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Abstract
This thesis describes methods and problems when using Bayesian Ar-
tificial Neural Networks for text document classification. It also depict
other methods used in text analysis and automated classification in gen-
eral. The main tasks are to construct a network, investigate the effect of
variations to existing parameters and how to combine dependent input
attributes into complex columns. Correlation measures are used to find
these combinations. The basic idea is to let the classifier built work as
a document filtering system. Results from the testing are described and
explained.

The results are discouraging. All tests indicate that the training set
is too small. Compared to another study done, on the same data, at
Swedish Institute of Computer Science the performance of the classifier
is poor.



Referat
Nyttjande av ett Baysianskt Neuronät för

dokumentfiltrering med hänsyn till användarprofiler

Den här rapporten beskriver metoder och problem vid användande av
Bayesianska artificiella neuronnät för dokumentklassificering. Det be-
rör även andra metoder som används inom textanalys och automatisk
klassificering. Den huvudsakliga uppgiften är att undersöka effekten av
parametrar och variation av dessa och hur beroende indata attribut
skall kombineras till att skapa komplexa kolumner. För att hitta dessa
kombinationer används korrelationsmått. Grundtanken är att låta den
skapade klassificeraren fungera som ett dokumentfiltreringssystem. Re-
sultat från tester är beskrivna och förklarade.

Resultaten är nedslående. Alla tester tyder på att träningsmängden är
för liten. Jämfört med en annan studie genomförd, på samma data, vid
Swedish Institute of Computer Science så är klassificerarens prestanda
låg.
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Chapter 1

Introduction

There is a vast amount of written information that becomes available to people ev-
ery day and some sort of automated classification of text data has become extremely
required.

There are many kinds of methods that can be used to perform classification tasks
and they all are suitable for different domains. It is often the problem that forms
the specific method, but there are methods that designed to be applicable for many
sorts of problems.

To categorize text you are forced to use techniques from different science areas,
including text parsing, information retrieval and data classifying algorithms.

In this thesis the Bayesian Neural Network is used along with classic linguistic
analysis methods, in a hope of creating a good document classifier, such as a spam-
filter.

1.1 Overview of the thesis

Chapter 2 constitutes the obligatory literature search. It handles methods used
for text analysis. First, the basics of Information Retrieval are described, including
measures used in the field. The chapter also covers classification methods in general,
including the Artificial Neural Network, the Bayesian Artificial Neural Network, the
Augmented Bayesian classifier, Latent Semantic Indexing, Hierarchical Indexing and
Decision Trees. Five applications which are used for document classification are de-
scribed.

Chapter 3 describes the Bayesian Artificial Neural Network in detail. It begins
with a brief description of the feed-forward Artificial Neural Network. Then the

1



CHAPTER 1. INTRODUCTION

Naive Bayesian classifier is described. Further on the classifier is extended with the
Bayesian learning rule to form a one-layer Bayesian Artificial Neural Network. At
the end the multi-layer Bayesian Artificial Neural Network is described with its hid-
den layers, including the partitioning, overlapped and fragmented complex columns.

In Chapter 4 the Bayesian Artificial Neural Network is studied when it is used
as a document classifier, working in an text environment of conference calls. The
idea is to build user profiles corresponding to interests of a set of test subjects. With
the user profile you may predict if a ’new’ document is relevant or irrelevant to the
subject and thus have the possibility to filter it out.

The results are compared to the results of a survey based on the same text col-
lection.

Finally, chapter 5 discusses the results and their reasons. It describes further vari-
ations to the approach used. Sources of error are discussed and at the end you find
some thoughts of the writer.

2



Chapter 2

Methods used in text analysis

In this section we mention some of the most frequently used methods that are re-
lated and relevant to text classification/categorization; Information Retrieval and
algorithms for data classifying.

This chapter represents the literature search for the Thesis Project.

2.1 Information Retrieval

The goal of an Information Retrieval (IR) system is to find relevant documents of
some topic of interest. However, ’relevance’ is a vague term. How should ’relevance’
be defined? As [Mizzaro, 1996] writes, there are several kinds of relevance, such as
’utility’, ’usefulness’, ’topicality’ and many more. This is probably the reason why
it is so complicated to reach good effectiveness of the IR systems. Many techniques
have been developed to explore the meaning of ’relevance’. The following sections
discuss some of these measures.

2.1.1 Term frequency - Inverse Document frequency

Term frequency - Inverse Document frequency, tfidf , is a measure of how frequent
a word (or term) is in a document related to how frequent it is overall; in other
words, how significant the term is, [Salton and Buckley, 1988].

If the term is highly frequent in a document it is probably, in some feature meaning,
important for that document. But if the term is highly frequent in all document it
is not that important, i.e. as the term ’the’. Hence, we are interested in the inversed
document frequency.

3



CHAPTER 2. METHODS USED IN TEXT ANALYSIS

This measure uses the term frequency, tfif - the number of occurences of term
Ti in document Dj and the document frequency, dfi - the number of documents
that contain the term Ti.

With these two measures we can write the tfidf measure as:

wij = tfij ∗ log2

(
N

dfi

)
(2.1)

where N is the total number of documents.

This measure normalizes the term occurrences and gets us a nice representation
of the document set.

2.1.2 Precision and Recall

In Information Retrieval there are two measures which are frequently used, named
Precision and Recall, [EAGLES, 1995]. These measures focuses on the relevant
behavior of a system, which in a document retrieval system is to retrieve interesting
documents. The precision p measures how many of the retrieved documents ret
are relevant relret, and the recall r measures how many of the existing relevant
documents reldat are actually retrieved relret.

p = relret

ret
(2.2)

r = relret

reldat
(2.3)

You must have the documents predefined by the user, to be able to use these mea-
sures.

2.1.3 Mutual Information

When you want to measure how much information is achieved when given some
data, you must look at the field of Information Theory. The Information Theory
discuss the efficiency of information representation, and limitations involved in the
reliable transmission of information.

One important concept in Information Theory is the entropy measure. Entropy
is a measure of order, and is borrowed from the thermodynamics. In Information
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2.1. INFORMATION RETRIEVAL

Theory it is a measure of the average amount of information conveyed per message.

H(X) = −
∑

i

P (xi) logP (xi) (2.4)

where − logP (xi) is the amount of information we get if we are told that xi, with
probability to occur, P (xi), has occurred.

Another concept from this domain is the Mutual Information. In a classifier the
objective is to learn a input-output mapping. Here, mutual information is of im-
portance. The mutual information is a measure of how much two objects X and
Y have in common, and it is based on the definition of the conditional entropy
[Haykin, 1998]:

H(X|Y ) = H(X,Y ) −H(Y )
where H(X,Y ) is the joint entropy. This represents the amount of uncertainty re-
maining about the input X after the output Y has been observed.

Since H(X) represents the uncertainty about the system input before observing the
system output and H(X|Y ) represents the uncertainty after observing the system
output, the difference

I(X;Y ) = H(X) −H(X|Y ) (2.5)
= H(X) +H(Y ) −H(X,Y ) (2.6)

=
∑
i,j

P (xi, yj) log P (xi, yj)
P (xi)P (yj)

(2.7)

must represent the uncertainty about the system input resolved in observation of
the output. This is called the Mutual Information between variables X and Y .

