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Abstract 

AIRCRAFT DEVELOPERS, like other organizations within development and manu-
facturing, are experiencing increasing complexity in their products and growing compe-
tition in the global market. Products are built from increasingly advanced technologies 
and their mechanical, electronic, and software parts grow in number and become more 
interconnected. Different approaches are used to manage information and knowledge of 
products in various stages of their lifecycle. 

"Reuse" and "Model Based Development" are two prominent trends for improving in-
dustrial development efficiency. The product line approach is used to reduce the time to 
create product variants by reusing components. The model based approach provides 
means to capture knowledge about a system in the early lifecycle stages for usage 
throughout its entire lifetime. It also enables structured data management as a basis for 
analysis, automation, and team collaboration for efficient management of large systems 
and families of products. 

This work is focused on the combination of methods and techniques within; 
• modeling and simulation-based development, and 
• (re)use of simulation models through the product line concept. 

With increasing computational performance and more efficient techniques/tools for 
building simulation models, the number of models increases, and their usage ranges 
from concept evaluation to end-user training. The activities related to model verification 
and validation contribute to a large part of the overall cost for development and main-
tenance of simulation models. The studied methodology aims to reduce the number of 
similar models created by different teams during design, testing, and end-user support 
of industrial products. 

Results of the work include evaluation of a configurator to customize and integrate si-
mulation models for different types of aircraft simulators that are part of a simulator 
product family. Furthermore, contribution comprises results where constraints in the 
primary product family (aircraft) govern the configuration space of the secondary prod-
uct family (simulators). Evaluation of the proposed methodology was carried out in 
cooperation with the simulator department for the 39 Gripen fighter aircraft at Saab 
Aeronautics. 
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När komplexiteten ökar, kommer Systems Engineering och spökar. 

- Mehdi Tarkian 
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Sammanfattning 

FLYGPLANSTILLVERKARE LIKSOM andra industrier inom utveckling och till-
verkning, hanterar ökande komplexitet i sina produkter och upplever en större konkur-
rens på den globala marknaden. Produkter byggs från allt mer avancerad teknologi. In-
gående delar av mekanik, elektronik och mjukvara växer i antal och blir allt mer 
integrerade. Olika metoder används för att hantera information och kunskap om produk-
ter i olika steg av dess livscykel.  

”Återanvändning” och ”Modellbaserad utveckling” är två tydliga trender för att öka 
effektiviteten inom industriell utveckling. Produktfamiljer används för att minska ledti-
der när man skapar varianter av produkter genom att återanvända färdiga komponenter. 
Modellbaserade metoder ger möjlighet att tidigt i livscykeln samla kunskap om ett sy-
stem för att användas under hela systemets livstid. De ger också strukturerad hantering 
av data som grund för analys, automatisering och samarbete mellan utvecklingsteam, 
vilket är en förutsättning för effektiv hantering av komplexa system och produkter.  

Detta arbete är fokuserat på en kombination av metoder och tekniker för; 
• utveckling som baseras på modellering och simulering, och 
• (åter)användning av simuleringsmodeller. 

Med ökande beräkningsprestanda och effektivare metoder/verktyg för att bygga simule-
ringsmodeller så ökar antalet modeller och deras användning spänner allt från koncept-
värderingen till utbildning av slutanvändare. Arbetet med verifiering och validering av 
simuleringsmodeller utgör en stor del av deras totala utvecklings- och underhållskost-
nader. De studerade metoderna syftar till att minska antalet liknande modeller som han-
teras av olika team för olika syften, som till exempel; utveckling, verifiering och som 
stöd för slutanvändare. 

Resultat av arbete inkluderar utvärdering av en konfigurator för att välja, integrera och 
anpassa simuleringsmodeller för olika typer av flygplanssimulatorer i en simulatorpro-
duktfamilj. Dessutom bidrar arbetet med en metodik där begränsningarna i den primära 
produktfamiljen (flygplan) begränsar konfigurationsutrymmet för den sekundära pro-
duktfamiljen (simulatorer). Utvärdering av den föreslagna metoden har genomförts i 
samarbete med simulatoravdelning för flygplan 39 Gripen på Saab Aeronautics. 
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Everything must be made as simple as possible. But not simpler.  

- Albert Einstein 
 
 
Model Based Development!? Wouldn’t it be better with Reality Based Development? 

- August Andersson 
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1 
Introduction 

MOST PRODUCTS and systems evolve towards higher degrees of complexity con-
sisting of more advanced technologies with integrated mechanical, electronic, and soft-
ware parts. Products are increasingly defined in families, allowing variants and versions 
of similar products to be offered to customers. Model Based Development (MBD) is 
one approach to manage large, complex systems and families of products. It enables 
structured data management to serve as a basis for analysis, automation, and collabora-
tion for example. MBD also provides a way, through the virtual product and system 
simulations, to gain insights and understanding for engineers and others involved in the 
development, verification, and maintenance of the products. Validated simulation mod-
els from systems development can be reused in simulator products to achieve training of 
end users with high fidelity simulations in a virtual environment. 

1.1 Background  
Organizations developing and manufacturing high-end products have for decades relied 
on engineering methods that are based on some kinds of models; and the use of model 
based methods are increasing. In the management of large, complex products and their 
related information, different product parts may in different degrees be based on the 
modeling approach. The development lifecycle for a specific system (or some additional 
system functionality) starts with a verbal formulation and evolves through system de-
sign to rollout for customer delivery and usage.  

There are obviously different ways to execute the development, depending on the 
choice of engineering means, as illustrated in Figure 1. Maturity of a system and its 
functionality is reached through several activities, where modeling, analysis, and simu-
lation “get the function to mature” more rapidly compared to traditional document-
centric methods. Parts of both verification and validation are performed earlier with the 
support of models and simulations, providing greater possibility to improve poorly 
stated requirements early and to find defects/non-optimal designs. 
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Figure 1. The basic idea of model based development is that a system's maturity in-
creases faster by enabling analysis and simulations of the system from an early stage. 
The models support reuse of knowledge during initial operation of the system and 
throughout its entire lifetime. 

To support development of complex products, several methods and languages have 
been proposed in the literature and evaluated in industry, as reported in Mar [1992] and 
Stevens [1998]. In recent years, there has been much focus on MBD as means for man-
aging complexity by improving specification clarity, consistency, and validation sup-
port, see Alford et al. [1992], Oliver, Kelliher and Keegan [1997], Wymore [2002], 
France and Rumpe [2007], Weilkiens [2008], and Friedenthal, Moore and Steiner 
[2011]. 

Another prominent trend is reuse of artifacts such as design solutions and sys-
tem/software components, for reducing development and production cost while still 
offering a range of similar products to the market. From the 1980s and onward, software 
reuse is one of the main reasons for increased productivity for software-intensive sys-
tems [Boehm 2006]. A set of similar products that share components and are developed 
and manufactured within a defined architecture constitutes a product family or a product 
line. Companies who provide the market with products in several variants and versions 
increasingly rely on the product line approach with explicitly defined product line ar-
chitecture.  

Descriptions of approaches and methods for efficient utilization of reuse through prod-
uct lines and customization support have been provided in literature. For products in 
general, see Simpson [2006], Ullrich and Eppinger [2008], and Hvam, Mortensen and 
Riis [2008]. A somewhat different kind of product line approach has been defined for 
software intensive systems/products, called Software Product Lines (SPL); see Weiss 
and Lai [1999], Clements and Northrop [2002], van der Linden, Schmid and Rommes 
[2007], and Jarzabek [2007].  

Figure 2 illustrates some basic parts of a product line setting:  
• reusable core assets/components with variations 
• decisions about variation for specific products 
• variation binding through an instantiation process 
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Figure 2. The basics of a product line architecture where existing components are used 
in a product instantiation process to create customized products. The product instantia-
tions are explicitly governed by configuration decisions. Based on Krueger [2004]. 

When the model based and product line approaches are utilized in combination, there is 
a need for Modeling and Simulation (M&S) of a large number of product variants. 
While computational performance increases, modeling techniques and tools mature and 
engineers become more skilled in M&S, the number of models increases and manage-
ment of the models themselves defines a new domain of knowledge. Praehofer [1996] 
discusses different approaches known from software engineering, in particular the ob-
ject-oriented technique, for enhancement of reusability in large-scale simulation sys-
tems. Principles for reuse of simulation models and code are covered by Praehofer 
[1996], Harrison, Gilbert, Jeffrey, Lauzon, and Lestage [2004], Matharu [2006], and 
Nagy and Cleophas [2011]. None of these takes, however, clearly up the relationship 
between the models and the products they are supposed to represent. A knowledge gap 
is identified for the variability and reusability of models with respect to variants and 
versions of products and models. 

The application example used in this work is simulation models and simulators for the 
Saab 39 Gripen aircraft product family. There are specific characteristics of a simula-
tion model (family) for complex products such as aircraft: 

• the properties of system safety require a robust methodology, for example change 
control, traceability, verification and validation of models;  

• a simulation model for an aircraft consists of several unique sub-models developed 
by different teams, during different times, using different modeling techniques; and  

• most of the simulation models are representations of another product family; viz 
the aircraft.  

The simulation components (models) do not in general have the same functionality as 
the represented components (a/c equipment). The models are enhanced with for exam-
ple fault-simulation functions, but may be simplified in other respects. This implies that 
variations and combinations of the simulation models are partly constrained or guided 
by the variability rules of the aircraft’s components and functions. To increase the po-
tential for reuse, the simulation models are designed to be included in different kinds of 
simulators, i.e., they are multipurpose models. 
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Saab Aeronautics has a long history of simulator development, mostly for in-house 
usage, which is for early validation, development, and system verification. During the 
last decade, development and delivery of training simulators for the Saab 39 Gripen has 
become a business. It is now possible to support customers with up-to date simulator 
versions synchronously with deliveries of new system versions of the aircrafts. The si-
mulators are e.g. based on embedded software used in aircraft. This method is denoted 
the ‘design once approach’ and its aim is to increase the conformance and quality of 
simulator updates. The intention is to continue and to expand the ‘design once ap-
proach’, by developing methods to make coordinated updates in different simulators for 
several purposes. 

1.2 Problem definition 
Simulation models may be used in different contexts with specific objectives. Devel-
opment of the models has often been performed by different teams, which has resulted 
in a wide range of types and variants. These models are used in different simulation 
environments, based on different computer languages, and specified for specific operat-
ing systems [European Space Agency 2003]. Explicit usage contexts of simulation 
models in the aircraft industry, and especially within Saab Aeronautics are [III]:  

• Development; as a tool, for example for analysis and optimization of the design  
• Verification; is the system safe? Does it satisfy the specified requirements? 
• Training; to improve the operating skills of end users.  

Assumptions and basic elements of the problem definition are as follows: There exists a 
defined product family (e.g. a set of aircraft variants). This product family is modeled in 
respect of:  

• Configuration; for certification, delivery, and maintenance in a product data man-
agement context (results in a product configuration model) 

• Behavior; for development, verification, and training in a simulation context (re-
sults in a set of simulation models). 

Assume further that the unique sub-models are configurable, meaning that one model 
may represent different variants of the product parts/components/subsystems or its envi-
ronment. The configurable models are developed, validated, reused, and maintained 
within the same lifetime as the products.  
Each simulation model included in any simulation system can be viewed as an inter-
changeable component. These components are stored in a library for easy access and 
inclusion in different simulator configurations and must be able to be configured in at 
least three dimensions: representation, usage, and implementation in the following 
manner: 

• A component will represent some part of the simulated product or its environment 
• A component will be used in a context (development, verification or training) 
• A component will be implemented for a specific simulation platform. 

There are no proven concepts, verified methods, or mature supporting tools found to 
handle configurable simulation models in the described context. 
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Figure 3. Problem area and related research fields / engineering practices.  

The subject of this dissertation covers some traditional areas of research and it is there-
fore of an interdisciplinary nature. The focus of the research relates to methods, tech-
niques, and engineering practices as shown in Figure 3.  

1.3 Industrial objectives 
The purpose of the work from an industrial perspective is to develop methods for reuse 
of simulation models through knowledge about variability and compatibility in order to 
customize simulator instances. The objectives are related to quality and response-time 
in the process from a customer request (external or from company-internal customers) 
to delivery of an a/c simulator. Special focus areas in this work from an industrial pers-
pective relate to methodologies to support: 

• Transformation of a product portfolio into a product line by extracting knowledge 
from legacy simulation software 

• Design and implementation of sustainable simulation models for long-term reuse 
potential 

• Handling of non-functional properties and quality attributes 
• Product line engineering for large, complex simulator systems 
• Alignment with industry-standard Product Data Management (PDM) and Software 

Configuration Management (SCM) systems 
• Alignment with emerging standards and ongoing industrial related research in the 

fields. 

A central part of the dissertation is thus to formalize the engineering challenges that 
arise when a model based approach is used together with the reuse of models within a 
large organization that is responsible for complex industrial products. 
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1.4 Dissertation outline 
This dissertation is written in an integrated-paper format and consists of an introductory 
summary and seven appended papers. The remaining part of the introductory summary 
is outlined as follows: Chapter 2 covers the research methods. Chapter 3 introduces the 
theoretical frameworks of Model Based Development and Model Based Systems Engi-
neering. In chapter 4 Knowledge Based Engineering, configuration principles, and 
available methods for simulation of products on an industrial scale are described. An 
introduction to the industrial application example is provided in chapter 5. Finally, 
chapters 6 and 7 cover results and discussion/conclusions respectively, and chapter 7 
ends with identified areas for future work. 
 



 

2 
Research 
methods 

THE RESEARCH REPORTED herein is classified as applied research as it was per-
formed with relatively mature systems engineering techniques and in close relation to 
an industrial organization. This chapter covers the research questions, research envi-
ronment, related projects, research approach, and contributions of the research work. 

2.1 Research questions 
By reuse of simulation models and integrating a configurator system in the simulator 
development environment, providing input to the simulator build and installation 
processes, it should be possible to deliver customized simulation kernels with specified 
configurations in a shorter time. 

Research question 

“Are the principles of Product Customization applicable for modular simulation systems 
in a software intensive product line context?”  

Further sub-questions: 
• To what degree is it possible to modularize the simulation model including parame-

ter sets and other simulation artifacts? 
• What kinds of variation techniques for simulation model variability, including em-

bedded software, are applicable in the product instantiation process? 
• How should compatibility constraints for simulation models be specified to be 

maintainable in a large-scale product line? 
• How to specify and build simulation configurator systems based on Product Data 

Management (PDM) where environment models are not part of the product defini-
tion? 
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Areas to be dealt with during the research are oriented towards simulation models of 
vehicle systems, safety critical aspects, and existing products with legacy components. 
For an overview of the vehicle systems area, see Moir and Seabridge [2004]. Areas 
beyond the scope of the present work, and therefore not focused upon, include code-
generation techniques, multi-core computation, formal methods, early product concepts, 
and consumer oriented mass customization. 

2.2 Research environment and related projects 
The work was performed part-time over seven years and it evolved in focus over time 
from a broad perspective on Model Based Development (MBD) to a narrow focus on 
software product lines and further to variability and customization of simulator prod-
ucts. There were five research projects related to this work, all within the area of MBD, 
but with slightly different focus. The research program that financed each project to-
gether with other key data is included in Table 1. 

2.2.1 System Engineering and Computational Design 
Studies of how a product’s requirements over its lifecycle can be translated into re-
quirements concerning components were performed during the course of the project. 
These included development of models and calculation modules used in simulation and 
optimization at product level. Tools were built in the form of demonstrators in order to 
show how the methods work in practice. Being part of the project was a good way to get 
introduced to the problem domain and to an academic way of thinking. Linköping Uni-
versity was the project leader. An introductory paper [Andersson & Sundkvist 2006] on 
industrial experiences from model based flight control modeling was also published. 

2.2.2 Speculative and Exploratory Design in Systems Engineering 
In the research project SPEEDS (Speculative and Exploratory Design in Systems Engi-
neering) [Engel, Winokur, Döhmen & Enzmann 2008] a great deal of the work was 
performed in an industrial context together with aerospace industries, for example Air-
bus and Saab. Coordinator of the project was Airbus (Germany). Needs for large-scale 
modeling and analysis were collected and analyzed, and an engineering environment 
was developed and validated from requirements. The focus was on avionics develop-
ment in early phases. A meta-model for Heterogeneous Rich Components (HRC) was 
developed as a means for contract based modeling, tool integration, and analysis capa-
bilities. Representing the needs of an industrial project partner (Saab), validation of the 
environment with tools for contract-based modeling was included in the task. Expe-
rience from contract-based modeling was reported in Herzog & Andersson [2009]. 

