UML with extensions for requirements and parametrics (basic
mathematical support) needed for Systems Engineering. Both have weak support for
building simulation models, but most tools that support UML/SysML, have code gener-
ation engines, enabling compilation and execution. The defined SysML diagram types
are shown in Figure 12.

Figure 12. Diagram types defined in SysML 1.1.

It is convenient for a specific project to reduce the set of UML/SysML diagrams used,
as there is some overlap between the diagram types. A limited set also simplifies the
introduction of UML/SysML modeling including guidelines, training, and tool set-up.
As described in Paper [I], an appropriate set of diagrams to use in avionics system de-
velopment is:

• Use Case and Activity Diagrams for analysis.
• Class/Block Definition, Sequence, State Machine, and Deployment Diagrams for

design, implementation, and test.
SysML also has built-in definitions of dimensions and SI-units (e.g. “dimension;
Frequency, unit; Hertz” or “dimension; Power, unit; Watt”). It is
possible to add “user-defined” units, which is powerful in avionics/aviation specifica-

 Requirement
Diagram

Structure
Diagram

Behavior
Diagram

Sequence
Diagram

State
Machine
Diagram

Block
Definition
Diagram

Internal
Block

Diagram

Package
Diagram

Use Case
Diagram

Activity
Diagram

SysML Diagram

Parametric
Diagram

24 Variability and Customization of Simulator Products

tion and design. Handling of, for example, flight speed and altitude is, in the aviation
community, done in the non-SI-units Knot and Foot. For further details on the SysML
language and examples of its use, see [Herzog 2005; Weilkiens 2008; Friedenthal,
Moore & Steiner 2011].

Experience at Saab Aeronautics from introduction of UML/SysML as a means for sys-
tems modeling in a large organization supported by the IBM® Rational® Rhapsody® tool
[IBM Rational Rhapsody 2011] has been reported in paper [I] and in Herzog, Anders-
son, and Hallonquist [2010].

3.2.5 Model driven architecture
The Model Driven Architecture (MDA) approach, as described in Mellor and Balcer
[2002], is a way to support separation of functional specification from implementation.
MDA is used in the development of software intensive systems where automatic code
generation is part of the process. Its underlying concept is to separate ‘do the right
thing’ from ‘do the thing right’ by introducing platform-independent models (PIMs) and
platform-specific models (PSMs). Translation from PIM to PSM is defined by rules in a
platform definition model and generally performed by automated tools. Translation (or
generation) from models to different source code languages, such as ADA, C++ or Java
is used, but also translation to documentation of the design.

3.3 Classification of models and modeling domains
Ever since modeling became a practice for specification or problem solving in science
and engineering, the number of available techniques and tools has increased. This is
partly caused by the evolution of work stations/computers, but also thanks to the dem-
onstrated value of modeling in the area of complex problems. Naturally, every modeling
technique fits best for one small set of “problems”, even though it may be used for a
broader set. In large development projects, it comes to a choice or trade-off between on
one hand the use of many specialized, powerful tools, and on the other hand the use of a
few multipurpose, but usually “dull”, tools and techniques. Many attempts have been
made to classify modeling techniques, and some classifications are mentioned herein.

3.3.1 Value and acceptance of models
When choosing a modeling technique, it should plausibly add sufficient value to the
project, and it is important to recognize the purpose the modeling has and what charac-
teristics the different techniques have. One fundamental purpose of M&S is to reduce
the amount of physical prototyping and testing – activities which normally demand a
significant amount of resources. Related aims are to enhance the abilities to take early
model based design decisions, and to use M&S to support the certification of aircraft
systems, [CRESCENDO 2010]. In order to achieve this, one should be able to answer
questions like; To what extent can we trust the model, how well does the model
represent the real system, do we know the limits of the model, does the model cover the
intended use?

The above questions deal with M&S credibility. Depending on the model’s complexity
and the intended use, performing a relevant assessment of a model’s credibility might

Model based development 25

be a challenging task. Research is being done in this field, where different methods are
proposed for making such an assessment. Common ingredients of methods are verifica-
tion and validation aspects. Several definitions of these terms exist and one mature ref-
erence for definition of verification and validation is from NASA’s Standard for Models
and Simulations [NASA 2008]:

Verification: The process of determining that a computational model accurately
represents the underlying mathematical model and its solution from the
perspective of the intended uses of M&S.

Validation: The process of determining the degree to which a model or a simulation
is an accurate representation of the real world from the perspective of the
intended uses of the model or the simulation.

Another common aspect is related to M&S uncertainty management, which here refers
to the process of identifying, quantifying, and assessing the impact of sources of uncer-
tainty embedded along the development and usage of simulation models. Some poten-
tial sources of uncertainty are model parameters, model input data, model simplifica-
tions, and the numerical method used by the solver. Several definitions aimed to
distinguish between different types of uncertainties are found in literature, [Oberkampf,
DeLand, Rutherford, Diegert & Alvin 2002; Thunnissen 2005; Padulo 2009]. Applica-
tion for aircraft vehicle systems is found in [Steinkellner 2011]. Commonly, a distinc-
tion is made between aleatory uncertainty (due to statistical variations, also referred to
as variability, inherent uncertainty, irreducible uncertainty, or stochastic uncertainty)
and epistemic uncertainty (due to lack of information, also referred to as reducible or
subjective uncertainty).

For a model to add value in the end, it needs to be accepted for use, regardless of uncer-
tainties or known limitations. An emerging standard for V&V and Acceptance is the
Generic Methodology for Verification and Validation (GM-VV) [GM-VV 2010]. It
provides a handbook, which guides its users through the V&V and Acceptance efforts
and clarifies their responsibilities and how to apply the methodology in practice. It also
describes how to tailor the methodology to the needs of a specific M&S project.

3.3.2 Specification and Analysis models
One classification is to divide models into “specification” and “analysis” models.

Figure 13. A specifying model is the basis for definition and analyses of a system.

System
Model
(specifying)

Analysis model

System
Definition

Analysis
Results

Analysis of
some aspect
of the system

26 Variability and Customization of Simulator Products

An example from solid modeling and hardware/structure development is the following:
• A specification model is the definition of surfaces (shape) and the content (mate-

rials) of a component. It is typically done in a 3D CAD (Computer-aided design)
tool, in a visual prototyping manner.

• A connected analysis model is used for stress analysis on the same component,
based on the specification, but with information on boundary conditions (spectrum
of forces) added.

An analysis is performed with a subset of information from the specification model, but
with additional information for the specific analysis to be performed, as shown in Fig-
ure 13. The same specification system model can consequently be the basis for perform-
ing analyses of several aspects of the system. Examples of analysis from avionics de-
sign are fault tree analysis (TFA), formal methods analysis, and analysis by simulation.

3.3.3 Modeling domains
Modeling domains are a framework for classification of modeling tools and their related
techniques/methods. Classifying and sorting tools/techniques/methods has been a means
to analyze strengths and weaknesses of different modeling methods/tools and to organ-
ize the work in business improvement programs and in engineering process research.

Figure 14. Definition of Modeling Domains. The lower part is related to physical objects
and their properties, such as; space, time, energy and matter, whereas the upper part re-
lates to information.

The framework is for example used within the CRESCENDO research project
[CRESCENDO 2010] and by the Process, Methods & Tools (PM&T) organization at
Saab Aeronautics. When model based techniques are introduced, the framework aims to
analyze whether the change efforts are broad enough and whether all domains are cov-

Model based development 27

ered by appropriate enhancements to achieve engineering efficiency, quality, and an
attractive engineering environment. The modeling domains are defined as shown in
Figure 14. A further description of each modeling domain is found in Andersson [2009],
which is one basis for this dissertation. Most of the work in the remaining chapters of
the dissertation is related to the “Model Integration and System Simulation” domain.

3.3.4 Behavioral modeling techniques
In order to create a description of behavior, a number of modeling elements are re-
quired. The necessary set of semantic elements, as defined in [Oliver, Kelliher & Kee-
gan 1997], includes:

• functions, which accept inputs and transform them into outputs
• inputs and outputs, of various types, and
• control operators, which define the ordering of functions

One example of classification of behavioral models is found in Cassandras and Lafor-
tune [2008] that holds for Discrete Event Systems (DES) modeling techniques. Exam-
ples of different types are event-driven, discrete-state, non-linear, time-invariant, and
dynamic models. For modeling of physical systems, other classifications are used, for
example continuous/discrete time; see further Andersson [2009] and Steinkellner
[2011].

3.4 Simulation of complex products
The main objective for simulation in aerospace is to reduce risk and cost. In the early
stages, risk and cost are reduced by gaining a better understanding of how to specify the
system/product and what the tough constraints are. In later stages, simulation generates
“flight-hours” providing engineers, pilots, and other stakeholders with knowledge about
the system for different purposes.

3.4.1 Modeling and simulation environments
Today, there are many advanced domain modeling and simulation environments that
allow detailed simulation prior to components’ and products’ realization. Those envi-
ronments evolve continuously regarding both languages and modeling techniques. Lan-
guages/tools such as Mathworks, Simulink® [2011], Modelica® [Modelica Association
2011], UML® [Object Management Group 2007], and VHDL-AMS Christen and Baka-
lar [1999] are increasingly used in industry.

For a heterogeneous system such as an aircraft, there is a need to combine and integrate
simulation models developed in different environments into a virtual system in order to
simulate the complete system. Closed-loop-simulation denotes an arrangement of con-
nected models in a loop, including sensors and actuators, for example an ECS model
connected to its control logic. Closed-loop-simulation is further described in papers [II]
and [V].

Simulations are used to predict the behavior and performance of system configurations
not yet realized, but also of real product configurations for verification activities. Data
from the real system is fed back to the models and to the language/tool-specific block-
libraries to improve the accuracy and quality of simulations. Different integration tech-

28 Variability and Customization of Simulator Products

niques for simulation models, and different types and scales of simulations can be iden-
tified as described in the following sub-chapters.

3.4.2 Integration strategy
Information and models from different integration levels and from different modeling
domains often have to be integrated to be part of analysis and/or verification activities.
Carloni et al. [2006] argue that a single environment cannot offer a complete solution to
the needs of designers who use hybrid/integrated models to represent the system under
development.

In Saab Aeronautics’ experience, a “loose integration” strategy should be chosen in
order to avoid lock-in effects and costly long-term maintenance of the tool integrations.
This requires formats and interfaces to be clearly defined or standardized in order to
integrate the tools and maintain this integration. Tight integration, on the other hand,
relies on the tools being connected and running in parallel with exchange of data when
performing an analysis or a simulation. The loose integration strategy reduces the de-
pendency on two or several tools being available simultaneously.

Figure 15. Integration of modeling domains and examples of tools.

There are several interfaces between the modeling domains that need to be integrated.
In Figure 15, the main pattern of integration needs is shown, going from a “heavy”
hardware/structure to the left, through equipment, electronics, control, and information,
to a “soft” graphical layout to the right. When analyzing features of development tools
it is interesting to notice that many tool vendors try to cover larger and larger parts of
this domain map by adding features and functions to their tools. Three examples, with
reference to Figure 15, are:

• Modelica is integrated into the new releases of CATIA (CATIA Systems Dynamic
Behavior), which extends its capabilities for dynamic simulation (extension of
CATIA to the right in the figure); see [Dassault 2011].

EmbeddedEmbedded I/O

Ground

OpAmp

Diode

U=1
Class G

Prop

GetSpe

Class H

Number

Class G

Prop

GetSpe

Class H

Number

f(t) -> L (s)

F

Struc-
ture

Physical
systems

Electronics
Optronics

Control Information

G(s)G(s)

F(.)F(.)

Models of information
objects, needs, services

Models of
physical objects

MMI
Virtual
surr.

Simulink / Stateflow

Modelica

CATIA

UML

VAPS

Model based development 29

• In the Modelica® language, libraries have been developed for Petri nets and state
charts to extend Modelica (to the right in the figure); see [Modelica Association
2011].

• Simulink® is integrated with Stateflow® (extension to the right in the figure) and
enhanced with Simscape™ (extension to the left in the figure), see Mathworks, Si-
mulink [2011], Mathworks, Stateflow [2011], and Mathworks, Simscape [2011].

Tools with functionality that supports multiple modeling domains are of course an ad-
vantage; they give the engineers and the team a possibility to choose from several tools
for a specific engineering task. In large-scale projects, however, it is a balance between
uniformity and diversity in the set of supported modeling techniques. With several
teams established over a period, each one focused on specific engineering tasks, it
might give an overall diversity of tools and ways they are used. This may lead to a sub-
optimized implementation of methods/tools and inefficiency in the long term, especially
regarding specification modeling.

Concerning modeling for simulation, connection (or integration) of the modeling do-
mains is done at different levels. At component level, integrated simulation can be done
using co-simulation or hosted simulation techniques, performed in desktop tools. At
higher levels of integration, more execution-efficient techniques appropriate for large-
scale simulation have to be used.

3.4.3 Integration techniques for simulation models
Naturally, simulation models are developed relying on different modeling techniques –
each focused on a specific problem, engineering discipline, or aircraft subsystem. From
the aircraft integration perspective, different models need to be integrated into a larger
model for simulation/analysis with a broader scope or at a higher system level.

It is a growing challenge to use and integrate simulation models from different domains,
as an increasing part of the end system verification relies on results from simulation
models rather than expensive testing in flight tests. The development of computer per-
formance and modeling-and-simulation tools enables simulation on larger and larger
scales. Consequently, the need for integrated models and their validation is growing.
Simulation (sub-)models for aircraft systems can be organized into the following major
categories:

• Equipment models (e.g. resistors and capacitors in electronic systems, pipes and
nozzles in hydraulics) for performance evaluation and dimensioning;

• Models of the embedded software for control of system functions and monitoring
of functions and of the equipment/hardware;

• Models of the environment of the system.
Several commercial and in-house developed tools exist for connecting different simula-
tion models and there are different ways of performing integrated simulation.

Co-simulation
The concept of Co-simulation is to connect and integrate models combined from differ-
ent simulation engines and execute them concurrently. This approach is supported by
tool vendors who provide add-ons or packages for connecting tools together for simula-

30 Variability and Customization of Simulator Products

tion set-up. Co-simulation is suitable for a system of Electronic Control Units (ECU)
connected by a data bus, but less useful when the connected models have physical inte-
ractions, requiring power port modeling techniques and a specific equation solver. In
co-simulation, the tools are connected [Öström, Lähteenmäki & Viitanen 2008].