Note that the Mutual Information is symmetric, I(X;Y ) = I(Y ;X), and always
non negative.

Maximum Mutual Information

When using a measure, one may want to get some understanding in how good/bad
a specific measurement is. One way to get this is to compare it to the maximum
of the measure. To find the maximum of the Mutual Information for one object
relation one may like this:

Set
P (y|x) = 1

and
P (y) = P (x)

5



CHAPTER 2. METHODS USED IN TEXT ANALYSIS

The first equality means that you are sure in the prediction of Y given X. You may
also set the conditional probability to zero, and be sure of the prediction. The two
equalities together say that an input attribute is always occurring in a certain class.
Now you’ll get the maximum mutual information between X and Y , I(X;Y )max

I(X;Y )max =
∑
i,j

P (xi) log
(

1
P (xj)

)
(2.8)

= −
∑

i

P (xi) logP (xi) (2.9)

= −P (xi) logP (xi) − (1 − P (xi)) log (1 − P (xi)) (2.10)

It will be zero at the extreme points P (X) = 0 and P (X) = 1. This is rather
obvious, because the stochastic variable X contains no information at these points.
The highest value of the measure we get at P (X) = 0.5. Using base-2 logarithms
and plotting the Maximum mutual information versus P (X) we will get a parable
through these points, see figure (2.1).
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Figure 2.1. Plot showing the maximum mutual information versus P (X).

2.2 Classification
There are several algorithms used for classification, including singular value decom-
position, statistical methods, genetic algorithms and artificial neural networks. The
purpose with a classification system is to find general features in the dataset and

6



2.2. CLASSIFICATION

make a generalized classification with them.

Text classification/categorization is the process of algorithmically analyzing an elec-
tronic text, and it can be used for filtering purposes.

This section will describe a few methods used for classification; the Artificial Neural
Network, the Bayesian Artificial Neural Network, the Augmented Bayesian classi-
fier, Latent Semantic Indexing, Hierarchical Indexing and Decision trees.

Hierarchical indexing and Decision trees are very similar in the way of splitting
the categorization problem into smaller problems while Artificial Neural Networks
and Bayesian Artificial Neural Networks have topological similarities.

2.2.1 The Artificial Neural Network

The concept of Artificial Neural Networks (ANN) has been motivated by recogni-
tion of the computational flow in the human brain [Haykin, 1998], and it tries to
resemble the architectural solution of the brain.

The brain is a very complicated computational processor. Apart from the con-
ventional computer, with one big fast computation unit, the human brain consists
of about 1011, in the circumstance slow, computation units called neurons.

The main function of the neuron is to filter input signals, in form of electric im-
pulses. A neuron is built up by several input branches connected to a cell body.
One output branch is also attached to the cell body.

The signals flows from the input branches, through the cell body and sometimes
out into the output branch, and there it is transmitted to other neurons. This for-
warding will only occur if the sum of input signals to the neuron is strong enough.

The base element of the ANN is the artificial neuron, which in many aspects sim-
ulates the functions of the biological neuron. It has properties like nonlinearity,
input-output mapping, and fault tolerance.

One further important feature of the neuron is the learning capability. It is done
with dynamic input branches, which can be week or strong in their capability of
transmitting the signals. In the ANN that is interpreted as weights, and by chang-
ing the weights of the neuron you can change the output response of input signals;
the ANN ’learns’.

All the above properties of the neuron make it very dynamic and suitable as a

7



CHAPTER 2. METHODS USED IN TEXT ANALYSIS

part of a big cluster or network. In the ANN the neurons are coupled to each otherr
as the neurons in the brain, but in a simplified manner. The way the neurons are
coupled is called an architecture. There exist several architectures, but the most
commonly used is the feed forward architecture, where no signal loops exists, as in a
recurrent network. In a recurrent neural network the output of one calculation step
is used in the next step of calculation. This is repeated until the network stabilizes.

In the feed forward network, the neurons are placed in layers. Neurons in one
layer get their input from the ’previous’ layer, and forward their outputs to the
’next’ layer. The commonly used Multi-layer Perceptron is such a layered network.

The learning is handled by a learning algorithm. The most popular type of al-
gorithms is the Backward Error Propagation algorithms, usually called Back-Prop.
Here, the difference between the output and an expected output is propagated
backwards through the network layers, in order to change the weights. The change
is made to minimize the error signal of each neuron in a Least Square Error manner.

The ANN can be seen as a generalized associative memory, as it couples one general-
ized input to one generalized output. The fact that the ANN can and will generalize
is the main reason for using it for classification tasks.

2.2.2 The Bayesian Artificial Neural Network

The Bayesian Artificial Neural Network, is an extension of the Bayesian classifier
and was originally built as a recurrent one-layer network, by Lansner &Ekeberg at
the SANS-group at the Royal Institute of Technology. The Bayesian Neural Net-
work is trained according to the Bayesian learning-rule, where the neurons in the
network represent stochastic events and the weights are calculated based on corre-
lations between them.

Topologically, the Bayesian Neural Network used in this thesis resembles the ar-
chitecture of the feed-forward Artificial Neural Network.

The one-layer Bayesian Neural Network is built on the Bayesian classifier which
assumes independence between the input attributes. That assumption is not al-
ways correct. That problem is solved in the multi-layer Bayesian Neural Network
by introducing hidden columns representing combinations of input attributes.

The Bayesian Artificial Neural Network will be described in detail in Chapter (3).

8



2.2. CLASSIFICATION

2.2.3 Augmented Bayesian classifier
Another way of taking care of the independence assumption is the Augmented
Bayesian classifier. The augmented Bayesian classifier augments the original Bayes
classifier with correlation arcs between the attributes [Keogh and Pazzani, 1999].
The attributes become independent given the class. You do not want to find the
underlying probability distribution, but are more interested in finding a represen-
tation that improves the classification accuracy, [Keogh and Pazzani, 1999].

The goal is to calculate the probablity of an instance belonging to class y, P (y|x).
Initially this is equal to the bayesian classifier, but we strive to augment it to im-
prove the result.

The augmented naive Bayesian classifier is defined by the following conditions:

• Each attribute has the class attribute as a parent.

• Attributes may have one other attribute as a parent.

A node without a parent, other than the class, is called an orphan.

The second condition results in a dependency arc between the two attribute nodes.
When a depency arc from node x1 and x2 is formed the above probablity is adjusted
by multiplying by P (x2|y, x2)/P (x2|y).

To find suiting additional arcs (between the nodes) one have to use a search al-
gorithm, Keogh and Pazzani make use of a hill climbing greedy algorithm, where
they iterative add arcs which best improve the performance till no significant im-
provement is made.

They also make use of a more efficient search, SuperParent, which gets the same
accuracy with less work.

The additional arcs mitigate the independence assumption, and therefore improve
the classification accuracy.

2.2.4 Latent Semantic Indexing
The big and interesting problem with classification of written document data is the
amount of data space dimensions. The problem is to generalize the input, to reduce
this word-document space. Is there some latent underlying compact information-set
in a text document to represent the text with? The Latent Semantic Indexing (LSI)
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CHAPTER 2. METHODS USED IN TEXT ANALYSIS

is one approach to discover this idea.

