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Abstract

The increased complexity of mobile networks, the need to deliver high data rate
services and the variation of mobile traffic put a high burden on operation and
maintenance in terms of extra workload and additional costs . New approaches
to network optimization and management should be taken into account to
increase network performance and reduce operational costs. Antenna tilt is
a powerful parameter for optimization of a mobile network. It has direct
impact on shaping the boundary of the serving cell and hence on the coverage
and interference parameters of the network. With the introduction of Remote
Electrical Tilt (RET) antennas, tilt optimization can be used in the context
of self-optimization. This work discusses how base station antenna tilt can be
used as a self-optimization tool for load-balancing and presents a framework for
a self-optimization process that can be integrated into existing and future mobile
networks. Tests using real traffic data proved that the self-optimization process
can be used to correctly identify congested cells. Both link level and system
level simulations are performed to determine the impact of tilt adjustments on
network performance. The results show that antenna tilt can be an effective
tool to achieve load-balance between neighbouring cells and thus increase the
Grade of Service (GoS). Furthermore, different tilt adjustment procedures are
discussed each with it’s advantages and disadvantages. It is concluded that
antenna tilt can be successfully used for self-optimization purposes and possible
limitations and issues are discussed.
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Chapter 1

Introduction

1.1 Background

The evolution of wireless networks combined with a growing demand for mobile
broadband leads to complex heterogeneous deployments with a high density
of base stations and a large number of tunable parameters. This type of
deployments will require a high level of operation costs and human resources.
Furthermore, operators are competing in a new environment, where packet data
became the main service that generates traffic in their networks as of 2010. It is
estimated that the global mobile data traffic will increase by 100 per cent each
year until 2016 [1]. This means that efficient usage of available network resources
becomes very important. In this context, new approaches for network operation
and management must be considered and network optimization becomes an
important tool.

Manual optimization can be time consuming and costly in terms of man power
[2]. Also it cannot be performed in real time and thus cannot adapt to fast
changing network conditions. Moreover, some tasks are to repetitive or difficult
to be performed manually. Self-optimization is considered as an alternative for
increasing performance and reducing operational costs [3].

The first high level requirements for the introduction of self-optimization were
given in 2006 by the Next Generation Mobile Network Alliance (NGMN) [4].
They were later followed by a detailed list of use cases [5] some of which are
now standardized by 3GPP [6]. The use cases are defined as general guidelines
and identify possible applications for Self Organizing Networks (SON) which
relate to self-configuration, self-optimization and self-healing. Load-balancing
was one of the self-optimization use case that was identified and also included
in the 3GPP standard.

While the objectives of the use cases are strictly defined, the choice of methods,
input measurements and output control parameters are yet to be standardized.
This offers flexibility when implementing a SON solution.
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2 Chapter 1. Introduction

1.2 Overview on self-optimization

Self-optimization is a two step process in which first abnormal operation,
e.g. congestion, is automatically detected based on the designated inputs
and after that, configuration parameters are automatically adjusted to improve
performance.

Self-optimization algorithms use Key Performance Indicators (KPI), mea-
surements or counters as inputs. There are different sources for gathering
information about the state of a network, depending on the Radio Access
Technology, such as the NodeB or eNodeB, the User Equipment (UE), the Radio
Network Controler (RNC) in the case of UMTS or Mobility Management Entity
(MME) in the case of LTE. While some KPI’s can be vendor specific, there
are standardized measurements that are also available. For Universal Mobile
Telecomunication System (UMTS) the measurement capabilities for both UE
and UTRAN are specified in 3GPP TS 25.215 [7], while for Long Term Evolution
(LTE) the measurement capabilities for UE and E-UTRA are specified in 3GPP
TS 36.214 [8]. A detailed list of LTE measurements that can be used as a support
for SON is given in [9].

The outputs are used to control different radio or network configuration
parameters, such as antenna tilt, transmit power or handover offset (HO). This
work will focus on antenna tilt as an optimization parameter for load balancing,
since it has a direct influence on the received signal level and thus on shaping
the best server boundaries of a cell.

1.3 Problem Description

Antenna tilt has been proven as an efficient tuning parameter in mobile networks
and both manual and automatic optimization techniques have been discussed
in literature to some extent. With the ability to remotely control antenna tilt
using Remote Electrical Tilt (RET), this parameter can be used in the context
of self-optimising networks to address some of the SON use cases. However
there are some challenges associated with the introduction of self-optimization
of antenna tilt in real-networks which are detailed bellow. An issue that is not
discussed and can be seen as suitable for future work is the interaction of self-
optimization of antenna tilt with other use cases from the 3GPP specifications.

The self-optimization process for load-balancing using antenna tilt should be
able to detect critical cells based on specified performance thresholds. Also
it should be able to estimate if tilt changes will have an impact or not, i.e.
if the low performance is cause by congestion or other factors. Resources in
neighbouring cells should be verified, before making load-balancing adjustments.
Furthermore, the load-balancing process should not have a negative impact on
the Quality of Service (QoS) and the same services should be supported even
after load-balancing is performed.
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The traffic load in mobile networks varies based on the user distribution, which
in turn changes according to certain patterns. However, the configuration for
a cell does not change with the user distribution meaning that at some points,
available resources in a cell can be either under-utilized or over-utilized. While
antenna tilt can be used to shape the coverage area of a cell and thus the
number of served users, the actual distribution of these users in an area will
determine if load balancing is efficient or not. In particular, the optimization
should become more efficient as the traffic is concentrated towards a single cell
in an optimization cluster.

In the case of antenna based optimization, antenna tilt is the main radio
configuration setting that will be adjusted for the cells that are involved in
the optimization process. There are different tilt change step sizes that can be
applied, which can impact the performance and convergence of the optimization
algorithm. Also the effect of the tilt adjustment varies with the radiation pattern
of the antenna. With a narrower vertical beamwidth, tilting has a greater
impact, as shown in the following sections.

1.4 Scope of the Thesis

The work is aimed at studying and simulating an antenna tilt based self-
optimization algorithm for load balancing in mobile networks. First, the concept
of load-balancing of antenna tilt is discussed and illustrated using a link level
simulation in Matlab. Following that, a method for detecting congested cells,
selecting neighbour candidates and performing tilt adjustments is presented.
Finally, simulations in a radio planning tool will be used to address some of
the questions related to self-optimization of antenna tilt, the dependency on the
traffic distribution and the possible performance gains that can be achieved.

1.5 Related Work

Automated optimization of radio parameters is discussed in literature both as
a tool to help the network design process and as an efficient method to improve
coverage, capacity and to address load imbalance situations. Optimization
methods are presented both in the context of UMTS and LTE networks. In
[10] the author discusses the optimization of three configuration parameters,
antenna tilt, antenna azimuth and pilot power in UTMS networks, using a case
study from real networks. It is acknowledged that antenna tilt is the most
powerful optimization parameter. The results showed a reduction in unserved
traffic and a decrease in downlink cell load, although this is not correlated to
the uplink cell load and optimization of both UL and DL load is required. The
proposed techniques are more suitable for efficient radio planning rather then
for SON use cases. Another optimization method for the same three parameters
is discussed also in [11]. The authors propose an algorithm based on simulated
annealing which allows steps that produce a slight decrease in performance in
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order to avoid being trapped in a local minimum. This algorithm is suitable
for combinatorial optimization problems as in the case of UMTS or LTE radio
network optimization. Results from both papers show that antenna tilt has the
most powerful impact with respect to the optimization targets considered and
accounts for almost half of the gains.