Hosted Simulation
In Hosted Simulation, the simulation engine from one of the modeling and simulation
tools is used to “host” other models during simulation. The hosted simulation method is
enabled through code generation. A model created in one tool is simply generated to
executable code and imported (hosted) in another tool to perform the simulation. In
hosted simulation the codes are connected. A comparison of two variants (different
hosting tools) of hosted simulation can be found in Steinkellner, Andersson, Krus and
Lind [2008].

High Level Architecture
High Level Architecture (HLA) is a general-purpose architecture and standard for con-
necting simulation applications. HLA defines an architecture with a set of Application
Programmer's Interface (API) standards. Simulation applications communicate by mak-
ing calls to the HLA APIs. HLA can be used for integration of several distributed simu-
lators by network connection over long distances. Parts of a simulator may also be con-
nected through HLA, for example an aircraft simulation model and the tactical
environment.

3.4.4 From desktop simulation to the iron bird
Tests can be performed in software-based simulators and/or in hardware based system
simulators (rigs) with product-equivalent computers and other equipment in the loop.
There are different types of simulation facilities:

• Desktop simulation tools, cheap and easy to access
• Handling qualities, software based, simulator with or without pilot-in-the-loop
• Presentation and maneuvering simulator with Human-Machine-Interaction in focus
• System simulator (rig) with a large amount of target hardware and other product-

equivalent equipment present. This type of simulation is defined as large-scale.

A picture of a simpler kind of simula-
tor for mid-scale human-in-the-loop
simulations is shown in Figure 16.

Figure 16. A simple human-in-
the-loop simulator used for valida-
tion and verification of system
functionality, but also for basic
training of engineers.

Model based development 31

Access to a simulator with actual system status is valuable to the engineering teams in
order to gain a common understanding of both implemented system functionality and
remaining work.

For test and verification of safety critical functions prior to first flight of a new aircraft
configuration, the classical iron bird has long been used. An iron bird with complemen-
tary simulations in various domain-specific models/tools is the predominant method of
collecting evidence for verification/certification prior to flight. The trend is however to
increasingly rely on software based simulations, see [II]. The notion of “virtual iron
bird” is used to describe a model used for analysis that earlier had to rely on a classic
physical rig. Schallert et al. show the benefits of using a virtual iron bird with the possi-
bility to perform optimizations by means of simulations to evaluate power consumption
of different alternatives with the aim of minimizing the generator power to be installed
on a future all-electric aircraft [Schallert, Pfeiffer & Bals 2006].

3.4.5 Mid-scale simulation
Here, mid-scale simulation is defined as the activity performed, when some simulation
models of aircraft subsystems, developed with different modeling techniques, are inte-
grated into a larger model, complex enough to not be simulatable in one desktop model-
ing and simulation tool.

A software-based simulation model of this scale is easy to execute with a range of dif-
ferent user scenarios, and this can be done in “batch mode”, preferably distributed dur-
ing “non-work-hours”, to maximize the usage of the company’s computational re-
courses. A set of scenarios are created with selected values of inputs (e.g. load
configuration, fuel content, speed, and altitude). Out of several thousand simulated sce-
narios/maneuvers, including degraded modes, there is a selection of critical maneuvers
for further verification. For each payload combination, a set of the most severe and crit-
ical maneuvers are selected for pilot-in-the-loop simulations and maybe flight tests. Not
all simulation environments have full support for simulations in batch mode. In paper
[II], the lack of support, e.g. for data processing, during batch simulations in a Modelica
environment is described.

One drawback of using only software models is that some aspects are difficult to cover.
For example, when verifying multi-channel systems, the inter-channel behavior such as
redundancy policy, timing, and performance aspects has to be tested separately, in a
hardware-based rig with target software, in parallel with the model based functional
verification. Therefore, test rigs with the system’s real hardware components have to be
built to cover those aspects.

3.4.6 Large-scale simulation
When several simulation models of the aircraft subsystems are integrated and specific
arrangements for performance or interoperability exist, the simulation is considered
large-scale. Examples of such arrangements are real-time execution including pilot-in-
the-loop simulation, see Figure 17, or hardware in-the-loop simulation (HILS) configu-
rations.

32 Variability and Customization of Simulator Products

Figure 17. Example of a large-scale simulator with advanced pilot interaction. This kind
of simulator facilities also needs a separate Instructor Operating Station (IOS) for setting
up scenarios and providing the system and the pilot with e.g. faults and mishaps.

Simulators in the aerospace sector have evolved towards virtual reality machines, and
they are sharing some technology with products found in the computer game industry,
e.g. visualization technology [Stone, Panfilov & Shukshunov 2011].

A defined product structure of a simulator enables well-described parts including their
interfaces, which is the basis to declare a simulator test-worthy, and declaration of de-
sign and performance to customers.

Figure 18. The top level of a generic product structure for large-scale simulators. Part 1-
Simulation Models is the focus for configuration support related to structures and data of
the simulated product.

Figure 18 shows the generic parts (subsystems) of a simulator. Descriptions of the sub-
systems and some of their functional responsibilities are listed here:

1. Simulation Models representing the simulated system/product, for instance an
aircraft with its immediate surroundings (including ambient temperature, air pres-
sure, and aerodynamic forces). This part contains several sub-models, which are
needed for the simulation of a complex product. Some of the models may be reus-

1
Simulation

Models

2
Hardware
in the loop

3
Operational
Environment

5
Instructor/
Operator
Station

6
Execution

4
Audio/Visual
Environment

Simulator

Model based development 33

able and/or configurable for multiple purposes. It includes the connection of mod-
els, parameter libraries, mathematics library functions, and solvers needed for cal-
culation and execution during the simulation.

2. Hardware in the loop contains functions that enable the connection of vehicle
operational hardware (ECUs) so that they can be part of the HILS – hardware in-
the-loop simulation.

• Connection between a/c computer hardware and simulation computer
• Power supply and cooling air supply

3. Operational Environment performs simulation of other vehicles/platforms/sys-
tems that interact with the simulated system/product. In military applications, it is
called ‘tactical environment’ and the entities may be hostile (foes) or friendly
(friends).

4. Audio/Visual Environment (out the window & cueing) creates visualization of
the outside world and sensor images as well as presentation of the environment.

• Generation of sensor data
• Generation of sound/audio

5. Instructor/Operator Station (IOS) & Other Tools has the human-machine inter-
face for control of the simulator including tactical simulation.

• Simulation control and monitoring (start, stop, load, etc.)
• Controls for registration and evaluation
• Debugging functions
• Control of tactical simulation

6. Execution contains hardware and software components for execution. If required
it includes real-time management, for simulator in real-time.

• Simulation computers with operating system
• Synchronization, data distribution, and recording functions

Of the six parts, the Simulation Models (part 1 in Figure 18) have a strong relation to
the primary product (the aircraft).

3.5 Simulation of what-if scenarios
Objectives for simulation during development of aerospace products include reducing
risk and cost. System safety is an important aspect of the development. Data from simu-
lations and from measurements need to be available for safety analysis so that the prod-
ucts can be certified for flight and for operational usage. In order to provide data and
analysis results to the certification activity, many different “what-if” scenarios are de-
fined. Typical scenarios used for safety analysis are behavior and performance during
malfunctioning or errors in the simulated system. Actually, most effort/time spent in
simulators for aerospace systems is related to “misbehavior” of the system. This applies
for all the contexts: development, verification, and training. For example, training in

34 Variability and Customization of Simulator Products

landing routines with degraded fuel and/or ECS system functions is important for both
pilots and ground crew.

“The deployment of highly skilled staff is an essential prerequisite for the safe
and effective operation of aerospace systems. Simulation-based training plays
an increasingly important role in the qualification of aerospace systems per-
sonnel.” [Stone et al. 2011]

Simulation-based training of pilots and other personnel in the aerospace business is cer-
tainly important. However, there are signs of overconfidence in its effect and how much
of the flight training that should be performed in simulated environments. This is a
quote from a patent on a flight simulator layout for pilot training:

“Due to recent advances in simulator technology, simulators are expected to
supplant all in-flight training of pilots, and therefore, commercial pilots can
expect to receive their Federal License directly upon the completion of their
flight training in simulators. Such simulator-trained commercial pilots, then,
could carry paying passengers, even though they have never flow an actual
aircraft before.” [Geiger 1982]

Model support is needed for many different kinds of fault conditions that need to be
simulated and analyzed, or for which training should be performed. What faults to mod-
el is, of course, dependent on the system concerned, but a rule of thumb is that sensors
and actuators in a system are error-prone. How to model faulty conditions of a sensor is
important and there are many different ways to do it; a few examples are listed below:

• Intermittent fault is a fault that repeatedly occurs and disappears. Example: loose
connectors

• Incipient fault is a fault that gradually develops from no fault to a larger and larger
one. Example: a slow degradation of a component

• Abrupt change is a fault that appears as a very quick change of a variable. Example:
sudden breakdown of a component.

For general handling of faults in a sensor or in its connection, it is convenient to build a
fault injection feature into the modeling framework. All sensor models are then en-
hanced with extra output settings, see Figure 19.

Figure 19. Sensor model enhanced with general fault injection feature

Sensor
Model

General
Fault injection

Receiving
system

FaultType FaultValue

Enhanced Sensor model

Y2 Y1 Y

Model based development 35

Here is an example of general fault injection settings of sensor signals used at Saab
Aeronautics;

Type Name Meaning
0 no fault Y2 = Y1;
1 zero Y2 = 0;
2 + hard over Y2 = + BigNumber;
3 - hard over Y2 = - BigNumber;
4 bias Y2 = Y1 + FaultValue;
5 gain Y2 = Y1 * FaultValue;
6 user input Y2 = FaultValue;

This kind of general functionality has in Saab Aeronautics’ experience proven useful in
mid-scale and large-scale modeling and simulation, as it is easy to implement and use.
Specific sensor faults are of course needed for certain kinds of analysis, or pilot train-
ing, and these are preferably built into the sensor model provided by the equip-
ment/sensor supplier.

3.6 Summary of model based development
Models should contribute to manage complexity in an engineering organization. Model
based principles covered in this chapter include specification models aimed at defining
a system and analysis models based on the definitions, but enhanced with details to, for
example, enable simulation. Modeling domains are defined and exemplified with indus-
try-standard languages and notations such as SysML, UML, XML, and Modelica. Dif-
ferent types of aerospace simulations have different purposes; verification of safety
prior to first flight and training for increased skills of aerospace operational personnel.

Challenges in the further development of model / simulation based methods are identi-
fied. Models become possible to use in multiple contexts and performance of computers
increase, which contributes to an increasing number of models. To be useful, the models
need to be verified & validated for each context. It should always be remembered that
the simulation models are there to represent some reality, and they can gain a high ac-
ceptance only if they show compliance with the represented reality.

4
Reuse and its application

THIS CHAPTER defines a set of principles for reuse in the context of product fami-
lies and use of knowledge-based engineering. Concepts like Product Line Engineering
and Software Product Lines are covered and the chapter is mainly focused on the reuse
of simulation models and artifacts in software-intensive systems. Key concepts such as
constraints, feature model, and Configuration Tasks are also defined. These concepts
and methods are essential to create methods and mechanisms for customization of simu-
lation models, and especially for configurable models that have several purposes- multi-
purpose models. Analyses of changes in a product line with the help of simulations are
also covered.

4.1 Reuse principles
Reuse of existing solutions, components, knowledge, and data/information is not only
tempting; it is in many cases wise because it saves time, reduces risks, and there exist
earlier experience of using the actual artifact. Reuse of artifacts that are produced in
industrial development is a strategy with great potential, not only to reduce lead-time
and cost, but also for increasing product quality and job satisfaction [Clements & North-
rop 2002].

Reuse can be done in several ways. The
prevalent and easy-to-adopt method of
reuse, which we have all practiced at
some point, is “copy-and-paste”, see Fig-
ure 20, which in software engineering
also is called duplication [Mann 2006].

Figure 20. Copy-and-paste tools

Generally, copy-and-paste of engineering artifacts could be done at different levels;
source-code line, model file, directory, database, or a complete product, but it has sever-
al disadvantages:

• Generation of many copies drives data storage volume requirements

38 Variability and Customization of Simulator Products

• Problems with ”information divergence”, i.e. the copies will differ with time
• If these copies are subject to controlled change the result will be increasing costs

for updates and maintenance
• It is usually a tedious task to update the same data within different copies

Most engineering methods and information management systems have as their basic
principle avoiding unnecessary duplication of information. In software engineering, the
principle ‘Don't Repeat Yourself’ (DRY) was formulated by Hunt and Thomas [2000],
which aimed to reduce repetition of information. The DRY principle is stated as:

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system."

This is applicable not only to software, but also to artifacts like requirements, database
schemas, test plans, build systems, and documentation.

Methods to avoid duplication that are more efficient in the longer term need an infra-
structure and tools to mechanize the reuse and are based on a deliberate design choice.
Examples of techniques include:

• Configuration by means of filters and views
• Databases and spreadsheets with report generators, filters and views
• Configuration of a system via parameters
• Configuration/customization through the product line approach.

These techniques do not have all the disadvantages of copy-and-paste, but implementa-
tion and maintenance of such techniques require investment in the form of infrastruc-
ture, tools, procedures, and training. The method of reuse further covered in this work is
based on a design choice utilizing single source and the product line approach as the
guiding principles.

4.2 Product Line approach
This section discusses the theories and basic concepts of Product Line Engineering and
Software Product Lines used in this dissertation. The basic principles for reuse, product
platforms, and Software Product Lines (SPL) are well established, and are in this work
mainly based on Clements and Northrop [2002], van der Linden et al. [2007], and
Simpson et al. [2006] and the context is configurable simulation models intended for
multiple purposes and simulator products.

There exist many definitions of product line, family, and platform in the literature. In
this work, product line and product family are equivalent. Product line is mainly used in
the combination with the terms architecture, approach, engineering and similar.

4.2.1 Knowledge Based Engineering
Knowledge Based Engineering (KBE) focuses on the reuse of technical knowledge by
automation of repeatable, error-prone, and/or time-consuming engineering tasks using
tools. In the MOKA methodology (Methodology and Tools Oriented to Knowledge-
Based Engineering Applications), KBE is defined as:

Reuse and its application 39

“The use of advanced software techniques to capture and re-use product
and process knowledge in an integrated way” [MOKA Consortium 2001]

Historically, KBE has its roots in Computer-Aided Design (CAD) [Wikipedia, KBE],
and now there are several engineering methods included in the scope of KBE. In the
book Intelligent Systems by Hopgood [2001], KBE and the related field Computational
Intelligence include engineering methods and techniques such as:

• Design optimization, to find the best design solution
• Handling of uncertainties and supporting methods e.g. Fuzzy Logic
• Expert systems and Neural networks
• Parametric modeling and generation of design configurations
• Rule based systems, constraint programming, and configurators

Searching within a design space is a key in many practical problem-solving tasks. Many
activities are aimed at collecting or providing data for searches, comparisons, or calcula-
tions.