LSI was developed at and patented by Telcordia Technologies, and it was first de-
scribed in [Dumais et al., 1988][Deerwester et al., 1990]. The interesting with LSI
is that it can retrieve relevant documents even when they don’t share any words
with your query. It decompose the problem using Singular Value Decomposition
(SVD), which uncovers the associations among terms in large text collections.

SVD breaks down the original data into linearly independent components. In
general many of these components are small and can be ignored, resulting in an
approximate model of the data. Each document can then be generally represented
with fewer components. Both terms and documents are represented as vectors in a
space with reduced dimensions. The dot product between points in the space gives
their similarity.

To use LSI we must represent the document as a vector of term frequencies, as
the term frequency in section (2.1.1)). Several documents then form a matrix, Xij

of word frequencies,

Xij =


f1,1 f1,2 . . . f1,j

f2,1 f2,2 . . . f2,j
...

... . . . ...
fi,1 fi,2 . . . fi,j


where the index i is the word index and j is the document index. Thus is each word
represented of a document vector.

The LSI transforms the matrix to a product of eigenvalues and eigenvectors, a
number of linear independent factors. This is called a singular value decomposition
of X,

X = T0S0D
′
0

such that T0 and D0 have orthonormal columns and S0 is diagonal.

If the singular values in S0 are ordered in size, and if only the k largest ones are
kept, we get a approximate of X called X̂,

X̂ = TSD′

With the reduced diagonal S we are able to do three sorts of comparison:

1. Term-Term: How similar are the terms i and j?

2. Document-Document: How similar are the two documents i and j?

3. Term-Document: How associated are term i and document j?

10



2.2. CLASSIFICATION

In [Deerwester et al., 1990] they describe how they have tested the LSI on two text
collections, against two straightforward term matching methods. The documents
were automatically indexed and terms only occurring in one document were deleted.
LSI performed 13% better than the other two systems. One cause to this can be
the fact that many test queries are vaguely and poorly stated.

In natural language there are many ways to describe an object, and there are many
different meaning of words. This is called synonymy and polysemy. The LSI can
handle problems like synonymy but not polysemy. The problem is that a term can-
not have several different positions in the data space.

Dasigi et al. use LSI as a feature extractor and a Back-Prop neural network to
integrate the features and classify them [Dasigi and Mann, 1995]. Their goal is
to exploit the dimensionality-reduction capability of LSI and the powerful pattern
matching and learning capabilities of the neural network. The use of a neural net-
work improves the classifiers accuracy when testing ’new’ documents.

The big problem with using LSI is to decide representation dimensionality. In
Deerwester et al.’s work they’ve been guided by "what works best". This is an open
issue of research.

2.2.5 Hierarchical indexing

When categorizing it is important to reduce the in-data subset to an optimal subset
that gives the best performance. Most researchers do not take into account the
hierarchical structure of the vocabulary.

Ruiz and Srinivasan [Ruiz and Srinivasan, 1999] believe that machine learning al-
gorithms could take advantage of these relations and improve performance in text
categorization. They have built a system that considers the hierarchical structure
of the indexing vocabulary, inspired by a divide-and-conquer model. It divides the
problem to smaller problems that are easier to solve, and then combines the solu-
tions to obtain a general solution.

Their system consists of gating networks and expert networks, where the gates
are internal nodes and the experts are leaf nodes in a tree structure. The gates
decides which nodes to access in the lower levels of the hierarchy, and the experts
are specialized in recognizing documents corresponding to specific categories. They
use back-propagation neural networks with one hidden layer for both the expert
and gating networks, where the hidden layer is twice as big as the input layer.

In the study they make use of a predefined subset of the United Medical Language
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CHAPTER 2. METHODS USED IN TEXT ANALYSIS

System, Medical Subject Headings, to get the relations in the indexing vocabulary.

The system performed slightly, but significantly better than a flat Neural Network
Classifier. This is due to that the intermediate layers perform a pre-filtering of
"bad candidate texts". Hence the threshold functions in the experts can be set low,
without incrementing the number of false positive classifications.

Another research team which have explored the idea of the hierarchical structure
of text is Koller and Sahami [Koller and Sahami, 1997]. They point out that the
important thing is not the feature selection, but its integration with the hierarchical
structure. Then each classifier can use a much small set of ’relevant’ features, unlike
a flattened system which must consider all features in one step. Also their study
shows that a hierarchical classifier performs better than a flat one on this type of
data.

Something we should notice with these studies is that they make use of relation-
ship databases for the text. Ruiz and Srinivasan make use of a word relationship
database, and Koller and Sahami’s text text have been classified with multiple la-
bels. The big disadvantage with hierarchic text classifiers is that one must have
access to relationship data for the text and that is not always the case. The prob-
lem remains; to find the relationships in text data. I think this is the hard work you
want to automate. However, they have taken advantage of the richer model space,
something a flat classifier can not do.

2.2.6 Decision trees

When exploring data one may use a decision tree. A decision tree can be used to
reduce data volume, into a more compact form, or to discover wheather the data
contains well-separated clusters of objects [Murthy, 1997] or not.

The decision tree is constructed as a tree graph with intermediate decision nodes
and and leaf nodes. The tree contains zero or more intermediate nodes, and an
intermediate node has two or more child nodes. A decision tree decomposes the
attribute space into disjoint subsets, using simple rules, which test the data, i.e.:

IF (a < T ) THEN choose A-child-node ELSE choose B-child-node;
The leaf nodes are the classes, the different answers of the decision trees classifica-
tion of the data.

Constructing a tree from the training is called tree induction. There are many
ways to do this, and several are ad hoc variants of the basic methodology. There
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are rules derived from distance measures, dependence measures and from the infor-
mation theory’s mutual information and information gain.

ID3 by Quinlan is an algorithm based on entropy measures to find good descrip-
tors for a decision tree. When the data is consistent the resulting decision tree is
describing it exactly.

Another algorithm constructed by Quinlan [Quinlan, 1996] is C4.5. C4.5 is an
algorithm based on a divide-and-conquer strategy, where the problem gets split up
in small pieces using an entropy measure, to select attributes with highest infor-
mation gain. The attributes (or descriptors) should be representative of the data.
Also [Kamber et al., 1997] make use of an entropy measure.

To test an object, you passes it through the tree root node and lets the follow-
ing intermediate nodes decide which way to follow to a leaf node. When you reach
a leaf node the object is classified.

One problem with use of decision trees is the difficulty obtaining a tree with the
’right’ size. Some algorithms uses stopping criterions, but the most widely used are
pruning.

When using pruning you have have constructed a tree where no additional induction
improve the accuracy on the training data. Then you remove subtrees which are
not contributing significantly to the classification accuracy.

The pruning is considered better than a stopping criterion, because the stopping
criterion may stop inducing the tree at a not-so-good node N1 before reaching a
very-good-node N2. This problem does not arise when using pruning.