A different algorithm for self-configuration of base station antenna tilt and
transmit power is presented in [12] and evaluated with a LTE system level
simulation.The optimization target is the SINR measured at the UE for two
scenarios, one with base stations placed in a regular hexagonal pattern and
one with a irregular set-up. It was shown that terminal measurements can be
successfully used as inputs for the algorithm and a centralized architecture is
suitable for implementing tilt optimization. Also from the results it can be seen
that there is only a small performance increase between tilt optimization and a
combination of tilt and power optimization.

The same two parameters, antenna tilt and transmit power are used in [13] as
an optimization objective for load balancing in the presence of inhomogeneous
traffic. Simulations were performed in a UMTS-FDD environment, with the aim
of reducing the uplink load factor for all base stations in the scenario. The work
shows that this type of solution can be applied to situations where there are
patterns in the traffic distribution which repeat with a certain periodicity. The
performance gains where seen both in the reduction of mean UL load factor and
also mean downlink transmit power. Observations were made also regarding soft
handover areas, which show an increase when only pilot powers are optimized
and a decrease when tilt is added.

Using automatic antenna tilt adjustments as a method to adapt to unbalanced
traffic distributions is discussed also in [14] and evaluated using a 21 cell network
simulation for UMTS-FDD. The results show that antenna tilt optimization
provides an average capacity increase of 20 to 30 per cent and is efficient in
interference reduction. Also the position of the traffic hotspots relative to the
neighbouring base stations has an impact on the capacity gain that can be
achieved with tilt adjustments. In particular the largest gains are seen when
the traffic hotspots are at unequal distances from the base stations. However,
if a particular base station is closer to the traffic hotspot, the performance gain
will be reduced, since a large number of UE will be moved at cell borders and
power will become a limitation. Also they will be forced to transmit with high
power levels, which will increase interference.

Two of the most important optimization targets in mobile networks are capacity
and coverage. However, there is a tradeoff between them, which is discussed in
[15], with the goal of finding “optimal tradeoff points”. Capacity is dependant
on the traffic distribution between cells and antenna tilt can be efficiently used
to change cell boundaries in order to achieve load balance. The results show
that optimization of antenna tilt for non-uniform traffic distributions gives a
10 per cent capacity decrease for the same coverage, compared to an optimized
scenario with a uniform user distribution. Nonetheless, tilt optimization lead to
a 16 per cent increase in capacity.
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In [16] the discussion of automated optimization for wireless networks is
extended to include a framework which covers all stages of the optimization
process. Using a case study for a UMTS network to demonstrate their approach,
the work is also put in the context of LTE to show how UMTS optimization can
be used as a background to develop self-optimization procedures. Furthermore,
the authors identify some of the challenges associated with the introduction of
SON, which can be used as a guideline for future work In particular they show
that both the inputs and outputs of the algorithm should have a reliability
index. The optimization procedure must be able to estimate the impact of a
parameter change on the network. The SON algorithm has to determine cases
were it cannot correct sub-optimal operation using the parameters that it can
control.

The impact of electrical and mechanical tilt on the performance of WCDMA
networks was studied in [17]. It is concluded that the optimum downtilt angle
depends on the network configuration, vertical HPBW and antenna height. In
[18] the authors extend the study to LTE and also include the effect of azimuth
HPBW angle. In particular the work simulates how the two types of tilt,
mechanical and electrical affect coverage and throughput. For LTE downlink
performance, it is demonstrated that electrical tilt provides optimal mean
throughput, while a combination of mechanical and electrical tilt optimizes the
peak rate. The type of tilt or tilt combination has little impact in respect to
coverage optimization.

Reasons for introducing SON and a vision on how it could be implemented are
discussed in [2], with emphasis on Self Configuration and Self Optimization.
Also, an optimization method that uses successive antenna tilt changes to
maximise cell edge performance and mean cell throughput is presented. The
results showed a 44 per cent improvement of cell edge performance, while the
mean cell throughput increased by 7 per cent, with the algorithm converging
after approximately 60 iterations.





Chapter 2

Self Organizing Networks

2.1 Introduction to Self Organizing Networks

The need for Self Organization in mobile networks was identified based on
the day-to-day operational experience of mobile operators. The requirement
was first formulated in 2006 by the Next Generation Mobile Network Alliance
(NGMN) [4]. Later, the Self Organizing Networks (SON) concept was
introduced together with the Long Term Evolution standard starting from 3GPP
Release 8[19] as a new approach to mobile network configuration, maintenance
and operation, aimed at reducing operational expenditures and improving the
users Quality of Service (QoS).

At a high-level, the introduction of SON should allow for new base stations
to be added in a plug-and-play manner, while existing base stations should be
able to adapt to network conditions and change their operational parameters.
From a functional point of view, SON can be split into Self-Configuration, Self-
optimization and Self-Healing.

Self-Configuration is a function that should be performed in the pre-operational
state, when the radio interface is not active. This allows newly deployed
eNodeB’s to automatically configure their operational parameters and download
required software, once they have a connection to the core network. The
configuration can include radio parameters (operating frequency, transmit
power), neighbour relations and cell identification.

Self-optimization is performed in the operational state, where measurements
from the UE and eNodeB are used to asses the network performance and
automatically tune operational parameters in order to meet defined performance
targets. Some examples where self-optimization can be applied are coverage
optimization , mobility parameter optimization, interference reduction, load-
balancing or energy savings.

Self-Healing will allow for automatic failure detection and response. There can
be situations when the failure can be detected and fixed by a single eNodeB or
when the process will involve several eNodeB’s. An example of the first case

7
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can be detecting a software failure and falling back to a previous one, while
the more complex second case can be a complete failure of the eNodeB which
will create a coverage hole. In this situation neighbouring cells might adjust
their radio parameters ( antenna tilt, transmit power) to reduce the size of the
coverage hole.

Figure 2.1: Self Organizing Network Concept

2.2 Architectures for Self Organizing Networks

There are different architectures in which a SON solution can be deployed,
depending on the network element where the SON process resides. They
can either be centralized, distributed or hybrid. The choice of a particular
architecture will depend on the use case and the functionalities that need to be
achieved.

In a centralized architecture, the SON process will run on a stand-alone server.
The inputs will be gathered from the Radio Access Network (RAN) in form
of Key Performance Indicators (KPI’s) and then analysed. Changes to output
parameters can be forwarded back to the RAN at regular intervals or based on
triggers. A centralized architecture will be able to maintain global knowledge
of the network status. Also it will be able to estimate the impact of parameter
changes over multiple cells. However latency will be introduced by forwarding
data to and from a central location and in the time interval between receiving,
analysing and forwarding changes, the networks status might change again. This
makes the centralized approach suitable for use cases that are not delay sensitive.

The distributed architecture will have a SON process running in each network
element, e.g. eNodeB. This approach reduces the response times since the data
gathering and analysis will be made at the base station. Also it doesn’t present
a single point of failure, such as the centralized architecture. The distributed
architecture will lose the ability to estimate the overall status of the network
since the information is limited to the KPI’s recorded at a single network
element.



2.3. Load Balancing Use Case 9

The third type, hybrid architecture is a combination of the previous two. In a
hybrid architecture, the SON process can be run individually for different use
cases, either centralized or distributed, depending on the requirements. For
example a time-sensitive or repetitive use case can be run in a distributed
manner while one which impacts a larger area of the network or requires a
picture of the overall network status might be run centralized.