2.2.3 Modeling technique for avionics design 
In this project, a prototype of the FM-design tool (function-means-tree) was developed, 
see [Johansson, Andersson & Krus 2008]. Different approaches to model development 
and integrated (hosted) simulation were evaluated, see papers [Andersson, Weitman & 
Ölvander 2008] and [Steinkellner, Andersson, Krus & Lind 2008]. A summary of the 
first phase of the work was presented and published through a Licentiate Thesis [An-
dersson 2009]. Saab Aerosystems (now Saab Aeronautics) was head of the project. 
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Table 1. Research projects participation. Work done as part of the dissertation within each project. 
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2.2.4 CRESCENDO 
CRESCENDO [2010] is a large project divided into several subprojects and use-case 
definitions. It has a focus on collaborative engineering with support from standardized 
methods/tools and covers a large part of the product lifecycle including virtual testing 
and support for aircraft certification. Evaluation of simulation techniques with Modelica 
based tools was reported in paper [II]. A paper on methodology for development and 
validation of multipurpose simulation models has been published [V]. Airbus (France) 
is coordinator of the project.  

2.2.5 Heterogeneous Modeling and Simulation technique 
A good opportunity was given to finalize the PhD studies/dissertation through the 
NFFP5 project Heterogeneous Modeling and Simulation technique. Recognition of the 
model management problem was made in earlier projects and here the focus was on 
solutions to the “simulation model variation and customization problem”. Problem defi-
nitions were published in papers [III] and [IV]. In this project, a research approach with 
shorter increments was used in order to conduct Plan-Act-Observe-Reflect [Williamson 
2002] cycles with practitioner interaction. A “towards” paper [VI] was published, re-
porting on initial findings from the configurator prototype development. The final report 
from the industrial setting and the validation results are provided in paper [VII]. Saab 
Aeronautics was head of the project. 

2.2.6 From a broad to a narrow research field 
The research studies were performed in two major phases with a different broad focus. 
The first phase (up to the licentiate thesis), had a broad focus and in the second phase 
the research field was substantially narrower. 

• Broad research focused on literature studies, assessment of industrial state of the art 
(SECD), but also validation of the hosted simulation technique (SPEEDS and 
NFFP4). The results were summarized in a Licentiate thesis in March 2009, [An-
dersson 2009] 

• Narrower research focused on large-scale simulation, the management of simula-
tion models, and validation of a configurator prototype for customization and inte-
gration of simulation models. The second phase was connected to CRESCENDO 
and NFFP5. 

2.3 Research approach 
The research reported in this dissertation was conducted as an industrial PhD project, 
which means that the researcher has a strong relation to the industry and the research is 
inherently classified as applied research. 

2.3.1 Relationship between development and research 
Similar methods are used for development of products and for research on development 
methods. This research work does not penetrate techniques used in products (such as 
choice of material, components, or technical solutions) in depth, but covers techniques 
and tools that can support engineers in building and using models for product develop-
ment. This can be viewed as the meta2 activity according to Muller [2011], see Figure 4. 
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Meta0 is the actual systems development and product creation, meta1 is the development 
methods1used to create and manage the product. Meta2 is the focus of this dissertation; a 
study of available methods and tools for the meta1 activities. At meta3, the research me-
thod for comparing tools and methods at meta2 is defined.  

 
Figure 4. Research method formulation for method research adopted from Muller 
[2011] 

Methods traditionally used for research can also be applied to support development, see 
[Borg 2009], where the traditional Case Studies research method was used as a method 
in systems development. In this work, the systems/software development method 
known as Scrum, [Schwaber 1995; Kniberg 2007] is used to support validation of the 
research results. This use of Scrum is further described below. 

2.3.2 Description of the research 
The first part of the research was carried out as a survey of existing methods and tools 
within model based development. Modeling Domains are defined for classification of 
modeling techniques, and how the tools within the domains can be interconnected, e.g. 
using the hosted simulation technique. An implementation and evaluation of hosted 
simulation was carried out at the department for vehicle systems at Saab. 

In the second part, which focuses on model reuse, the problem area was defined through 
inventories and interviews at Saab, and by means of literature studies. It was decided to 
implement means for reuse of simulation model in a configurator prototype, and eva-
luate the results in interaction with the simulator group at Saab. Studies of build 
processes (checkout, compile, link, and instantiate) for software intensive systems show 
the importance of binding time [Krueger 2004], which is also true of integrated simula-
tion models. Features can be bound (selected/deselected) during different parts of the 
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build process. Binding describes where in the process a decision controls the inclusion 
of a specific feature.  

Analysis clarifies in what part different configuration information is needed. Informa-
tion models of product representation in two domains, the Product Data Management 
(PDM) domain, and the simulation domain are elaborated. Information from interviews 
and quantitative data is collected and analyzed in order to create an information model. 
The configurator prototype is developed based on the information models and collected 
data. Support for the final design of configuration rules and customization solution is 
based on technology from Sales Configuration Systems, using constraint-based feature 
modeling and descriptive constrain programming.  

The application example in the work consists of simulation models in simulators for the 
Saab 39 Gripen lightweight fighter aircraft. The Saab Gripen project is analyzed pros-
pectively and typical activities performed at the industry site are:  

• inventory of aircraft variants 
• inventory of models and their properties from a customization perspective 
• inventory of simulator variants 
• analysis of the relationships between aircrafts, models, and simulators.  

Inventories are made using both quantitative and qualitative methods. The Scrum re-
trospective method is used to validate the results. 

2.3.3 Industry-as-laboratory 
This is an industrial PhD dissertation with a focus on industrial large-scale application 
of both emerging and proven techniques, and with prototype development included. The 
approach may be defined as “Industry-as-laboratory”, as described by Potts [1993]; see 
Figure 5. By conducting the research in close interaction with industry and iteratively 
implementing and evaluating results in the industrial setting, new knowledge from the 
industrial context is fed back to the researcher. Evaluations of suggested and tested so-
lutions are typically made by prototyping.  

 
Figure 5. Industry-as-laboratory research approach [Potts 1993] 
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Industry-as-laboratory stresses both the industrial and the academic relevance of the 
research, meaning that it should provide useful results to academia (by gaining new 
knowledge) and to industry (improved quality and reduced cost & time). This approach 
is qualitative and can be classified as a kind of Interactive Research because of the 
strong interaction between researcher and practitioner. It typically involves a Plan-Act-
Observe-Reflect cycle [Williamsson 2002], which is similar to the Scrum methodology. 
This is the reason for choosing an approach to conduct systems development research 
(with influence from the interactive research method) in the industrial team where 
Scrum had been used for approximately three years when the research started. 

2.3.4 Scrum as method to support interactive research 
Scrum can be described as an agile, iterative, and incremental development method with 
structured planning and feedback by means of retrospectives. It has a set of practices 
and components and the predefined roles of the method are: 

• ScrumMaster, maintains the workflow and lead the daily meetings  
• Product Owner, represents the stakeholders and prioritizes incoming work  
• Team, performs the actual analysis, design, implementation, testing, documenta-

tion, and live demonstration of progress achieved.  
During each sprint, typically a period of a few weeks, the team creates a product incre-
ment. The set of features that go into a sprint come from the product backlog, which is a 
prioritized set of tasks to be done. How many backlog items go into the sprint is deter-
mined during the sprint-planning meeting. During this meeting, the Product Owner par-
ticipates and finalizes the priority for the coming sprint. The team determines how much 
they can commit to complete during the sprint, and records this in the sprint backlog. 
During a sprint, the sprint backlog is fixed, meaning that the requirements are frozen for 
that sprint. Development is time-boxed such that the sprint ends on time. After each 
sprint, the team demonstrates completed work and a sprint retrospective is performed 
where the team goes through good and bad experiences from earlier work and agrees on 
improvements to implement. 

In the research setting, sprint retrospectives were used as a basic method to collect qua-
litative data from the team. A questionnaire with issues relevant for validation was pre-
pared prior to each increment, and answers were collected and stored for analysis and 
evaluation. The outcome of the questionnaire also influenced the planning of the com-
ing iterations. This way of creating and using feedback is described in Salo and Abra-
hamsson [2007] where sprint retrospectives are used for improvements and knowledge 
transfer. They propose an improved method for Software Process Improvement enabled 
by Post Iteration Workshops, even though it is not related to interactive research.  

On six occasions, during the regular Scrum retrospectives, questionnaires were used to 
collect experiences from the respondents. After a further three months, a final question-
naire was used, followed by individual discussions around the responses. The team was 
informed about the research project from a methodology perspective and everyone had 
the option to participate or not in the questions session. 
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2.3.5 The researcher’s role in industrial research 
In industrial research when the researcher interacts with practitioners in a development 
project, it is important to be clear about and reflect over the roles in different situations. 
It is possible to define three roles that are typically involved in an industrial PhD project 
and that the PhD candidate may potentially play during periods of the project: 

• Practitioner – performs systems and product development with the objective to de-
liver products or services to downstream groups or to an end customer 

• Method engineer – has a focus on introduction (or improvement) of methods and 
their related processes and tools in the industrial environment in order to increase 
quality or reduce cost/lead-time. Usually, several factors change during a project li-
fecycle, imposing a ‘continuous change management’ where the method engineer 
should play a central role 

• Researcher – has a focus on building knowledge for academia and for industry, to 
suggest new or modified methods / techniques based on insights from analysis and 
influences from other research.  

As the PhD research was performed part-time with other obligation in the company 
during the rest of the time, it was essential to keep the researcher, methods engineer, 
and practitioner roles separate. The separation of roles was simplified by a geographical 
separation; three different offices/desks were available, one at Linköping University, 
one at the Saab Simulation-Center, and a third at the Method & Tool department at Saab 
Aeronautics.  

2.3.6 Overview and summary 
An overview of the research from a methodology view related to systems development 
is shown in Figure 6. Each paper is positioned in the systems development V-model, 
[INCOSE 2010].  

 
Figure 6. The V-model used to visualize the position of each paper during development 
of the configurator prototype. Paper [I] and [II] constitutes a part of the background.  
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To summarize the research methods description; System Development is used as the 
main research approach, and the last phase of the work is well aligned with “Industry-
as-laboratory”. The results of the prototype-implementation are validated through 
Scrum retrospectives. 

2.4 Contribution 
In summary, this research provides contribution to the interdisciplinary area: 

• model based systems engineering, mainly modeling and simulation 
• knowledge based engineering and product line management 
• product data management / software configuration management 

In the first phase, the main contribution is the definition of the Modeling Domain 
framework that enables classification of modeling methods and tools in large-scale sys-
tems and product development, see [Andersson 2009]. The contribution from the 
second phase is more industry-oriented and provides solutions to enable large-scale 
model based development and management of simulation models in order to shorten 
lead-time and improve quality. Contributions are covered in more detail in section 7.3. 

2.4.1 Scientific Contribution 
The scientific contribution of this work is basic principles for reuse of knowledge and 
data in the combination of model based and product line engineering. Products are tradi-
tionally handled in Product Data Management (PDM) system. Such systems are de-
signed for collaboration between traditional engineering domains. The simulation do-
main, however, is not yet fully supported. By developing an information model and 
demonstrating a prototype tool for mapping of simulator information from the PDM to 
the simulation domain, knowledge is gained about configurability and collaboration 
effects. One idea is the definition of primary and secondary product lines. This descrip-
tion clarifies industrial needs and constitutes a basis for further research and develop-
ment in the field of methods to support product line engineering of ‘multi-product lines’ 
and complex industrial products. 

2.4.2 Industrial Contribution 
Many research programs in this area can present powerful techniques and methods with 
small examples or with a specific or narrow problem to solve, but scaling them up to 
industrial usage is sometimes of less concern. In this work, scalability is one of the un-
derlying areas of interest, with the assumption that results should be usable for a wider 
range of employees, not only graduates or specialists. Engineering configurators is fore-
seen to be a basic capability of future product development as companies strive for 
product line architectures.  





 

3 
Model based 
development 

MODELS OF SYSTEMS and products increase in value as more and more know-
ledge is kept within models. Models may be of many different kinds, from cost estima-
tion to spare part logistics. The focus in this dissertation is on models representing a 
system (e.g. an aircraft’s fuel or navigation system), that is composed of hardware, 
software and, where applicable, human interaction, as shown in Figure 7. A complete 
aircraft model is in turn made up of several such system models, but is still a system 
model, even though at a higher level of complexity. At an abstract level, these system 
models define the names and relationships between parts: these are collectively called 
system architecture or structure. When details of functionality, flows, and physical equ-
ations are added, the model can be used to predict performance and dynamic behavior; 
it becomes a simulation model. 
 

 
Figure 7. A system model represents a system. The composition of the system model is 
preferably a replication of the system composition. 
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3.1 Systems Engineering 
In this dissertation, Systems Engineering (SE) is interpreted as the engineering activities 
that are general regardless of technical discipline. It includes integration of the engi-
neering and project management interface, but also integrates work in the different 
technical disciplines, as illustrated in Figure 8.  

This understanding of SE is mainly based on INCOSE definitions and the INCOSE Sys-
tems Engineering Handbook, [INCOSE 2010].  

 
Figure 8. Illustration of systems engineering in relation to other engineering and man-
agement disciplines. 

Activities included in SE are typically: 
• Specification & Requirements Management 
• Product breakdown & architecture 
• Management of engineering budgets; Weight, Power, Cooling 
• Modeling, Simulation & Optimization techniques 
• Risk Status and Control 
• Subcontractor Management 
• “-ilities”, e.g. Safety, Availability, Reliability, Maintainability, Reusability 
• Planning; Writing the Systems Engineering Management Plan 

The planning of engineering methods/activities is most important in a project’s start-up 
phase, but has to be ongoing throughout the project as it includes activities in a product 
lifecycle perspective, which are not all possible to set at an early point. Here a just-in-
time approach is preferable; decisions, descriptions, and education in each respective 
activity/practice are done just ahead of when they are required in the project.  

To be able to plan and perform expansion of the capacity of the various SE tasks re-
quires good understanding and knowledge about the existing organization. A conceptual 
model that illustrates the overall organizational performance and weaknesses of certain 
abilities is the balanced barrel of SE, se Figure 9.  
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Figure 9. A conceptual model; the balanced barrel of systems engineering. Each seg-
ment represents the value of a systems engineering activity. How much wine the barrel 
may contain represents the overall performance of the organization and is thus dependent 
on the shortest segment in the barrel. In this example, “independent test” and “decision 
analysis” are potential activities not yet implemented formally.  

A well-documented collection of best practices with the aim of helping organizations to 
improve their development processes is the CMMI® (Capability Maturity Model Inte-
gration), e.g. the CMMI for Development [CMMI Product Team 2010]. CMMI has a 
focus on maturity and balanced introduction of practices in an organization. According 
to CMMI for example, it is not recommended to invest in Causal Analysis and Resolu-
tion before Configuration Management has been established.  

3.2 Development process models and standards 
A range of defined models/processes exists for different activities within the industrial 
development of complex products. Development models used in aerospace are adapted 
from those and instantiated for specific needs. As the aerospace area is a wide one, fur-
ther other useful standards, for example in avionics, are adopted from the electronics 
and communication areas. Interchange of knowledge and standards between the auto-
motive and the aerospace sectors in the area of methods development is in progress. 
This section introduces some definitions to support systems and product development. 

3.2.1 ANSI/EIA-632 - Processes for Engineering a System 
The ANSI/EIA-632 [1999] standard “Processes for Engineering a System” from Ameri-
can National Standards Institute defines an approach to engineer (or re-engineer) a sys-
tem, incorporating industry best practices. The approach has three major parts: 

a) A system is one or more end products and a set of related enabling products that 
allow end products to meet stakeholder needs and expectations 
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b) Products are an integrated composite of hierarchical elements, integrated to meet 
the defined stakeholder requirements 

c) The engineering of a system and its related products is accomplished by applying a 
set of processes to each element by a team having the needed knowledge/skills. 

A system consists generally of a product breakdown and specification structure as de-
scribed in Figure 10. 

 
Figure 10. ANSI/EIA-632 definition of Enabling and End products. 

Each product is broken into sub-systems in a hierarchical manner shown in Figure 11. 
This explicitly means that each system at every level has its own set of enabling prod-
ucts, which in the model based case include the actual models of the end product(s).  