4.2.2 Platform, variants, and modularity
In product line engineering, similar products are thought of as evolving families that are
derived from a common platform but with specific, distinguishing features/functions of
their own. Each individual product in a product family is called an instance or Product
Variant (PV). The PVs share common structures and product technologies. An estab-
lished definition of product platform suitable for the application of industrial products,
for instance aircraft and simulators is:

“product platform - A set of platform elements and architectural rules that
enable a group of planned product offerings. Key characteristics of a product
platform include:
(1) Architectural rules/standards governing how technologies and subsystems
("platform elements") can be integrated;
(2) Defines the basic value proposition, competitive differentiation, capabili-
ties, cost structure, and life cycle of a set of product offerings; and
(3) Supports multiple product offerings from a single platform, permitting in-
creased leverage and reuse across the product line.” [Simpson et al. 2006]

A product platform may include components (or subsystems; platform elements),
processes, knowledge, and relationships. There are three important aspects of a product
platform:

• Its modular architecture
• Internal and external interface
• The standards and design rules to which the modules/assets must conform

In platform-based product development, interface definition and management is a cen-
tral activity. A modular platform is used to create Product Variants through the configu-
ration of existing components. Product architecture can be defined as the way in which
the functions are arranged into modules and the way in which these modules interact
[Ulrich & Eppinger 2008].

40 Variability and Customization of Simulator Products

For software intensive systems, a slightly different focus is applied because it is possible
to create the software products through a software-build process integrated with the
development environment for the components. In practice, a software product can from
a specification be assembled, compiled, tested, and delivered by automation in a series
of integrated steps.

“A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a partic-
ular market segment or mission and that are developed from a common set
of core assets in a prescribed way” [Clements & Northrop 2002]

The term core assets in this definition, includes reusable software components, re-
quirements, test cases, documentation, models, and even budgets and schedules. The
‘core assets’ definition is close to the meaning of platform. Key activities in develop-
ment of a software product line are:

• Core asset development (for example a specification, a software library with ma-
thematic functions, a simulation model). It is important to plan the development of
the core assets to be well suited for reuse.

• Product development (specification, building, integration, and delivery of prod-
ucts). The success of this activity depends upon the core assets.

• Management (planning for updates, delivery, resource allocation, etc.)
The key activities are interconnected and configuration management support is a central
activity for a product line organization and for coordination of the key activities.

4.2.3 Commonality
Degree of commonality is an important property in the analysis and planning of a prod-
uct family. If many products use many common assets, the reuse potential is large. Dif-
ferent degrees of commonality may be visualized as in Figure 21.

Figure 21. Visualization of degree of commonality, from Sivard [2001].

There is a tradeoff in the degree of commonality; a high degree gives all the benefits of
cost saving due to reuse between products, but the cost of coordinating changes, releas-
es, and interconnected product planning, for example, will increase. Wickenberg [2011]
describes eight challenges when implementing a product platform in the automotive

Common to all Common
to all

Low degree
of commonality

High degree of
commonality

Product
variant

A

B B

C
C

A

Reuse and its application 41

industry. One challenge, for example, is when a component matching the toughest re-
quirements, it would typically be over-specified for most uses and hence unnecessary
costly. An example is the reuse of an engine in a vehicle product family where the (one
size) engine is heavier than the optimal for the smallest vehicle size and too weak for
large vehicles. A high degree of commonality might also result in suboptimal products
or less distinctive products [Thevenot 2006]. In the literature there are many indices
defined to measure the degree of modularity within a product family, see Thevenot
[2006] for a summary. A commonality index is typically based on parameters such as
the number of common components or the component manufacturing volume.

4.2.4 Variability and variation points
An explicit model of the variability in products and in the core assets is needed for scop-
ing and analysis and as input for implementing configurator support. The variability
model defines the variability of different classes of the defined products [Hvam et al.
2008]. It defines what can vary by defining variation points for components and types
of variation available for a specific variation point, for example their binding time prop-
erties. The model also defines variability dependencies and variability constraints to be
considered when customizing end products.

The variability model is part of the Product Variant Master (PVM) and enables better
insight and a common understanding of possibilities and limitations in the product fami-
ly and potential products.

4.2.5 Product configuration
According to Hvam, Haug, and Mortensen [2010], use of configuration/customization
techniques and tools to guide users in the task of creating a feasible (and eventually op-
timal) product specification is increasing. A general definition of the configuration task
from Mittal [1989] is:

Given:
A. a fixed, pre-defined set of components, where a component is described by a

set of properties, ports for connecting it to other components, constraints at
each port that describe the components that can be connected at that port, and
other structural constraints

B. some description of the desired configuration
C. possibly some criteria for making optimal selections.

Build: one or more configurations that satisfy all the requirements, where a con-
figuration is a set of components and a description of the connections between
the components in the set, or, detect inconsistencies in the requirements.

A configuration1 can be viewed as a solution to customer needs by assembling a product
from a set of existing pieces/components, be they hardware and/or software compo-
nents. In later steps after the selection of components, further customization is per-

1 It should be noted that “aircraft configuration” in the aircraft concept design process means a
high-level design of an aircraft (e.g. the type and number of power plants/engines, number of
wings/tails, and their positions), but this is not how the term configuration is used in this work.

42 Variability and Customization of Simulator Products

formed if any of the selected components are configurable. In software, this can be
achieved by for example dynamic linking or configuration parameter setting, which is
further covered in section 4.2.7 “Binding concepts and binding time” below.

4.2.6 Features and constraints in configuration problems
Feature modeling is used for managing commonality and variability. A feature reflects a
product capability on an abstract level and is a means for communication between
stakeholder and developer in the definition of a product specification, [Sinnema et al.
2006]. The feature model represents a set of configurations. The configuration and cus-
tomization process may be guided through constraint-based facilities, such a constraint
checking, propagation, satisfiability, solving, and computing the number of remaining
configurations [Chang 2006].

A mature methodology for feature modeling is the FODA (Feature-Oriented Domain
Analysis) method. FODA is oriented towards software reuse, focused on domain analy-
sis and its main components are:

• Context analysis: to establish a domain scope
• Domain modeling: to define the problem space, using features, features values, and

parameters that provide a description of any real or proposed system
• Architecture modeling: to characterize the solution space.

A description and feasibility study of FODA is found in Kang, Cohen, Hess, Novak and
Peterson [1990]. According to Salinesi, Mazo, Djebbi, Diaz and Lora-Michiels [2011], a
modeling technique based on constraint programming is more powerful than compared
methods, e.g. FODA and OVM (Orthogonal Variability Model). This is due to richer
expressiveness of constraint programming; it is possible to use a larger set of domain
variable types. FODA is for example limited to Boolean types (“this feature does/does
not exist on this system: yes/no”).

4.2.7 Binding concepts and binding time
Binding is a concept that describes that a variation point is bound, i.e. selected to be-
come part of a product variant [Clements & Northrop 2002 and Krueger 2004]. Binding
time denotes when in the process the variation point is bound. Possible binding times
include model time (also referred to as “design time”), code-generation time, compile
time, link time, load time, and execution time (also referred to as “run time”). For veri-
fied components accessible in a storage or repository, the checkout activity best de-
scribes when binding is performed; checkout time2. There are similar descriptions for
hardware oriented product families, where the term Customer Order Decoupling Point
(CODP) is defined as the point where the product is linked to a specific customer order
in the manufacturing value chain [Olhager 2003].

Different binding time alternatives may affect the end product system properties, for
example security, testability, and performance. A typical creation process related to
Software Product Lines with alternative binding times is exemplified in Figure 22.

2 Checkout time is used here to describe the point where the selection of a variant of the code
from several available variants is made, even if the checkout not is a truly "binding" mechanism
in software engineering.

Reuse and its application 43

Figure 22. Example of binding time alternatives for configuration of an aircraft simula-
tor instance in a software product line context.

For a simulator product, the simulation model fidelity is an important variation point. A
high fidelity model variant is useful in fault simulation and for investigation of the con-
sequences of a malfunction, while a low fidelity model variant can be used to reduce
computing performance needs and thereby speed up the execution of the simulation
model, thus allowing use of low cost simulators. The actual mix of high and low fidelity
models in a simulator configuration depends on what system functionality is to be in-
vestigated in the simulation.

In many industrial examples, several binding times are used within the same product
family [Rosenmüller 2011]. Late binding (e.g. execution time binding) offers short tur-
naround time when changing model features. According to van Gurp [2000], there are
more reasons why late binding is beneficial:

• The different representations of the system are handled by different people. For ex-
ample, the architecture design is handled by developers and the running system is
handled by users. Some decisions should be made by a user, which means that de-
velopers should design the ability to make that choice into the system.

• The needs for new and changed requirements do not generally stop after product
delivery. Post-delivery variability techniques help address these requirements more
cost-effectively for delivered systems.

There are, however, situations when execution time binding does not meet the informa-
tion safety requirements, for instance when proprietary models are integrated in training
products and delivered to a customer. Only functionality relevant for that customer is
allowed to be present in the specific product variant. Thus, customer oriented model
variants have to be maintained and binding is performed at checkout time. In addition,
for any large mature product family, there will be several legacy components with inhe-
rent limitations of binding time alternatives.

4.3 Product families for models and simulators
With a systems engineering approach based on models, it is efficient to reuse the mod-
els, and here it is advisable to choose a reuse strategy explicitly, e.g. the copy-and-paste
or the product line approach. Bruce et al. report on experience from the synergy result-

Software
Build

Model
Store

Instantiation of
Simulation

Repository
Check-out

RT_Config.iniMakefileConfig_spec

-----A B D

AC_sim

Load_list

----- C

Appli-
cation
modules

Load of s/w
modules

44 Variability and Customization of Simulator Products

ing from combining Model Driven Engineering (MDE) and SPL technologies in the
radio domain. MDE refers in this case to the application of Domain Specific Languages.

“It is our experience that one big benefit to the software development industry
is the combination of the Software Product Lines and Model Driven Engi-
neering technologies.” [Bruce, Paniscotti, Roman & Bhanot 2006]

For a product family with a long lifetime, which is significantly based on simulation
results, it is valuable to have mature and well-validated simulation models. These mod-
els constitute their own Configuration Items (CI) that also need to be specified and de-
clared for usage, besides the parts/CIs of the simulated products.

4.3.1 Example – simulation model of Saab Gripen’s ECS
The Environmental Control System (ECS) in the Saab Gripen fighter aircraft is used
here as an example system with related simulation models. It is a complex system that
includes both H/W and S/W. Objectives of ECS are to provide sufficient cooling of the
avionics equipment, and also tempering and pressurizing the a/c cabin. Essential tasks
are also to enable pressurization of the fuel system and to provide conditioned air to the
On-Board Oxygen Generating System (OBOGS), which provides breathing air to the
pilots. Briefly, this is achieved by using engine bleed air, which is decreased in pressure
and temperature and dried prior to distribution. The main H/W components are heat
exchangers, compressor, turbine, water separator, pipes, and control valves. The ECS
S/W contained in the General systems Electronic Control Unit (GECU), controls and
monitors pressure, temperature, and flow levels in various parts of the system. See paper
[V] for an ECS layout diagram.

Aligned with the real system layout, the simulation model of the ECS consists of three
major model parts, namely the ECS H/W model, the ECS S/W model, and the GECU
H/W model. The ECS H/W model is developed in the Modelica language. For more
details, see paper [II]. The other two models are developed in Simulink. An integrated
model is obtained by using hosted simulation. Both Simulink and Dymola can be used
as hosting tools. Characteristics of a planned M&S task determine which tools are most
appropriate to use for hosted simulation, which is reported in Steinkellner et al. [2008].

The ECS H/W model has several variants, e.g. one simple and one detailed variant. The
model layout is hierarchical and the Modelica construction replaceable is utilized to
obtain different variants applicable for model time binding. Additional variant handling
is performed by parameter selection at load time and execution time. One view of one of
the ECS H/W model variants is shown in paper [V]. In the configuration view, each
model variant is treated as a Configuration Item (CI).

4.3.2 Product line mapping
A special property of the set of simulation models representing behaviors and parts of
another set of artifacts is its duality, which refer to Figure 7. Provided a simulator confi-
guration and integration process, the set of models constitutes a product line, considered
the secondary product line. The product set that the simulation models represent, is con-
sidered the primary product line.

Reuse and its application 45

One approach is to map each simulation model to a component and a variant in the
product structure. On the other hand, there is the unique flexibility of software model-
ing, which allows models to be parameterized such that a single model together with a
parameter set may be used to simulate multiple component variants. When paramete-
rized models are used the direct coupling between models and the product structure is
non-trivial.

Figure 23. Two different structures illustrating a primary product line and simulation
models contained in a secondary product line.

The simulation model structure may not align to the product configuration structure
defined in PDM. Two different structure patterns are illustrated in Figure 23. Some rea-
sons for the differences between the two structures are:

• Models have variants for different purposes that do not exist in the PDM part struc-
ture, see (Testing and Training variants of the ECS Model) in the figure.

• Separation of the algorithm part from the data part in parametric models, see (En-
gine  Engine Model) in the figure.

• One model represents several parts of the product as it is defined in the PDM part
structure, see (123Model) in the figure.

An explicit mapping of how and to what degree a secondary product (e.g. an aircraft
simulator) represents a primary product (e.g. an aircraft) simplifies maintenance of a
configurator system. More details about alignment of structures and the secondary
product line in relation to the primary product line can be found in papers [IV] and
[VII]. A concept with a structured ConfiguratioN datA object (CNA-string) is proposed

Product

SubSys1 SubSys2

SubSys3

ComSys Engine

FuelSys

Consist of

Variant H

Variant L

Has variants

Variant M

Sim Model

SybSys
123Model FuelSysM

ComSysM EngineM

Consist of

Variant H

Variant M

Is instan -
tiated by

Testing

Training

Variant L

Has variants
Algo-
rithm

Para-
meters

Consist of

Product part structure
(primary product) Simulation model structure

ECS
Model

ECS

46 Variability and Customization of Simulator Products

in papers [III] and [IV] as a means to integrate configuration information and to be used
for simulation set-up purposes.