Figure 2.2: Architectures for Self Organizing Networks

2.3 Load Balancing Use Case

Load balancing (LB) is a self-optimization use case related to Covreage and
Capacity Optimization (CCO). It address situations where neighbouring cells
have significant differences in load and can be defined as a process which ensures
that the traffic in an area is shared equally between the serving cells. Load-
balancing can be effective when the traffic is unevenly distributed in a region
and concentrated mostly in the coverage area of one cell. The estimated effect of
load balancing is an increase Grade of Service (GoS), e.g. dropped and blocked
calls. It is possible for load balancing to have a negative impact on QoS, e.g.
throughput for some users [20].

Load-balance can be achieved by shifting traffic (UE’s) from the highly loaded
cells to less loaded neighbouring cells. There are several parameters that can
be optimized as part of the LB process such as antenna tilt, handover offset
or transmit power. Transmit power or handover offset offer more flexibility,
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since tilt control is conditioned by the availability of Remote Electrical Tilt
(RET) controllers. However, adjusting the handover offset might force users to
connect to cell from which they receive a lower signal, while adjusting transmit
power might not provide the required signal variation. Considering that antenna
tilt has a direct influence on the received signal level, load balance might be
performed without sacrificing QoS.

Figure 2.3: Illustration of Load Balancing

2.4 Motivation and Challenges for introducing
SON

The motivation behind the introduction of self-organizing functionality in mobile
networks is both technical and economical. The technical motivation comes
from the need to deliver high data rates and the increased complexity of
mobile networks [2]. On the economical side, the main driver is represented
by operational costs for configuration and optimization. With a decrease in
revenues per-megabit, operators are looking for ways to reduce their costs [3].

There are different challenges that come with SON. Operators might be
reluctant to give control of their network to a fully automated process, especially
when it will control parameters that have an important impact on network
performance. Several SON processes can run at the same time and changes
made by one process might impact another process. Also it is possible that
several processes have control of the same configuration parameter. For example
antenna tilt can be used as an output for both load-balancing and self-healing.
This can results in possible configuration conflicts and in this case, coordination
between SON processes becomes important.



Chapter 3

Load Balancing using
Antenna Tilt

3.1 Antenna Tilt

Antenna tilt is defined as the angle between the main beam of the antenna
and the horizontal plane. It is measured in degrees and can have positive and
negative values. Positive values mean that the beam is directed downwards, the
procedure is called downtilting and the tilt value is refereed to as downtilt.
Negative values mean that the beam is directed upwards, the procedure is
uptilting and the tilt value becomes uptilt. A tilt value of 0o shows that the
direction of the main beam is parallel to the ground and points towards the
horizon.

Figure 3.1: Illustration of uptilting and downtilting

There are two methods by which tilt can be adjusted, either mechanical or
electrical. Mechanical tilt implies adjusting the mounting brackets of the
antenna in such a way that the whole antenna will be tilted in the desired
direction, leaving the radiation pattern unchanged. Electrical tilt is achieved
with a phase shifter in the feed network of the individual antenna’s elements,
which will allow for a uniform modification of the radiation pattern [21].

11



12 Chapter 3. Load Balancing using Antenna Tilt

Mechanical and electrical tilt has a different impact on the antenna footprint,
as seen in Fig.3.2 [21]. Mechanical tilt will distort the footprint and create
and effect referred to as “pattern blooming”, where the 3 dB horizontal HPBW
will become wider as the downtilt angle is increased [22] . Electrical tilt will
not create these distortions. However, the main drawback with electrical tilt
is the limited adjustment range for tilt angle, no more than 10o − 12o. This is
why usually, antennas are installed with a combination of both mechanical and
electrical tilt.

Figure 3.2: Differences in footprint between electrical and mechanical tilt

Initially, base station antennas had fixed electrical tilt, meaning that for each
tilt value a different antenna would have to be used. Since this is not a flexible
solution, antennas with adjustable electrical tilt were introduced. There are
different ways to adjust electrical tilt, however Remote Electrical Tilt (RET)
is a method that lends itself to be used in self-optimization methods. RET
allows tilt to be adjusted remotely, using electromechanical actuators for phase
shifting.

3.2 Link level load-balancing model

The concept of load-balancing using antenna tilt can be illustrate with a link-
level model. The model illustrates the impact of antenna tilt on best server
boundaries and coverage area of a cell and how this can be used to address
situation in which neighbouring cells have significant differences in load. Nine
cells with directional antennas, arranged in a hexagonal grid were simulated.
The azimuth orientations of the antennas are 90o, 210o and 330o . Users were
generated at random positions in the coverage area of the cells, using a uniform
distribution . To simulate traffic imbalance, a traffic hotspot with a higher user
density was placed on top of the uniform user distribution. The initial scenario
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is illustrated in Fig. 3.3

The pathloss is modelled as distance dependent and calculated for a frequency
of 2GHz, as follows:

L = 128.1 + 37.6log(d)

where d is the distance in kilometres [23]. With this, the received power at the
mobile becomes:

Pr = Pt − L+Gh(ϕ) +Gv(θ)

where Pt is the transmitted power, Gh and Gv are the horizontal and vertical
gains based on the antenna model described in the next section. The values for
the simulation parameters are given in Table 3.1.

Users will connect to cells based on the best downlink Signal to Interference
Ration (SIR). The SIR at terminal j which is connected to base station i is:(

S

I

)
j

=

Pt,i∗Gij

Lij

9∑
k 6=i

Pt,k∗Gki

Lki

Figure 3.3: Initial scenario with unbalanced traffic and equal tilt

With the traffic hotspot placed in the coverage area of Cell-1-1 (red) a larger
number of users will receive a good SIR from Cell-1-1 and connect to it. This
will result in a higher load compared to the neighbouring cells, a typical scenario
for load-balancing.
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Antenna pattern and tilt modelling

For this simulations, the antenna pattern was build according to the model
presented in [24] and included a model for adjustable electrical tilt. The gain
in horizontal plane is given by:

Gh = −min
(

12 ∗
(

ϕ

HPBWh

)2

, FBR

)
+Gmax

where Gmax is the maximum gain of the antenna, HPBW is the half power
beamwidth, FBR is the front to back ratio and ϕ is the horizontal angle relative
to the maximum gain direction. The following values were used:

• Gmax=21dBi

• HPBW=70o

• FBR=20dB;

• −180o ≤ ϕ ≤ 180o

The gain in the vertical plane is given by:

Gv = max

(
− 12 ∗

(
(θ − θtilt
HPBWv

)2

, SLL

)
where θ is the vertical angle relative to the maximum gain direction, θtilt is the
electrical tilt angle, HPBWv is the vertical half power beamwidth and SLL is
the side lobe level. The following values were used:

• −90o ≤ θ ≤ 90o

• HPBWv = 10o

• SLL = −18dB

The effect of tilt changes on the received signal level using this antenna model
is represented in Fig. 3.5. A mobile was placed in a fixed position at 500m
from the base station, which was placed at a height of 25m. The vertical angle
between the mobile and the base station was calculated as:

θ = arctan

(
(hBS − hm)

d

)
where hBS , is the height of the base station’s antenna, hmm is the height of the
mobile and d is the distance between the mobile and the base station.