 
Figure 11. Building blocks in layers according to ANSI/EIA-632. 
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The ANSI/EIA-632 standard clearly distinguishes between “acquirer requirements” and 
“other stakeholder requirements”. Sources of other stakeholder requirements include 
government and industry regulations, international conventions, environ-mental con-
straints, and company directives. In general, other stakeholder requirements place con-
straints on the system development, both on the resulting product and the processes for 
developing it. It is usually impossible to meet all requirements for a particular system 
since they are conflicting relative to one another, so early and thorough requirements 
analysis is crucial, preferably by means of modeling (and simulation when appropriate). 

3.2.2 Product and system lifecycle 
A widely used systems/software development model is the two-dimensional model with 
system lifecycle phases versus process activities according to ISO/IEC 15288 [2008]. It 
establishes a framework for describing the life cycle of systems by defining a set of 
processes and associated terminology. In a multi-customer scenario with a product 
family strategy, the traditional product lifecycle model should be enhanced with a sys-
tem lifecycle definition that includes the “system-phases” of a whole product family 
seen from a development point of view. This definition may serve as a template when 
designing or changing the engineering environment (selection of methods and tools). 
Each system-phase requires different capabilities and performance of the engineering 
environment. 

Table 2. Definition of system-phases for a product family, from [Andersson 2009]. 

System 
phase 

Conception Core        
development  

New         
variants 

Enhancements Maintenance 

Main 
work 

User needs 
elicitation 
Explore exist-
ing products 
Trade-off study 
Optimization 

Definition, 
specification, 
design, imple-
mentation and 
initial produc-
tion 

Variant specifi-
cation and 
verification. 
Configuration 
Production 
automation 

Rework of sys-
tem, integration 
of new func-
tions/features  
Obsolescence 
management 

Maintenance 
and support of 
system 
Corrections 
User feedback 
handling 

Main 
objective 

Defined scope 
for products 

First product 
release 

Defined prod-
uct family 

Keep products 
competitive 

Keep customers 
satisfied 

The system lifecycle phases in Table 2 are used to analyze the long-term effects of dif-
ferent choices of development method and its supporting engineering environment. 

3.2.3 Iterative and incremental methods 
Developing and delivering a larger system in increments is a way of reducing risk. In-
cremental methods for model driven software development have a history dating back 
to the early 1990s. Since then, a number of software development methods have ap-
peared, ranging from the waterfall method to highly-incremental methods like the ex-
treme programming (XP) method [Beck & Andres 2005]. The Scrum method is similar 
to XP but has continuous improvement with retrospectives as a prescribed activity as 
described in section 2.3.4 “Scrum as method to support interactive research” above. 
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3.2.4 Standardized languages and modeling notations  
There are many standardized modeling languages, but also tools with de-facto-standard 
notations. Below, some languages and modeling notations most relevant for this disser-
tation will be described. 

XML 
The XML language, World Wide Web Consortium [2008] is widely used to capture 
information and meta-data and for transformations. When the information structures are 
defined, XML schemas (.xls) and transformations (.xslt) are standard features, enabling 
information exchange across engineering domains/tools. Johansson [2003] shows that 
simulation models can be specified in the XML format, and then transformed to a do-
main specific language, for example Modelica. Examples of XML-based standardiza-
tion for use in modeling, and exchange of product data are described below. 

1) Interface Specification 
In the area of model interface definition of modular architectures, the Functional Mock-
up Interface, FMI, standard provides specifications in XML format; see [Modelisar 
2011]. This gives a tool to support integration in different frameworks. A model created 
with a tool supporting FMI is thereby integrated easily in simulation environment with 
respect to the signal interface definition. The FMI standard also provides a newly re-
leased PDM interface in order to handle “modeling, simulation, and validation informa-
tion” in the PDM systems.  

2) Product data 
Another defined XML-based format for exchange of information for Product Data 
Management (PDM) is the PLMXML format, which is “a collabora-
tion/interoperability protocol designed to exchange pertinent PLM information” be-
tween data sources; see further [Siemens 2011]. 

Modelica 

Modelica [Modelica Association 2011] is a descriptive, object-oriented modeling lan-
guage suited to physically based simulations and analysis of behavior and performance. 
There are model libraries, both open source and commercial, typically supporting me-
chanical, electrical, electronic, hydraulic, thermal, electric power or process-oriented 
components. An example of an ideal capacitor component is presented in the textual 
model definition below. 

model Capacitor  
  Pin p; 
  Pin n; 
  Real v; 
  Real i; 
  parameter Real C "Capacitance"; 
equation  
  0 = C * der(v) - i; 
  0 = p.v - n.v - v; 
  0 = p.i + n.i; 
  0 = p.i - i; 
end Capacitor; 
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In this model, the parameter (C) is used to instantiate the model with different values of 
its capacitance. This kind of parameter-sized component is well suited for reuse and 
sharing between users through a model library. Experience from industrial usage of 
Modelica in simulation of aircraft vehicle systems has been published in paper [II]. As 
reference to modeling with Modelica, see [Fritzson 2004]. 

Unified Modeling Language and Systems Modeling Language 
The standardization organization Object Management Group (OMG) has released speci-
fications for the Unified Modeling Language (UML®) [Object Management Group 
2007], and the Systems Modeling Language (SysML™) [Object Management Group 
2008]. Both are general-purpose object-oriented graphical modeling languages for spe-
cifying, analyzing, designing, and verifying complex systems. UML provides graphical 
notation with a semantic foundation for modeling behavior and structure. SysML 
represents a subset of UML with extensions for requirements and parametrics (basic 
mathematical support) needed for Systems Engineering. Both have weak support for 
building simulation models, but most tools that support UML/SysML, have code gener-
ation engines, enabling compilation and execution. The defined SysML diagram types 
are shown in Figure 12. 

 
Figure 12. Diagram types defined in SysML 1.1. 

It is convenient for a specific project to reduce the set of UML/SysML diagrams used, 
as there is some overlap between the diagram types. A limited set also simplifies the 
introduction of UML/SysML modeling including guidelines, training, and tool set-up. 
As described in Paper [I], an appropriate set of diagrams to use in avionics system de-
velopment is: 

• Use Case and Activity Diagrams for analysis. 
• Class/Block Definition, Sequence, State Machine, and Deployment Diagrams for 

design, implementation, and test. 
SysML also has built-in definitions of dimensions and SI-units (e.g. “dimension; 
Frequency, unit; Hertz” or “dimension; Power, unit; Watt”). It is 
possible to add “user-defined” units, which is powerful in avionics/aviation specifica-

 Requirement      
Diagram 

Structure 
Diagram 

Behavior 
Diagram 

Sequence 
Diagram 

State     
Machine 
Diagram 

Block     
Definition 
Diagram 

Internal 
Block    

Diagram 

Package 
Diagram 

Use Case 
Diagram 

Activity 
Diagram 

SysML Diagram 

Parametric    
Diagram 



24  Variability and Customization of Simulator Products 

 

tion and design. Handling of, for example, flight speed and altitude is, in the aviation 
community, done in the non-SI-units Knot and Foot. For further details on the SysML 
language and examples of its use, see [Herzog 2005; Weilkiens 2008; Friedenthal, 
Moore & Steiner 2011].  

Experience at Saab Aeronautics from introduction of UML/SysML as a means for sys-
tems modeling in a large organization supported by the IBM® Rational® Rhapsody® tool 
[IBM Rational Rhapsody 2011] has been reported in paper [I] and in Herzog, Anders-
son, and Hallonquist [2010]. 

3.2.5 Model driven architecture 
The Model Driven Architecture (MDA) approach, as described in Mellor and Balcer 
[2002], is a way to support separation of functional specification from implementation. 
MDA is used in the development of software intensive systems where automatic code 
generation is part of the process. Its underlying concept is to separate ‘do the right 
thing’ from ‘do the thing right’ by introducing platform-independent models (PIMs) and 
platform-specific models (PSMs). Translation from PIM to PSM is defined by rules in a 
platform definition model and generally performed by automated tools. Translation (or 
generation) from models to different source code languages, such as ADA, C++ or Java 
is used, but also translation to documentation of the design.  

3.3 Classification of models and modeling domains 
Ever since modeling became a practice for specification or problem solving in science 
and engineering, the number of available techniques and tools has increased. This is 
partly caused by the evolution of work stations/computers, but also thanks to the dem-
onstrated value of modeling in the area of complex problems. Naturally, every modeling 
technique fits best for one small set of “problems”, even though it may be used for a 
broader set. In large development projects, it comes to a choice or trade-off between on 
one hand the use of many specialized, powerful tools, and on the other hand the use of a 
few multipurpose, but usually “dull”, tools and techniques. Many attempts have been 
made to classify modeling techniques, and some classifications are mentioned herein.  

3.3.1 Value and acceptance of models 
When choosing a modeling technique, it should plausibly add sufficient value to the 
project, and it is important to recognize the purpose the modeling has and what charac-
teristics the different techniques have. One fundamental purpose of M&S is to reduce 
the amount of physical prototyping and testing – activities which normally demand a 
significant amount of resources. Related aims are to enhance the abilities to take early 
model based design decisions, and to use M&S to support the certification of aircraft 
systems, [CRESCENDO 2010]. In order to achieve this, one should be able to answer 
questions like; To what extent can we trust the model, how well does the model 
represent the real system, do we know the limits of the model, does the model cover the 
intended use? 

The above questions deal with M&S credibility. Depending on the model’s complexity 
and the intended use, performing a relevant assessment of a model’s credibility might 
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be a challenging task. Research is being done in this field, where different methods are 
proposed for making such an assessment. Common ingredients of methods are verifica-
tion and validation aspects. Several definitions of these terms exist and one mature ref-
erence for definition of verification and validation is from NASA’s Standard for Models 
and Simulations [NASA 2008]: 

Verification: The process of determining that a computational model accurately 
represents the underlying mathematical model and its solution from the 
perspective of the intended uses of M&S. 

Validation: The process of determining the degree to which a model or a simulation 
is an accurate representation of the real world from the perspective of the 
intended uses of the model or the simulation. 

Another common aspect is related to M&S uncertainty management, which here refers 
to the process of identifying, quantifying, and assessing the impact of sources of uncer-
tainty embedded along the development and usage of simulation models. Some poten-
tial sources of uncertainty are model parameters, model input data, model simplifica-
tions, and the numerical method used by the solver. Several definitions aimed to 
distinguish between different types of uncertainties are found in literature, [Oberkampf, 
DeLand, Rutherford, Diegert & Alvin 2002; Thunnissen 2005; Padulo 2009]. Applica-
tion for aircraft vehicle systems is found in [Steinkellner 2011]. Commonly, a distinc-
tion is made between aleatory uncertainty (due to statistical variations, also referred to 
as variability, inherent uncertainty, irreducible uncertainty, or stochastic uncertainty) 
and epistemic uncertainty (due to lack of information, also referred to as reducible or 
subjective uncertainty). 

For a model to add value in the end, it needs to be accepted for use, regardless of uncer-
tainties or known limitations. An emerging standard for V&V and Acceptance is the 
Generic Methodology for Verification and Validation (GM-VV) [GM-VV 2010]. It 
provides a handbook, which guides its users through the V&V and Acceptance efforts 
and clarifies their responsibilities and how to apply the methodology in practice. It also 
describes how to tailor the methodology to the needs of a specific M&S project. 

3.3.2 Specification and Analysis models 
One classification is to divide models into “specification” and “analysis” models.  

 
Figure 13. A specifying model is the basis for definition and analyses of a system. 
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An example from solid modeling and hardware/structure development is the following: 
• A specification model is the definition of surfaces (shape) and the content (mate-

rials) of a component. It is typically done in a 3D CAD (Computer-aided design) 
tool, in a visual prototyping manner. 

• A connected analysis model is used for stress analysis on the same component, 
based on the specification, but with information on boundary conditions (spectrum 
of forces) added. 

An analysis is performed with a subset of information from the specification model, but 
with additional information for the specific analysis to be performed, as shown in Fig-
ure 13. The same specification system model can consequently be the basis for perform-
ing analyses of several aspects of the system. Examples of analysis from avionics de-
sign are fault tree analysis (TFA), formal methods analysis, and analysis by simulation. 

3.3.3 Modeling domains 
Modeling domains are a framework for classification of modeling tools and their related 
techniques/methods. Classifying and sorting tools/techniques/methods has been a means 
to analyze strengths and weaknesses of different modeling methods/tools and to organ-
ize the work in business improvement programs and in engineering process research.  

 
Figure 14. Definition of Modeling Domains. The lower part is related to physical objects 
and their properties, such as; space, time, energy and matter, whereas the upper part re-
lates to information. 

The framework is for example used within the CRESCENDO research project 
[CRESCENDO 2010] and by the Process, Methods & Tools (PM&T) organization at 
Saab Aeronautics. When model based techniques are introduced, the framework aims to 
analyze whether the change efforts are broad enough and whether all domains are cov-
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ered by appropriate enhancements to achieve engineering efficiency, quality, and an 
attractive engineering environment. The modeling domains are defined as shown in 
Figure 14. A further description of each modeling domain is found in Andersson [2009], 
which is one basis for this dissertation. Most of the work in the remaining chapters of 
the dissertation is related to the “Model Integration and System Simulation” domain. 

3.3.4 Behavioral modeling techniques 
In order to create a description of behavior, a number of modeling elements are re-
quired. The necessary set of semantic elements, as defined in [Oliver, Kelliher & Kee-
gan 1997], includes: 

• functions, which accept inputs and transform them into outputs 
• inputs and outputs, of various types, and 
• control operators, which define the ordering of functions 

One example of classification of behavioral models is found in Cassandras and Lafor-
tune [2008] that holds for Discrete Event Systems (DES) modeling techniques. Exam-
ples of different types are event-driven, discrete-state, non-linear, time-invariant, and 
dynamic models. For modeling of physical systems, other classifications are used, for 
example continuous/discrete time; see further Andersson [2009] and Steinkellner 
[2011]. 

3.4 Simulation of complex products 
The main objective for simulation in aerospace is to reduce risk and cost. In the early 
stages, risk and cost are reduced by gaining a better understanding of how to specify the 
system/product and what the tough constraints are. In later stages, simulation generates 
“flight-hours” providing engineers, pilots, and other stakeholders with knowledge about 
the system for different purposes.  

3.4.1 Modeling and simulation environments 
Today, there are many advanced domain modeling and simulation environments that 
allow detailed simulation prior to components’ and products’ realization. Those envi-
ronments evolve continuously regarding both languages and modeling techniques. Lan-
guages/tools such as Mathworks, Simulink® [2011], Modelica® [Modelica Association 
2011], UML® [Object Management Group 2007], and VHDL-AMS Christen and Baka-
lar [1999] are increasingly used in industry.  

For a heterogeneous system such as an aircraft, there is a need to combine and integrate 
simulation models developed in different environments into a virtual system in order to 
simulate the complete system. Closed-loop-simulation denotes an arrangement of con-
nected models in a loop, including sensors and actuators, for example an ECS model 
connected to its control logic. Closed-loop-simulation is further described in papers [II] 
and [V]. 

Simulations are used to predict the behavior and performance of system configurations 
not yet realized, but also of real product configurations for verification activities. Data 
from the real system is fed back to the models and to the language/tool-specific block-
libraries to improve the accuracy and quality of simulations. Different integration tech-
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niques for simulation models, and different types and scales of simulations can be iden-
tified as described in the following sub-chapters. 

3.4.2 Integration strategy  
Information and models from different integration levels and from different modeling 
domains often have to be integrated to be part of analysis and/or verification activities. 
Carloni et al. [2006] argue that a single environment cannot offer a complete solution to 
the needs of designers who use hybrid/integrated models to represent the system under 
development.  

In Saab Aeronautics’ experience, a “loose integration” strategy should be chosen in 
order to avoid lock-in effects and costly long-term maintenance of the tool integrations. 
This requires formats and interfaces to be clearly defined or standardized in order to 
integrate the tools and maintain this integration. Tight integration, on the other hand, 
relies on the tools being connected and running in parallel with exchange of data when 
performing an analysis or a simulation. The loose integration strategy reduces the de-
pendency on two or several tools being available simultaneously.  

 
 

Figure 15. Integration of modeling domains and examples of tools. 