4.4 Design and validation of multipurpose models
This section presents a description of a typical workflow for development and mainten-
ance of multipurpose simulation models. Workflow descriptions, used standards, and
architecture views should be available to engineers in the form of handbooks and in-
structions, and in training courses. More details and an example from development of
the ECS model at Saab Aeronautics can be found in paper [V]. The aim is to present a
way to produce a simulation model of good enough quality to be included in a Model
Storage for reuse purpose. The scope of the handbook is simulation models representing
physical environment, physical systems, and electronic hardware. Models of embedded
software are mainly developed according to other established processes, but some sup-
port may be obtained from this handbook. Figure 24 shows an overview of the
workflow.

Figure 24. Workflow for development of multipurpose simulation models.

The overview provides a chronological view of the activities in the workflow; however,
the duration of each activity may vary significantly depending on the characteristics and
intended use of the actual simulation model developed. Another aspect is that activities
normally overlap, i.e. the workflow is not sequential.

The stars in Figure 24 represent output items such as code, test cases, or interface de-
scriptions and the symbols named RS and SD represent the documents Requirement
Specification and Status Declaration. The purpose of the SD is to describe the status of
the simulation model and its related documentation. It contains among other things in-
formation about the model version, its purpose, security classification, and known
bugs/limitations.

The purpose of the guidelines in the handbook is also to ensure that code export and
integration in applicable simulators in itself does not affect the conclusions of per-
formed tests. The general rule is to place all functionality in the core model, not in inte-
gration layers. If there are exceptions, these shall also be documented in the Status Dec-
laration.

Reuse and its application 47

4.5 Analyses of product family changes
Analyses are needed of requested and planned changes of a complex product. Simula-
tion is an important tool to validate the changes and to find “side-effects” (unwanted
dependencies) that are not identified through other methods. There are some typical
situations when the engineering teams use M&S to identify the impact of specified
changes on the product family:

• New product variants are defined
• New features are added
• Extended usage of the products.

This applies with respect to changes in both the primary and the secondary product line.
Paper [III] illustrates three different variants of batch mode simulations appropriate for
analysis of the primary products:

• when adding a new a/c variant
• when adding new specified usage of the aircrafts
• re-testing existing definitions.

Figure 25 gives an overview of the three different variants. Analyses through batch si-
mulations are performed by executing the model in a specified envelop of operating
points by giving initial states and a number of inputs for the dynamic simulation at
every operating point. A set of operational scenarios is created with selected values of,
for example, speed, altitude, and fuel content as well as a range of pilot maneuvers. It is
also a standard procedure to introduce H/W failures (in e.g. sensors and actuators, see
section 3.5), in the steady state solution, but also at arbitrary time during the dynamic
simulation.

Figure 25. Matrix of Product Variants (PV) versus Operational Usage Scenario (OUS).
For an additional PV, analysis is needed of the defined OUSs and vice versa. “R” de-
notes the defined regression tests to be included in analysis of the full product range.

48 Variability and Customization of Simulator Products

In batch simulations, the pilot maneuvers (specified by a pilot model) are varied to find
the most severe combination of pilot inputs and system failures (the what-if scenarios)
in each flight condition and for different payloads. The analysis of simulation results
requires a great deal of post processing, for example plotting, comparison between base-
line and the current design (two iterations in the process) and summarizing of results.

Figure 26. Example of a verification summary plot showing typical analyzes result of
a/c Handling Quality properties and their limits (in terms of ‘Stick force per unit load
factor’). One aircraft type (A) and one payload combination (a001) is summarized in this
single plot.
 Nomenclature:
 alpha: Angle of Attack
 Nz: Load factor

Visualization of batches of simulated data can be accomplished by summary plots for an
overview and to simplify the analysis work. Results from all operating points (height,
speed) for one a/c type and one payload combination are compiled together with infor-
mation of the limits, for example Handling Quality limits, see Figure 26. For further
descriptions of model based development of flight control functions and batch mode
simulations, see Andersson and Sundkvist [2006].

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Level 3
Level 2

Level 1

Level 1, 2 & 3

A/C = A, Payload = a001

Nz/alpha (g/rad)

S
tic

k
fo

rc
e

pe
r u

ni
t l

oa
d

fa
ct

or
 (N

/g
)

Load factor change per unit change in alpha

Reuse and its application 49

4.6 Summary of reuse and its application
An efficient way of creating software or systems is not to develop them, but rather to
reuse existing ones. This has been recognized for quite some time and there are different
approaches to reuse, for example the lightweight “copy-and-paste” method or the more
thorough “product line” method. To instantiate unique products from a product line,
there is a need for configuration (or customization) support. In aircraft simulation as in
the development of other complex products, not only are well-validated and declared
models important, but also verification of the whole simulator product. The simulator is
ultimately a central tool to enable safe and reliable aircrafts.

5
Industrial application

THE APPLICATION FIELD of the combination of model based development and
product line engineering is aircraft simulators for the Saab 39 Gripen fighter. This chap-
ter describes the product line approach selected, including examples of how simulation
models are integrated and used. An overview of existing components and the configura-
tion challenges is given and a prototype implementation of a configurator is described.

5.1 Introduction to industrial application example
In this example from Saab Aeronautics, the simulator product family is partly based on
“real” software and avionics parts actually used in real aircraft. This method is denoted
the “Design Once Approach” and in Saab Aeronautics’ publications, it is stated:

“Saab delivers advanced operational support systems and training system
media made to reflect the weapon system’s current configuration. Saab has
established a development process where all requirements for the entire wea-
pon system are captured early, thus influencing its design right from the start.
The ‘design once’ approach, common to all tools and software used in devel-
oping the real aircraft, ensures that any changes to the aircraft are automati-
cally reflected in the support and training systems.” [Saab 2011]

The simulator architecture is modular and layered with simulation models as core com-
ponents and possibilities to replace model variants by a “plug-and-play” mechanism to
simplify replacement and reuse of the models. For Electronic Control Units (ECU) it is
possible to use two alternatives: connect the real hardware, or use a model (a representa-
tion of the real hardware). The actual simulation code is mostly stored in some source
code language accepted by the simulator framework (e.g. FORTRAN, C, or Ada). Mod-
els must follow the specified interfaces’ guidelines to be easily integrated into the prod-
uct family, for integration in applicable simulator environments.

There are different ways to introduce or to transit to a product family from an existing
“single-products” setting. Many aspects of a transition depend on for example the histo-

52 Variability and Customization of Simulator Products

ry of and the used methods for product development within an organization. Krueger
[2002] describes three approaches for creation of a product line:

• Proactive: development “from scratch” with a complete set of common and varying
components, feature declarations, and product definitions to support the full scope
of products needed on the foreseeable horizon

• Reactive: incremental implementation that evolves when new product versions are
relevant and/or when new requirements for existing products are created. This ap-
proach offers a quicker and less expensive transition

• Extractive: the organization uses existing custom products to extract the common
and varying components into a production line. Assets are identified during the ex-
traction. This approach for reuse enables the fastest adoption.

In the simulator application example, the reactive approach was earlier used for each
simulator family (development-, verification-, and training simulators). For the common
product line effort with a larger scope, where merging of model code from existing si-
mulator repositories is a major concern, the extractive approach best describes the situa-
tion. For further description and definition of the application problem, see studies of
Saab Aeronautics simulation model product line efforts in papers [III], [IV], and [VI].

5.2 Simulation models
Most of the aircraft functional systems and parts have representations in the model do-
main. A model inventory was performed and an overview was developed to gain a
common understanding of the models included in all simulator types. The following
classes of models were defined, with reference to the overview in Figure 27.

• Models of aircraft surrounding, classified as “Physical” in the figure, are normally
not included in the product part structure. Example: the atmosphere model,

• Models of aircraft parts (mechanical assemblies, sensors, or whole aircraft subsys-
tems) classified as “Aircraft”. Example: the engine model,

• Models of avionics product parts (e.g. electronic control units, ECUs) classified as
“Avionics”. Example: the Air Data Computer, ADC,

• Models of on-board embedded software classified as “ACSSW” (Aircraft Comput-
er System SoftWare). Example: the navigation software,

• Models of payload and stores that may not be included in the aircraft part structure
but are separate products classified as “Stores”. Example: the drop tanks.

The “Avionics Core” block in Figure 27 contains both avionics hardware and software
kinds of models. There are also some special models, for example pilot behavior and
tactical scenarios.

Industrial application 53

Figure 27. Classification of reusable multipurpose simulation models. Abbreviations are
aerospace specific terms, e.g. Electronic Control Unit (ECU), Head Down Display
(HDD), Helmet Mounted Display (HMD), Air Data Computer (ADC), and Identification
Friend or Foe (IFF).

Because some models are used for several aerospace product families, the assets (mod-
els) reach across product families. Examples are the atmosphere and wind models,
which are used for simulation of all airborne products (e.g. UAVs, fighter aircraft, and
space vehicles) at an enterprise level. The study, however, is limited to the 39 Gripen
product family, and all models are assumed to be fully managed within that scope.

5.3 Legacy and third party components
There are specific challenges with the introduction of model based methods and tools
for existing products and in the existing development environment. The new tools pro-
vide a range of model types, notations, and languages [Andersson 2009] and these
“new” models together with “old” or “legacy code” models have to be integrated. For
models in the form of legacy code, design information and test cases are documented in
a variety of different formats. Some are not electronically available, which complicates
documentation updates. Transformation of all existing legacy models into new formats
is at present not considered to add sufficient value.

Some of the simulation models are developed by partners and suppliers of equipment or
a/c subsystems, which is the case with for example the high-fidelity variant of the en-
gine model. Saab does not have full insight as regards how these models are imple-
mented, but relies on the sub-supplier organization through their model validation activ-
ities and supporting documentation. Another similar situation concerns some “standard”
models, for example the atmosphere model, where the specification is adopted from ISA

Sensors,
Comm.

Operational
Surrounding

IFF

radio 1

contol
panels

datalink

23 COM

ECUs e.g.
for control
of aircraft
systems

GECU

FADEC

AECU

CSMU

BECU

34 ILS

Physic
2Logic
Sensors
Actuat.

Aircraft
Systems
& Models
Gripen

Surrounding
General
models

28 fuel

72 engine

29 hydraulic

21 air control

32 ldg

35 oxygen

atmos

inertia

auto-pilot

wind

33 lights

34 gps

forces

configuration

22 atcs

Payload and
stores

ADC

cockpit

AircraftPhysical Avionics
Stores

ACSSW &
Avionics

Avionics

ground
roll

datalink

aircraftbody

HDD HDDHDD

HDD HDD HDD

Tactical ComputersFlight Computers

FC 1 FC 2 TC 1 TC 2

Avionics
Core

34 INS

HUD HMD

HMD

position

27 flight controls

radio 2

54 Variability and Customization of Simulator Products

(International Standard Atmosphere) [ISO 2533:1975]. Yet another kind of component,
including tools for software unit test, could be classified as third-party software compo-
nents.

The size of the reference configuration of the a/c Simulation Models part, including
legacy, third party and newly developed components, is of the magnitude 1 MLoC
(Mega Lines of Code)3. The reference configuration is a typical large-scale build and
contains code for simulation models + adaption + connection layers. An additional up to
~2 MLoC embedded software (in a/c core avionics) is included depending on a/c ver-
sion and variant. The connection and adaption layers (see paper [V]) are implemented in
the Ada language. Older “legacy” code is mostly developed in FORTRAN and C. Gen-
erated code from modeling tools is generally in C/C++, and the generated code is often
more numerous compared with hand-written code. See Figure 28 for the relationship
between different implementation languages.

Figure 28. Relationship between languages used in the implementation of simulator
models and additional components for the reference configuration of an aircraft simula-
tion kernel.

Parameter files and other datasets are traditionally stored in simpler text files with pa-
rameter values separated by for example spaces. Newer formats for data are based on
XML, which enlarges the code “volume” due to its mark-up principles.

5.4 Configuration and customization needs
Several different user needs drive the need for configurator support as described in the
appended papers [III], [IV], and [VI]. One example of simulator customization is the
fidelity level of a single simulation model. This may be implemented as strictly separate
model variants in the Model Storage, which may increase maintenance costs for exam-
ple during model enhancements and error corrections. One way to avoid several differ-
ent model variants is to use the Multi Level Approach reported by Kuhn [2008]. With
this approach, switching between fidelity levels can be done within “'the same” model,
so one single model variant may serve different purposes, from example:

3 ‘Lines of Code’ is a software measure that is suitable when comparing the size of different
source code bases. It should not be used for absolute estimations of e.g. needed effort for test.
[Park et al. 1992].

0%

20%

40%

60%

Ada C / C++ Fortran XML / Data Other

Industrial application 55

• a simple and fast model for energy consumption design
• a detailed model for fast network stability analysis
• a detailed model for network quality assessment by increasing the equation com-

plexity in the model components

There are disadvantages in using the Multi Level Approach: for instance, the interface
definitions need to be the superset of all required signals for all levels. If several inter-
changeable model variants are used in a “plug-and-play” approach, the interfaces also
need to be the same at all levels of detail (viewed as a black box). One of the most im-
portant preconditions of the configurator system is the existing instantiation and integra-
tion process. An overview of the process is found in Figure 29. The main parts include:

• A repository for storage of validated simulation models and other components
needed to build an aircraft simulation,

• A build system with a predefined directory structure and software build tools.
• A transfer mechanism including packing of executables, moving the packages to

the simulator environment, unpacking and simulator installation scripts.
• Initiation of the simulation models in the target simulator. Many of the models have

configuration parameter inputs that are set from parameter files and/or by the user,
depending on the kind of simulator.

The overview also shows the flow of user requirements and constraints through the con-
figurator tool and further to specifications as input for each binding mechanism. To get
an understanding of the level of flexibility in the system, let us calculate the number of
combinations based on numbers of alternatives in the simulator product line.

Without taking into account any constraints (in terms of configuration validity), the
multiplication principle is used to calculate the total number of possible combinations
for selection of exchangeable components. If there are a ways to select A and b ways to
select B, then there are a times b ways to select A and B. For n number of selections the
total number c is

 𝑐 = �𝑧𝑖

𝑛

𝑖=1

= 146 x 219 x 38 = (1)

The variable zi in equation (1) is the number of existing choices (versions and/or va-
riants) per component class i.

At one point during development, there were 76 classes of components, some of which
are available in variants and/or versions. There were for example nineteen classes with
two available alternatives and one class with six available alternatives according to (2).