Critics point at a weakness of decision trees. The lower levels of the tree we climb
the smaller feature sets are used and some of them may not have much probabilistic
significance [Murthy, 1997]. Also, several leaf nodes may represent the same class,
and resulting in unnecessary large trees. The problems can be solved by fyzzyfica-
tion of the data.
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2.3 Applications using various techniques for document
classification

The number of problems to solve in the field of text classification is large. In this
section we will describe a few applications that have been developed to make docu-
ment classifying decisions. It has been difficult to find such application descriptions,
probably because of commercial secrecy aspects. No one gives his good ideas away
for nothing.

2.3.1 Letzia

"Letzia is a user interface agent that assists a user browsing the World Wide Web",
and is built by Henry Lieberman [Lieberman, 1995]. It operates in tandem with the
Web browser and tracks the browsing behavior of the user – follow links, keyword
search queries and page idle – and tries to predict what document items may be of
interest to the user.

When the user is browsing the Internet, Letzia is browsing too, and explores yet
unbrowsed links. At any time, the user can request a set of recommendations from
Letzia, based on the current state.

Letzia have no natural language understanding capability, thus browsed pages are
only decomposed to lists of keywords. Letzia uses them together with simple heuris-
tics to present the ’best choice’. The goal of Letzia is not preset, it evolvs with the
browsing of the user.

When the user follows a link, it indicates that the linked page is interesting in
some manner. If the user idles on the page, Letzia believes that the user reads it,
and it is added to Letzia’s hot-list.

By showing how the user has been browsing Letzia can also explain why it in-
dicates a document as important.

The most common search behavior on the WWW is unfortunately depth-first search.
The user misses a lot of information, and finds herself deep in the stack of chosen
documents. The use of Letzia compensates this behavior with a breadth-first search,
and automatically explores dead ends.

2.3.2 Syskill&Webert

As Letzia, Syskill&Webert, is a software agent that learns to rate web pages, built
by Pazzani et al. [Pazzini et al., 1996]. In their work they have tried five different
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classifiers for the task, including the naive Bayesian classifier, multi-layered Neural
Networks and the nearest neighbor algorithm. Their results shows that the naive
Bayesian classifier performed the best in most cases.

To be able to classify text the system requires some information from the user.
The information is scaled in three points, ’hot’, ’lukewarm’ and ’cold’, and is as-
signed for each browsed page.

When the user rates a web page, Syskill&Webert saves the document and redoes
the document summary of all rated pages. Documents which are used are converted
to boolean vectors describing word existence/nonexistence in the text.

The agent is also able to form a LYCOS query, to provide the user with inter-
esting links. It does this using the ’hot’-document words. Syskill&Webert filters
out ordinary English words, using mutual information. Since LYCOS can not ac-
cept long queries the agent uses the seven most discriminating words.

[Pazzini et al., 1996] found out that users of their agent did not read the entire
pages before rating them. This results in errors when Syskill&Webert analyses too
much of the document. In a patched version they considered this. The new system
classifies only the beginning of the pages, and outperforms its precursor.

In [Billbus and Pazzini, 1996b] they extend the Syskill&Webert agent. The user
is able to feed the system with interesting words. This extended system outper-
formed the original one. They think that the extra information cannot be extracted
automatically from the training set by statistical methods alone.

2.3.3 MailCat

When receiving mail many users sort it into folders. Typical for mail-reading ap-
plications is to provide a long list of existing mail-folders. Sorting work is tedious
and is in many cases undiscouraging users from filing their mail in a manageable
way. MailCat described in [Segal and Kephart, 1999b] offers aid to this task. Mail-
Cat predicts the most suitable mail-folders for the incoming new mail, and makes a
smaller set of choices avaliable, three folders which the user can choose among. In
80 to 90% of the cases MailCat provides the right folder.

MailCat offers this without demanding anything in return. When MailCat is in-
stalled it analyses the existing folders and construct a classifier for each one of them.

The used classifier represent each text as a word-frequency vector, and each folder as
a weighted word-frequency vector. The similarity between the test text and a folder
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is computed as a distance between text and folder vectors. Unfortunately this task
is time consuming due to the vector size, which can grow to ten megabytes or more.
Because of this [Segal and Kephart, 1999b] make use of a cosine distance, proposed
by Gerald Salton and Michael J. McGill, called SIM4, involving only words in the
test text, not the whole word space.

In [Segal and Kephart, 1999a] they make more detailed tests. They examine how
the system reacts to new users, new information, new folders and how important
incremental learning is. One interesting behavior was the inverted learning curve
when introducing new folders. MailCat makes a bad choice and drives the learning
curve down. The system is not to blame when a new message is classified incorrectly
because of the absence of an appropriate folder. In the beginning this behavior is
frequent, but the more information it gets and the more folders created, the behav-
ior get less frequent. The learning curve takes on the common characteristic shape.

2.3.4 NewsDude

Most IR systems assume that the user has a specific, well-defined information need.
But that is not always the case. Instead, the user query could be phrased as: "What
is new in the world that I do not yet know about, but should know?".

Billbus and Pazzini [Billbus and Pazzini, 1996a] describe a system called News-
Dude which takes care of the users long-term interests and short-term interests.
This is handled by a hybrid-model, where the short-term memory is based on a k-
nearest-neighbor algorithm and the long-term memory is based on a naive Bayesian
classifier.

The classifier tries to classify the text it with the short-term memory, and if that
fails it tries to classify it with the long-term memory.

This system can handle three characteristics of a user a ’non-hybrid’ system can
not:

1. Multiple interests of the user.

2. Quickly adapt to a user’s changing interests.

3. Change of the user interests as a direct result of interaction with information.

The third characteristic have not received any attention in the IR community.
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2.3.5 The Fast Search Engine
The enormous size of the Internet demands search services of different types. De-
scribed in [Fast, 1998a][Fast, 1998b] is a Norwegian web search engine called The
Fast Search Engine. They claim that it is one of the best search engines on the
net, indexing 300 Million non duplicated documents (January 2000). The Basis of
the system is the FAST Pattern Matching Chip (PMC), which is combined with
FAST’s state of the art search algorithm, FAST SW Search [Fast, 1998b]. This
system handles linguistic problems like stemming and approximating words, and
boolean operators.
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Chapter 3

The Bayesian Artificial Neural Network

In this section we describe the theoretics of the Bayesian Artificial Neural Network.
We begin with the Artificial Neural Network topology. Then we describe the naive
Bayesian classifier, and use these two to build a one-layer Bayesian Neural Network.
At the end we describe how to extend the idea with hidden columns to construct a
multi-layered Bayesian Network.

3.1 The signal flow of an Artificial Neural Network
The Artificial Neural network is generally described in section (2.2.1). The signal
forwarding properties of the neural network is modeled as a weighted sum of the
input signals,

sj = bj +
∑

i

wijoi (3.1)

where bj is the bias and wij is weights between input signal i and neuron j. The
signal is passed through an activation-function ψ,

oj = ψ(sj)

The activation function is often non-linear and anti-symmetric. See figure (3.1) for
the artificial neuron topology. The neuron splits the input space into two subsets
with a hyper-plane, where input from one subset activates the neuron and input
from the other subset inactivates it.