There are several interfaces between the modeling domains that need to be integrated. 
In Figure 15, the main pattern of integration needs is shown, going from a “heavy” 
hardware/structure to the left, through equipment, electronics, control, and information, 
to a “soft” graphical layout to the right. When analyzing features of development tools 
it is interesting to notice that many tool vendors try to cover larger and larger parts of 
this domain map by adding features and functions to their tools. Three examples, with 
reference to Figure 15, are: 

• Modelica is integrated into the new releases of CATIA (CATIA Systems Dynamic 
Behavior), which extends its capabilities for dynamic simulation (extension of 
CATIA to the right in the figure); see [Dassault 2011]. 
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• In the Modelica® language, libraries have been developed for Petri nets and state 
charts to extend Modelica (to the right in the figure); see [Modelica Association 
2011]. 

• Simulink® is integrated with Stateflow® (extension to the right in the figure) and 
enhanced with Simscape™ (extension to the left in the figure), see Mathworks, Si-
mulink [2011], Mathworks, Stateflow [2011], and Mathworks, Simscape [2011]. 

Tools with functionality that supports multiple modeling domains are of course an ad-
vantage; they give the engineers and the team a possibility to choose from several tools 
for a specific engineering task. In large-scale projects, however, it is a balance between 
uniformity and diversity in the set of supported modeling techniques. With several 
teams established over a period, each one focused on specific engineering tasks, it 
might give an overall diversity of tools and ways they are used. This may lead to a sub-
optimized implementation of methods/tools and inefficiency in the long term, especially 
regarding specification modeling.  

Concerning modeling for simulation, connection (or integration) of the modeling do-
mains is done at different levels. At component level, integrated simulation can be done 
using co-simulation or hosted simulation techniques, performed in desktop tools. At 
higher levels of integration, more execution-efficient techniques appropriate for large-
scale simulation have to be used. 

3.4.3 Integration techniques for simulation models 
Naturally, simulation models are developed relying on different modeling techniques – 
each focused on a specific problem, engineering discipline, or aircraft subsystem. From 
the aircraft integration perspective, different models need to be integrated into a larger 
model for simulation/analysis with a broader scope or at a higher system level. 

It is a growing challenge to use and integrate simulation models from different domains, 
as an increasing part of the end system verification relies on results from simulation 
models rather than expensive testing in flight tests. The development of computer per-
formance and modeling-and-simulation tools enables simulation on larger and larger 
scales. Consequently, the need for integrated models and their validation is growing. 
Simulation (sub-)models for aircraft systems can be organized into the following major 
categories: 

• Equipment models (e.g. resistors and capacitors in electronic systems, pipes and 
nozzles in hydraulics) for performance evaluation and dimensioning; 

• Models of the embedded software for control of system functions and monitoring 
of functions and of the equipment/hardware; 

• Models of the environment of the system. 
Several commercial and in-house developed tools exist for connecting different simula-
tion models and there are different ways of performing integrated simulation.  

Co-simulation 
The concept of Co-simulation is to connect and integrate models combined from differ-
ent simulation engines and execute them concurrently. This approach is supported by 
tool vendors who provide add-ons or packages for connecting tools together for simula-
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tion set-up. Co-simulation is suitable for a system of Electronic Control Units (ECU) 
connected by a data bus, but less useful when the connected models have physical inte-
ractions, requiring power port modeling techniques and a specific equation solver. In 
co-simulation, the tools are connected [Öström, Lähteenmäki & Viitanen 2008]. 

Hosted Simulation 
In Hosted Simulation, the simulation engine from one of the modeling and simulation 
tools is used to “host” other models during simulation. The hosted simulation method is 
enabled through code generation. A model created in one tool is simply generated to 
executable code and imported (hosted) in another tool to perform the simulation. In 
hosted simulation the codes are connected. A comparison of two variants (different 
hosting tools) of hosted simulation can be found in Steinkellner, Andersson, Krus and 
Lind [2008]. 

High Level Architecture 
High Level Architecture (HLA) is a general-purpose architecture and standard for con-
necting simulation applications. HLA defines an architecture with a set of Application 
Programmer's Interface (API) standards. Simulation applications communicate by mak-
ing calls to the HLA APIs. HLA can be used for integration of several distributed simu-
lators by network connection over long distances. Parts of a simulator may also be con-
nected through HLA, for example an aircraft simulation model and the tactical 
environment. 

3.4.4 From desktop simulation to the iron bird 
Tests can be performed in software-based simulators and/or in hardware based system 
simulators (rigs) with product-equivalent computers and other equipment in the loop. 
There are different types of simulation facilities: 

• Desktop simulation tools, cheap and easy to access 
• Handling qualities, software based, simulator with or without pilot-in-the-loop 
• Presentation and maneuvering simulator with Human-Machine-Interaction in focus 
• System simulator (rig) with a large amount of target hardware and other product-

equivalent equipment present. This type of simulation is defined as large-scale. 

A picture of a simpler kind of simula-
tor for mid-scale human-in-the-loop 
simulations is shown in Figure 16. 
 

Figure 16. A simple human-in-
the-loop simulator used for valida-
tion and verification of system 
functionality, but also for basic 
training of engineers. 
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Access to a simulator with actual system status is valuable to the engineering teams in 
order to gain a common understanding of both implemented system functionality and 
remaining work.  

For test and verification of safety critical functions prior to first flight of a new aircraft 
configuration, the classical iron bird has long been used. An iron bird with complemen-
tary simulations in various domain-specific models/tools is the predominant method of 
collecting evidence for verification/certification prior to flight. The trend is however to 
increasingly rely on software based simulations, see [II]. The notion of “virtual iron 
bird” is used to describe a model used for analysis that earlier had to rely on a classic 
physical rig. Schallert et al. show the benefits of using a virtual iron bird with the possi-
bility to perform optimizations by means of simulations to evaluate power consumption 
of different alternatives with the aim of minimizing the generator power to be installed 
on a future all-electric aircraft [Schallert, Pfeiffer & Bals 2006]. 

3.4.5 Mid-scale simulation 
Here, mid-scale simulation is defined as the activity performed, when some simulation 
models of aircraft subsystems, developed with different modeling techniques, are inte-
grated into a larger model, complex enough to not be simulatable in one desktop model-
ing and simulation tool.  

A software-based simulation model of this scale is easy to execute with a range of dif-
ferent user scenarios, and this can be done in “batch mode”, preferably distributed dur-
ing “non-work-hours”, to maximize the usage of the company’s computational re-
courses. A set of scenarios are created with selected values of inputs (e.g. load 
configuration, fuel content, speed, and altitude). Out of several thousand simulated sce-
narios/maneuvers, including degraded modes, there is a selection of critical maneuvers 
for further verification. For each payload combination, a set of the most severe and crit-
ical maneuvers are selected for pilot-in-the-loop simulations and maybe flight tests. Not 
all simulation environments have full support for simulations in batch mode. In paper 
[II], the lack of support, e.g. for data processing, during batch simulations in a Modelica 
environment is described. 

One drawback of using only software models is that some aspects are difficult to cover. 
For example, when verifying multi-channel systems, the inter-channel behavior such as 
redundancy policy, timing, and performance aspects has to be tested separately, in a 
hardware-based rig with target software, in parallel with the model based functional 
verification. Therefore, test rigs with the system’s real hardware components have to be 
built to cover those aspects. 

3.4.6 Large-scale simulation 
When several simulation models of the aircraft subsystems are integrated and specific 
arrangements for performance or interoperability exist, the simulation is considered 
large-scale. Examples of such arrangements are real-time execution including pilot-in-
the-loop simulation, see Figure 17, or hardware in-the-loop simulation (HILS) configu-
rations. 



32  Variability and Customization of Simulator Products 

 

 
Figure 17. Example of a large-scale simulator with advanced pilot interaction. This kind 
of simulator facilities also needs a separate Instructor Operating Station (IOS) for setting 
up scenarios and providing the system and the pilot with e.g. faults and mishaps.  

Simulators in the aerospace sector have evolved towards virtual reality machines, and 
they are sharing some technology with products found in the computer game industry, 
e.g. visualization technology [Stone, Panfilov & Shukshunov 2011]. 

A defined product structure of a simulator enables well-described parts including their 
interfaces, which is the basis to declare a simulator test-worthy, and declaration of de-
sign and performance to customers.  

 
Figure 18. The top level of a generic product structure for large-scale simulators. Part 1- 
Simulation Models is the focus for configuration support related to structures and data of 
the simulated product. 

Figure 18 shows the generic parts (subsystems) of a simulator. Descriptions of the sub-
systems and some of their functional responsibilities are listed here: 

1. Simulation Models representing the simulated system/product, for instance an 
aircraft with its immediate surroundings (including ambient temperature, air pres-
sure, and aerodynamic forces). This part contains several sub-models, which are 
needed for the simulation of a complex product. Some of the models may be reus-
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able and/or configurable for multiple purposes. It includes the connection of mod-
els, parameter libraries, mathematics library functions, and solvers needed for cal-
culation and execution during the simulation. 

2. Hardware in the loop contains functions that enable the connection of vehicle 
operational hardware (ECUs) so that they can be part of the HILS – hardware in-
the-loop simulation.  

• Connection between a/c computer hardware and simulation computer  
• Power supply and cooling air supply 

3. Operational Environment performs simulation of other vehicles/platforms/sys-
tems that interact with the simulated system/product. In military applications, it is 
called ‘tactical environment’ and the entities may be hostile (foes) or friendly 
(friends). 

4. Audio/Visual Environment (out the window & cueing) creates visualization of 
the outside world and sensor images as well as presentation of the environment. 

• Generation of sensor data 
• Generation of sound/audio 

5. Instructor/Operator Station (IOS) & Other Tools has the human-machine inter-
face for control of the simulator including tactical simulation. 

• Simulation control and monitoring (start, stop, load, etc.) 
• Controls for registration and evaluation 
• Debugging functions 
• Control of tactical simulation 

6. Execution contains hardware and software components for execution. If required 
it includes real-time management, for simulator in real-time.  

• Simulation computers with operating system 
• Synchronization, data distribution, and recording functions 

Of the six parts, the Simulation Models (part 1 in Figure 18) have a strong relation to 
the primary product (the aircraft).  

3.5 Simulation of what-if scenarios 
Objectives for simulation during development of aerospace products include reducing 
risk and cost. System safety is an important aspect of the development. Data from simu-
lations and from measurements need to be available for safety analysis so that the prod-
ucts can be certified for flight and for operational usage. In order to provide data and 
analysis results to the certification activity, many different “what-if” scenarios are de-
fined. Typical scenarios used for safety analysis are behavior and performance during 
malfunctioning or errors in the simulated system. Actually, most effort/time spent in 
simulators for aerospace systems is related to “misbehavior” of the system. This applies 
for all the contexts: development, verification, and training. For example, training in 
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landing routines with degraded fuel and/or ECS system functions is important for both 
pilots and ground crew. 

“The deployment of highly skilled staff is an essential prerequisite for the safe 
and effective operation of aerospace systems. Simulation-based training plays 
an increasingly important role in the qualification of aerospace systems per-
sonnel.” [Stone et al. 2011] 

Simulation-based training of pilots and other personnel in the aerospace business is cer-
tainly important. However, there are signs of overconfidence in its effect and how much 
of the flight training that should be performed in simulated environments. This is a 
quote from a patent on a flight simulator layout for pilot training: 

“Due to recent advances in simulator technology, simulators are expected to 
supplant all in-flight training of pilots, and therefore, commercial pilots can 
expect to receive their Federal License directly upon the completion of their 
flight training in simulators. Such simulator-trained commercial pilots, then, 
could carry paying passengers, even though they have never flow an actual 
aircraft before.” [Geiger 1982] 

Model support is needed for many different kinds of fault conditions that need to be 
simulated and analyzed, or for which training should be performed. What faults to mod-
el is, of course, dependent on the system concerned, but a rule of thumb is that sensors 
and actuators in a system are error-prone. How to model faulty conditions of a sensor is 
important and there are many different ways to do it; a few examples are listed below: 

• Intermittent fault is a fault that repeatedly occurs and disappears. Example: loose 
connectors 

• Incipient fault is a fault that gradually develops from no fault to a larger and larger 
one. Example: a slow degradation of a component 

• Abrupt change is a fault that appears as a very quick change of a variable. Example: 
sudden breakdown of a component. 

For general handling of faults in a sensor or in its connection, it is convenient to build a 
fault injection feature into the modeling framework. All sensor models are then en-
hanced with extra output settings, see Figure 19. 

 
Figure 19. Sensor model enhanced with general fault injection feature 
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Here is an example of general fault injection settings of sensor signals used at Saab 
Aeronautics;  

Type Name Meaning 
0 no fault Y2 = Y1; 
1 zero Y2 = 0; 
2 + hard over Y2 = + BigNumber; 
3 - hard over Y2 = - BigNumber; 
4 bias Y2 = Y1 + FaultValue; 
5 gain Y2 = Y1 * FaultValue; 
6 user input Y2 = FaultValue; 

This kind of general functionality has in Saab Aeronautics’ experience proven useful in 
mid-scale and large-scale modeling and simulation, as it is easy to implement and use. 
Specific sensor faults are of course needed for certain kinds of analysis, or pilot train-
ing, and these are preferably built into the sensor model provided by the equip-
ment/sensor supplier. 

3.6 Summary of model based development 
Models should contribute to manage complexity in an engineering organization. Model 
based principles covered in this chapter include specification models aimed at defining 
a system and analysis models based on the definitions, but enhanced with details to, for 
example, enable simulation. Modeling domains are defined and exemplified with indus-
try-standard languages and notations such as SysML, UML, XML, and Modelica. Dif-
ferent types of aerospace simulations have different purposes; verification of safety 
prior to first flight and training for increased skills of aerospace operational personnel.  

Challenges in the further development of model / simulation based methods are identi-
fied. Models become possible to use in multiple contexts and performance of computers 
increase, which contributes to an increasing number of models. To be useful, the models 
need to be verified & validated for each context. It should always be remembered that 
the simulation models are there to represent some reality, and they can gain a high ac-
ceptance only if they show compliance with the represented reality. 





 

4 
Reuse and its application 

THIS CHAPTER defines a set of principles for reuse in the context of product fami-
lies and use of knowledge-based engineering. Concepts like Product Line Engineering 
and Software Product Lines are covered and the chapter is mainly focused on the reuse 
of simulation models and artifacts in software-intensive systems. Key concepts such as 
constraints, feature model, and Configuration Tasks are also defined. These concepts 
and methods are essential to create methods and mechanisms for customization of simu-
lation models, and especially for configurable models that have several purposes- multi-
purpose models. Analyses of changes in a product line with the help of simulations are 
also covered. 

4.1 Reuse principles 
Reuse of existing solutions, components, knowledge, and data/information is not only 
tempting; it is in many cases wise because it saves time, reduces risks, and there exist 
earlier experience of using the actual artifact. Reuse of artifacts that are produced in 
industrial development is a strategy with great potential, not only to reduce lead-time 
and cost, but also for increasing product quality and job satisfaction [Clements & North-
rop 2002]. 

Reuse can be done in several ways. The 
prevalent and easy-to-adopt method of 
reuse, which we have all practiced at 
some point, is “copy-and-paste”, see Fig-
ure 20, which in software engineering 
also is called duplication [Mann 2006]. 

 
Figure 20.  Copy-and-paste tools 

 
Generally, copy-and-paste of engineering artifacts could be done at different levels; 
source-code line, model file, directory, database, or a complete product, but it has sever-
al disadvantages: 

• Generation of many copies drives data storage volume requirements 
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• Problems with ”information divergence”, i.e. the copies will differ with time 
• If these copies are subject to controlled change the result will be increasing costs 

for updates and maintenance  
• It is usually a tedious task to update the same data within different copies 

Most engineering methods and information management systems have as their basic 
principle avoiding unnecessary duplication of information. In software engineering, the 
principle ‘Don't Repeat Yourself’ (DRY) was formulated by Hunt and Thomas [2000], 
which aimed to reduce repetition of information. The DRY principle is stated as: 

"Every piece of knowledge must have a single, unambiguous, authoritative 
representation within a system."  

This is applicable not only to software, but also to artifacts like requirements, database 
schemas, test plans, build systems, and documentation. 

Methods to avoid duplication that are more efficient in the longer term need an infra-
structure and tools to mechanize the reuse and are based on a deliberate design choice. 
Examples of techniques include: 

• Configuration by means of filters and views 
• Databases and spreadsheets with report generators, filters and views 
• Configuration of a system via parameters 
• Configuration/customization through the product line approach. 

These techniques do not have all the disadvantages of copy-and-paste, but implementa-
tion and maintenance of such techniques require investment in the form of infrastruc-
ture, tools, procedures, and training. The method of reuse further covered in this work is 
based on a design choice utilizing single source and the product line approach as the 
guiding principles. 