 𝑐 = �𝑧𝑖

76

𝑖=1

= 146 x 219 x 38 x 42 x 6 = 3.3x1011 (2)

The total number of combinations at that time were: 3.3x1011. The high number is re-
ferred to as the principle of combinatorial explosion.

56 Variability and Customization of Simulator Products

Figure 29. Means for control of configurations in the simulator build process. Aircraft
configuration constraints are interweaved with simulation needs.
 Nomenclature:
 IPR Intellectual Property Rights
 AC_sim Aircraft simulation
 RT_Config RunTime/execution time Configuration parameters

Sp
ec

ifi
c

Co
m

p.

Co
nf

ig
ur

at
or

To
ol

So
ftw

ar
e

Bu
ild

Ai
rc

ra
ft

Co
nf

ig
ur

at
io

n
Co

ns
tr

ai
nt

s

Si
m

ul
at

io
n

N
ee

ds

Co
re

Co
m

p.

In
st

an
tia

tio
n

of
Si

m
ul

at
io

n
Re

po
sit

or
y

Ch
ec

ko
ut

RT
_C
on
fi
g
.i
ni

Ma
ke
fi
le

Co
nf
ig
_s
p
ec

--

--

--

--

--

--

-C
us

to
me

r
-V

ar
ian

t

A
B

D

AC
_s

im

Lo
ad
_l
is
t

--

--

C

Ap
pl

i-
ca

tio
n

m
od

ul
es

Lo
ad

 o
f s

/w
m

od
ul

es

-B
at

ch
 te

sts
-V

er
ific

at
ion

-T
ra

ini
ng

CI
_I
nf
o

O
th

er
Co

ns
tr

ai
nt

s
-S

ec
ur

ity
-I

PR

Industrial application 57

5.5 Configurator prototype
A prototype configurator implementation is created in order to obtain a proof of concept
of the configurator principles, including interfaces to surrounding information systems.
The primary objective of configuration support is to increase the degree of reuse of
models and test assets in order to reduce lead-time for creating new simulator configura-
tions, and to increase the quality of specifications of simulator configuration. Develop-
ment of the configurator prototype was performed in increments. The concept phase
utilized a phenomenon model in the form of a Product Variant Master (PVM); see the
appended paper [III]. An information model formed the foundation for a prototype at
the university; see paper [IV]. The configurator prototype in the industry site is de-
scribed in papers [VI] and [VII]. Here follows a summary and some additional com-
ments.

5.5.1 Basic usage scenario
A set of usage scenarios was created in order to obtain a common understanding of how
to prioritize functionality of the configurator system and to create an incremental im-
plementation plan. The basic scenario covers a request from an aircraft development
team who needed a minor update of an existing simulator configuration in two respects;

1. a model modification due to an aircraft change (based on a primary product deci-
sion)

2. a replacement of a model from a high fidelity variant to a low fidelity variant
(driven from a secondary product decision)

As the Gripen aircraft development at Saab Aeronautics is in practice incremental, there
was a fundamental requirement; it shall be possible to start from an earlier configuration
and from there make minor changes to get a new valid configuration.

5.5.2 Metadata structure and storage
Data about components are managed through a data storage object called CI_Info
(short for Configuration Item Information). For example, the data for all variants and
versions of the ECS models are collected in one file. The data in CI_Info is separated
into two categories;

• structured data which is possible to use in the configurator inference engine. Boo-
lean, integer, float, and enumerations were used for this

• data in text format used for searching and to generate documentation, for example
component lists and a Release Notes document for each component release.

CI_Info objects are stored in XML-based files, one per component class. A component
class is here defined as all variants and versions of a component. All the CI_Info
XML-files must comply with the specified structure, and they are validated against an
XML-schema during execution of nightly build. The data is stored in the same source
code repository as the simulation models and is fed into the configurator model as
shown in Figure 29.

The CI_Info data is a central part of the configurator model and its implementation.
The files are included in a configurator main model through an include function. This
enables management of each CI_Info as an object in its own right (in fact a Configura-

58 Variability and Customization of Simulator Products

tion Item of its own) with its own lifecycle, and updates to the configuration model can
be made concurrently by several developers. The constraints specifications (rules) and
view settings for the user interface are stored in the main model. Components (variants
and versions) and features can be used to create rules, for example on how the models
and connectors can/cannot be combined.

From the first iteration, great attention was paid to maintainability of components,
attributes, and constraints in the feature model. A distributed approach was chosen with
the involvement of the developers for updating of information in the feature model
when a new model version is due for release. The information model was created and
decided in the development team so that stringent naming principles for example were
implemented to simplify maintenance.

Text attributes in CI_Info enabled automatic generation of Release Notes documents
and Configuration Item lists (variants and versions of components/models). In the pre-
vious routine, separate documents and spreadsheets were updated in a document man-
agement system by manually "filling in" of data, which is tedious and error prone.

5.5.3 Build process and binding time
Simulation needs and aircraft configuration constraints meet in the configurator where
knowledge about combined constrains is stored; so that possible and incompatible mod-
el configurations can be visualized for the user, see Figure 29. When a desired configu-
ration is found and accepted by the user, the result is transformed to four different speci-
fications used for configuration control during the build and instantiation process. The
specifications are used at the respective binding time in the process:

A. Checkout list for variants and versions of source-code from the repository
B. Make file for the software build (compiler and linker) used at compile time
C. Load list with specification of variants for the loadable simulation components
D. Parameter file for initialization of simulation model through init-parameters

To verify that a set of reference configurations are valid, a nightly build procedure is
implemented. During the night, scripted tools complete some or all of the steps in Fig-
ure 29 depending on availability to do automatic load and simulation in the respective
simulator. As result of the nightly activities, a status report web page is created where a
summary of each build/run is published. The Nightly Build Report contains, for exam-
ple, the following information:

Simulator Build Unit test System test Log
Variant Statistics Statistics Statistics Status
Config 1 pass pass fail ok
Config 2 pass pass pass ok
 :
Config n pass fail n/a ok

5.5.4 Tool support
The “Tacton Configurator Studio” tool developed by Tacton Systems [2011] is used as
configurator and inference engine. The decision to use a commercial and mature tool

Industrial application 59

instead of developing a new one is based on the focus on integration of information and
systems rather than on tool development.

Figure 30. Parts of the configurator implementation; 1) Component database and 2) Fea-
ture specification

Figure 31. Parts of the configurator implementation; 3) Part structure model and 4) Con-
figurator user interface.

The different parts of the configurator tool are described below with reference to the
screenshots in Figure 30 and Figure 31.

1. Component database. The database comprises classes of components such as
aircraft, simulator, simulation model, connector, and simulator interface.

2. Feature specification. Variation points are modeled as features. Features for the
simulation model classes include:

4

1

3

2

60 Variability and Customization of Simulator Products

Name Description Unit/Value
IsSecret Security classified [yes/no]
ExecRate Execution rate [Hz]
ExecTime Execution time per iteration [s]
AircraftType Product Variant usability [aircraft type]
Endianness Software endianness [little/big]
FidelityLevel Level of model fidelity [1..6]
ReleasLevel Release Level / Maturity [alfa/beta/full]

Mandatory features are security classification, usability, and maturity.

3. Part-structure model. The principle of the configurator part-structure is to reflect
the grouping of simulation models found in Figure 27. Aircrafts and simulators are
defined by only one part each. This view of the configurator implementation in-
cludes the set of rules specifying the constraints on how the models and connec-
tors can/cannot be combined. There are also constraints defined in the form of cal-
culations, for example for predicting the total execution time for all models
included in a configuration.

4. Configurator user interface. The Tacton Configurator Studio built-in user inter-
face is used in the prototype. Selected variants are “locked” with a padlock sym-
bol. Possible choices are marked green and prohibited choices orange. For every
selection, the inference engine recalculates further possible choices based on cur-
rent selections.

Component types and features may both be used when creating rules and constraints.

Figure 32. Several predefined applications are used with a customized set of selections
for each application. An application corresponds to a type of simulator, e.g. a simulator
intended for verification.

The simulator type definition (development, verification, and training) is a classification
of simulators, so each class can be defined as a family aimed for an application field. It
is convenient to use pre-defined application definitions with a customized set of choices
for each application, see Figure 32. Only detailed feature selections relevant for a simu-
lator type (application) are visible in its configurator user interface (screenshot 4 in Fig-
ure 31). The non-visible features are either pre-set for that application or calculated by
the inference engine.

Industrial application 61

The Tacton Configurator tool supported by XML/XSLT tools and the Python [2010]
scripting language are used for the prototype. For a full-scale implementation, a SWOT
(Strengths-Weaknesses-Opportunities-Threats) analysis is initiated to support the tool
selection. This analysis includes Tacton and two alternative tools oriented towards the
Software Product Line market segment: “Gears” from BigLever [2011] and
“pure::variants” from pure-systems [2011], [Beuche 2008]. These two are promoted as
having integrations to systems and tools for requirements management, software devel-
opment, and Software Configuration Management, but they are not considered being as
mature as the Tacton tool.

The EU project ConIPF (Configuration in Industrial Product Families) has developed
and made a good description of a tool independent methodology that is aimed at “sup-
port product derivation during application engineering with a combination of product
line engineering and knowledge-based configuration” for software intensive systems
Sinnema et al. [2006]. ConIPF and also Munir and Shahid [2010] have compared tools
for SPL and the tools that both reports have in common are “Gears”, “pure::variants”,
and “MetaEdit+” from MetaCase [2011]. Further evaluations of methods and tools,
must be performed in the next step before a full-scale implementation can be made. The
prototype implementation has provided good experiences and shown that it is possible
to build and use a configurator system for a mixed system/software-based product fami-
ly with a non-software oriented tool.

5.6 Summary of the industrial application example
Transformation from product centric development/support towards a product line focus
has been going on for several years with the ‘design once’ approach as a vision. The
modular simulator architecture provides a basis for flexibility and enables models to be
replaced in a “plug-and-play” fashion. Similar model variants from existing simulator
platforms are merged into common reusable multipurpose models. The large portion of
legacy components (mostly validated simulation models) imposes constraints on the
possibilities to define configurations. Development of new models with modern
tools/techniques enables variability through, for example, inheritance in object oriented
languages. As the reusable models and other artifacts grow in number and more simula-
tor variants can (re)use models from the common Model Storage, the need for support
for creation of stringent customized configurations increases.

To provide a solution proposal for this need, a configurator tool to customize and sup-
port integration of simulation models for different types of aircraft simulators has been
specified. A concept for managing configurator data is selected based on needs, existing
methods/tool chains, as well as information from performed interviews & inventories of
models. Classification of models, definitions of use cases and features are established
within the team. Component-data, features, and constraints are implemented in the con-
figurator prototype, in XML-files, where a set of constraints in the primary product fam-
ily (aircraft) is used for the configuration of the secondary product family (simulators).
Beside the features, other information about components is managed in the same XML-
files for generation of for example Release Notes documents for new component ver-
sions.

6
Results

RESULTS FROM THIS research include experience from industrial usage of emerg-
ing modeling languages and an initial implementation of a configurator system in an
industrial product family for aircraft simulation systems and products. To obtain qualita-
tive data for evaluation of the solution, information was collected based on the partici-
pants’ experiences according to the iterative, retrospective method Scrum as described
in Chapter 2. The experiences from using new languages are reported in papers [I] and
[II]. The problem domain and initial solutions for reuse of simulation models are cov-
ered in papers [III], [IV], [V], and [VI], and results from collection and analysis of the
validation data are summarized in paper [VII]. Here follows a summary of the results
and additional comments.

6.1 Industrial experiences from modeling languages
Experiences are reported here from support of modeling techniques based on three
emerging languages/tools: Modelica, Simulink, and SysML. These are interesting for
industrial, large-scale development, and are related to the application of simulator prod-
ucts covered in this dissertation.

6.1.1 Modelica and Dymola
For simulation of vehicle systems, the introduction of the Modelica language and the
Dymola tool [Dassault Systemes 2011] at Saab Aeronautics has largely been positive.
However, there are several areas where method and tool support must be improved be-
fore Modelica supported by Dymola will be natural to apply in projects developing
complex vehicle systems. Areas that need improvements, which are also reported in
paper [II], include:

• support for large-size models
• support for model uncertainty and quality tracking
• support for validation of complex models using measurement data

64 Variability and Customization of Simulator Products

• features for set-up, execution and post-processing of batch simulations
• structure of generated code from Dymola
• performance of generated code (important for real-time simulations)
• code generation support for multi-thread and multi-processor targets
• generation of model documentation adapted to industry/aerospace standards

The evolving integration of mechanical design and Modelica M&S through tool provid-
ers consolidation described in section 3.4.2 has potential for improved collaboration and
efficiency. This would enhance automated dataflow from the specification to analysis
models (covered in section 3.3.2) and further support the model based approach. Dymo-
la version 7.3 was used for the results reported in paper [II].

6.1.2 Signal flow modeling with Simulink
Capabilities and limitations of the Simulink toolset have been evaluated, in the planning
and concept study phases of new variants of the 39 Gripen aircraft, to explore how the
modeling tool/technique can support model based systems/software engineering. In An-
dersson, Weitman, and Ölvander [2008], three different approaches of Simulink usage
for functional development are presented:

1. A functional oriented modeling approach where simulations of the functions are in
focus.

2. An implementation oriented specification approach based on a modeling frame-
work with predefined system architecture, scheduling, data types, and rules for
discretization. With this approach, the final embedded software is hand-coded us-
ing the models as a specification.

3. Similar to approach two, but the embedded software is automatically generated us-
ing a code generator suited for production of embedded software.

The reported experiences are focused on prerequisites concerning scalability, such as;
model architecture, license model, and project ramp-up challenges. The results are also
compared to the existing SystemBuild based development environment reported in An-
dersson and Sundkvist [2006]. When introducing high-end engineering practices and
tools such as Simulink in an organization developing safety-critical products, it is im-
portant to make sure that basic management practices (e.g. Requirements, Configura-
tion, and Change Management) are thoroughly handled.

The conclusion is that no one of the studied approaches is superior. In the existing envi-
ronment there is a tradeoff between state-of-the-art methods/tools and traditional me-
thods for legacy components. Approach number two is most appropriate for quick
ramp-up because it is similar to the existing method, which is based on the SystemBuild
tool. It is also more flexible, compared to approach one, due the absence of an advanced
code generator.