It can be seen how the received signal varies depending on tilt angle for two
vertical HPBW values. For a narrower vertical HPBW, tilting has a more
powerful impact, with a variation of 11 dBm in received signal compared to
only 4.3 dBm in the case of the wider vertical HPBW. Also it can be seen that
there is an optimum tilt angle, which provides the highest received signal for
this antenna model and that this angle is independent on the vertical HPBW.
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Figure 3.4: Horizontal and vertical radiation patterns for the modelled antenna
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3.3 Link level load-balancing simulation

Simulations were performed using the model described in the sections above.
The goal was to demonstrate how antenna tilt can be used as an efficient tool
to achieve load-balance in the presence of irregular traffic distributions. The
simulation parameters are given in Tabel 3.1

Starting from the initial tilt angles several tilt changes were performed, that
consisted of downtilting for the congested cell and uptilting for the neighbours.
After each step, the load of each cell was evaluated. Load was defined as the
ratio between the total number of connected users and the maximum connections
allowed by the cell.

Base station antenna height 25m
Mobile height 1.5m

Cell radius 800m
Path loss L = 128.1 + 37.6*log(d)

Base station Tx Power 43 dBm
Antenna Gain 16 dBi

Antenna horizontal HPBW 70o

Antenna vertical HPBW 10o

Tilt range 0o − 10o

Tilt step size 1o

Type of tilt Electrical

Table 3.1: Simulation Parameters

The first step was downtilting the antenna of the congested cell, Cell-1-1 with
1o. The second step was uptilting the antenna of neighbouring cells, Cell-2-3,
Cell-3-2 and Cell-3-3 by 1o. After six iterations load-balance was achieved and
no significant improvements could be made. The changes made at each iteration
are presented in Table 3.2, while the load of the cell is shown in Fig. 3.4

Iteration Cell-1-1 Cell-2-3 Cell-3-2 Cell-3-3
1 Initial setting Initial setting Initial setting Initial setting
2 1o Downtilt No change No change No change
3 1o No change 1o Uptilt 1o Uptilt 1o No change
4 1o Downtilt No change No change Uptilt
5 No change 1o Uptilt Uptilt No change
6 Downtilt No change 1o No change No change

Table 3.2: Tilt changes as a result of load-balancing
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The load balancing process resulted in a 28 % reduction in load for the congested
cell. The load increase in neighbouring cells was between 9 % and 14 % and the
maximum load of any cell at the end of the process didn’t exceed 50%.
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Figure 3.6: Variation of cell load at every iteration step

The impact of antenna tilt on coverage shaping and thus on the best server
boundaries for this model can be observed in Fig. 3.5 which shows the coverage
area of each cell after the load-balancing process. Compared to the initial
settings shown in Fig. 3.3 it can be seen that the coverage area of Cell-1-1 (red)
is reduced as a result of downtilting. Also the coverage area of neighbouring
cells, Cell-2-3 (green), Cell-3-2 (yellow) and Cell-3-3(magenta) has increased as
a result of uptilting. Cell-1-2 (cyan) was not included in the LB process and thus
the coverage area remained unchanged. However the load of Cell-1-2 increased
slightly as a result of users shifting from Cell-1-1.

The main concern when performing load-balancing is maintaining the same
QoS for the users that are shifted to neighbouring cells. The same QoS means
that the users can access the same services with the same quality. This mainly
concerns data services, where the achieved throughput depends on the radio
channel quality and on the received SIR. For the considered model the downlink
SIR before and after load-balancing is shown in Fig. 3.6. It can be seen that
there is a decrease of around 0.5 dB in SIR for some users, while for others
the SIR actually improves. This gives an indication that the same QoS can be
theoretically maintained even after load-balancing.
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Figure 3.7: Load-balanced configuration with optimized tilt angles
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Chapter 4

Self-optimization process

4.1 Identification of congested cells

The first requirement for a self-optimization process is to automatically identify
cells that experience sub-optimal performance. The identification process relies
on Key Performance Indicators (KPI) and in the case of optimization for
load-balancing, the KPI’s should reflect congestion due to an increased traffic
demand.

A congested cell can be identified based on the Grade of Service (GoS)
experienced by the users in that cell and the available resources at the base
station. The GoS can be used as input regardless of Radio Access Technology
(RAT). The definition of resource however will depend on the type of mobile
network, e.g WCDMA, LTE.

4.1.1 Grade of Service

GoS is determined based on the call dropping and call blocking ratios. The
dropped call ratio is defined as the probability that a call is terminated
prematurely, i.e before the user terminates the call. It is calculated as the
percentage between the total number of dropped calls and the total number of
admitted calls.

Dropped Call Ratio =
Ndrop

Nadmitted

The blocked call ratio is defined as the probability that a call is not admitted
in the network. It is calculated as the percentage between the total number of
blocked calls and the total number of attempts.

Blocked Call Ratio =
Nblock

Nattempt

19
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In order to combine both metrics described above, the Grade of Service (GoS)
is defined as:

GoS = 1 −Blocked Call Ratio+Dropped Call Ratio

There are different services offered in mobile networks, e.g. voice and data.
Each of these services will have an associated blocking and dropping ratio and
thus an associated GoS. In this way, the GoS can be used as a first indicator for
congestion, per service. The second indicator is represented by the availability
of resources in the cell. This is required to determine if the value of the GoS is
reduced by congestion and if load-balancing using antenna tilt can be employed.

4.1.2 Resource Utilization

Base stations for mobile communications have a limited number of resources
that can be allocated to users. Depending on the mobile technology considered,
these resources differ. However, the level of resource utilization at the base
station can be used to identify congested cells regardless of technology.

Resources in WCDMA networks

The main downlink resources for a WCDMA cell are transmit power and
channelization codes [25]. Also the concept of Channel Elements (CE) is used
to quantify the hardware and processing capabilities of a base station. In the
uplink, the load is given by the noise rise.

The total transmit power of a NodeB is shared between common channels and
traffic channels. The common channels are transmitted at fixed power, and thus
their contribution to the downlink load is constant. However, the power required
to support traffic channels will be dependent on the user location and supported
service. For the purpose of the cell identification method the downlink power
load can be defined as:

ηDL =
Pused

Ptotal

where Pused represents the amount of utilized power and Ptotal represents the
total available power at the cell. However, this formula does not give an estimate
for the interference on the air interface [26].

Channelization codes are used for multiple access and they are based on
Orthogonal Variable Spreading Factor (OVSF) codes. They are arranged in a
tree structure based on the Spreading Factor (SF), with a total of 256 codes with
SF 256. Depending on the service delivered to the user a specific SF is allocated,
with higher data rates requiring a lower spreading factor. For example, a 12.2
kbps voice bearer requires SF 128 while a 384 kbps data bearer requires SF
8. The codes allocation is governed by two rules. A code can be allocated
only if there are no other codes in use on the path to the root of the tree and
also if there are no codes in use in the underlying branches. For the example
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above, this would result in 34 codes being used out of the 256 available (two
SF 256 for the voice service and 32 SF 256 for the data service) . Furthermore,
part of the code tree will be reserved for High Speed Packet Access (HSPA) if
only one carrier is used. HSPA uses fixed SF 16 codes, and depending on the
configuration, several SF 16 codes can be reserved Assuming five SF 16 codes
(80 SF 256 codes) used for HSPA, this results in 176 SF 256 codes that are
available for other services. An example of code tree allocation is given in Fig.
4.1, with green representing available codes, orange, used codes and grey, codes
that are not available.

Figure 4.1: Example of OVSF code tree allocation

To quantify the channelization code usage for the purpose of identifying
congested cells, the following formula is used:

ηCC =
Nused

Ntotal −Nreserved

where Nused represents the number of codes in use, Ntotal represents the total
number of available codes and Nreserved represents the number of reserved codes
for common channels and HSPA.