In an Artificial Neural Network the neurons are connected to each other. There
are several suitable topological solutions/architectures for solving different prob-
lems. A commonly used architecture is a layer architecture, where the neurons
are placed in layers. The neurons in one layer feed the neurons in the next layer.
An ANN with this architecture is called a feed-forward network, see figure (3.1).
The learning capabilities of the artificial neuron is handled with in the learning-
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Figure 3.1. The Neuron

algorithm. There are several learning-algorithms, but the most commonly used is
the back-propagation rule. In the Back-Prop rule the output signal of the network,
oj , and an expected output signal, dj , is compared and results in an error signal
of the network, ej = oj − dj . Naturally, the error is dependent of the weights in
the network, and the learning-rule lets us change them in direction to a smaller error.

One disadvantage with the ANN is that it requires lots of training data. The
more data you have the better generalization possibilities you get. Reinforcement
learning is one way to get around this problem. But in the other hand you have to
construct a representative environment for the network to ’live’ in. Also it has to
seek through the whole state-space to get the ANN fully trained, which can be very
time consuming.

3.2 The naive Bayesian classifier
The task of a classifiers is to classify a set of inputs into a class in a set of classes.
For every input we want to output the most probable class. Thus, we have to cal-
culate the probability for every possible output. If we output the class with highest
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Figure 3.2. A feed-forward multi-layered Neural Network with one hidden layer.
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probability we will minimize the number of errors.

Thus, given one input x we want to calculate the probability for y, P (y|x). This
can be done by the rule of Bayes Conditional probability:

P (y|x) = P (y)P (x|y)
P (y)

(3.2)

It is often easier to express the looks of a class y, in the meaning of the attribute
x, instead of expressing the looks of attribute x in the meaning of class y.

3.2.1 The independence assumption
If we have N independent input attributes x = {x1, x2, . . . , xN } we can calculate
the joint probability P (x) as:

P (x) = P (x1)P (x2) . . . P (xN ) (3.3)

The conditional probability of x given class y becomes:

P (x|y) = P (x1|y)P (x2|y) . . . P (xN |y) (3.4)

With (3.3) and (3.4) inserted in (3.2) we get P (y|x):

P (y|x) = P (y)P (x|y)
P (x)

= P (y)
N∏

i=1

(
P (xi|y)
P (xi)

)
(3.5)

This is the basis of the naive Bayesian classifier.

3.3 The one-layer Bayesian Neural Network
Equation (3.5) underlies the concept of the Bayesian Neural Networks (BANN)
[Lansner and Ekeberg, 1989]. Yet, one can not see the similarity with the signal
summation (3.1) of the ANN, but if we take the logarithm of (3.5) it can be written
as a sum:

logP (y|xi) = logP (y)+
N∑

i=1
log

(
P (xi|y)
P (xi)

)
= logP (y)+

N∑
i=1

log
(

P (y, xi)
P (y)P (xi)

)
(3.6)

If we, given a set of observed inputs A = {xi, xj , xk, . . . }, want to calculate the
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probability of a specific outcome y we write equation (3.6) as:

logP (y|A) = logP (y) +
∑

xi∈A

log
(

P (y, xi)
P (y)P (xi)

)
= logP (y) +

∑
i

log
(

P (y, xi)
P (y)P (xi)

)
oj

(3.7)
When comparing (3.7) with (3.1) we see that,

bj = logP (y) (3.8)

wij = log P (y|xi)
P (y)

(3.9)

If we have observed M classes y = {y1, y2, . . . , yM } we have a class index too:

bj = logP (yj) (3.10)

wij = log P (yj , xi)
P (yj)P (xi)

(3.11)

sj = bj +
∑

i

wijxi (3.12)

To prevent probablitities greater than 1 we normalize the output

xj = exp(sj)∑
j exp(sj)

(3.13)

3.3.1 Training the one-layer Bayesian Neural Network

To train the one-layered BANN we will not use any algorithm alike the feed-forward
algorithm. The feed-forward algorithm uses the input data several times during the
training, but in the Bayesian learning rule only once.

The training of the BANN includes estimating the probabilities for attribute oc-
curences, class occurences and the joint occurences of attribute and class. To es-
timate the probabilities we need to count the occurences in the training sets. The
occurrence counters are C - the total number of training patterns,

C =
∑

p

κp (3.14)
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ci - the total occurrences of unit i,

ci =
∑

p

κpξi,p (3.15)

cij - the total simultaneous occurrences of unit i and unit j,

cij =
∑

p

κpξi,pξj,p (3.16)

where the κp is the strength of pattern number p, and ξi,p indicates the presence of
attribute i in pattern p.

Now we can calculate the probability for all the interesting occurrences Pi, Pj and
Pij .

Pi = ci

C
(3.17)

Pij = cij

C
(3.18)

These are the classical probability estimations. If we use these definitions we get
problems with logarithm of zero in equations (3.10) and (3.11) as some combina-
tions never occur in the training set. Even the ability to generalize gets weak. Lets
look at an example!

Example: Think of a 6-eyed dice. If we throw the dice six times, it is very
unlikely to get one six, one five, one four and so on. It is very unpredictable
to use this small test to estimate the classical probability. But if we throw it
a hundred times we will be more able to trust the statistical outcome. The
bigger training set the better statistics.

3.3.2 The Bayesian factor
To solve the logarithm-of-zero problem we introduce the Bayesian approach:

Pi =
ci + α

ni

C + α
(3.19)

Pij =
cij + α

nimj

C + α
(3.20)

where α is the Bayesian factor, and can be thought of how much importance we lay
on ci, the ni factor is the number of possible outcomes of Xi and mj is the number
of possible outcomes of Yj [Holst, 1997].

The value of α spans between 0 and 1, and is normally set low; α = 1/C is consid-
ered to be good [Holst, 1997]. These probablities work better in small test sets than
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their classic alternatives, as they take in acount the number of possible outcomes
of each attribute.

There is also a second approach, where the probablitity P (y|xi) used in (3.9) is:

P (y|xi) = cij + αPj

ci + α
(3.21)

3.4 The multi-layer Bayesian Neural Network

In the above one-layered BANN we assumed all input attributes are independent.
But when they are not the above naive approach is not appropriate. To improve per-
formance we can introduce a hidden middle layer of units. Those are are grouped
in so called Complex columns. The columns can be constructed in several ways.
The original construction is the Partitioning Complex column, and two other are
the Overlapping Complex column, Fragmented Complex column.

All the Complex columns express the activation of different combinations of units
in the input layer.

3.4.1 Partitioning complex columns

If the two inputs Xi and Xj are dependent we can not use equation (3.3). We will
end up with a unresolvable expression like this:

P (x) = P (x1)P (x2) . . . P (xi, xj) . . . P (xN ) (3.22)

For those inputs which are dependent, we would like to consider the joint probability
P (Xi, Xj) rather than the product of the marginal probabilities, P (Xi)P (Xj). In
the partitioning complex columns (Fig 3.3) the input attributes are grouped (par-
titioned) in M independent groups, read complex columns. We introduce a ’joint’
variable Uk for each of these groups. Now we can express the conditional joint
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Figure 3.3. Partitioning complex column network. Here are the attributes a and b
dependent and grouped in a complex column.

probability equation 3.5 as:

P (y|x) = P (y)P (x|y)
P (x)

= P (y)
M∏

i=1

(
P (ui|y)
P (ui)

)
(3.23)

Training the partitioning complex column

The partitioning complex column network is trained as the single layered network,
considering the complex columns rather then the original input nodes (3.11).

wij = log P (ui|y)
P (ui)

(3.24)

The problem with this network is that its size increases exponentially. One more se-
vere problem is that the ability to generalize decreases. The more unique/specialized
features you consider as input the less ability to generalize.