6.1.3 Systems modeling with the SysML language
In the area of systems modeling, the modeling notation SysML has been introduced
together with the tool Rhapsody [IBM Rational Rhapsody 2011]. The methodology was
evaluated in two development projects at Saab Aeronautics:

Results 65

• New development of the unmanned Skeldar rotorcraft, see paper [I].
• In development of a new variant of the 39 Gripen system which is reported in Her-

zog, Andersson and Hallonquist [2010]

The major findings and recommendations can be summarized as follows:
• Introduction of SysML has largely been positive. The main contributing fact for the

success is undoubtedly the training program instigated for the project teams.
• The potential of SysML is the greatest obstacle; it needs to be substantially li-

mited/tailored for large-scale usage. It is important to develop adequate modeling
guidelines that clearly describe what information should be captured in SysML and
what should be captured using traditional methods. In the absence of such guide-
lines, users have a tendency to add information to the model just because the possi-
bility exists, leading to information inconsistency and redundancy.

• A modeling method/tool needs to co-exist with non-model based methods, tool, and
existing infrastructure. A recommendation is to ensure that co-existence is as sim-
ple as possible for interfacing tools and for the groups of engineers affected by the
modeling/models but not directly involved in the model based parts of the devel-
opment work.

• SysML is weak in capabilities needed for variant management, product configura-
tion, and for evolving and maintaining a set of realized products and systems. With
its roots in software engineering, it is natural that system specification in SysML
facilitates the interface to tools for software development (as this is typically per-
formed in the same tool and stored with the same format as system design). Inter-
faces to tools used in other engineering specialties are, however, weak.

The SysML implementation in IBM Rhapsody was not yet stable at the time for evalua-
tion. During updates to new versions of Rhapsody, engineers needed to go through and
possibly update all models in order to maintain model consistency in the new tool ver-
sion. The document generation software delivered with IBM Rhapsody was very power-
ful, but was not always consistent in finding model elements. There are several areas
where method and tool support must be improved, especially reduction of language and
tool complexity, before modeling with SysML/Rhapsody will be the natural method to
apply in projects that develop complex systems.

6.2 Reuse and customization of simulator products
This section summarizes results gained from on the prototype implementation of the
configurator system to support customization and instantiation of simulator products.
Results include model inventories, analysis results, the underlying meta-models, usage
guidelines, and evaluations from initial usage of the prototype. Challenges in the de-
scribed industrial application due for example to many variants and versions of simula-
tion models are reported in papers [III], [IV], and [VI]. Results of the validation data are
reported in paper [VII].

6.2.1 Insight and understanding of product line challenges
The explicit and visual description of product variants, core assets, and their variability
through the Product Variant Master (PVM) and the configurator prototype enables in-

66 Variability and Customization of Simulator Products

sight and better understanding of the complexity of single products, but more important-
ly, of the union of products. Interest in configuration and customization issues has in-
creased in the simulator team because of the configurator prototype (and demonstrations
thereof). For the same reason, the team responsible for product data management has
increased their coordination activities towards the simulator domain.
Scoping of the product line in terms of a defined simulator family, the set of simulation
models to re-use, degree of commonality, and how to limit the domain ranges, has been
highlighted. Two examples of limitations of the scope are:

• Old and existing (delivered) a/c configurations are excluded from the scope
• Simulation configurations for concept evaluation, or "early validation" (which was

in the scope of paper [VI]), are not covered at present.

Reduction of the original scope gives a clearer feature model, and limits the mainten-
ance. There are still sufficient challenges and enough value in the limited scope.

6.2.2 Binding time differences
The binding time concept was shown to be more important for the configuration and
customization activities than expected when the problem was first formulated. A differ-
ence in binding-time needs between in-house simulators (for development and verifica-
tion) and delivered simulators (for training), was visualized through the work with the
configurator system. This refers to section 4.2.7 “Binding concepts and binding time”
and the question; who is responsible for selecting features; the developer or the end-
user? Late binding provides more flexibility for the simulator end-user, as illustrated in
Figure 33.

Figure 33. Each step in the build-and-instantiation process reduces the number of re-
maining possible combinations. Binding (early) in the development environment restricts
the possibilities to configure or select features in the simulator. Late binding provides
greater flexibility for the simulator users.

Checkout

N
o.

 o
f p

os
si

bl
e

co
m

bi
na

tio
ns

Compile Load Instantiate

1

Early binding

Late binding

One instance
during simulation

Development environment Simulator environment

Results 67

There was an increased insight among system architects and model developers of the
principles of binding time, and the characteristics of end products depending on the
binding time alternatives for different features.

In the final step of the simulator instantiation process, the terminology is confusing. The
term “run time” in software engineering denotes a situation where the software applica-
tion is running or executing. In the simulation domain, “run time” means that the simu-
lation is running and calculates new states and outputs at subsequent simulated points in
time. When the simulator is halted, “time is stopped”, but the software application is
still running/ executing and from a software perspective, it is still in “run-time”. In this
dissertation, “execution time” refers to a software perspective, so the simulator could be
either started, stopped, halted, or any possible mode as long as the software application
is “alive”. “Run time” refers only to simulation with simulated time evolving.

During specification and design of new multipurpose simulation models, there was an
increased focus on what binding time solutions to use. The configurator tool and its as-
sociated information model were used as catalysts for the architectural design of binding
time for features, simulation models, and for the software-build system. This contributes
to better-specified multipurpose models in respect of instantiation, and is thereby an
enabler for efficient reuse.

6.2.3 Practitioners’ experiences
Guidelines were created to provide support to team members in the updating of compo-
nents, features, constraints, and rules in the feature model. Initial experience of incorrect
data resulted in the development of tools/scripts for automated data validation against
available data in the software repositories.

Tool functionality enabling save, restore, and make modification to a configuration
(during the development of a configuration specification) were stressed by users with
configuration management responsibility. This is because incremental development and
smaller changes resulting in many iterations and baselines is a standard procedure in
aircraft development (e.g. at Saab). This functionality was not yet de-
signed/implemented in the prototype.

There was a concern about tool performance of the configuration task during selection
of features and components. In the relatively small prototype models, calculation time
was negligible, and for the mid-size models tested so far, no significant problem is ob-
served as regards performance as long as the recommended data types are used in the
feature models. The recommendation is to avoid using the float type widely if the
model is large, which is due to the combinatorial problem of continuum in the inference
engine.

It was found that the software developers prefer file-based software revision systems,
while roles with CM (Configuration Management) responsibility find CM systems
based only on such techniques limited. File-based systems lack rigor functionality re-
garding management of for example changes, baselines, releases, permissions, and other
metadata. One example of a limitation in a file-based system is that names are used as
unique identifiers and it is cumbersome to change names in a file-based system com-
pared to an object oriented CM system. With the existing solution (commercial tools
mixed with scripts and smaller tools), there is an identified risk of unsupported integra-

68 Variability and Customization of Simulator Products

tion and/or high in-house maintenance cost. This has also been observed by Crnkovic et
al., who compare SCM with PDM systems: “In most SCM systems, however, there are
only triggers, which can execute scripts written by the users. This is support of little
value, as the result is a mess of scripts that are difficult to survey and maintain.”
[Crnkovic, Asklund, and Dahlqvist 2003].

All data for the configurator system in the industrial application is under version con-
trol, but to ensure quality and consistency of the features and constraints, a change man-
agement procedure should be implemented.

The introduction of the CI_Info objects for storage of model information, provides a
basis automatic generation of the Release Notes (RN) documents and Configuration
Item lists (CI-list), and is an clear improvement. The previous routine, based on a sepa-
rate document management system, included manual “filling in” of data in documents,
which is tedious and error prone. Practitioners’ experience is positive because “copy-
and-paste” is replaced with product line automation. In the questionnaires, the respon-
dents answered that by using the configuration system, the effort/time was reduced.
Three respondents had experience using both the previous and the new system. They
estimate on average that 30% of the time is reduced to create the RN documents. To
create CI-lists, 60% of the time is reduced, provided the information has been added for
RNs. All respondents believe that the increased quality of artifacts is a more important
improvement compared to timesaving and simplification-of-work.

6.2.4 Domain integration
Activities with inventories, model classification, feature elicitation, and population of
data in the configurator played a central role for the connection between the primary
(aircraft) and the secondary (simulators) product lines. Two means provided a direct
basis for discussion and collaboration among aircraft subsystem responsible and product
line engineers who are maintaining and integrating simulation models:

1. Visualization of compatibility between components, aircraft variants, and simula-
tor applications via the configurator user interface.

2. Publication on the intranet of tables of component data generated from the
CI_Info objects, which is SCM/PDM rather than configurator functionality.

Effects of aircraft configuration constraints on the simulators are made explicit so that
the creation of simulator configurations with respect to a/c variants is apparent in a new
way. The low level of alignment between product structures, as described in section
4.3.2 became more visible. Of the different simulation model types, the aircraft com-
puter-software model and avionics model types are well aligned.

The concept of a structured ConfiguratioN datA object (CNA-string) proposed in papers
[III] and [IV], to be used for simulation set-up purposes, was reviewed. The result
showed that a similar mechanism already exists for software configurations (aircraft
editions). For data in the PDM domain, a large effort is needed to create the automated
mapping, because there are different identities and naming conventions in the two do-
mains. The amount of configuration data in PDM is much larger than needed for simu-
lator set-up, so still a manual work of mapping is made.

Results 69

In the modular system with all possible combinations (3.3×1011 in the example from
section 5.4), the configurator prototype is a catalyst for creating explicit rules for com-
patibility between components. The rules (based on features and expressed as con-
straints), is in the first step documented in a spreadsheet before being implemented in
the configurator. This procedure was introduced because the configurator is still a proto-
type implementation, and which configurator tool to use was not finally decided. Expli-
cit information about compatibility is valuable regardless of configurator tool.

6.2.5 Reuse potential and multiple product lines
There are different development teams for simulator applications at Saab Aeronautics
(for development, verification, and training simulators). Each of them manages in prac-
tice a family of simulators. Typical choices available in most simulators are:

• customer variant
• setting of single/dual seater aircraft
• selection of aircraft software edition

The product line described in this dissertation, consisting of three simulator families, is
in fact a product line of product lines (‘multi-product line’). Taking the a/c development
in the scope, yet another product line (a part of the primary product line) can be identi-
fied; the avionics embedded software components, which are used both in the a/c and in
the simulators. Some of the larger simulation models may also be viewed as product
lines of their own. For example, the Environmental Control System (ECS) model exists
in four variants, which all have configuration input parameters for different settings.
The low fidelity (LoFi) variants are used for simulations where the ECS system not is in
focus, but the model is still needed to be part of the system. The high fidelity (HiFi)
variants provide more details and better accuracy, but require more execution time from
the simulator time-scheduler. By using the same customization principles and same con-
figurator tool for several product families the reuse can increase between product fami-
lies, thus throughout the multi-product line.

7
Discussion and

Conclusions

MANY EVALUATIONS of methods within model based development use compa-
ratively small applications examples. These are usually applied to real engineering prob-
lems, but are demonstrated by small or well-suited examples (compared to the industrial
cases) and may not be included in a context of several methods or tools. In industry,
terms like model set, tool set, tool chain, and methods chain are nowadays used to de-
fine aspects of state-of-the-art engineering environments. This work is based on the “in-
dustry-as-laboratory” research approach and has a broad scope regarding implementa-
tion and evaluation in an industrial environment. However, it does not go in any depth
into the technical details of, for example, protocols, formal methods, or computer archi-
tectures.

7.1 Discussion
Management of multiple product families needs enhanced support compared to single
product line engineering, as described in Section 6.2.5 “Reuse potential”. Support is
needed in the following areas:

• A recommended product breakdown structure
• An appropriate responsibility structure
• Architecture of the feature model(s). Should it be central or distributed?

A mapping of the primary and secondary products to the ANSI/EIA-632 [1999] system
structure (see section 3.2.1), provides a view of how a single simulation model can be
used in several system products, see Figure 34. The system structure shows how the
simulation models for development (to the left), verification (to the right), and training
(in the middle) are dispersed. It is not only simulation need that may differ. The re-
quirements concerning test, documentation, and declaration of models are also different

72 Variability and Customization of Simulator Products

depending on context and product. This stresses the need for a merged set of require-
ments and principles for the model development process if the model implementation is
to be reusable efficiently.

Figure 34. A structure of systems and products according to the ANSI/EIA-632 stan-
dard. Examples from the industrial application, where ESC is the Environmental Control
System, and LoFi and HiFi are respectively low and high fidelity model variants.

One issue under discussion is the introduction of model functionality. Is it optimal to
create a multipurpose model including all requirements and functions from the begin-
ning, or is incremental model development starting from a single-purpose model more
efficient? An incremental method enables validation of basic functionalities in the first
release, and extension of the model in later iterations. Simulation models for product
development should be available early. Elicitation of “all” requirement requires effort
and time and delays the model. The delay, which a full specification may cause, will
thereby prevent an efficient model-based methodology. In lean development, Just in
Time (JiT) deliveries are used, for example implementing training functions in later
iterations. An incremental process that supports this should be formed, where each
model delivery has an explicit purpose, for example, development, verification, and
training. However, the architecture must be properly defined and the basic requirements
should be known from the outset. The standard ARINC-610 [2009] “Guidance for De-
sign of Aircraft Equipment and Software for Use in Training Devices” is intended for
training simulators and thus relevant for the specification of multipurpose models. Us-
ing a standard like this is not a guarantee, but provides good assistance to succeed to
specify and build multipurpose simulation models.

The commercial tool Tacton Configurator was selected for the configurator prototype.
Tools like Tacton have a majority of users in the domains of design automation, product

1

Product B
Training simulator

Subsystem
Sim. Model

Product A
Aircraft

Product C
Verification rig

end products

1 2
System
Example: Aircraft system

enabling products

Subsystem
Sim. Model

Sim. Model 1
LoFi model

Sim. Model 2
HiFi model

end products

Sim. Model
ECS model

Sim. Model
ECS model

end products

Subsystem
ECS

enabling
products

Layer 1
B

uilding Block
Layer 2

B
uilding Blocks

Secondary product line

Discussion and Conclusions 73

customization, and sales configuration with integration to CAD and hardware design.
Central model properties in this type of tool are component price, choice of currency,
and part number attributes, and output from the configuration activity is typically the
Bill of Material (BOM). Those attributes and outputs are not of central interest as soft-
ware properties, and the tool type is therefore not adapted to support a pure software
product line. There is a risk that a configurator system supported by this kind of tool
does not scale up for customization of software products. In the studied application,
there is need for support for both Product Line / Software Product Line (SPL) engineer-
ing so the choice of configurator type is still regarded as adequate. In practice, two types
of tools for product line support are identified; tools like Tacton and those who support
SPL. A tool type that supports both would be needed.