The required processing and hardware for one speech bearer (12.2 kbps)
represents one channel element (CE). In this way, higher bit rate services will
consume more CE. The exact definition and calculation method for CE is not
standardized, and thus it varies based on vendor. However, each base station
will have a limited number of CE. The channel element utilization is calculated
as:

ηCE =
Nused

Ntotal

where Nused represents the number of CE that are in use and Ntotal represents
the total number of available CE.
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Resources in LTE networks

The downlink transmission scheme in Long Term Evolution (LTE) is based on
Orthogonal Frequency Division Multiplex (OFDM). Using OFDM, a wideband
carrier can be split into multiple narrowband subcarriers. In this way the
downlink physical resource in LTE is allocated in both frequency and time.
A basic resource element is represented by one OFDM subcarrier during one
OFDM symbol interval [25].

Multiple basic resource elements are grouped into Packet Resource Blocks
(PRB), as shown in Fig. 4.2 . The PRB is the smallest resource unit that
can be allocated to a user. One PRB consists of 12 consecutive subcarriers
transmitted in one time slot. The timeslot has a duration of 0.5ms and consists
of 6 or 7 OFDM symbols, depending on the length of the cyclic prefix (CP).
This results in a PRB containing either 72 or 84 resource elements.

Figure 4.2: Downlink time-frequency resource blocks in LTE

The frequency spacing between two subcarriers in LTE is ∆f= 15kHz. A PRB
using 12 subcariers will have a total bandwidth of 180 kHz. Depending on the
maximum system bandwidth, the number of available PRB’s will vary.
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System Bandwidth (MHz) 1.4 3 5 10 15 20
Number of PRB’s 6 15 25 50 75 100

Table 4.1: Number of available downlink PRB’s depending on system bandwidth

The ratio of PRB’s which are in use to the number of total available PRB’s will
give an indication of the resource utilization level at the eNodeB:

ηPRB =
Nused

Ntotal

4.1.3 Identification algorithm

The identification algorithm should use KPI’s, related to GoS and resource
utilization, collected over a period of several days. This time interval is
required to establish if a cell constantly experiences sub-optimal performance,
i.e congestion and filter out isolated events. A longer analysis period will give
more accurate results.

Depending on the interval at which KPI’s are collected and averaged, the
number of available values will vary. For example, if the KPI’s are collected each
hour, this will result in 24 values per day and a total of 24 ∗ Analysis Period
values per cell. A detailed implementation based on the KPI’s described in the
sections above is presented next.

For every cell, at each collection interval, e.g. one hour, the GoS for each
service is compared against the threshold for that service. In this way each
service can have different threshold values. If the GoS value is bellow the set
threshold, one event is marked at that time for that service. The events are
weighted, so that priority can be given to certain services. Each cell will have
a number of events for each time interval the GoS was collected. In the last
step, the events are averaged over the analysis period, giving a total number of
averaged events equal to the GoS collection interval for each cell. For example,
if GoS values are collected every hour and the analysis period is 30 days, each
cell will have 24 events averaged over 30 days, each representing one hour of the
day. The events are calculated as:

Cell Events =

Ns∑
i=1

αi

where Ns is the number of services in the cell and αi 0 ≤ αi ≤ 1 is the weight
for service i. A flowchart describing the identification algorithm is presented in
Fig. 4.3.
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Figure 4.3: Flowchart for cell identification process
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Cells that constantly experience congestion at a given time of day can be
identified by comparing the average number of events to a threshold. For
example, if a cell with one service experiences congestion in the same time
interval, for half of the days in the analysis period, the average number of
events for that time interval, will be equal to 0.5. The threshold value should
be set according to the number of analysed services and the value of the weights
for each service .

When the average number of events in a cell, for a given time interval is higher
that the set threshold, the last step in the algorithm is to check the resource
utilization in that cell. This is done to ensure that the sub-optimal performance
in that cell is caused by congestion and that antenna tilt optimization can be
employed. There might be cases when a cell has a low GoS, and thus creates a
large number of events, although the traffic in that cell is relatively low

4.2 Example of congested cell identification based
on GoS

The congested cell identification process was implemented in Matlab and applied
to traffic data from a 3G network. The provided data was gathered from a
number of 143 cells in an urban environment and averaged each hour for a
period of 8 days. Using the blocking and dropping rates, the GoS value was
calculated for each service at each hour. Since the available data did not contain
resource utilization information, a different condition was used to determine if
a low GoS is caused by congestion . The set condition was a minimum number
of connection attempts for each service per hour. This will eliminate cells that
have lower GoS, but relatively low traffic.

The analysed services were voice and data. The GoS threshold for each service
was set at 99 %, which represents a combined call dropping and blocking ratios
of at least 1 %. Equals weights where used for both services, voice and data,
which resulted in a maximum number of two events per hour, when both services
have an GoS which is lower that the threshold. The threshold for marking an
hour that has a low GoS in consecutive days was set at 0.375. That means that
cells which show traffic congestion for at least one service, at the same hour for
3 or more days out of 8 are marked.

The results, shown in Fig. 4.4, indicate that 15 cells out of 143 experienced
congestion at the same hour for 3 or more days. Furthermore, some cells showed
congestion for multiple hours of the day, with the highest value being 15 hours
out of 24. This cell could be a candidate for load-balancing using antenna tilt.

Fig. 4.5 shows the number of hours with registered events, separate by services.
It can be observed that voice, Circuit Switched (CS) generated more events
compared to data, Packet Switched (PS). This also indicates that voice services
had a lower GoS over the available analysis period.
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Figure 4.4: Number of average events above the set threshold
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Figure 4.5: Number of average events per service above the set threshold

Traffic in mobile networks is periodic and usually varies with a period of 24
hours and within the same geographical region [27]. Fig. 4.6 shows that the
traffic in the cells that experience congestion over several days is concentrated
between 10:00 AM and 17:00 PM. This coincides with normal business hours.
The size of the bubble is proportional to the number of events averaged over
the 8 day analysis period. The smallest bubble represents only one event at
that hour during 8 days. The antenna tilt self-optimization procedure can be
triggered by considering the distribution of hours when congestion is presented.
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Figure 4.6: Distribution of averaged critical events for each hour

4.3 Neighbour cell selection

The next step after identifying a congested cell as a candidate for tilt
optimization is to select the best neighbour cells to be included in the
optimization process. The neighbours will be used to offload some of the traffic
from the congested cell. The following selection criteria are used:

• Number of handovers (HO) between the congested cell and possible
neighbour

• Site location

• Antenna azimuth orientation

• Resource availability

At a high level, handover can be defined as the process of changing the serving
base station, while a call is in progress. This means that the mobile crosses
the boarder between two cells. The number of HO to the congested cell gives
a first indication on which cells can be possible neighbours. There are different
decision methods for handover and these methods use either on Received Signal
Strength (RSS) measurements or Carrier to Interference (C/I) measurements.
Also, there are different types of handover, e.g. hard handover, soft handover
or softer handover. Nonetheless, this metric can be used in the neighbouring
cell selection process.

The antenna tilt load-balancing process is based on modifying the best server
coverage area of the congested cell and of the neighbours. Site location and
antenna azimuth, which is the horizontal angle between the main lobe of the
antenna and the north, measured clockwise in degrees are used to determine if
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the neighbouring cell is spatially located in such a way that its coverage area
can be expanded towards the congested cell.

Finally, resource availability should be taken into account, to determine if the
neighbour cell can support additional users. The same resource definition as
described in previous sections can be used, with respect to the considered RAT.
The neighbour cell will be selected only if its resource utilization is bellow a
defined threshold.