3.4.2 Overlapping complex columns
When using partitioning complex columns you are forced to construct combinations
of attributes that are not correlated.

Suppose that attribute X1 and X2 are correlated, and attribute X2 and X3 are
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correlated, but attribute X1 and X3 are not correlated. In the partitioning com-
plex column solution we have to build all combinatorial combinations of the three
attributes. This should not be necessary; we have no X1X3 combination to compen-
sate for. It would be nice to only construct complex columns for the combinations
X1X2 and X2X3, but those two columns would be dependent through X2. Ac-
cording to A. Holst there is a way to handle this problem [Holst, 1997]. All joint
probabilities can be written as a product through the chain-rule:

P (x) = P (x1)P (x2|x1)P (x3|x2, x1) . . . P (xN |xN−1, . . . , x2, x1) (3.25)

But if we have no cyclic dependencies we can write a variable to depend only on
the variables it is conditioned on.

Example: If A, B and C are stochastic variables and C depends on B, and
is independent of A, we can make the following rewriting:

P (C|B,A) = P (C|B)

Thus we can write the variable to only be conditioned on the variables it
depends on.

We use this on equation (3.25) and get:

P (x) =
N∏

i=1
P (xi|Si) =

N∏
i=1

P (xi, Si)
P (Si)

(3.26)

where Si is the set of variables xi directly depends on, and

P (Si) =
∏

j:Xj∈Si

P (xj). (3.27)

Inhibition

When using overlapping complex columns we have to compensate for the activation
of both the combination and the original input nodes. This is done by inhibiting
the input nodes. This have to be done not only by inactivating the nodes but by
subtracting one unit of activation from them. So, if a node helps to activate sev-
eral combinations it will be heavily inhibited and eventually to getting a negative
activity.
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Figure 3.4. Overlapping complex column network.

3.4.3 Fragmented complex columns

Using partitioning complex columns or overlapping complex columns (described in
the sections (3.4.1) and (3.4.2)) with large input attributes, results in a huge amount
of new combination units. Many of the combined inputs might be uncorrelated and
it would be unnecessary to build those combinations. They may even worsen the
capability of the network. It would be interesting to create only combinations which
improved the results of the network.

Suppose that we have two practically uncorrelated attributes a and b, with two
units each, yes and no. Then we do not have to merge them. But if the yes-yes-
combination of a and b is correlated, we would have to build the that combination
to get better classification performance for this case. A network without this node
would perform in all cases but the yes-yes case.

In figure (3.5) is we see an example of a fragmented column network, build to
solve the described scenario.
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Figure 3.5. Fragmented complex column network

Inhibition

The inhibition used in fragmented complex columns are the same as for overlapped
complex columns.

3.4.4 Choosing columns
When constructing complex columns in the multi-layer Bayesian Network we might
not want to expand all node dependencies. We would like to construct only the most
’effective’ columns, described in section (??). One idea is to merge those attributes
that correlates and construct a joint column for them.

There are several different measures to use when dealing with correlations. In
this kind of problem, the most commonly used is Mutual Information (2.7).

We are interested in creating complex columns for the attribute combinations with
the highest mutual information. They are the ones with the highest dependencies,
and combining those should improve the classifier.
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Chapter 4

Document classification with a Bayesian
Artificial Neural Network

This chapter will discuss automatic text classification with a system based on the
naive Bayesian classifier (section 3.2). The problem is defined in section (4.1). The
tests are done on a text set containing user rated conference calls from the work
of Waern and Rudström [Waern and Rudström, 2000]. Their test setup is briefly
described, along with the structure of the document data. The method is described
in section (4.2).

The tests are made in different steps. In section (4.3) one-layer Bayesian network
from section (3.3) is used. Section (4.4) introduces the use of multi-layer Bayesian
neural network from section (3.4).

Different ways of reducing the size of the input data is tested and if it is inter-
esting to cluster words in combinations.

4.1 Definition of the problem

A person who has research related work often gets information about forthcoming
conferences in different topics. However, it is unusual that she is interested in all
these conference calls.

The problem is to help this person to filter out calls that she is not interested
in, to prevent that she gets showered by all these calls. This task can be generalized
to filtering of information.

With the information of which documents the specific person likes and dislikes
the expectation is to find document features which indicates that the document is
interesting or uninteresting, and thus be able to build an interest profile for the
specific person.
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In the extent several user-profiles can be seen as one users several different top-
ics of interest.

4.1.1 Waern and Rudström

The database used in this survey origin from the work of Waern and Rudström
[Waern and Rudström, 2000]. The reason why choosing this data was just to have
some data and results from SICS to compare to.

Waern and Ruström made three different test setups:

1 . In the ’original profiles’ setup the reader has created her profile on the basis
of annotated documents. The setup simulates a new system where almost no
training had been done.

2 . In the second setup a non standard algorithm was used to move the user initial
profile ’closer to’ or ’farer from’ the document profile. When the user and
document profiles are moved, they ’inherit’ terms from each other. Eventually
the documents have values associated to most of the terms used in reader
profiles or other document profiles. This is the ’modified profiles’ setup which
is a simulation of a ’stable system’ situation.

3 . The ’generated profiles’ results was achieved in the same matter as the ’modified
profiles’ but where the user profiles where generated from scratch.

The results from the three setups can be found in table (4.1).

Average precision Average recall
Original profiles 21% 70%
Modified profiles 35% 77%
Generated profiles 31% 62%

Table 4.1. Precision and recall for three system setups.

4.1.2 Document representation

The database contains 84 documents in form of conference calls. The documents
have been parsed through a program that adds linguistic properties to the text (as
stems and information about inflection), and outputed in a SGML format, where
the document is broken down into tokens. The parser is written by Jussi Karlgren
at SICS.
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Example SGML-token:

<TOKEN SPAN="871-882" NBR="140" SF="researchers"
LEMMA="researcher" POS="N" NUM="PL" CASE="NOM"
SYN="@<P" AF="<DER:er>">researchers

</TOKEN>

Here the SPAN is the character position span in the text, NBR the word number
in the text, SF the full form, LEMMA the common case, POS the part of speech,
NUM the numerus (plural or singular), CASE the case, SYN the syntactic func-
tion and AF features for the specific part of speech.

A word token might have several analysises. This is due to the fact that a word
without context is not descriptive enough. In this thesis work I do not make use of
any fancy process to choose which analysis to allot the specific token. I just pick
the first one and this may be a source of error.

The test system used during the test utilizes only the LEMMA part of the anal-
ysis. Due to the amount of lemmas in a text is less or equal the amount of unique
words this reduces the dimension of the in-data, and hopefully the in-data gets more
generalizable.

Each unique stem in a document forms a boolean input attribute to the classifier.

1 - the occurrence of the stem (yes-node)

0 - non-occurrence of the stem (no-node)

The term frequency tf is not considered. One document forms a boolean vector of
unique stem occurrences and non-occurrences. This vector is feed as input to the
classifier.