4.2 Product Line approach 
This section discusses the theories and basic concepts of Product Line Engineering and 
Software Product Lines used in this dissertation. The basic principles for reuse, product 
platforms, and Software Product Lines (SPL) are well established, and are in this work 
mainly based on Clements and Northrop [2002], van der Linden et al. [2007], and 
Simpson et al. [2006] and the context is configurable simulation models intended for 
multiple purposes and simulator products. 

There exist many definitions of product line, family, and platform in the literature. In 
this work, product line and product family are equivalent. Product line is mainly used in 
the combination with the terms architecture, approach, engineering and similar.  

4.2.1 Knowledge Based Engineering 
Knowledge Based Engineering (KBE) focuses on the reuse of technical knowledge by 
automation of repeatable, error-prone, and/or time-consuming engineering tasks using 
tools. In the MOKA methodology (Methodology and Tools Oriented to Knowledge-
Based Engineering Applications), KBE is defined as:  
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“The use of advanced software techniques to capture and re-use product 
and process knowledge in an integrated way” [MOKA Consortium 2001] 

Historically, KBE has its roots in Computer-Aided Design (CAD) [Wikipedia, KBE], 
and now there are several engineering methods included in the scope of KBE. In the 
book Intelligent Systems by Hopgood [2001], KBE and the related field Computational 
Intelligence include engineering methods and techniques such as: 

• Design optimization, to find the best design solution 
• Handling of uncertainties and supporting methods e.g. Fuzzy Logic 
• Expert systems and Neural networks  
• Parametric modeling and generation of design configurations  
• Rule based systems, constraint programming, and configurators 

Searching within a design space is a key in many practical problem-solving tasks. Many 
activities are aimed at collecting or providing data for searches, comparisons, or calcula-
tions. 

4.2.2 Platform, variants, and modularity 
In product line engineering, similar products are thought of as evolving families that are 
derived from a common platform but with specific, distinguishing features/functions of 
their own. Each individual product in a product family is called an instance or Product 
Variant (PV). The PVs share common structures and product technologies. An estab-
lished definition of product platform suitable for the application of industrial products, 
for instance aircraft and simulators is: 

“product platform - A set of platform elements and architectural rules that 
enable a group of planned product offerings. Key characteristics of a product 
platform include:  
(1) Architectural rules/standards governing how technologies and subsystems 
("platform elements") can be integrated;  
(2) Defines the basic value proposition, competitive differentiation, capabili-
ties, cost structure, and life cycle of a set of product offerings; and  
(3) Supports multiple product offerings from a single platform, permitting in-
creased leverage and reuse across the product line.” [Simpson et al. 2006] 

A product platform may include components (or subsystems; platform elements), 
processes, knowledge, and relationships. There are three important aspects of a product 
platform: 

• Its modular architecture 
• Internal and external interface  
• The standards and design rules to which the modules/assets must conform 

In platform-based product development, interface definition and management is a cen-
tral activity. A modular platform is used to create Product Variants through the configu-
ration of existing components. Product architecture can be defined as the way in which 
the functions are arranged into modules and the way in which these modules interact 
[Ulrich & Eppinger 2008]. 
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For software intensive systems, a slightly different focus is applied because it is possible 
to create the software products through a software-build process integrated with the 
development environment for the components. In practice, a software product can from 
a specification be assembled, compiled, tested, and delivered by automation in a series 
of integrated steps. 

“A software product line is a set of software-intensive systems sharing a 
common, managed set of features that satisfy the specific needs of a partic-
ular market segment or mission and that are developed from a common set 
of core assets in a prescribed way” [Clements & Northrop 2002] 

The term core assets in this definition, includes reusable software components, re-
quirements, test cases, documentation, models, and even budgets and schedules. The 
‘core assets’ definition is close to the meaning of platform. Key activities in develop-
ment of a software product line are: 

• Core asset development (for example a specification, a software library with ma-
thematic functions, a simulation model). It is important to plan the development of 
the core assets to be well suited for reuse. 

• Product development (specification, building, integration, and delivery of prod-
ucts). The success of this activity depends upon the core assets. 

• Management (planning for updates, delivery, resource allocation, etc.) 
The key activities are interconnected and configuration management support is a central 
activity for a product line organization and for coordination of the key activities. 

4.2.3 Commonality 
Degree of commonality is an important property in the analysis and planning of a prod-
uct family. If many products use many common assets, the reuse potential is large. Dif-
ferent degrees of commonality may be visualized as in Figure 21. 

 
Figure 21. Visualization of degree of commonality, from Sivard [2001]. 

There is a tradeoff in the degree of commonality; a high degree gives all the benefits of 
cost saving due to reuse between products, but the cost of coordinating changes, releas-
es, and interconnected product planning, for example, will increase. Wickenberg [2011] 
describes eight challenges when implementing a product platform in the automotive 
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industry. One challenge, for example, is when a component matching the toughest re-
quirements, it would typically be over-specified for most uses and hence unnecessary 
costly. An example is the reuse of an engine in a vehicle product family where the (one 
size) engine is heavier than the optimal for the smallest vehicle size and too weak for 
large vehicles. A high degree of commonality might also result in suboptimal products 
or less distinctive products [Thevenot 2006]. In the literature there are many indices 
defined to measure the degree of modularity within a product family, see Thevenot 
[2006] for a summary. A commonality index is typically based on parameters such as 
the number of common components or the component manufacturing volume. 

4.2.4 Variability and variation points 
An explicit model of the variability in products and in the core assets is needed for scop-
ing and analysis and as input for implementing configurator support. The variability 
model defines the variability of different classes of the defined products [Hvam et al. 
2008]. It defines what can vary by defining variation points for components and types 
of variation available for a specific variation point, for example their binding time prop-
erties. The model also defines variability dependencies and variability constraints to be 
considered when customizing end products. 

The variability model is part of the Product Variant Master (PVM) and enables better 
insight and a common understanding of possibilities and limitations in the product fami-
ly and potential products. 

4.2.5 Product configuration 
According to Hvam, Haug, and Mortensen [2010], use of configuration/customization 
techniques and tools to guide users in the task of creating a feasible (and eventually op-
timal) product specification is increasing. A general definition of the configuration task 
from Mittal [1989] is: 

 
Given:  
A. a fixed, pre-defined set of components, where a component is described by a 

set of properties, ports for connecting it to other components, constraints at 
each port that describe the components that can be connected at that port, and 
other structural constraints  

B. some description of the desired configuration  
C. possibly some criteria for making optimal selections. 

Build: one or more configurations that satisfy all the requirements, where a con-
figuration is a set of components and a description of the connections between 
the components in the set, or, detect inconsistencies in the requirements. 

 
A configuration1 can be viewed as a solution to customer needs by assembling a product 
from a set of existing pieces/components, be they hardware and/or software compo-
nents. In later steps after the selection of components, further customization is per-

                                                             
1 It should be noted that “aircraft configuration” in the aircraft concept design process means a 
high-level design of an aircraft (e.g. the type and number of power plants/engines, number of 
wings/tails, and their positions), but this is not how the term configuration is used in this work. 
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formed if any of the selected components are configurable. In software, this can be 
achieved by for example dynamic linking or configuration parameter setting, which is 
further covered in section 4.2.7 “Binding concepts and binding time” below. 

4.2.6 Features and constraints in configuration problems 
Feature modeling is used for managing commonality and variability. A feature reflects a 
product capability on an abstract level and is a means for communication between 
stakeholder and developer in the definition of a product specification, [Sinnema et al. 
2006]. The feature model represents a set of configurations. The configuration and cus-
tomization process may be guided through constraint-based facilities, such a constraint 
checking, propagation, satisfiability, solving, and computing the number of remaining 
configurations [Chang 2006].  

A mature methodology for feature modeling is the FODA (Feature-Oriented Domain 
Analysis) method. FODA is oriented towards software reuse, focused on domain analy-
sis and its main components are:  

• Context analysis: to establish a domain scope 
• Domain modeling: to define the problem space, using features, features values, and 

parameters that provide a description of any real or proposed system 
• Architecture modeling: to characterize the solution space. 

A description and feasibility study of FODA is found in Kang, Cohen, Hess, Novak and 
Peterson [1990]. According to Salinesi, Mazo, Djebbi, Diaz and Lora-Michiels [2011], a 
modeling technique based on constraint programming is more powerful than compared 
methods, e.g. FODA and OVM (Orthogonal Variability Model). This is due to richer 
expressiveness of constraint programming; it is possible to use a larger set of domain 
variable types. FODA is for example limited to Boolean types (“this feature does/does 
not exist on this system: yes/no”). 

4.2.7 Binding concepts and binding time 
Binding is a concept that describes that a variation point is bound, i.e. selected to be-
come part of a product variant [Clements & Northrop 2002 and Krueger 2004]. Binding 
time denotes when in the process the variation point is bound. Possible binding times 
include model time (also referred to as “design time”), code-generation time, compile 
time, link time, load time, and execution time (also referred to as “run time”). For veri-
fied components accessible in a storage or repository, the checkout activity best de-
scribes when binding is performed; checkout time2. There are similar descriptions for 
hardware oriented product families, where the term Customer Order Decoupling Point 
(CODP) is defined as the point where the product is linked to a specific customer order 
in the manufacturing value chain [Olhager 2003]. 

Different binding time alternatives may affect the end product system properties, for 
example security, testability, and performance. A typical creation process related to 
Software Product Lines with alternative binding times is exemplified in Figure 22. 

                                                             
2 Checkout time is used here to describe the point where the selection of a variant of the code 
from several available variants is made, even if the checkout not is a truly "binding" mechanism 
in software engineering.  
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Figure 22. Example of binding time alternatives for configuration of an aircraft simula-
tor instance in a software product line context. 

For a simulator product, the simulation model fidelity is an important variation point. A 
high fidelity model variant is useful in fault simulation and for investigation of the con-
sequences of a malfunction, while a low fidelity model variant can be used to reduce 
computing performance needs and thereby speed up the execution of the simulation 
model, thus allowing use of low cost simulators. The actual mix of high and low fidelity 
models in a simulator configuration depends on what system functionality is to be in-
vestigated in the simulation.  

In many industrial examples, several binding times are used within the same product 
family [Rosenmüller 2011]. Late binding (e.g. execution time binding) offers short tur-
naround time when changing model features. According to van Gurp [2000], there are 
more reasons why late binding is beneficial: 

• The different representations of the system are handled by different people. For ex-
ample, the architecture design is handled by developers and the running system is 
handled by users. Some decisions should be made by a user, which means that de-
velopers should design the ability to make that choice into the system. 

• The needs for new and changed requirements do not generally stop after product 
delivery. Post-delivery variability techniques help address these requirements more 
cost-effectively for delivered systems. 

There are, however, situations when execution time binding does not meet the informa-
tion safety requirements, for instance when proprietary models are integrated in training 
products and delivered to a customer. Only functionality relevant for that customer is 
allowed to be present in the specific product variant. Thus, customer oriented model 
variants have to be maintained and binding is performed at checkout time. In addition, 
for any large mature product family, there will be several legacy components with inhe-
rent limitations of binding time alternatives. 

4.3 Product families for models and simulators 
With a systems engineering approach based on models, it is efficient to reuse the mod-
els, and here it is advisable to choose a reuse strategy explicitly, e.g. the copy-and-paste 
or the product line approach. Bruce et al. report on experience from the synergy result-

Software
Build

Model
Store

Instantiation of
Simulation

Repository
Check-out

RT_Config.iniMakefileConfig_spec

-----
-----

-----
-----

-----
-----A B D

AC_sim

Load_list

-----
----- C

Appli-
cation
modules

Load of s/w
modules



44  Variability and Customization of Simulator Products 

 

ing from combining Model Driven Engineering (MDE) and SPL technologies in the 
radio domain. MDE refers in this case to the application of Domain Specific Languages.  

“It is our experience that one big benefit to the software development industry 
is the combination of the Software Product Lines and Model Driven Engi-
neering technologies.” [Bruce, Paniscotti, Roman & Bhanot 2006] 

For a product family with a long lifetime, which is significantly based on simulation 
results, it is valuable to have mature and well-validated simulation models. These mod-
els constitute their own Configuration Items (CI) that also need to be specified and de-
clared for usage, besides the parts/CIs of the simulated products.  

4.3.1 Example – simulation model of Saab Gripen’s ECS 
The Environmental Control System (ECS) in the Saab Gripen fighter aircraft is used 
here as an example system with related simulation models. It is a complex system that 
includes both H/W and S/W. Objectives of ECS are to provide sufficient cooling of the 
avionics equipment, and also tempering and pressurizing the a/c cabin. Essential tasks 
are also to enable pressurization of the fuel system and to provide conditioned air to the 
On-Board Oxygen Generating System (OBOGS), which provides breathing air to the 
pilots. Briefly, this is achieved by using engine bleed air, which is decreased in pressure 
and temperature and dried prior to distribution. The main H/W components are heat 
exchangers, compressor, turbine, water separator, pipes, and control valves. The ECS 
S/W contained in the General systems Electronic Control Unit (GECU), controls and 
monitors pressure, temperature, and flow levels in various parts of the system. See paper 
[V] for an ECS layout diagram. 

Aligned with the real system layout, the simulation model of the ECS consists of three 
major model parts, namely the ECS H/W model, the ECS S/W model, and the GECU 
H/W model. The ECS H/W model is developed in the Modelica language. For more 
details, see paper [II]. The other two models are developed in Simulink. An integrated 
model is obtained by using hosted simulation. Both Simulink and Dymola can be used 
as hosting tools. Characteristics of a planned M&S task determine which tools are most 
appropriate to use for hosted simulation, which is reported in Steinkellner et al. [2008]. 

The ECS H/W model has several variants, e.g. one simple and one detailed variant. The 
model layout is hierarchical and the Modelica construction replaceable is utilized to 
obtain different variants applicable for model time binding. Additional variant handling 
is performed by parameter selection at load time and execution time. One view of one of 
the ECS H/W model variants is shown in paper [V]. In the configuration view, each 
model variant is treated as a Configuration Item (CI). 

4.3.2 Product line mapping 
A special property of the set of simulation models representing behaviors and parts of 
another set of artifacts is its duality, which refer to Figure 7. Provided a simulator confi-
guration and integration process, the set of models constitutes a product line, considered 
the secondary product line. The product set that the simulation models represent, is con-
sidered the primary product line.  
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One approach is to map each simulation model to a component and a variant in the 
product structure. On the other hand, there is the unique flexibility of software model-
ing, which allows models to be parameterized such that a single model together with a 
parameter set may be used to simulate multiple component variants. When paramete-
rized models are used the direct coupling between models and the product structure is 
non-trivial. 

 
Figure 23. Two different structures illustrating a primary product line and simulation 
models contained in a secondary product line. 

The simulation model structure may not align to the product configuration structure 
defined in PDM. Two different structure patterns are illustrated in Figure 23. Some rea-
sons for the differences between the two structures are: 

• Models have variants for different purposes that do not exist in the PDM part struc-
ture, see (Testing and Training variants of the ECS Model) in the figure.  

• Separation of the algorithm part from the data part in parametric models, see (En-
gine  Engine Model) in the figure. 

• One model represents several parts of the product as it is defined in the PDM part 
structure, see (123Model) in the figure. 

An explicit mapping of how and to what degree a secondary product (e.g. an aircraft 
simulator) represents a primary product (e.g. an aircraft) simplifies maintenance of a 
configurator system. More details about alignment of structures and the secondary 
product line in relation to the primary product line can be found in papers [IV] and 
[VII]. A concept with a structured ConfiguratioN datA object (CNA-string) is proposed 
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in papers [III] and [IV] as a means to integrate configuration information and to be used 
for simulation set-up purposes. 

4.4 Design and validation of multipurpose models 
This section presents a description of a typical workflow for development and mainten-
ance of multipurpose simulation models. Workflow descriptions, used standards, and 
architecture views should be available to engineers in the form of handbooks and in-
structions, and in training courses. More details and an example from development of 
the ECS model at Saab Aeronautics can be found in paper [V]. The aim is to present a 
way to produce a simulation model of good enough quality to be included in a Model 
Storage for reuse purpose. The scope of the handbook is simulation models representing 
physical environment, physical systems, and electronic hardware. Models of embedded 
software are mainly developed according to other established processes, but some sup-
port may be obtained from this handbook. Figure 24 shows an overview of the 
workflow. 

 
Figure 24. Workflow for development of multipurpose simulation models. 