4.4 Tilt adjustment process

Tilt adjustments are the last phase in the self-optimization process. The
adjustments consist in steps of downtilting for the congested cell and uptilting
for the neighbours. The first step is downtilting the congested cell, followed
by uptilting the neighbours. Since adjustments should be done automatically,
Remote Electrical Tilt (RET) will be used. This implies that each base station
antennas has a RET module.

The required number of tilt changes will vary depending on the optimization
target, e.g. FR threshold, user location inside the congested cell and the
granularity of tilt variations. Also, a tradeoff must be made between the
duration of the optimization process and it’s accuracy. A lower granularity
in tilt variations, e.g. using one degree increments instead of two, will give
better accuracy, although it will increase the optimization time. Using higher
granularities will speed up the process, but some tilt configurations will not be
checked.

In the case of multiple neighbours, the uptilt adjustments can be done either
individually, each cell one after the other, or simultaneously, by uptilting all
neighbour cells at the same time. As in the case of the granularity of tilt changes
a tradeoff must be made. The tradeoff is between individual or simultaneous
uptiliting. Simultaneous uptilting will reduce the optimization time at the
cost of increasing the probability for missing an optimum configuration. This
probability will increase even more with a higher number of neighbours.

The time interval between two tilt changes should be proportional to the
variation of the traffic which is causing congestion. Considering the example
in the section above, where the traffic varied with a period of 24 hours, one tilt
change should be made after every 24 hours, until the optimization target is
reached or no significant improvements can be seen.

The main limitation for the tilt adjustment process is the electrical tilt
adjustment range of the antenna. A typical range can be between 0o − 10o.
Also the antennas will already be downtilted with a certain value in the initial
configuration and this will reduce the available range even more, specially for
downtilting.
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4.5 Architecture

Self-optimization of antenna tilt is suited for implementation in a centralized
SON architecture, where the SON process resides on a dedicated server. This
architecture has the advantage of providing global knowledge of the network,
i.e. KPI’s from all cells in the network will be gathered and analysed in one
location. This is required both for the congested cell identification process and
for neighbour cell selection. Once a congested cell is identified, the SON process
will send uptilt and downtilt commands to the RET controllers of the selected
cells. After the first commands are sent, the process will wait a defined period
of time to analyse the impact of tilt changes and decide if further actions are
needed or not.

Centralized self-optimization can be introduced in a mobile network without
any modifications to the existing infrastructure or base stations. The only
requirement is the availability of antennas with adjustable electrical tilt and
RET controllers. In the case of multi-vendor networks, where KPI’s can be
vendor specific, their values should be normalized to a common indicator.

Figure 4.7: Centralized SON architecture for self-optimization of antenna tilt
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System level simulation

5.1 System Model and Parameters

Simulations of load-balancing using antenna tilt were performed for a WCDMA
with HSPA network model. The model was created using the Mentum
Cellplanner radio planning tool [28]. Both network and traffic parameters were
included in the model. The map used was for a sub-urban environment and it
included terrain profiles and clutter data, at a resolution of 20m.

A number of 10 sites, each with 3 cells where distributed over the simulations
area, so that sufficient coverage in terms of Ec/Io was achieved for both voice
and data (HSPA) services. In order to have a cell that experiences congestion
and thus can become a candidate for load-balancing, two traffic demands were
generated. The first demand was a uniform distribution over the entire analysis
area, using a scale factor for each service. The scale factor will determine the
number of active users per square km. The second traffic demand was defined
as a traffic hotspot, using a polygon, in which a certain number of active users
where generated. By placing this polygon in the coverage area of one of the cells,
the extra traffic was added to the uniform distribution and thus, congestion
occurred in that cell.

The transmit power of the cell was set at 43 dBm, while the power for the
common pilot channel (CPICH) was set at 33 dBm. The CPICH is used by
the mobile (UE) for cell selection, handover and channel estimations. Also, the
power of the CPICH is used as a reference for setting the power of other common
channels.

The total available power is shared between the common channels and the
traffic channels. The downlink (DL) power admission threshold represents the
percentage of the total available power that can be allocated to traffic channels.
The threshold level has an impact on the blocking probability for voice users.
When deploying HSPA on the same carrier with voice, the power that is not
allocated to voice can be used for HSPA. It can be seen that in this situation
the DL power admission threshold should be set in such a way that it can
accommodate both services. For this simulation a threshold of 75 % was used.

31
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The noise rise gives an indication of the uplink (UL) of the cell and it is used
in admission control. It is defined as the ration between the total received
wideband power to the noise power [26]. Each user that connects to the cell will
increase the value of the noise rise. In the case that the value will be increased
above the threshold, that user will be blocked by admission control. A value of
6 dB, which corresponds to 75% uplink load was set.

The main characteristic of HSPA is the use of shared channel transmission [25].
This means that the resource of the cell, channelization codes and transmit
power are shared between users in the time domain. The decision of which
user gains access to the resources at a given time is made using a scheduler.
There are different scheduling methods and the one used in this simulation is
proportional fair. Proportional fair scheduling assigns resources to users based
on current channel quality and previous received data rates.

The downlink channels used in HSPA are the High Speed Downlink Shared
Channel (HS-DSCH) and the High Speed Shared Control Channel (HS-SCCH).
When one carrier is shared between voice and HSPA, channelization codes have
to be reserved for these channels. The HS-DSCH is transmitted using SF 16
codes, while the HS-SCCH is transmitted using SF 128 codes. The number of
channelization codes reserved for the HS-DSCH determine also the maximum
bit rate that can be achieved on this channel. For this simulation 5 x SF 16
codes where reserved for the HS-DSCH and 1 x SF 128 code for the HS-SCCH,
which gives a total of 82 SF 256 codes. This leaves 174 SF 256 codes for voice.

Two radio bearers were defined, to support the voice and HSPA services. The
required DL Eb/Io for voice was set at 7.4 dB, and at 5 dB for data . The
average bit rate for data users was set at 500 kbps in the downlink and 128
kbps in the uplink. The proportion of users between the two services was 30%
voice and 70% data users, which resulted in higher blocking rates for data users.

Carrier frequency 2100 MHz
No. of carriers 1
Antenna model Kathrein 742 215
Antenna gain 18 dBi

Antenna horizontal HPBW 65o

Electrical tilt Adjustable: 0o − 10o

Tx Power 43 dBm
CPICH Power 33 dBm

Power admission DL 75 %
Max UL noise rise 6 dB
No. of HS-SCCH 1

Reserved SF 16 codes 5
Scheduler Proportional fair

Radio bearers Voice and HSPA
Traffic proportion 30 % Voice 70 % HSPA

Table 5.1: System Parameters
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Figure 5.1: Simulation scenario with congested cell and two neighbours

5.2 Simulation Method

The aim of the simulations process is to determine the effect of load-balancing
using antenna tilt on the GoS and QoS experienced by users in the congested
cell and the selected neighbouring cells. In this case the GoS is determined by
the blocking probability, while the QoS, is related to cell throughput. A two
step approach is taken. First an electrical tilt change was made on one of the
selected cell. Following each tilt change, a Monte Carlo simulation was run
and the results analysed and compared to the previous ones. The process is
terminated when no further improvements can be seen in the observed metrics
or the tilt adjustment limit has been reached.

A number of three cells were included in the optimization process, as shown
in Fig. 5.1, one congested cell and two neighbours. Due to the proportion
of users between the two services, HSPA showed a higher blocking probability
compared to voice. The average HSPA blocking probability for these cells, was
selected as the optimization target. This combined metric is used in order to
determine the impact of the tilt changes, both on the congested cells and on the
neighbours. In the same way, the average throughput of the cells was used to
determine the effect of tilt changes on QoS.