4.1.3 User information

The described documents have been ranked by 25 test users as a part of the work
from [Waern and Rudström, 2000]. This ranking have two values, save or throw,
meaning that the user likes or dislike one specific document. At the training and
testing stages, the user ranking is used as the expected value for the classifier.
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4.2 Method

Several tests will be performed. Is there possible to delete attribute ’noise’? How
should the Bayesian factor α be set? Is there any need for representing each input
attribute with two nodes? Which approach is suitable when defining the probability
estimate of Pij? Do use of complex columns improve the prediction?

I am using MATLAB for all calculations, and plots.

4.2.1 Testing method

One document vector and the user ranking for that document is considered as one
training or testing example. All tests are made by a leave-one-out-test, even called
cross validation test, where all example-data except one item is used for training,
and the test is performed on the left out item.

It is very important not to test on the training examples. The feature of the system
one would like to investigate is the systems ability of making generalizations, not
its memory capacity.

4.2.2 Result explanations

When analyzing the test results, it is important to use a good measure which can
indicate how effective the tested system is. At first one might count the number of
correct predictions (save and throw) and divide it by the total number of predictions
like this:

correct fraction = correct number of predicitions

total number of predicitions
(4.1)

That is not a fair measure, though. If the user wants few documents the system may
predict that the user does not want any documents at all. This situation will result
in a high correct-fraction-value, because of the many correct throw-predictions.
But this does not mean that the system is behaving properly; the user does not
receive anything.

The result plots and tables in this thesis are showing mean-values of mutual infor-
mation, precision, recall and correct fraction calculated over all classes/users
and all test documents. We could also look at the median and variance of the given
measures, but I think the mean-value is enough to get an understanding of how the
system behaves.
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The different measures are always using the same type of line in the plots: Mu-
tual information - Solid (-), Precision - Dotted (:), Recall - Dashdot (:-), Correct
fraction - Dashed (–).

In some tests the mean-values are NaN (not a number). This occur when the
measure contain a division by zero. The meassure gets undefined, NaN.

4.3 Using a one-layer Bayesian Artificial Neural Network
This section describes the tests performed with a one-layer BANN. We will test if
reducing the attribute vector size improves the classifier, how the Bayesian factor
should be choosen, if there is a need of two units per attribute and which approach
of the Bayesian probability Pij to use.

We will also inspect the attribute weights and train on the training set to min-
imize the risk of human errors.

4.3.1 Reference classifier
Before screwing and fixing any parameters a reference system will be set up which
we may compare the different modified systems to. The reference system consists
of a one-layer BANN for each user, where the input attributes are represented with
two units. The Bayesian parameter α is set as:

α = 1
C

where:
C = {number of training documents}

Results

The mutual information of the classifier tends to get higher the more documents
the users wants (see figure 4.1). The test data is quite small and if the wanted
documents are few their attribute contribution to the classifier will be drowned by
the not wanted documents.
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Figure 4.1. Mutual information between the classifier prediction and the expected
prediction as a function of wanted documents. Each point represent one user.

Mutual
System Correct fraction information Precision Recall
One layer BANN 0.9881 0.0178 0.4408 0.0490
Waern Original profiles 0.21 0.70
Waern Modified profiles 0.35 0.77
Waern Generated profiles 0.31 0.62

Table 4.2. Reference results of a Bayesian Artificial Neural Network with alpha =
1/C and two units per attribute, and the classifers from Waern and Rudström
[Waern and Rudström, 2000].

The reference system behavior is shown in table (4.2). This is a bad result
compared to the results from [Waern and Rudström, 2000] where the recall is much
higher, 72% or 62%.

4.3.2 Noise reduction

A document usually contains many words which are irrelevant to the reader. When
it comes to classifying documents these words can probably be considered as noise,
and would not provide any useful information or patterns for the classifier. Is it
possible to get good results when pre-filtering out these words from the document
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representation?

High frequent words as ’and’ and ’or’ are probably not as important as the moderate
frequent words ’artificial’ and ’intelligence’. The classifier would give unimportant
words would low weights, and we should be able to erase them, to reduce the input
dimensionality, without decreasing the performance.

Low frequent words may not be good features to a text either. Depending on
the Bayesian constant α, these words would get a weight near zero. In the extent,
a word which occurs only once in the data set does not help the classifier at all,
because the word occurs either only in the training-set or only in the test-set. To
be a support for the classifier the word has to exist in both the training set and the
test set.

Before we pre-filter the text we have to investigate how frequent words are in the
texts. Figure (4.2) shows that most of the words occur in less than 10 documents.
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Figure 4.2. Attribute occurrences.

In this section, the supposed noisy text set will be pre-filtered. The low frequent
and the high frequent words are erased from the input vector.

Results

The results is shown in figure (4.3).
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Figure 4.3. Minimum attribute occurrences. Values for this plot can be found in
Table (4.3).
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Figure 4.4. Maximum attribute occurrences. Values for this plot can be found in
Table (4.4).
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Figure 4.5. Maximum attribute occurrences when minimum occurence is 20. Values
for this plot can be found in Table (4.4).

Attribute min Mutual
occurence Correct fraction information Precision Recall
1 0.9881 0.0178 0.4408 0.0490
2 0.9871 0.0125 0.5008 0.0389
3 0.9867 0.0126 0.4039 0.0388
4 0.9843 0.0209 0.4577 0.0522
5 0.9714 0.0182 0.4076 0.0521
6 0.9576 0.0143 0.3776 0.0669
7 0.9433 0.0178 0.4045 0.0717
8 0.9310 0.0155 0.4007 0.0780
9 0.9152 0.0173 0.4354 0.0877
10 0.9057 0.0215 0.4178 0.0973
20 0.7471 0.0238 0.4025 0.1462
30 0.6319 0.0138 0.3144 0.1804
40 0.5448 0.0111 0.2212 0.1847
50 0.4810 0.0132 0.2208 0.1926

Table 4.3. Results from deleting lowfrequent-noise attributes.

Conclusions

If we concentrate on the mutual information results, it seems like filtering out at-
tributes that occur in less than ten document is a good idea. It is not a big result
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Attr min Attr max Correct Mutual
occurence occurence fraction information Precision Recall
1 84 0.9881 0.0178 0.4408 0.0490
1 70 0.9886 0.0181 0.4408 0.0500
1 50 0.9890 0.0172 0.4784 0.0482
20 84 0.7471 0.0238 0.4025 0.1462
20 70 0.7390 0.0232 0.4020 0.1586
20 50 0.7086 0.0194 0.3960 0.1559

Table 4.4. Results from deleting highfrequent-noise attributes.

increase, but as we are using both occur- and not-occur-nodes the abcense of
many low frequent attributes will not contribute to the classifier.

Why is it, that deleting words that only occur once, in the training set or in the test
set, gets us worse results than not deleting them? At the first glance it should not
make any difference. Actually it does! Suppose the user wants less than 50% of the
documents. If one attribute only occur in the test set the probability of belonging
to the class is higher not belonging to it.