The overview provides a chronological view of the activities in the workflow; however, 
the duration of each activity may vary significantly depending on the characteristics and 
intended use of the actual simulation model developed. Another aspect is that activities 
normally overlap, i.e. the workflow is not sequential.  

The stars in Figure 24 represent output items such as code, test cases, or interface de-
scriptions and the symbols named RS and SD represent the documents Requirement 
Specification and Status Declaration. The purpose of the SD is to describe the status of 
the simulation model and its related documentation. It contains among other things in-
formation about the model version, its purpose, security classification, and known 
bugs/limitations.  

The purpose of the guidelines in the handbook is also to ensure that code export and 
integration in applicable simulators in itself does not affect the conclusions of per-
formed tests. The general rule is to place all functionality in the core model, not in inte-
gration layers. If there are exceptions, these shall also be documented in the Status Dec-
laration. 
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4.5 Analyses of product family changes 
Analyses are needed of requested and planned changes of a complex product. Simula-
tion is an important tool to validate the changes and to find “side-effects” (unwanted 
dependencies) that are not identified through other methods. There are some typical 
situations when the engineering teams use M&S to identify the impact of specified 
changes on the product family: 

• New product variants are defined 
• New features are added  
• Extended usage of the products. 

This applies with respect to changes in both the primary and the secondary product line.  
Paper [III] illustrates three different variants of batch mode simulations appropriate for 
analysis of the primary products:  

• when adding a new a/c variant 
• when adding new specified usage of the aircrafts 
• re-testing existing definitions. 

Figure 25 gives an overview of the three different variants. Analyses through batch si-
mulations are performed by executing the model in a specified envelop of operating 
points by giving initial states and a number of inputs for the dynamic simulation at 
every operating point. A set of operational scenarios is created with selected values of, 
for example, speed, altitude, and fuel content as well as a range of pilot maneuvers. It is 
also a standard procedure to introduce H/W failures (in e.g. sensors and actuators, see 
section 3.5), in the steady state solution, but also at arbitrary time during the dynamic 
simulation. 

 

Figure 25. Matrix of Product Variants (PV) versus Operational Usage Scenario (OUS). 
For an additional PV, analysis is needed of the defined OUSs and vice versa. “R” de-
notes the defined regression tests to be included in analysis of the full product range. 
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In batch simulations, the pilot maneuvers (specified by a pilot model) are varied to find 
the most severe combination of pilot inputs and system failures (the what-if scenarios) 
in each flight condition and for different payloads. The analysis of simulation results 
requires a great deal of post processing, for example plotting, comparison between base-
line and the current design (two iterations in the process) and summarizing of results.  

 
Figure 26. Example of a verification summary plot showing typical analyzes result of 
a/c Handling Quality properties and their limits (in terms of ‘Stick force per unit load 
factor’). One aircraft type (A) and one payload combination (a001) is summarized in this 
single plot. 
 Nomenclature:  
 alpha: Angle of Attack 
 Nz: Load factor 

 

Visualization of batches of simulated data can be accomplished by summary plots for an 
overview and to simplify the analysis work. Results from all operating points (height, 
speed) for one a/c type and one payload combination are compiled together with infor-
mation of the limits, for example Handling Quality limits, see Figure 26. For further 
descriptions of model based development of flight control functions and batch mode 
simulations, see Andersson and Sundkvist [2006].  
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4.6 Summary of reuse and its application 
An efficient way of creating software or systems is not to develop them, but rather to 
reuse existing ones. This has been recognized for quite some time and there are different 
approaches to reuse, for example the lightweight “copy-and-paste” method or the more 
thorough “product line” method. To instantiate unique products from a product line, 
there is a need for configuration (or customization) support. In aircraft simulation as in 
the development of other complex products, not only are well-validated and declared 
models important, but also verification of the whole simulator product. The simulator is 
ultimately a central tool to enable safe and reliable aircrafts. 





 

5 
Industrial application 

THE APPLICATION FIELD of the combination of model based development and 
product line engineering is aircraft simulators for the Saab 39 Gripen fighter. This chap-
ter describes the product line approach selected, including examples of how simulation 
models are integrated and used. An overview of existing components and the configura-
tion challenges is given and a prototype implementation of a configurator is described. 

5.1 Introduction to industrial application example 
In this example from Saab Aeronautics, the simulator product family is partly based on 
“real” software and avionics parts actually used in real aircraft. This method is denoted 
the “Design Once Approach” and in Saab Aeronautics’ publications, it is stated:  

“Saab delivers advanced operational support systems and training system 
media made to reflect the weapon system’s current configuration. Saab has 
established a development process where all requirements for the entire wea-
pon system are captured early, thus influencing its design right from the start. 
The ‘design once’ approach, common to all tools and software used in devel-
oping the real aircraft, ensures that any changes to the aircraft are automati-
cally reflected in the support and training systems.” [Saab 2011] 

The simulator architecture is modular and layered with simulation models as core com-
ponents and possibilities to replace model variants by a “plug-and-play” mechanism to 
simplify replacement and reuse of the models. For Electronic Control Units (ECU) it is 
possible to use two alternatives: connect the real hardware, or use a model (a representa-
tion of the real hardware). The actual simulation code is mostly stored in some source 
code language accepted by the simulator framework (e.g. FORTRAN, C, or Ada). Mod-
els must follow the specified interfaces’ guidelines to be easily integrated into the prod-
uct family, for integration in applicable simulator environments.  

There are different ways to introduce or to transit to a product family from an existing 
“single-products” setting. Many aspects of a transition depend on for example the histo-
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ry of and the used methods for product development within an organization. Krueger 
[2002] describes three approaches for creation of a product line: 

• Proactive: development “from scratch” with a complete set of common and varying 
components, feature declarations, and product definitions to support the full scope 
of products needed on the foreseeable horizon 

• Reactive: incremental implementation that evolves when new product versions are 
relevant and/or when new requirements for existing products are created. This ap-
proach offers a quicker and less expensive transition 

• Extractive: the organization uses existing custom products to extract the common 
and varying components into a production line. Assets are identified during the ex-
traction. This approach for reuse enables the fastest adoption. 

In the simulator application example, the reactive approach was earlier used for each 
simulator family (development-, verification-, and training simulators). For the common 
product line effort with a larger scope, where merging of model code from existing si-
mulator repositories is a major concern, the extractive approach best describes the situa-
tion. For further description and definition of the application problem, see studies of 
Saab Aeronautics simulation model product line efforts in papers [III], [IV], and [VI].  

5.2 Simulation models 
Most of the aircraft functional systems and parts have representations in the model do-
main. A model inventory was performed and an overview was developed to gain a 
common understanding of the models included in all simulator types. The following 
classes of models were defined, with reference to the overview in Figure 27.  

• Models of aircraft surrounding, classified as “Physical” in the figure, are normally 
not included in the product part structure. Example: the atmosphere model, 

• Models of aircraft parts (mechanical assemblies, sensors, or whole aircraft subsys-
tems) classified as “Aircraft”. Example: the engine model, 

• Models of avionics product parts (e.g. electronic control units, ECUs) classified as 
“Avionics”. Example: the Air Data Computer, ADC, 

• Models of on-board embedded software classified as “ACSSW” (Aircraft Comput-
er System SoftWare). Example: the navigation software, 

• Models of payload and stores that may not be included in the aircraft part structure 
but are separate products classified as “Stores”. Example: the drop tanks. 

The “Avionics Core” block in Figure 27 contains both avionics hardware and software 
kinds of models. There are also some special models, for example pilot behavior and 
tactical scenarios. 
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Figure 27. Classification of reusable multipurpose simulation models. Abbreviations are 
aerospace specific terms, e.g. Electronic Control Unit (ECU), Head Down Display 
(HDD), Helmet Mounted Display (HMD), Air Data Computer (ADC), and Identification 
Friend or Foe (IFF). 

Because some models are used for several aerospace product families, the assets (mod-
els) reach across product families. Examples are the atmosphere and wind models, 
which are used for simulation of all airborne products (e.g. UAVs, fighter aircraft, and 
space vehicles) at an enterprise level. The study, however, is limited to the 39 Gripen 
product family, and all models are assumed to be fully managed within that scope. 

5.3 Legacy and third party components 
There are specific challenges with the introduction of model based methods and tools 
for existing products and in the existing development environment. The new tools pro-
vide a range of model types, notations, and languages [Andersson 2009] and these 
“new” models together with “old” or “legacy code” models have to be integrated. For 
models in the form of legacy code, design information and test cases are documented in 
a variety of different formats. Some are not electronically available, which complicates 
documentation updates. Transformation of all existing legacy models into new formats 
is at present not considered to add sufficient value. 

Some of the simulation models are developed by partners and suppliers of equipment or 
a/c subsystems, which is the case with for example the high-fidelity variant of the en-
gine model. Saab does not have full insight as regards how these models are imple-
mented, but relies on the sub-supplier organization through their model validation activ-
ities and supporting documentation. Another similar situation concerns some “standard” 
models, for example the atmosphere model, where the specification is adopted from ISA 
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(International Standard Atmosphere) [ISO 2533:1975]. Yet another kind of component, 
including tools for software unit test, could be classified as third-party software compo-
nents. 

The size of the reference configuration of the a/c Simulation Models part, including 
legacy, third party and newly developed components, is of the magnitude 1 MLoC 
(Mega Lines of Code)3. The reference configuration is a typical large-scale build and 
contains code for simulation models + adaption + connection layers. An additional up to 
~2 MLoC embedded software (in a/c core avionics) is included depending on a/c ver-
sion and variant. The connection and adaption layers (see paper [V]) are implemented in 
the Ada language. Older “legacy” code is mostly developed in FORTRAN and C. Gen-
erated code from modeling tools is generally in C/C++, and the generated code is often 
more numerous compared with hand-written code. See Figure 28 for the relationship 
between different implementation languages. 

 
Figure 28. Relationship between languages used in the implementation of simulator 
models and additional components for the reference configuration of an aircraft simula-
tion kernel.  

Parameter files and other datasets are traditionally stored in simpler text files with pa-
rameter values separated by for example spaces. Newer formats for data are based on 
XML, which enlarges the code “volume” due to its mark-up principles.  

5.4 Configuration and customization needs 
Several different user needs drive the need for configurator support as described in the 
appended papers [III], [IV], and [VI]. One example of simulator customization is the 
fidelity level of a single simulation model. This may be implemented as strictly separate 
model variants in the Model Storage, which may increase maintenance costs for exam-
ple during model enhancements and error corrections. One way to avoid several differ-
ent model variants is to use the Multi Level Approach reported by Kuhn [2008]. With 
this approach, switching between fidelity levels can be done within “'the same” model, 
so one single model variant may serve different purposes, from example:  

                                                             
3 ‘Lines of Code’ is a software measure that is suitable when comparing the size of different 
source code bases. It should not be used for absolute estimations of e.g. needed effort for test. 
[Park et al. 1992]. 
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• a simple and fast model for energy consumption design 
• a detailed model for fast network stability analysis  
• a detailed model for network quality assessment by increasing the equation com-

plexity in the model components 

There are disadvantages in using the Multi Level Approach: for instance, the interface 
definitions need to be the superset of all required signals for all levels. If several inter-
changeable model variants are used in a “plug-and-play” approach, the interfaces also 
need to be the same at all levels of detail (viewed as a black box). One of the most im-
portant preconditions of the configurator system is the existing instantiation and integra-
tion process. An overview of the process is found in Figure 29. The main parts include: 

• A repository for storage of validated simulation models and other components 
needed to build an aircraft simulation,  

• A build system with a predefined directory structure and software build tools. 
• A transfer mechanism including packing of executables, moving the packages to 

the simulator environment, unpacking and simulator installation scripts. 
• Initiation of the simulation models in the target simulator. Many of the models have 

configuration parameter inputs that are set from parameter files and/or by the user, 
depending on the kind of simulator.  

The overview also shows the flow of user requirements and constraints through the con-
figurator tool and further to specifications as input for each binding mechanism. To get 
an understanding of the level of flexibility in the system, let us calculate the number of 
combinations based on numbers of alternatives in the simulator product line. 

Without taking into account any constraints (in terms of configuration validity), the 
multiplication principle is used to calculate the total number of possible combinations 
for selection of exchangeable components. If there are a ways to select A and b ways to 
select B, then there are a times b ways to select A and B. For n number of selections the 
total number c is  

                                               𝑐 = �𝑧𝑖

𝑛

𝑖=1

= 146 x 219 x    38 =                (1) 

The variable zi in equation (1) is the number of existing choices (versions and/or va-
riants) per component class i.  

At one point during development, there were 76 classes of components, some of which 
are available in variants and/or versions. There were for example nineteen classes with 
two available alternatives and one class with six available alternatives according to (2).  

                  𝑐 = �𝑧𝑖

76

𝑖=1

= 146 x 219 x 38 x 42 x 6 = 3.3x1011                    (2) 

The total number of combinations at that time were: 3.3x1011. The high number is re-
ferred to as the principle of combinatorial explosion. 
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Figure 29. Means for control of configurations in the simulator build process. Aircraft 
configuration constraints are interweaved with simulation needs.  
 Nomenclature:  
 IPR  Intellectual Property Rights 
 AC_sim Aircraft simulation 
 RT_Config RunTime/execution time Configuration parameters 
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5.5 Configurator prototype 
A prototype configurator implementation is created in order to obtain a proof of concept 
of the configurator principles, including interfaces to surrounding information systems. 
The primary objective of configuration support is to increase the degree of reuse of 
models and test assets in order to reduce lead-time for creating new simulator configura-
tions, and to increase the quality of specifications of simulator configuration. Develop-
ment of the configurator prototype was performed in increments. The concept phase 
utilized a phenomenon model in the form of a Product Variant Master (PVM); see the 
appended paper [III]. An information model formed the foundation for a prototype at 
the university; see paper [IV]. The configurator prototype in the industry site is de-
scribed in papers [VI] and [VII]. Here follows a summary and some additional com-
ments. 

5.5.1 Basic usage scenario 
A set of usage scenarios was created in order to obtain a common understanding of how 
to prioritize functionality of the configurator system and to create an incremental im-
plementation plan. The basic scenario covers a request from an aircraft development 
team who needed a minor update of an existing simulator configuration in two respects; 

1. a model modification due to an aircraft change (based on a primary product deci-
sion) 

2. a replacement of a model from a high fidelity variant to a low fidelity variant 
(driven from a secondary product decision) 

As the Gripen aircraft development at Saab Aeronautics is in practice incremental, there 
was a fundamental requirement; it shall be possible to start from an earlier configuration 
and from there make minor changes to get a new valid configuration. 

5.5.2 Metadata structure and storage 
Data about components are managed through a data storage object called CI_Info 
(short for Configuration Item Information). For example, the data for all variants and 
versions of the ECS models are collected in one file. The data in CI_Info is separated 
into two categories; 

• structured data which is possible to use in the configurator inference engine. Boo-
lean, integer, float, and enumerations were used for this 

• data in text format used for searching and to generate documentation, for example 
component lists and a Release Notes document for each component release. 

CI_Info objects are stored in XML-based files, one per component class. A component 
class is here defined as all variants and versions of a component. All the CI_Info 
XML-files must comply with the specified structure, and they are validated against an 
XML-schema during execution of nightly build. The data is stored in the same source 
code repository as the simulation models and is fed into the configurator model as 
shown in Figure 29. 

The CI_Info data is a central part of the configurator model and its implementation. 
The files are included in a configurator main model through an include function. This 
enables management of each CI_Info as an object in its own right (in fact a Configura-
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tion Item of its own) with its own lifecycle, and updates to the configuration model can 
be made concurrently by several developers. The constraints specifications (rules) and 
view settings for the user interface are stored in the main model. Components (variants 
and versions) and features can be used to create rules, for example on how the models 
and connectors can/cannot be combined.  

From the first iteration, great attention was paid to maintainability of components, 
attributes, and constraints in the feature model. A distributed approach was chosen with 
the involvement of the developers for updating of information in the feature model 
when a new model version is due for release. The information model was created and 
decided in the development team so that stringent naming principles for example were 
implemented to simplify maintenance. 

Text attributes in CI_Info enabled automatic generation of Release Notes documents 
and Configuration Item lists (variants and versions of components/models). In the pre-
vious routine, separate documents and spreadsheets were updated in a document man-
agement system by manually "filling in" of data, which is tedious and error prone. 