Three scenarios were simulated and are described in detail in the following
sections. In the firs one, the impact of the proposed self-optimization procedure
is evaluated considering a uniform traffic distribution inside the congested cell.
The second scenario analyses the effect of user location inside the congested cell
by placing a traffic hotspot at different positions in the area of the congested
cell and comparing the results. Finally, in the third scenario, simulations are
performed to determine the effect of using simultaneous uptilt adjustments in
the neighbouring cells.
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Monte Carlo Simulations

Monte Carlo simulations were used in order to provide significant statistical
results. This method simulates random processes, by taking snapshots of
random variables with a predefined probability density function and then
averaging the results. When simulating mobile networks, the random variable
represents the distribution of users and their activity factor. At each snapshot
users attempt to connect to the network based on their specified service. The
simulator measures the achieved C/I for each user, calculates the required UL
and DL power and applies admission and congestion control based on the base
station settings. In case that one or several conditions are not met, users are
disconnected. There are several parameters to be configured for the Monte Carlo
analysis, which are summarized in Table 5.2 and detailed bellow.

For each analysis a number of trials is specified, representing the number of
distinctive snapshots, thus user distributions which are analysed. A higher
number of trials will provide more accurate results and for this simulation 50
trials were used.

The number o iterations during each trial represents the number of allowed
changes to be made to the system, in order to achieve convergence. At each
iteration, power changes are made in both uplink (UL) and downlink (DL) .
The value, in dB, of the power change is given by the maximum step size. The
convergence limit is the allowed variation in Eb/Io for a radio bearer to be
considered connected.

The cell ranking criteria gives the order in which cells are tested for connection
by the UE. There are different ranking types that can be selected, e.g. strongest
signal, lowest pathloss, minimum UE power or best Ec/N0. For this simulation
the ranking was done using best Ec/N0. In this way, the simulator will first try
to connect the UE to the cell which gives the best CPICH quality.

With the Monte Carlo method the user distribution is changed after each trial.
However, for the purpose of simulating load-balancing using antenna tilt, the
user distribution must be fixed. This condition ensures that any modification
in the observed metrics can be attributed only to tilt changes. Using a fixed
seed for the simulator’s random number generator will allow the same user
distribution to be maintained, over multiple trials.

Number of trials 50
Number of iterations 120
Maximum step size 1 dB
Convergence limit 0.5 dB

Convergence criteria User based (C/I)
Cell ranking Best Ec/N0

Fixed seed Yes

Table 5.2: Monte Carlo Analysis Parameters
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5.3 Uniform traffic distribution

For this first scenario, the traffic distribution in the congested cell is uniform.
The additional traffic demand leads to an initial average blocking probability of
5.57 % between the three cells, which translates into a GoS of 94.43 %. Since
most of the traffic is concentrated in the coverage area of only one of the three
cells, this becomes a typical situation where load balancing using antenna tilt
can be used.

The tilt adjustment procedure was applied as described in the sections above,
with individual uptilt changes for the two neighbours. While this method
increases the duration of the optimization process, it also increases the accuracy,
by allowing more uptilt/downtilt combinations to be checked. The results are
presented in Fig. 5.2, where one iteration step corresponds to an uptilt or
downtilt change. It can be seen that the lowest value for average blocking
probability was achieved after seven iterations, with a value 0.43 %. This
results in a 5.44 % improvement in GoS. Following that, the value of the
blocking probability starts to increase, as a result of congestion created in the
neighbouring cells by the users that were shifted through the load-balancing
process. The optimization process was terminated at this point. The tilt settings
for the load-balanced configuration were obtained at step 7, with 2o downtilt
for the congested cell and 2o uptilt for each of the neighbours.
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Figure 5.2: Variation of average HSPA blocking probability
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The second metric was the average cell throughput, which relates to the QoS
experienced by the users. The cell throughput is calculated by multiplying the
total number of data service users with the average bit rate per user. It can
be assumed that by increasing the GoS and thus the number of users which
can connect to the cell, the cell throughput also will increase. However, for this
simulation scenario, the results show that this was not the case. Throughput
values oscillated at every iteration step with a clear decreasing trend. The
highest decrease in throughput was 15.57 % compared to the initial value and
was measured at step 9. At step 7, the point where the highest GoS was
achieved, the throughput decreased by 11.25 %.
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Figure 5.3: Variation of average cell throughput

Fig. 5.4 shows a comparison between the average number of served users and the
average downlink data rate per user, at each step of the optimization process.
It can be seen that while the number of users increases, the average data rate
per users decreases. This result helps to explain the average cell throughput
variation observed, variation that is not correlated to the increase in GoS.

Besides it’s effects on GoS and QoS, load-balancing using antenna tilt has also
an influence on the resource utilization at the base station. Fig. 5.5 shows the
variation of Channel Element (CE) utilization during the optimization process.
This indicator was used because, in this scenario, HSPA and voice were deployed
on the same carrier and thus the transmit power will not vary with the number
of users, since the remaining power after serving voice users will be allocated
to data users. The number of utilized CE decreases for the congested cell and
increases for the neighbours. At step 7, where the highest GoS was measured the
CE utilization decreased by 26.34 % in the congested cell. The CE utilization
increased in the neighbouring cells. However, the increase was asymmetrical
meaning that users were shifted predominately to one neighbour.
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Figure 5.4: Comparison between the average number of users and average data
rate per user
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Figure 5.6: Variation of throughput in the congested cell

Although there was an overall decrease in average throughput between the three
cells in the optimization cluster, the congested cell alone showed an increase in
throughput, as it can be seen in Fig. 5.6. A maximum increase of throughput
of 17.9 % was measured, while the throughput at the step were the highest GoS
value was registered increased by 9.8 %.

5.4 Effect of inter-cell traffic distribution

The efficiency of load-balancing is also related to the traffic distribution inside
the congested cell. Traffic distributions might exhibit users concentrated in a
certain region of the cell, e.g. closer to the cell edge. Fig. 5.6 illustrates the
effect of load-balancing using antenna tilt on blocking probability value and
thus GoS, for two different position of the traffic hotspot. The results show
that, when the hotspot is closer to the cell edge, the lowest average value of
blocking probability is reached at an earlier optimization step compared to the
case when the traffic hotspot is closer to the base station. Also the value of
the average blocking probability at the optimum point is lower with the traffic
hotspot towards the cell edge, having a value of 0.3 % compared to 0.65%.

The variations in throughput during the optimization process follow slightly
different trends depending on the position of the traffic hotspot. The average
cell throughput is higher when the traffic hotspot is closer to the base station,
due to the fact that users experience a better Ec/N0. Also, in this case, a small
increase of 3.5 % in throughput is seen at step 4. However, at step 8, when the
highest GoS was obtained, the average throughput decreased by 6.24 %
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Figure 5.7: Variation of average HSPA blocking probability for different traffic
hotspot positions

For the case when the hotspot was positioned towards the cell edge, the variation
in cell throughput followed a similar pattern to the case when the traffic hotspot
was uniform distributed, although the throughput values were lower. The
highest decrease was 17.91 % and was observed at step 6 of the optimization
process, which is also the step where the highest GoS was measured.
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Figure 5.8: Variation of average cell throughput for different traffic hotspot
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5.5 Simultaneous uptilt for neighbour cells

As discussed in previous sections, the duration of the optimization process can
be reduced by performing simultaneous uptilt adjustments of neighbouring cells
antennas. However, with this method accuracy might be reduced since some tilt
configuration will not be checked. Simulation were performed to compare the
optimization results for individual and simultaneous uptilting of neighbouring
cells antennas. The same three scenarios presented in the sections above were
used, uniform distribution, traffic hotspot closer to the cell edge and traffic
hotspot closer to the base station.
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Figure 5.9: Effect of applying simultaneous uptilt for neighbour cells with
uniform traffic distribution

The results confirm that with simultaneous uptilt, the optimization process is
faster and the lowest blocking probability value is found at an earlier step.
They also show that in some cases, the lowest blocking probability value found
with simultaneous uptilt is not equal to the lowest blocking probability value
found with individual upitlt. This means that a tradeoff between the speed and
accuracy of the optimization process has to be made.