A mandatory discussion is; how general are the research results? If there are multipur-
pose models, and mapping between products and simulators exists, then the results
should be applicable to another industrial sector. The ANSI/EIA-632 standard, for ex-
ample, is general. Examples of sectors with similar needs could be automotive, automa-
tion robotics, power plants, heavy machinery, and medical equipment. No study has
been made in any sector outside aerospace within this work. It is however reasonable to
assume that the results can be generalized to systems realized by hardware and software,
but are simulated by software.

7.2 Research results versus the research questions
The result of the prototype configurator as a solution to the industrial problem is cov-
ered generally in the results chapter. This section summarizes the response to the expli-
cit sub-questions, outlined in section 2.1.

• To what degree is it possible to modularize the simulation model including parame-
ter sets and other simulation artifacts?

There is no exact limit to how small a module can be, or into how many modules the
system can be divided. In practice, each Configuration Item contributes with an over-
head in the form of features values, validation, and documentation, so dividing a simula-
tion system too much may become too costly to maintain. In addition, the combinatorial
explosion, which is a consequence of many parts, is a disadvantage. The relevant level
to divide a simulation model should be into parts that firstly are appropriate to map to
the equipments and subsystems of the simulated product. Secondly, it is also relevant to
divide a model into an algorithm part and one or several parameter sets. This allows for
effective management of common and variant-parts. Mapping onto a product structure
reduce process complexity due to, for example, clearer change-flow for the model(s).

• What kinds of variation techniques for simulation model variability, including em-
bedded software, are applicable in the product instantiation process?

Run-time (late) binding with Configuration Parameters provides more flexibility com-
pared to checkout- and compile-time binding. It is clear from the industrial example that
as late binding as possible is desirable in most cases. Only specific needs will require
other choices, for example confidentiality, which could be a performance or equipment
model that is unique to one customer. There are conflicting needs between the simula-
tors that are sold as products and those used in-house. In an in-house development simu-

74 Variability and Customization of Simulator Products

lator, change-of-configuration must be easier to accomplish. For training simulators
(delivered products) there is instead the requirement that only customer-unique features
and embedded software must be included, and early binding should then be used.

• How should compatibility constraints for simulation models be specified to be
maintainable in a large-scale product line?

The feature modeling technique is suitable for complex products, and specification of
constraints should be done by using established modeling methods. The prototype has
demonstrated that feature modeling works and is scalable as long as the domain ranges
are specified mainly by discrete variables.

• How to specify and build simulation configurator systems based on PDM data
where environment models are not part of the product definition?

The simulation and PDM domains are weakly integrated so it may not be suitable to use
automated system/tool integration. Manual and semi-automatic mapping of data with
the support of XML files for example are appropriate for the near future.

7.3 Contributions
The focus of the research is at the intersection of model based development and product
line engineering. The following are the main contributions from this work:

• The main contribution regarding the problem area is the definition of primary and
secondary product lines. This description clarifies industrial needs and is a base for
further research and development to support Product Line Engineering of ‘multi-
product lines’ and complex industrial products.

• Definition of Modeling Domains is a means of classifying of modeling techniques
and analyzing, for example, integration of simulation models/tools. The definition
is accepted and used in industry, at Saab Aeronautics, and in the EU research
project CRESCENDO. It is used to classify needs, requirements, and means for
modeling techniques, integration of simulation tools, and virtual testing.

• Evaluation of the hosted simulation method contributes to both academia and in-
dustry. It is used at Saab for development of the 39 Gripen vehicle systems.

• Industrial experience in the aerospace sector from the introduction of the Modelica
language, the Simulink tool, and the System Modeling Language SysML contri-
butes to guidance for modeling of complex systems.

• Implementation of a configurator prototype to support customization of simulation
models for simulator systems with different implementations, for different purposes
and that simulate different product variants. The configurator makes it easy to de-
fine a simulation configuration that represents a real product configuration.

• Experience obtained from initial introduction of the configurator support in an ex-
isting development environment for aircraft simulators. Integration of the configu-
rator with interfacing systems, including software configuration management and
the software build system.

• Evaluation of the configurator prototype based on feedback from users in the de-
partment responsible for 39 Gripen simulators, at Saab Aeronautics.

Discussion and Conclusions 75

Finally, it was observed that changes in an on-going business should be introduced with
caution because the delivery process is vulnerable. This knowledge is of great value and
should be a subject for reuse.

7.4 Conclusions
This dissertation covers emerging modeling techniques for large-scale systems model-
ing and simulation. Experiences have been collected from the introduction of modeling
languages to support the development and maintenance of systems and products at Saab
Aeronautics. With the more efficient modeling techniques/tools available and increasing
computational performance, the number of models tends to increase. Through product
line methods, for instance the ‘design once approach’, models are (re)used for simula-
tions and in products for different purposes. A multipurpose simulation model denotes
one that is developed and declared for reuse in multiple contexts. Due to the increasing
number of models, there is an identified need for configuration support in the set-up of
simulations.

A configurator prototype is implemented to investigate how a configurator system can
support the design and customization of simulator families. The combination of ap-
proaches (product-line / modeling-based) imposes new conditions in the implementation
and use of traditional tools and methods, such as change management. Product/sales
configurators are available for use by industry, but experience is still limited as regards
large-scale multi-product lines. Gaps are identified in the form of a lack of mature tool-
sets for mixed Product Line / Software Product Line handling. The implemented proto-
type, based on the Tacton configurator tool, and XML technology for integration to the
existing development environment, introduce design automation and customization of
simulation. This contributes unique experience and knowledge to the field and points at
one possible way forward.

The answer to the main research question is; yes, the principles of product customiza-
tion are applicable for modular simulation systems in a software-intensive product line
context. Existing methods are focused on management for single product lines, and
there is a need to continue the development of support for simulator product families
and the management of simulator variants and multipurpose models.

7.5 Future work
During demonstration and evaluation of modeling and customization techniques, some
areas of further research have been identified.

7.5.1 Enlarged scope of reuse
The focus has been on reuse of simulation models, even if other assets, for instance test
cases and validation results are also handled. There is still a potential for a higher degree
of reuse of requirements, design descriptions, and other kind of informa-
tion/documentation associated with the simulation models. To determine the ambition
or scope is a balance between benefits and costs of the components used in single or
potentially a few products. For assets with a lower degree of commonality, a risk of
unnecessary overhead from handling within the more stringent product line procedures

76 Variability and Customization of Simulator Products

is anticipated. To succeed with a balanced product line from a set of needs, a system-
model of the product/simulator architecture is a way forward. It will preferably be based
on the SysML modeling technique and inspired by the ANSI/EIA-632 system structure.

7.5.2 Generalization and standardization of methods/tools
Any person who is responsible for methods/tools in an organization would want a stan-
dardized, stable, fit-for-purpose tool-chain. With the many new methods / tools availa-
ble from research and tool vendors, the environment will presumably be "unstable" in
the sense that improved methods/tools/versions will change the workplace over time. To
gain a more stable development environment, the organization should strive to use es-
tablished standards.

There is yet no clearly defined standard or established de-facto standard in the field of
product line engineering. Leading methods and tools descriptions should be a base for
future monitoring of the area. The result from for example the ConIPF project (see sec-
tion 5.5.4) and its methodology, with the focus on industrial large-scale applications,
includes a comprehensive description of tool-independent product line engineering. This
methodology would be a good starting point to carry out further work for seeking an
appropriate, more standardized, (or de-facto standard) support for simulation products in
the future.

7.5.3 Next step at Saab
Saab considers the outcome of the configurator prototype successful and intends to con-
tinue the introduction. The results, lessons learned, and parts of the prototype imple-
mentation forms a basis for coming steps. For further automation with respect to data
and knowledge capture, one suggestion to be tested is the retrieval of existing informa-
tion. Pugliese, Colombo, and, Spurio [2007] report on a method for retrieval of data
from pre-existing components in a repository. In the same manner, information about
compatibility constraints in the simulator build-process could be captured through the
compilers- outputs (errors/warnings) and be (semi-)automatically fed into the know-
ledge base.

Automatic generation of Release Notes documents and Configuration Items lists is in
operative use. Design of a tool-chain and a workflow including the flow of and deci-
sions on product changes are imminent. The intention is to proceed with the 'design
once' approach and a clear responsibility structure within the ‘multi-product organiza-
tion’ is needed. This includes designated responsibility for simulation models, which are
important links between the primary and secondary products. The configurator system
highlights those links and provides a new view of the families of models and products.

The use of simulation models and amount of models are expected to increase. Conse-
quently, there is the need for management of models from different points of view.
These include model integration and customization, but also the relationship between
models and the reality they should represent. With the visual support to manage varia-
bility in products and models, engineers gain better insight and control of the simulation
configuration, and consequently higher quality of simulation results.

References

Alford, M., White, S., McCay, B., Oliver, D., Tully, C., Holtzman, J… Willey, A. (1992).
Improving the Practice in Computer-Based Systems Engineering. In Proceedings of
the 2nd annual Symposium of the National Council on Systems Engineering,
NCOSE, pp. 207–214.

Andersson, H. & Sundkvist, B.G. (2006). Method and Integrated Tools for Efficient Design of
Aircraft Control Systems. In Proceedings of the 25th International Congress of the
Aeronautical Sciences, ICAS. Hamburg, Germany

Andersson, H. (2009). Aircraft Systems Modeling - Model Based Systems Engineering in Avio-
nics Design and Aircraft Simulation. Licentiate Thesis. Linköping Studies in
Science and Technology. Thesis, 1394: Linköping University Electronic Press

Andersson, H., Weitman, A. & Ölvander, J. (2008). Simulink as a Core Tool in Development of
Next Generation Gripen. In Proceedings of Nordic Matlab User Conference 2008.
Stockholm, Sweden.

ANSI/EIA-632 (1999). Processes for Engineering a System. American National Standards Insti-
tute, ANSI.

ARINC Specification 610C. (2009). Guidance for Design of Aircraft Equipment and Software for
Use in Training Devices. Annapolis, MD, USA. Aeronautical Radio, Inc.

Beck, K. & Andres, C. (2005). Extreme Programming explained: embrace change. (2.
ed.) Boston, MA, USA: Addison-Wesley.

Beuche, D. (2008). Modeling and building software product lines with pure::variants. In
Proceedings of 12th International Software Product Line Conference, SPLC 2008,
art. no. 4626875, pp. 358. doi: 10.1109/SPLC.2008.53

BigLever, (2011). BigLever Software Gears. Retr. from: www.biglever.com/solution/product.html

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of
the 28th international conference on Software engineering (ICSE '06). (pp. 12-29).
New York, NY, USA: ACM.

Borg, A. (2009). Processes and Models for Capacity Requirements in Telecommunication
Systems. Linköping Studies in Science and Technology. Dissertations, 1238.
Linköping, Sweden: Linköping University Electronic Press.

Bruce, T., Paniscotti, D., Roman, A. & Bhanot, V. (2006). Using model-driven engineering
to complement software product line engineering in developing software defined
radio components and applications. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications
(OOPSLA '06). ACM, New York, USA, 846-853. doi: 10.1145/1176617.1176733.

78 Variability and Customization of Simulator Products

Carloni, L.P., Passerone, R., Pinto, A. & Sangiovanni-Vincentelli, A.L. (2006). Languages
and Tools for Hybrid Systems Design. Foundations and Trends in Electronic De-
sign Automation. Vol. 1, No. 1-2, pages 1-193, Now Publishers Inc.

Cassandras, C.G. & Lafortune, S. (2008). Introduction to discrete event systems. (2. ed.) New
York, USA: Springer.

Chang, H.P.K. (2006). On the Relationship between Feature Models and Ontologies. The-
sis. Waterloo, Ontario, Canada: University of Waterloo

Christen, E. & Bakalar, K. (1999). VHDL-AMS - a hardware description language for analog
and mixed-signal applications. IEEE Transactions on Circuits and Systems II: Ana-
log and Digital Signal Processing. 46 (10). Piscataway, NJ, USA. 1263-1272. doi:
10.1109/82.799677

Clements, P. & Northrop, L. (2002). Software product lines: practices and patterns. Boston,
MA, USA: Addison-Wesley.

CMMI Product Team. (2010). CMMI for Development. Version 1.3. (CMU/SEI-2010-TR-033),
Software Engineering Institute. Pittsburgh, PA, USA: Carnegie Mellon University.
Retrieved from: http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

CRESCENDO (2010). Collaborative & Robust Engineering using Simulation Capability Enabl-
ing Next Design Optimisation. European Union Seventh Framework Programme
(FP7). Grant agreement n° 234344. Retrieved from: http://www.crescendo-fp7.eu

Crnkovic, I., Asklund, U. & Dahlqvist, A.P. (2003). Implementing and integrating product
data management and software configuration management. Boston, MA, USA: Ar-
tech House.

Dassault Systemes. (2011) Dymola: Multi-Engineering Modeling and Simulation. Retrieved from
http://www.3ds.com/products/catia/portfolio/dymola

Engel, A., Winokur M., Döhmen, G. & Enzmann, M. (2008). Assumptions / Promises -
Shifting the Paradigm in Systems-Engineering. In Proceedings of the 18th annual In-
ternational Symposium of the International Council on Systems Engineering,
INCOSE, Utrecht, The Netherlands

European Space Agency. (2003). Simulation Model Portability Handbook, EWP-2080, Issue 1,
Revision 4: European Space Agency (ESA).

France, R. & Rumpe, B. (2007). Model-driven development of complex software: A re-
search roadmap. FoSE 2007: Future of Software Engineering, art. no. 4221611, pp.
37-54. Minneapolis, MN, USA: IEEE Computer Society.

Friedenthal, S., Moore, A.C. & Steiner, R. (2011). A Practical Guide to SysML: The Systems
Modeling Language. (2nd Edition). San Francisco, CA, USA: Morgan Kaufmann
Publications.

Fritzson, P. (2004). Principles of object-oriented modeling and simulation with Modelica 2.1.
New York, USA: Wiley.

Geiger, R.J. (1982). Simulator structure. U.S. Patent No. 4,347,055

GM-VV PDG (2010). Generic Methodology for Verification and Validation (GM-VV) to Support
Acceptance of Models, Simulations, and Data: Reference Manual. SISO-GUIDE-
00X.1-201X-DRAFT-V1.2.3: Simulation Interoperability Standards Organization.