5.5.3 Build process and binding time 
Simulation needs and aircraft configuration constraints meet in the configurator where 
knowledge about combined constrains is stored; so that possible and incompatible mod-
el configurations can be visualized for the user, see Figure 29. When a desired configu-
ration is found and accepted by the user, the result is transformed to four different speci-
fications used for configuration control during the build and instantiation process. The 
specifications are used at the respective binding time in the process: 

A.  Checkout list for variants and versions of source-code from the repository 
B.  Make file for the software build (compiler and linker) used at compile time 
C.  Load list with specification of variants for the loadable simulation components 
D.  Parameter file for initialization of simulation model through init-parameters 

To verify that a set of reference configurations are valid, a nightly build procedure is 
implemented. During the night, scripted tools complete some or all of the steps in Fig-
ure 29 depending on availability to do automatic load and simulation in the respective 
simulator. As result of the nightly activities, a status report web page is created where a 
summary of each build/run is published. The Nightly Build Report contains, for exam-
ple, the following information: 

Simulator Build Unit test System test Log  
Variant  Statistics  Statistics  Statistics  Status 
Config 1 pass pass fail ok 
Config 2  pass pass pass ok 
 : 
Config n  pass fail n/a ok 

5.5.4 Tool support 
The “Tacton Configurator Studio” tool developed by Tacton Systems [2011] is used as 
configurator and inference engine. The decision to use a commercial and mature tool 
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instead of developing a new one is based on the focus on integration of information and 
systems rather than on tool development. 
 

                   
 

Figure 30. Parts of the configurator implementation; 1) Component database and 2) Fea-
ture specification 

   
 

Figure 31. Parts of the configurator implementation; 3) Part structure model and 4) Con-
figurator user interface. 

The different parts of the configurator tool are described below with reference to the 
screenshots in Figure 30 and Figure 31. 

1. Component database. The database comprises classes of components such as 
aircraft, simulator, simulation model, connector, and simulator interface. 

2. Feature specification. Variation points are modeled as features. Features for the 
simulation model classes include: 

4 

1 

3 

2 
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Name Description Unit/Value 
IsSecret Security classified  [yes/no] 
ExecRate Execution rate  [Hz] 
ExecTime Execution time per iteration [s] 
AircraftType Product Variant usability [aircraft type] 
Endianness Software endianness [little/big] 
FidelityLevel Level of model fidelity  [1..6] 
ReleasLevel Release Level / Maturity [alfa/beta/full] 

Mandatory features are security classification, usability, and maturity. 

3. Part-structure model. The principle of the configurator part-structure is to reflect 
the grouping of simulation models found in Figure 27. Aircrafts and simulators are 
defined by only one part each. This view of the configurator implementation in-
cludes the set of rules specifying the constraints on how the models and connec-
tors can/cannot be combined. There are also constraints defined in the form of cal-
culations, for example for predicting the total execution time for all models 
included in a configuration. 

4. Configurator user interface. The Tacton Configurator Studio built-in user inter-
face is used in the prototype. Selected variants are “locked” with a padlock sym-
bol. Possible choices are marked green and prohibited choices orange. For every 
selection, the inference engine recalculates further possible choices based on cur-
rent selections. 

Component types and features may both be used when creating rules and constraints. 

 

Figure 32. Several predefined applications are used with a customized set of selections 
for each application. An application corresponds to a type of simulator, e.g. a simulator 
intended for verification.  

The simulator type definition (development, verification, and training) is a classification 
of simulators, so each class can be defined as a family aimed for an application field. It 
is convenient to use pre-defined application definitions with a customized set of choices 
for each application, see Figure 32. Only detailed feature selections relevant for a simu-
lator type (application) are visible in its configurator user interface (screenshot 4 in Fig-
ure 31). The non-visible features are either pre-set for that application or calculated by 
the inference engine. 
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The Tacton Configurator tool supported by XML/XSLT tools and the Python [2010] 
scripting language are used for the prototype. For a full-scale implementation, a SWOT 
(Strengths-Weaknesses-Opportunities-Threats) analysis is initiated to support the tool 
selection. This analysis includes Tacton and two alternative tools oriented towards the 
Software Product Line market segment: “Gears” from BigLever [2011] and 
“pure::variants” from pure-systems [2011], [Beuche 2008]. These two are promoted as 
having integrations to systems and tools for requirements management, software devel-
opment, and Software Configuration Management, but they are not considered being as 
mature as the Tacton tool. 

The EU project ConIPF (Configuration in Industrial Product Families) has developed 
and made a good description of a tool independent methodology that is aimed at “sup-
port product derivation during application engineering with a combination of product 
line engineering and knowledge-based configuration” for software intensive systems 
Sinnema et al. [2006]. ConIPF and also Munir and Shahid [2010] have compared tools 
for SPL and the tools that both reports have in common are “Gears”, “pure::variants”, 
and “MetaEdit+” from MetaCase [2011]. Further evaluations of methods and tools, 
must be performed in the next step before a full-scale implementation can be made. The 
prototype implementation has provided good experiences and shown that it is possible 
to build and use a configurator system for a mixed system/software-based product fami-
ly with a non-software oriented tool. 

5.6 Summary of the industrial application example  
Transformation from product centric development/support towards a product line focus 
has been going on for several years with the ‘design once’ approach as a vision. The 
modular simulator architecture provides a basis for flexibility and enables models to be 
replaced in a “plug-and-play” fashion. Similar model variants from existing simulator 
platforms are merged into common reusable multipurpose models. The large portion of 
legacy components (mostly validated simulation models) imposes constraints on the 
possibilities to define configurations. Development of new models with modern 
tools/techniques enables variability through, for example, inheritance in object oriented 
languages. As the reusable models and other artifacts grow in number and more simula-
tor variants can (re)use models from the common Model Storage, the need for support 
for creation of stringent customized configurations increases.  

To provide a solution proposal for this need, a configurator tool to customize and sup-
port integration of simulation models for different types of aircraft simulators has been 
specified. A concept for managing configurator data is selected based on needs, existing 
methods/tool chains, as well as information from performed interviews & inventories of 
models. Classification of models, definitions of use cases and features are established 
within the team. Component-data, features, and constraints are implemented in the con-
figurator prototype, in XML-files, where a set of constraints in the primary product fam-
ily (aircraft) is used for the configuration of the secondary product family (simulators). 
Beside the features, other information about components is managed in the same XML-
files for generation of for example Release Notes documents for new component ver-
sions.  



 

 

 



 

 

6 
Results 

RESULTS FROM THIS research include experience from industrial usage of emerg-
ing modeling languages and an initial implementation of a configurator system in an 
industrial product family for aircraft simulation systems and products. To obtain qualita-
tive data for evaluation of the solution, information was collected based on the partici-
pants’ experiences according to the iterative, retrospective method Scrum as described 
in Chapter 2. The experiences from using new languages are reported in papers [I] and 
[II]. The problem domain and initial solutions for reuse of simulation models are cov-
ered in papers [III], [IV], [V], and [VI], and results from collection and analysis of the 
validation data are summarized in paper [VII]. Here follows a summary of the results 
and additional comments. 

6.1 Industrial experiences from modeling languages 
Experiences are reported here from support of modeling techniques based on three 
emerging languages/tools: Modelica, Simulink, and SysML. These are interesting for 
industrial, large-scale development, and are related to the application of simulator prod-
ucts covered in this dissertation. 

6.1.1 Modelica and Dymola 
For simulation of vehicle systems, the introduction of the Modelica language and the 
Dymola tool [Dassault Systemes 2011] at Saab Aeronautics has largely been positive. 
However, there are several areas where method and tool support must be improved be-
fore Modelica supported by Dymola will be natural to apply in projects developing 
complex vehicle systems. Areas that need improvements, which are also reported in 
paper [II], include: 

• support for large-size models 
• support for model uncertainty and quality tracking 
• support for validation of complex models using measurement data 
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• features for set-up, execution and post-processing of batch simulations 
• structure of generated code from Dymola 
• performance of generated code (important for real-time simulations) 
• code generation support for multi-thread and multi-processor targets 
• generation of model documentation adapted to industry/aerospace standards 

The evolving integration of mechanical design and Modelica M&S through tool provid-
ers consolidation described in section 3.4.2 has potential for improved collaboration and 
efficiency. This would enhance automated dataflow from the specification to analysis 
models (covered in section 3.3.2) and further support the model based approach. Dymo-
la version 7.3 was used for the results reported in paper [II]. 

6.1.2 Signal flow modeling with Simulink 
Capabilities and limitations of the Simulink toolset have been evaluated, in the planning 
and concept study phases of new variants of the 39 Gripen aircraft, to explore how the 
modeling tool/technique can support model based systems/software engineering. In An-
dersson, Weitman, and Ölvander [2008], three different approaches of Simulink usage 
for functional development are presented: 

1. A functional oriented modeling approach where simulations of the functions are in 
focus. 

2. An implementation oriented specification approach based on a modeling frame-
work with predefined system architecture, scheduling, data types, and rules for 
discretization. With this approach, the final embedded software is hand-coded us-
ing the models as a specification. 

3. Similar to approach two, but the embedded software is automatically generated us-
ing a code generator suited for production of embedded software. 

The reported experiences are focused on prerequisites concerning scalability, such as; 
model architecture, license model, and project ramp-up challenges. The results are also 
compared to the existing SystemBuild based development environment reported in An-
dersson and Sundkvist [2006]. When introducing high-end engineering practices and 
tools such as Simulink in an organization developing safety-critical products, it is im-
portant to make sure that basic management practices (e.g. Requirements, Configura-
tion, and Change Management) are thoroughly handled. 

The conclusion is that no one of the studied approaches is superior. In the existing envi-
ronment there is a tradeoff between state-of-the-art methods/tools and traditional me-
thods for legacy components. Approach number two is most appropriate for quick 
ramp-up because it is similar to the existing method, which is based on the SystemBuild 
tool. It is also more flexible, compared to approach one, due the absence of an advanced 
code generator. 

6.1.3 Systems modeling with the SysML language 
In the area of systems modeling, the modeling notation SysML has been introduced 
together with the tool Rhapsody [IBM Rational Rhapsody 2011]. The methodology was 
evaluated in two development projects at Saab Aeronautics:  
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• New development of the unmanned Skeldar rotorcraft, see paper [I]. 
• In development of a new variant of the 39 Gripen system which is reported in Her-

zog, Andersson and Hallonquist [2010] 

The major findings and recommendations can be summarized as follows: 
• Introduction of SysML has largely been positive. The main contributing fact for the 

success is undoubtedly the training program instigated for the project teams. 
• The potential of SysML is the greatest obstacle; it needs to be substantially li-

mited/tailored for large-scale usage. It is important to develop adequate modeling 
guidelines that clearly describe what information should be captured in SysML and 
what should be captured using traditional methods. In the absence of such guide-
lines, users have a tendency to add information to the model just because the possi-
bility exists, leading to information inconsistency and redundancy. 

• A modeling method/tool needs to co-exist with non-model based methods, tool, and 
existing infrastructure. A recommendation is to ensure that co-existence is as sim-
ple as possible for interfacing tools and for the groups of engineers affected by the 
modeling/models but not directly involved in the model based parts of the devel-
opment work. 

• SysML is weak in capabilities needed for variant management, product configura-
tion, and for evolving and maintaining a set of realized products and systems. With 
its roots in software engineering, it is natural that system specification in SysML 
facilitates the interface to tools for software development (as this is typically per-
formed in the same tool and stored with the same format as system design). Inter-
faces to tools used in other engineering specialties are, however, weak. 

The SysML implementation in IBM Rhapsody was not yet stable at the time for evalua-
tion. During updates to new versions of Rhapsody, engineers needed to go through and 
possibly update all models in order to maintain model consistency in the new tool ver-
sion. The document generation software delivered with IBM Rhapsody was very power-
ful, but was not always consistent in finding model elements. There are several areas 
where method and tool support must be improved, especially reduction of language and 
tool complexity, before modeling with SysML/Rhapsody will be the natural method to 
apply in projects that develop complex systems. 

6.2 Reuse and customization of simulator products 
This section summarizes results gained from on the prototype implementation of the 
configurator system to support customization and instantiation of simulator products. 
Results include model inventories, analysis results, the underlying meta-models, usage 
guidelines, and evaluations from initial usage of the prototype. Challenges in the de-
scribed industrial application due for example to many variants and versions of simula-
tion models are reported in papers [III], [IV], and [VI]. Results of the validation data are 
reported in paper [VII]. 

6.2.1 Insight and understanding of product line challenges  
The explicit and visual description of product variants, core assets, and their variability 
through the Product Variant Master (PVM) and the configurator prototype enables in-
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sight and better understanding of the complexity of single products, but more important-
ly, of the union of products. Interest in configuration and customization issues has in-
creased in the simulator team because of the configurator prototype (and demonstrations 
thereof). For the same reason, the team responsible for product data management has 
increased their coordination activities towards the simulator domain.  
Scoping of the product line in terms of a defined simulator family, the set of simulation 
models to re-use, degree of commonality, and how to limit the domain ranges, has been 
highlighted. Two examples of limitations of the scope are: 

• Old and existing (delivered) a/c configurations are excluded from the scope  
• Simulation configurations for concept evaluation, or "early validation" (which was 

in the scope of paper [VI]), are not covered at present.  

Reduction of the original scope gives a clearer feature model, and limits the mainten-
ance. There are still sufficient challenges and enough value in the limited scope. 

6.2.2 Binding time differences 
The binding time concept was shown to be more important for the configuration and 
customization activities than expected when the problem was first formulated. A differ-
ence in binding-time needs between in-house simulators (for development and verifica-
tion) and delivered simulators (for training), was visualized through the work with the 
configurator system. This refers to section 4.2.7 “Binding concepts and binding time” 
and the question; who is responsible for selecting features; the developer or the end-
user? Late binding provides more flexibility for the simulator end-user, as illustrated in 
Figure 33. 

 
Figure 33. Each step in the build-and-instantiation process reduces the number of re-
maining possible combinations. Binding (early) in the development environment restricts 
the possibilities to configure or select features in the simulator. Late binding provides 
greater flexibility for the simulator users. 
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There was an increased insight among system architects and model developers of the 
principles of binding time, and the characteristics of end products depending on the 
binding time alternatives for different features.  

In the final step of the simulator instantiation process, the terminology is confusing. The 
term “run time” in software engineering denotes a situation where the software applica-
tion is running or executing. In the simulation domain, “run time” means that the simu-
lation is running and calculates new states and outputs at subsequent simulated points in 
time. When the simulator is halted, “time is stopped”, but the software application is 
still running/ executing and from a software perspective, it is still in “run-time”. In this 
dissertation, “execution time” refers to a software perspective, so the simulator could be 
either started, stopped, halted, or any possible mode as long as the software application 
is “alive”. “Run time” refers only to simulation with simulated time evolving. 

During specification and design of new multipurpose simulation models, there was an 
increased focus on what binding time solutions to use. The configurator tool and its as-
sociated information model were used as catalysts for the architectural design of binding 
time for features, simulation models, and for the software-build system. This contributes 
to better-specified multipurpose models in respect of instantiation, and is thereby an 
enabler for efficient reuse. 

6.2.3 Practitioners’ experiences 
Guidelines were created to provide support to team members in the updating of compo-
nents, features, constraints, and rules in the feature model. Initial experience of incorrect 
data resulted in the development of tools/scripts for automated data validation against 
available data in the software repositories. 

Tool functionality enabling save, restore, and make modification to a configuration 
(during the development of a configuration specification) were stressed by users with 
configuration management responsibility. This is because incremental development and 
smaller changes resulting in many iterations and baselines is a standard procedure in 
aircraft development (e.g. at Saab). This functionality was not yet de-
signed/implemented in the prototype. 

There was a concern about tool performance of the configuration task during selection 
of features and components. In the relatively small prototype models, calculation time 
was negligible, and for the mid-size models tested so far, no significant problem is ob-
served as regards performance as long as the recommended data types are used in the 
feature models. The recommendation is to avoid using the float type widely if the 
model is large, which is due to the combinatorial problem of continuum in the inference 
engine.  

It was found that the software developers prefer file-based software revision systems, 
while roles with CM (Configuration Management) responsibility find CM systems 
based only on such techniques limited. File-based systems lack rigor functionality re-
garding management of for example changes, baselines, releases, permissions, and other 
metadata. One example of a limitation in a file-based system is that names are used as 
unique identifiers and it is cumbersome to change names in a file-based system com-
pared to an object oriented CM system. With the existing solution (commercial tools 
mixed with scripts and smaller tools), there is an identified risk of unsupported integra-
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tion and/or high in-house maintenance cost. This has also been observed by Crnkovic et 
al., who compare SCM with PDM systems: “In most SCM systems, however, there are 
only triggers, which can execute scripts written by the users. This is support of little 
value, as the result is a mess of scripts that are difficult to survey and maintain.” 
[Crnkovic, Asklund, and Dahlqvist 2003]. 