In the scenario with uniform user distribution, the lowest blocking probability
value found during the optimization process is the same with both methods, as
seen in Fig. 5.9. This is due to the fact that this value is found at a step where
both neighbours are uptilted with 2o. It can be seen that accuracy is not lost
in this case.

Fig. 5.10 shows a case where the lowest blocking probability value differs
depending on the uptilt method. With individual uptiliting, the lowest value is
found at step 6 in the optimization process, which corresponds to a 1o uptilt of
one neighbour and 2o uptilt of the other. This configuration will not be checked
in case of simultaneous uptilt and thus the difference in the lowest value for
blocking probability, of 0.3 % compared to 0.56 %.
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Figure 5.10: Effect of applying simultaneous uptilt for neighbour cells with the
traffic hotspot closer to cell edge

In the last scenario, the value for the lowest blocking probability was the same
with both methods. As in the previous case in which the blocking probability
values where equal with both methods, at the optimization step where the
value was obtained, the two neighbours had been uptilted with 2o. This
means that for this case there would be no performance difference between
the two methods, and the faster optimization time provides an advantage for
simultaneous uptilting.
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Figure 5.11: Effect of applying simultaneous uptilt for neighbour cells with the
traffic hotspot closer to the base station





Chapter 6

Discussion and Conclusions

This work presented the concept of self-optimization using antenna tilt in
mobile networks with emphasis on its application for load-balancing. First,
an introduction to Self Organizing Network (SON) was given, including a
brief history, desired functionality and possible implementation architectures.
Following that, a link-level model was created starting from previous work,
which acknowledges antenna tilt as an efficient optimization parameter. This
model showed how antenna tilt can be successfully used to shift users between
neighbouring cells and thus address situations when these neighbouring cells
have a significant difference in load. Also, it was shown that the SIR values
before and after the tilt optimization process have similar values, which means
that theoretically, users will benefit from the same QoS.

The next step was to propose a framework on which a self-optimization process
can be build. The process should be able to automatically and independently
respond to situations where sub-optimal performance is detected, by identifying
congested cells, selecting neighbours to be included in the optimization process
and making tilt adjustments based on defined performance targets. The
congested cell identification method was tested using real traffic data from a
3G network and the results showed that this method is efficient in identifying
cells which can be candidates for the optimization process. Also traffic patterns
were identified from the available data, where the congestion predominantly
occurred during business hours. During these hours self-optimization could
be employed to improve the GoS, without adding extra capacity to the base
stations. Finally, a centralized SON architecture was proposed for introducing
the self-optimization method in existing and future mobile networks.

System level simulations for a WCDMA network were performed, to illustrate
the effect of load-balancing using antenna tilt. The results showed that this
method can achieve a reduction in the average GoS of an area where one
cell experiences a higher blocking probability compared to its neighbours.
Furthermore, when the traffic hotspot is placed near the cell-edge, load-
balancing becomes more effective, since users will be shifted to the neighbouring
cells at an earlier stage.
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The optimization process produced variations in average throughput for the
whole optimization cluster , with an overall decrease in throughput values.
Although the number of served users increased, their individual bit rate and thus
cell throughput decreases. This trend was observed in all simulation scenarios
and the results can be attributed to a reduction in the Ec/N0. The users which
have been connected to neighbouring cells as a result of tilt adjustments will be
located at the cell-edge. Also, downlink interference might increase as a result of
uptilting. This means that users will receive a lower signal and experience higher
interference. Considering only the congested cell, the throughput values increase
as a result of load-balancing. However, this method is aimed at improving the
throughput in the whole optimization cluster and not only the congested cell.
In a realistic scenario this outcome will not be accepted since increasing the
throughout in the congested cell should not come with the cost of decreasing the
throughput in the optimization cluster . The throughput variations are specific
for this scenario and at this point cannot be generalized. Also the reduction in
throughput is not the same for the three scenarios, with the lowest reduction
being measured when the traffic hotspot was placed near the base station and
the highest reduction being measured when the traffic hotspot was placed at
the cell edge.

Simultaneous uptilt of neighbouring cells can improve the optimization time,
but some tilt configuration will not be checked. The results showed that
simultaneous and individual uptilting achieves the same results when the lowest
blocking probability value is reached at a step where both neighbours were
uptilted with equal amounts. In the case when the best configuration is found at
a step where the neighbours don’t have the same uptilt adjustments, individual
uptilitng provides better results. Also the probability of finding the optimum
value at a step where both neighbours have equal uptitl adjustments decreases
with increasing the number of neighbours.

Overall, the results proved that antenna tilt self-optimization has the potential
to improve performance in congested areas. This method will provide benefits
both from user perspective, by improving the GoS and also from network
perspectives by reducing the load on the base stations and achieving a more
efficient resource utilization. The resource utilization becomes more efficient
because users will be shared between multiple base stations in an area. In this
way it is possible to take advantage of resources from base stations which have
low traffic and increase the performance in that area.

Possible issues and limitations

Using this method presents some limitations and introduces possible issues
that might have a negative impact on network performance. First of all,
self-optimization of antenna tilt requires that antennas have RET capabilities.
Another limitation could be the electrical tilt adjustment range, which will
have an impact on the number of optimization steps that can be made. Also,
antennas would already be downtilted with a certain value before starting the
optimization process. For example an antenna which is already electrically
downtilted with 8o and has a maximum range of 10o will allow for only 2o of
downitlting for optimization purposes.
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Since antenna tilt has a direct influence on the coverage area of the cell, one
concern could be creating coverage holes during the optimization process. This
might occur mostly as a result of downtilting and will depend also on the
coverage overlap between the neighbouring cells. Another issue is increasing
the downlink interference by uptilting the neighbouring cells. This might reduce
the C/I level and thus influence the services available to the users, e.g. decrease
their maximum achievable data rate.

Future work

The simulations results showed that this method produces a small degradation
in cell throughput. However, at this point this statement cannot be generalized
and this is why the effect on cell throughput is suitable for future work.
More specifically, the variation in downlink interference during the optimization
process can be studied. Also the work can be extended to include LTE system
level simulations.

Determining the average number of tilt changes which are required to achieve
load-balance for different scenarios could provide insight on average optimization
times. Also this would determine if the tilt adjustment range is actually a
limitation or not.

The influence of cell size and propagation environment can be also a subject
for future work. The simulations in this work were performed in a sub-urban
environment model with medium cell sizes. Also only one traffic hotspot was
introduced in the network. Simulations which include the presence of multiple
traffic hotspots can give more insight on the performance of this method.

The SON concept includes different types of self-configuration, self-optimization
and self-healing use cases which might be addressed by separate SON processes.
The interaction and coordination between antenna based self-optimization and
other SON use cases can be seen as future work. For example, a reduction in
GoS caused by load-balancing might trigger an energy savings use case, which
considers the cells have low traffic, although that is not the case.
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