References 79

Harrison, N., Gilbert, B., Jeffrey, A., Lauzon, M. & Lestage, R. (2004). Adaptive and Mod-
ular M&S Configuration for Increased Reusability. Interservice/Industry Training,
Simulation and Education Conference. Orlando

Hartmann, H. & Trew, T. (2008). Using feature diagrams with context variability to model
multiple product lines for software supply chains. In Proceedings of the 12th Inter-
national Software Product Line Conference, SPLC 2008. 4626836. 12-21. doi:
10.1109/SPLC.2008.15

Herzog, E. & Andersson, H. (2009). Initial Experience in Contracts Based Systems Engi-
neering. In Proceedings of the 19th annual international symposium of International
Council on Systems Engineering, INCOSE. Singapore

Herzog, E. & Pandikow A. (2005). SysML: an Assessment. In Proceedings of the 15th annual
International Symposium of the International Council on Systems Engineering,
INCOSE

Herzog, E., Andersson, H. & Hallonquist, J. (2010). Experience from Introducing SysML
into a Large Project Organisation. In Proceedings of the 20th annual international
symposium of International Council on Systems Engineering, INCOSE. Chicago,
IL, USA

Hopgood, A.A. (2001). Intelligent systems for engineers and scientists. (2. ed.) Boca Raton,
FL, USA: CRC Press.

Hunt, A. & Thomas, D. (2000). The pragmatic programmer: from journeyman to master.
Boston, MA., USA: Addison-Wesley.

Hvam, L., Haug, A. & Mortensen, N.H. (2010). Assessment of Benefits from Product Con-
figuration. In Proceedings from Workshop on Configuration at the 19th European
Conference on Artificial Intelligence - ECAI 2010. Lisbon, Portugal.

Hvam, L., Mortensen, N.H. & Riis, J. (2008). Product Customization. Heidelberg/Berlin,
Germany, Springer-Verlag.

IBM Rational Rhapsody. (2011). IBM® Rational® Rhapsody®: Collaborative systems and soft-
ware design. Retrieved from: http://www-01.ibm.com/software/awdtools/rhapsody

INCOSE (2010). Systems Engineering Handbook - A Guide for System Life Cycle Processes
and Activities, version 3.2, International Council on Systems Engineering.

ISO/IEC 15288:2008. (2008). Systems and software engineering: System life cycle processes. (2nd
edition) Geneva, Switzerland: International Organization for Standardization

ISO 2533:1975. (1975). Standard Atmosphere. Geneva, Switzerland: International Organization
for Standardization

Jarzabek, S. (2007). Effective Software Maintenance and Evolution: Reused-based Approach,
New York, USA: Auerbach Publishers Inc.

Johansson, B. (2003). Model Management for Computational System Design. Linköping Stu-
dies in Science and Technology. Dissertation No. 857. Linköping, Sweden:
Linköping University Electronic Press.

Johansson, O., Andersson, H. & Krus, P. (2008). Conceptual Design Using Generic Object
Inheritance, In Proceedings of the ASME International Design Engineering Tech-
nical Conference and Computers and Information in Engineering Conference 2008,
IDETC/CIE. Brooklyn, N. Y., USA

80 Variability and Customization of Simulator Products

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. & Peterson, A.S. (1990). Feature-
Oriented Domain Analysis (FODA): Feasibility Study. Software Eng. Inst., Tech.
report CMU/SEI-90-TR-21. Pittsburgh, PA, USA: Carnegie Mellon Univ.

Kniberg, H. (2007). Scrum and xp from the trenches: how we do Scrum, C4Media Inc.

Krueger, C.W. (2002). Easing the Transition to Software Mass Customization. Software
Product-Family Engineering in: Lecture Notes in Computer Science, Volume
2290/2002, 178-184. Springer Berlin / Heidelberg. doi: 10.1007/3-540-47833-7_25

Krueger, C.W. (2004). Towards a Taxonomy for Software Product Lines. In van der Linden,
F. (Eds.). Lecture Notes in Computer Science: Software Product-Family Engineer-
ing, 3014. 323-331. Berlin / Heidelberg, Germany: Springer.

Kuhn, R. (2008). A multilevel approach for aircraft electrical systems design. Sixth Inter-
national Modelica Conference, Vol. 1. 95-101. Bielefeld, Germany

Mann, Z.A. (2006). Three public enemies: Cut, copy, and paste. Computer, 39 (7). 31-35.

Mar, B. (1992). Back to basics. In Proceedings of the 2nd annual international symposium
of the National Council on Systems Engineering: NCOSE. pp. 37–43

Matharu, J. (2006). Reusing safety-critical software in aviation, Electronics systems and soft-
ware, 4(1). 32 -35. doi: 10.1049/ess:20060105

Mathworks, Simscape™. (2011). Simscape – Model and simulate multidomain physical systems.
Retrieved from http://www.mathworks.se/products/simscape

Mathworks, Simulink®. (2011). Simulink - Simulation and Model-Based Design. Retrieved from
http://www.mathworks.se/products/simulink

Mathworks, Stateflow®. (2011). Stateflow - Design and simulate state charts. Retrieved from
http://www.mathworks.se/products/stateflow

Mellor, S.J. & Balcer, M.J. (2002). Executable UML: a foundation for model-driven archi-
tecture. Boston, MA, USA: Addison-Wesley.

MetaCase (2011). MetaEdit+ Domain-Specific Modeling environment. Retrieved from
http://www.metacase.com/MetaEdit.html

Mittal, S. & Frayman, F. (1989). Towards a Generic Model of Configuration Tasks. In 11th
International Joint Conference on Artificial Intelligence, Detroit, IL, USA, pp.
1395–1401.Modelica Association. (2011). Modelica®: Modelica and the Modelica
Association. Retrieved from https://www.modelica.org

Modelisar (2011). Goals of FMI. Retrieved from FMI website: http://functional-mockup-
interface.org

Moir, I. & Seabridge, A. (2004). Design and development of aircraft systems: an intro-
duction. Professional Engineering Publishing, London, UK

MOKA Consortium (2001). Managing engineering knowledge: MOKA: methodology for know-
ledge based engineering applications. London, UK: Professional Engineering Publ.

Muller, G. (2011). Research in Systems Architecting. version: 2.0. Retrieved from Gaudí
System Architecting homepage: www.gaudisite.nl/ArchitectingResearchMethodPaper.pdf

Munir, Q. & Shahid, M. (2010). Software Product Line: Survey of Tools. Student thesis,
Linköping, Sweden: Linköping University Electronic Press. uri: urn:nbn:se:liu:diva-
57888.

References 81

Nagy, I. & Cleophas, L. (2011). Applying Software Product Line Engineering Techniques
to Develop Simulators for Testing and Early System Integration. Retrieved from
iSpring Solutions slide hosting website: .
http://www.slideboom.com/presentations/436271/Applying-Software-Product-Line-
Engineering-Techniques-to-Develop-Simulators-for-Testing-and-Early-System-Integration

NASA, (2008). Standard for Models and Simulations, National Aeronautics and Space Ad-
ministration, NASA-STD-7009, Washington, DC, USA. 20546-0001

Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V. & Alvin, K.F. (2002). Error
and uncertainty in modeling and simulation. Reliability Engineering and System
Safety, 75 (3), pp. 333-357.

Object Management Group, SysML™. (2008). OMG Systems Modeling Language (OMG
SysML™), Version 1.1, Object Management Group, Retrieved from
http://www.omg.org/spec/SysML/1.1.

Object Management Group, UML®. (2007). OMG Unified Modeling Language (OMG UML),
Infrastructure/Superstructure, V2.1.2 Object Management Group, Retrieved from
http://www.omg.org/spec/UML/2.1.2

Olhager, J. (2003). Strategic Positioning of the Order Penetration Point. International Jour-
nal of Production Economics. 85 (3). 319-329. doi: 10.1016/S0925-5273(03)00119-1

Oliver, D.W., Kelliher, T.P. & Keegan, J.G. (1997). Engineering Complex Systems – with
models and objects. McGraw-Hill, New York, USA

Padulo, M. (2009). Computational Engineering Design under uncertainty – An aircraft
conceptual design perspective. Dissertation. Cranfield University, UK

Park, R.E., et al. (1992). Software Size Measurement: A Framework for Counting Source
Statements. Software Eng. Inst., Technical Report CMU/SEI-92-TR-20. Pittsburgh,
PA, USA. Carnegie Mellon University

Potts, C. (1993). Software Engineering Research Revisited, IEEE Software, pp. 19-28.

Praehofer, H. (1996). Object Oriented, Modular Hierarchical Simulation Modeling: Towards
Reuse of Simulation Code. Simulation Modelling Practice and Theory. 4(4): 5-8.
doi: 10.1016/0928-4869(96)83760-8

Pugliese, D., Colombo, G. & Spurio, M.S. (2007). About the integration between KBE and
PLM. Advances in Life Cycle Engineering for Sustainable Manufacturing Business-
es. 131-136. doi: 10.1007/978-1-84628-935-4_23

pure-systems. (2011). Pure::variants: Variant Management. Retrieved from http://www.pure-
systems.com

Python (2011). Python Programming Language: Official Website. Retrieved from
http://python.org

Rosenmüller, M. (2011). Towards Flexible Feature Composition: Static and Dynamic Binding in
Software Product Lines. Dissertation. Magdeburg, Germany. Otto-von-Guericke-
Universität

Saab (2011). Mission Trainer: Operational everyday training for pilots. Retrieved from:
www.saabgroup.com/en/Air/Training_and_Simulation/Training_Media/Mission_Trainer/Features.

Salinesi, C., Mazo, R., Djebbi, O., Diaz, D., Lora-Michiels, A. (2011). Constraints: The core
of product line engineering. IEEE International Conference on Research Challenges
in Information Science (RCIS), Guadeloupe, French West Indies, France.

82 Variability and Customization of Simulator Products

Salo, O. & Abrahamsson, P. (2007). An iterative improvement process for agile software
development. Software Process Improvement and Practice 12 (1), pp. 81-100

Schallert, C., Pfeiffer, A. & Bals, J. (2006). Generator Power Optimisation for a More-
Electric Aircraft by Use of a Virtual Iron Bird. In Proceedings of the 25th Interna-
tional Congress of the Aeronautical Sciences, ICAS. Hamburg, Germany

Schwaber, K. (1995). SCRUM Development Process. In Proceedings of OOPSLA'95 Work-
shop on Business Object Design and Implementation, Austin, TX, USA

Siemens (2011). Open product lifecycle data sharing using XML: Siemens White Paper.
Siemens PLM Software. Retrieved from:
http://www.plm.automation.siemens.com/en_us/products/open/plmxml

Simpson, T.W. (Ed.) (2006). Product platform and product family design: methods and appli-
cations. (1. ed.) New York, USA: Springer.

Sinnema, M., Krebs, T., Hotz, L., MacGregor, J., Nijhuis, J., Wolter, K. & Deelstra S. (2006).
Configuration in Industrial Product Families: The ConIPF Methodology. Berlin,
Germany: Akademische Verlagsgesellschaft Aka GmbH.

Sivard, G. (2001). A Generic Information Platform for Product Families. Dissertation.
Stockholm, Sweden: Royal Institute of Technology.

Steinkellner, S. (2011). Aircraft Vehicle Systems Modeling and Simulation under Uncertainty.
Linköping Studies in Science and Technology. Thesis, 1497: Linköping, Sweden:
Linköping University Electronic Press.

Steinkellner, S., Andersson, H., Krus, P. & Lind, I. (2008). Hosted Simulation for Heterogeneous
Aircraft System Development. In Proceedings of the 26th International Congress of
the Aeronautical Sciences, ICAS. Anchorage, AK, USA

Stevens, R. (red.) (1998). Systems engineering: coping with complexity. London: Prentice-
Hall Europe.

Stone, R.J., Panfilov, P.B. & Shukshunov, V.E. (2011). Evolution of aerospace simulation:
From immersive Virtual Reality to serious games. In Proceedings of 5th Internation-
al Conference on Recent Advances in Space Technologies (RAST). 655-662. Istan-
bul, Turkey: IEEE. doi: 10.1109/RAST.2011.5966921

Tacton Systems AB (2011). Tacton Configurator. Retrieved from http://www.tacton.com

Thevenot, H. & Simpson, T. (2006). Commonality indices for product family design: a de-
tailed comparison. Journal of Engineering Design, Vol. 17, No. 2, pp. 99–119.
doi: 10.1080/09544820500275693

Thunnissen, D. P. (2005). Propagating and Mitigating Uncertainty in the Design of Complex
Multidisciplinary Systems. Dissertation. Pasadena, CA, USA: California Institute of
Technology.

Ulrich, K.T. & Eppinger, S.D. (2008). Product design and development. (4. ed.) Boston,
MA, USA: McGraw-Hill/Irwin.

van der Linden, F. J., Schmid, K. & Rommes, E. (2007). Software Product Lines In Action.
Springer-Verlag, Berlin, Germany

van Gurp, J. (2000). Variability in Software Systems: The Key to Software Reuse. Licentiate
thesis. Karlskrona, Sweden: Blekinge Institute of Technology

References 83

Weilkiens, T. (2008). Systems engineering with SysML/UML: modeling, analysis, design, Ams-
terdam, The Netherlands: Morgan Kaufmann OMG Press/Elsevier

Weiss, D. M. & Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-Based
Software Development Process. Reading, MA, USA: Addison-Wesley

Wickenberg, J., Stamlin, R., Persson, M. & Börjesson, S. (2011). Challenges for increasing com-
ponent commonality in platforms. In Proceedings of the 5th European Conference on
Management of Technology, EuroMOT2011, Tampere, Finland, pp. 463-472.

Wikipedia, KBE. Knowledge-based engineering. Retrieved from Wikipedia, the free encyclo-
pedia http://en.wikipedia.org/wiki/Knowledge-based_engineering .

Williamson, K. (2002). Research methods for students, academics and professionals: informa-
tion management and systems. (2. ed.) Wagga Wagga, NSW, Australia: Centre for
Information Studies.

World Wide Web Consortium (W3C). (2008). Extensible Markup Language (XML) 1.0 (Fifth
Edition) W3C Recommendation. 26 November 2008. Retrieved from:
http://www.w3.org/TR/2008/REC-xml-20081126

Wymore, W. (2002). A System Theoretical Framework for V & V. In Proceedings of the
twelfth annual International Symposium of the International Council on Systems
Engineering, INCOSE

Öström, J., Lähteenmäki, J. & Viitanen, T. (2008). F-18 hornet landing simulations using
adams and simulink co-simulation. AIAA Modeling and Simulation Technologies
Conference and Exhibit, art. no. 2008-6850: AIAA