All data for the configurator system in the industrial application is under version con-
trol, but to ensure quality and consistency of the features and constraints, a change man-
agement procedure should be implemented. 

The introduction of the CI_Info objects for storage of model information, provides a 
basis automatic generation of the Release Notes (RN) documents and Configuration 
Item lists (CI-list), and is an clear improvement. The previous routine, based on a sepa-
rate document management system, included manual “filling in” of data in documents, 
which is tedious and error prone. Practitioners’ experience is positive because “copy-
and-paste” is replaced with product line automation. In the questionnaires, the respon-
dents answered that by using the configuration system, the effort/time was reduced. 
Three respondents had experience using both the previous and the new system. They 
estimate on average that 30% of the time is reduced to create the RN documents. To 
create CI-lists, 60% of the time is reduced, provided the information has been added for 
RNs. All respondents believe that the increased quality of artifacts is a more important 
improvement compared to timesaving and simplification-of-work. 

6.2.4 Domain integration 
Activities with inventories, model classification, feature elicitation, and population of 
data in the configurator played a central role for the connection between the primary 
(aircraft) and the secondary (simulators) product lines. Two means provided a direct 
basis for discussion and collaboration among aircraft subsystem responsible and product 
line engineers who are maintaining and integrating simulation models: 

1. Visualization of compatibility between components, aircraft variants, and simula-
tor applications via the configurator user interface. 

2. Publication on the intranet of tables of component data generated from the 
CI_Info objects, which is SCM/PDM rather than configurator functionality. 

Effects of aircraft configuration constraints on the simulators are made explicit so that 
the creation of simulator configurations with respect to a/c variants is apparent in a new 
way. The low level of alignment between product structures, as described in section 
4.3.2 became more visible. Of the different simulation model types, the aircraft com-
puter-software model and avionics model types are well aligned.  

The concept of a structured ConfiguratioN datA object (CNA-string) proposed in papers 
[III] and [IV], to be used for simulation set-up purposes, was reviewed. The result 
showed that a similar mechanism already exists for software configurations (aircraft 
editions). For data in the PDM domain, a large effort is needed to create the automated 
mapping, because there are different identities and naming conventions in the two do-
mains. The amount of configuration data in PDM is much larger than needed for simu-
lator set-up, so still a manual work of mapping is made. 
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In the modular system with all possible combinations (3.3×1011 in the example from 
section 5.4), the configurator prototype is a catalyst for creating explicit rules for com-
patibility between components. The rules (based on features and expressed as con-
straints), is in the first step documented in a spreadsheet before being implemented in 
the configurator. This procedure was introduced because the configurator is still a proto-
type implementation, and which configurator tool to use was not finally decided. Expli-
cit information about compatibility is valuable regardless of configurator tool. 

6.2.5 Reuse potential and multiple product lines 
There are different development teams for simulator applications at Saab Aeronautics 
(for development, verification, and training simulators). Each of them manages in prac-
tice a family of simulators. Typical choices available in most simulators are: 

• customer variant  
• setting of single/dual seater aircraft 
• selection of aircraft software edition 

The product line described in this dissertation, consisting of three simulator families, is 
in fact a product line of product lines (‘multi-product line’). Taking the a/c development 
in the scope, yet another product line (a part of the primary product line) can be identi-
fied; the avionics embedded software components, which are used both in the a/c and in 
the simulators. Some of the larger simulation models may also be viewed as product 
lines of their own. For example, the Environmental Control System (ECS) model exists 
in four variants, which all have configuration input parameters for different settings. 
The low fidelity (LoFi) variants are used for simulations where the ECS system not is in 
focus, but the model is still needed to be part of the system. The high fidelity (HiFi) 
variants provide more details and better accuracy, but require more execution time from 
the simulator time-scheduler. By using the same customization principles and same con-
figurator tool for several product families the reuse can increase between product fami-
lies, thus throughout the multi-product line. 

 





 

 

7 
Discussion and 

Conclusions  

MANY EVALUATIONS of methods within model based development use compa-
ratively small applications examples. These are usually applied to real engineering prob-
lems, but are demonstrated by small or well-suited examples (compared to the industrial 
cases) and may not be included in a context of several methods or tools. In industry, 
terms like model set, tool set, tool chain, and methods chain are nowadays used to de-
fine aspects of state-of-the-art engineering environments. This work is based on the “in-
dustry-as-laboratory” research approach and has a broad scope regarding implementa-
tion and evaluation in an industrial environment. However, it does not go in any depth 
into the technical details of, for example, protocols, formal methods, or computer archi-
tectures.  

7.1 Discussion 
Management of multiple product families needs enhanced support compared to single 
product line engineering, as described in Section 6.2.5 “Reuse potential”. Support is 
needed in the following areas: 

• A recommended product breakdown structure  
• An appropriate responsibility structure 
• Architecture of the feature model(s). Should it be central or distributed? 

A mapping of the primary and secondary products to the ANSI/EIA-632 [1999] system 
structure (see section 3.2.1), provides a view of how a single simulation model can be 
used in several system products, see Figure 34. The system structure shows how the 
simulation models for development (to the left), verification (to the right), and training 
(in the middle) are dispersed. It is not only simulation need that may differ. The re-
quirements concerning test, documentation, and declaration of models are also different 
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depending on context and product. This stresses the need for a merged set of require-
ments and principles for the model development process if the model implementation is 
to be reusable efficiently. 

 
Figure 34. A structure of systems and products according to the ANSI/EIA-632 stan-
dard. Examples from the industrial application, where ESC is the Environmental Control 
System, and LoFi and HiFi are respectively low and high fidelity model variants. 

One issue under discussion is the introduction of model functionality. Is it optimal to 
create a multipurpose model including all requirements and functions from the begin-
ning, or is incremental model development starting from a single-purpose model more 
efficient? An incremental method enables validation of basic functionalities in the first 
release, and extension of the model in later iterations. Simulation models for product 
development should be available early. Elicitation of “all” requirement requires effort 
and time and delays the model. The delay, which a full specification may cause, will 
thereby prevent an efficient model-based methodology. In lean development, Just in 
Time (JiT) deliveries are used, for example implementing training functions in later 
iterations. An incremental process that supports this should be formed, where each 
model delivery has an explicit purpose, for example, development, verification, and 
training. However, the architecture must be properly defined and the basic requirements 
should be known from the outset. The standard ARINC-610 [2009] “Guidance for De-
sign of Aircraft Equipment and Software for Use in Training Devices” is intended for 
training simulators and thus relevant for the specification of multipurpose models. Us-
ing a standard like this is not a guarantee, but provides good assistance to succeed to 
specify and build multipurpose simulation models.  

The commercial tool Tacton Configurator was selected for the configurator prototype. 
Tools like Tacton have a majority of users in the domains of design automation, product 
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customization, and sales configuration with integration to CAD and hardware design. 
Central model properties in this type of tool are component price, choice of currency, 
and part number attributes, and output from the configuration activity is typically the 
Bill of Material (BOM). Those attributes and outputs are not of central interest as soft-
ware properties, and the tool type is therefore not adapted to support a pure software 
product line. There is a risk that a configurator system supported by this kind of tool 
does not scale up for customization of software products. In the studied application, 
there is need for support for both Product Line / Software Product Line (SPL) engineer-
ing so the choice of configurator type is still regarded as adequate. In practice, two types 
of tools for product line support are identified; tools like Tacton and those who support 
SPL. A tool type that supports both would be needed. 

A mandatory discussion is; how general are the research results? If there are multipur-
pose models, and mapping between products and simulators exists, then the results 
should be applicable to another industrial sector. The ANSI/EIA-632 standard, for ex-
ample, is general. Examples of sectors with similar needs could be automotive, automa-
tion robotics, power plants, heavy machinery, and medical equipment. No study has 
been made in any sector outside aerospace within this work. It is however reasonable to 
assume that the results can be generalized to systems realized by hardware and software, 
but are simulated by software. 

7.2 Research results versus the research questions 
The result of the prototype configurator as a solution to the industrial problem is cov-
ered generally in the results chapter. This section summarizes the response to the expli-
cit sub-questions, outlined in section 2.1. 

• To what degree is it possible to modularize the simulation model including parame-
ter sets and other simulation artifacts? 

There is no exact limit to how small a module can be, or into how many modules the 
system can be divided. In practice, each Configuration Item contributes with an over-
head in the form of features values, validation, and documentation, so dividing a simula-
tion system too much may become too costly to maintain. In addition, the combinatorial 
explosion, which is a consequence of many parts, is a disadvantage. The relevant level 
to divide a simulation model should be into parts that firstly are appropriate to map to 
the equipments and subsystems of the simulated product. Secondly, it is also relevant to 
divide a model into an algorithm part and one or several parameter sets. This allows for 
effective management of common and variant-parts. Mapping onto a product structure 
reduce process complexity due to, for example, clearer change-flow for the model(s). 

• What kinds of variation techniques for simulation model variability, including em-
bedded software, are applicable in the product instantiation process? 

Run-time (late) binding with Configuration Parameters provides more flexibility com-
pared to checkout- and compile-time binding. It is clear from the industrial example that 
as late binding as possible is desirable in most cases. Only specific needs will require 
other choices, for example confidentiality, which could be a performance or equipment 
model that is unique to one customer. There are conflicting needs between the simula-
tors that are sold as products and those used in-house. In an in-house development simu-
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lator, change-of-configuration must be easier to accomplish. For training simulators 
(delivered products) there is instead the requirement that only customer-unique features 
and embedded software must be included, and early binding should then be used. 

• How should compatibility constraints for simulation models be specified to be 
maintainable in a large-scale product line? 

The feature modeling technique is suitable for complex products, and specification of 
constraints should be done by using established modeling methods. The prototype has 
demonstrated that feature modeling works and is scalable as long as the domain ranges 
are specified mainly by discrete variables. 

• How to specify and build simulation configurator systems based on PDM data 
where environment models are not part of the product definition? 

The simulation and PDM domains are weakly integrated so it may not be suitable to use 
automated system/tool integration. Manual and semi-automatic mapping of data with 
the support of XML files for example are appropriate for the near future. 

7.3 Contributions 
The focus of the research is at the intersection of model based development and product 
line engineering. The following are the main contributions from this work: 

• The main contribution regarding the problem area is the definition of primary and 
secondary product lines. This description clarifies industrial needs and is a base for 
further research and development to support Product Line Engineering of ‘multi-
product lines’ and complex industrial products. 

• Definition of Modeling Domains is a means of classifying of modeling techniques 
and analyzing, for example, integration of simulation models/tools. The definition 
is accepted and used in industry, at Saab Aeronautics, and in the EU research 
project CRESCENDO. It is used to classify needs, requirements, and means for 
modeling techniques, integration of simulation tools, and virtual testing.  

• Evaluation of the hosted simulation method contributes to both academia and in-
dustry. It is used at Saab for development of the 39 Gripen vehicle systems. 

• Industrial experience in the aerospace sector from the introduction of the Modelica 
language, the Simulink tool, and the System Modeling Language SysML contri-
butes to guidance for modeling of complex systems. 

• Implementation of a configurator prototype to support customization of simulation 
models for simulator systems with different implementations, for different purposes 
and that simulate different product variants. The configurator makes it easy to de-
fine a simulation configuration that represents a real product configuration. 

• Experience obtained from initial introduction of the configurator support in an ex-
isting development environment for aircraft simulators. Integration of the configu-
rator with interfacing systems, including software configuration management and 
the software build system.  

• Evaluation of the configurator prototype based on feedback from users in the de-
partment responsible for 39 Gripen simulators, at Saab Aeronautics. 
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Finally, it was observed that changes in an on-going business should be introduced with 
caution because the delivery process is vulnerable. This knowledge is of great value and 
should be a subject for reuse. 

7.4 Conclusions 
This dissertation covers emerging modeling techniques for large-scale systems model-
ing and simulation. Experiences have been collected from the introduction of modeling 
languages to support the development and maintenance of systems and products at Saab 
Aeronautics. With the more efficient modeling techniques/tools available and increasing 
computational performance, the number of models tends to increase. Through product 
line methods, for instance the ‘design once approach’, models are (re)used for simula-
tions and in products for different purposes. A multipurpose simulation model denotes 
one that is developed and declared for reuse in multiple contexts. Due to the increasing 
number of models, there is an identified need for configuration support in the set-up of 
simulations.  

A configurator prototype is implemented to investigate how a configurator system can 
support the design and customization of simulator families. The combination of ap-
proaches (product-line / modeling-based) imposes new conditions in the implementation 
and use of traditional tools and methods, such as change management. Product/sales 
configurators are available for use by industry, but experience is still limited as regards 
large-scale multi-product lines. Gaps are identified in the form of a lack of mature tool-
sets for mixed Product Line / Software Product Line handling. The implemented proto-
type, based on the Tacton configurator tool, and XML technology for integration to the 
existing development environment, introduce design automation and customization of 
simulation. This contributes unique experience and knowledge to the field and points at 
one possible way forward. 

The answer to the main research question is; yes, the principles of product customiza-
tion are applicable for modular simulation systems in a software-intensive product line 
context. Existing methods are focused on management for single product lines, and 
there is a need to continue the development of support for simulator product families 
and the management of simulator variants and multipurpose models. 

7.5 Future work 
During demonstration and evaluation of modeling and customization techniques, some 
areas of further research have been identified.  

7.5.1 Enlarged scope of reuse 
The focus has been on reuse of simulation models, even if other assets, for instance test 
cases and validation results are also handled. There is still a potential for a higher degree 
of reuse of requirements, design descriptions, and other kind of informa-
tion/documentation associated with the simulation models. To determine the ambition 
or scope is a balance between benefits and costs of the components used in single or 
potentially a few products. For assets with a lower degree of commonality, a risk of 
unnecessary overhead from handling within the more stringent product line procedures 
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is anticipated. To succeed with a balanced product line from a set of needs, a system-
model of the product/simulator architecture is a way forward. It will preferably be based 
on the SysML modeling technique and inspired by the ANSI/EIA-632 system structure. 

7.5.2 Generalization and standardization of methods/tools  
Any person who is responsible for methods/tools in an organization would want a stan-
dardized, stable, fit-for-purpose tool-chain. With the many new methods / tools availa-
ble from research and tool vendors, the environment will presumably be "unstable" in 
the sense that improved methods/tools/versions will change the workplace over time. To 
gain a more stable development environment, the organization should strive to use es-
tablished standards.  

There is yet no clearly defined standard or established de-facto standard in the field of 
product line engineering. Leading methods and tools descriptions should be a base for 
future monitoring of the area. The result from for example the ConIPF project (see sec-
tion 5.5.4) and its methodology, with the focus on industrial large-scale applications, 
includes a comprehensive description of tool-independent product line engineering. This 
methodology would be a good starting point to carry out further work for seeking an 
appropriate, more standardized, (or de-facto standard) support for simulation products in 
the future. 

7.5.3 Next step at Saab 
Saab considers the outcome of the configurator prototype successful and intends to con-
tinue the introduction. The results, lessons learned, and parts of the prototype imple-
mentation forms a basis for coming steps. For further automation with respect to data 
and knowledge capture, one suggestion to be tested is the retrieval of existing informa-
tion. Pugliese, Colombo, and, Spurio [2007] report on a method for retrieval of data 
from pre-existing components in a repository. In the same manner, information about 
compatibility constraints in the simulator build-process could be captured through the 
compilers- outputs (errors/warnings) and be (semi-)automatically fed into the know-
ledge base. 

Automatic generation of Release Notes documents and Configuration Items lists is in 
operative use. Design of a tool-chain and a workflow including the flow of and deci-
sions on product changes are imminent. The intention is to proceed with the 'design 
once' approach and a clear responsibility structure within the ‘multi-product organiza-
tion’ is needed. This includes designated responsibility for simulation models, which are 
important links between the primary and secondary products. The configurator system 
highlights those links and provides a new view of the families of models and products. 

The use of simulation models and amount of models are expected to increase. Conse-
quently, there is the need for management of models from different points of view. 
These include model integration and customization, but also the relationship between 
models and the reality they should represent. With the visual support to manage varia-
bility in products and models, engineers gain better insight and control of the simulation 
configuration, and consequently higher quality of simulation results. 
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