4.3.3 Bayesian factor selection
The classification is dependent on the Bayesian parameter α. The Bayesian factor
value is normally set low, as described in section (3.3.2); the value 1/C is considered
good. I think that a good alpha is dependent of the characteristics of the system
environment. It could also be depentant of the different user behaviors, but without
any rigid method to set the factor on the basis of user information, we can not do
anything else than picking the overall best value. In this section we test the depen-
dency of α. We will test different alphas with and without deleting low frequent
attributes.

Results

For your curiosity I also present some mutual information plots for the different
user classifiers separated, see plots (4.8) and (4.9).

Conclusions

First, just by comparing the two plots we see that deleting low frequent attributes
was a bad idea. Probably we delete to many low frequent attributes used by the
classifiers. Hence, we should not delete any attributes.

Figure (4.7) together with table (4.6) shows that 0.22 ≤ α ≤ 0.50 is the best
we get. Here the mutual information is as high as possible, the recall flattens at
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Figure 4.6. Different alphas when minimum term occurence is 20 and maximum
occurence is 70.

Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.7452 0.0211 0.4021 0.1520

1/C=0.012 0.7390 0.0232 0.4020 0.1586
0.05 0.7343 0.0239 0.3997 0.1616
0.10 0.7319 0.0232 0.3874 0.1619
0.20 0.7276 0.0224 0.3741 0.1625
0.22 0.7276 0.0224 0.3739 0.1626
0.30 0.7243 0.0219 0.3773 0.1631
0.50 0.7210 0.0208 0.3723 0.1640
0.75 0.7176 0.0213 0.3699 0.1654
1.00 0.7100 0.0211 0.3687 0.1669

Table 4.5. Results from using different alphas when minimum term occurence is 20
and maximum occurence is 70

α = 0.3, and the precision is falling. At the refered interval we got the best combi-
nation. Compared to Waern and Rudströms work (table 4.1) it is a higher precision
but a lower recall. High recall is a must, but if the precision does not get higher
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Figure 4.7. Different alphas, but without erasing low frequent terms.

Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9690 0.0098 0.4101 0.0285

1/C=0.012 0.9886 0.0181 0.4408 0.0500
0.05 0.9852 0.0170 0.4418 0.0650
0.10 0.9719 0.0206 0.4698 0.0899
0.20 0.9500 0.0259 0.4806 0.1706
0.22 0.9476 0.0291 0.4762 0.1855
0.30 0.9310 0.0319 0.4627 0.2025
0.50 0.9129 0.0283 0.4234 0.2058
0.75 0.9086 0.0262 0.3979 0.2001
1.00 0.9105 0.0258 0.3973 0.1924

Table 4.6. Results from using different alphas when minimum term occurence is 1
and maximum occurence is 70

than precisionmin given by:

precisionmin = relret

retmax
= number of wanted documents

total number of documents
(4.2)

= 490
2100

= 0.2333 (4.3)

the behavior of the is equal to not using any filter at all! Of course we would like
to use a filter system which performs better than that.
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Figure 4.8. Mutual information depending on the Bayesian factor. Classes 1 to 14.
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Figure 4.9. Mutual information depending on the Bayesian factor. Classes 15 to
25.

If we look at the plots (4.8) and (4.9) we can not find any pattern in the diffferent
classes dependence of alpha.
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4.3.4 One or two nodes per attribute
Do we need two nodes per attribute, (occur and not-occur), or is it enough with
only an occur-node? I think that the occurrence of a word is more interesting than
the non-occurrence of a word.

If that assumption is correct, it would be unnecessary to represent the non-occurrence
of words in the document vector and one could decrease the memory consumption
of the classification system. In this section a one-unit-per-attribute setup will be
tested in the same manner as the two-unit-per-attribute setup in section (4.3.3).

Results
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Figure 4.10. One unit per attribute, and maximum occurence 84. Measures for the
plot can be found in table (4.7).

Conclusions

When comparing the two plots (4.10) and (4.11), where the maximum occurence
is 84 and 70, we see that deleting high frequent attributes does not improve the
classifier.

Comparing these results to the result from section (4.3.3) we see that one unit
per word is to prefer. The precision is slightly worse, 42% compared to 46%, but
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Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9700 0.0144 0.4334 0.0430

1/C=0.012 0.9876 0.0202 0.5017 0.0734
0.05 0.9590 0.0350 0.5104 0.1744
0.10 0.8962 0.0520 0.4979 0.2938
0.20 0.7614 0.0564 0.4258 0.4948
0.22 0.7371 0.0544 0.4235 0.5157
0.30 0.6538 0.0479 0.3908 0.5870
0.50 0.5157 0.0498 0.3744 0.7042
0.75 0.4310 0.0465 0.3504 0.7724
1.00 0.3824 0.0368 0.3327 0.7947

Table 4.7. Results from using only one unit per attribute. Minimum term occurence
is 1 and maximum occurence is 84
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Figure 4.11. One unit per attribute, and maximum occurence 70. Measures for the
plot can be found in table (4.8).

the recall is doubled, approximately 50% compared to 20%.

We are still showing higher precision values than Waern and Rudström (4.2), but a
non-acceptable recall; we are loosing almost 50% of the wanted documents.
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Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9700 0.0144 0.4334 0.0430

1/C=0.012 0.9881 0.0202 0.5034 0.0734
0.05 0.9590 0.0349 0.5101 0.1743
0.10 0.8967 0.0519 0.4976 0.2937
0.20 0.7605 0.0560 0.4257 0.4948
0.22 0.7376 0.0545 0.4233 0.5157
0.30 0.6543 0.0485 0.3908 0.5872
0.50 0.5148 0.0495 0.3742 0.7046
0.75 0.4295 0.0467 0.3501 0.7732
1.00 0.3824 0.0372 0.3323 0.7949

Table 4.8. Results from using only one unit per attribute. Minimum term occurence
is 1 and maximum occurence is 70

4.3.5 Choosing Bayesian approach estimate
One problem with the classifier is its incorrect save-predictions. This is probably
due to a combination of two factors, (1) the users’ frequent throw-behavior and (2)
that the test-document contains many words never seen before. The system learns
that the trained words in most cases are unwanted, and think that a new word is
not, and makes a save-prediction.

In this section the second approach for P (y|xi) (equation (3.21)) will be tested.

Results

Conclusions

According to the results table (4.9) the precision is approximately 10% lower, and
the recall much worse for the second approach than the first approach classifier
from section (4.3.4). We would clearly prefer the characteristic behavior of the first
approach classifier.

4.3.6 Inspecting the word weights
To reduce our suspicion of faulty behavior of the classifier we have to inspect the
attributes and their weights. We pick a user who wants 50 conference calls, as we
want to be sure that the weights have seen the attributes sufficient number of times.

Results

We train the classifier with all documents, and use α = 0.2, one unit per attribute
and without erasing attributes. See tables (4.10) for the 35 highest weighted at-
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Figure 4.12. One unit per attribute, second approach. Measures for the plot can
be found in table (4.9).

Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9614 0.0146 0.4366 0.0437

1/C=0.012 0.9800 0.0158 0.4529 0.0532
0.05 0.9819 0.0185 0.4603 0.0668
0.10 0.9805 0.0259 0.4684 0.0899
0.20 0.9700 0.0293 0.4579 0.1146
0.22 0.9681 0.0294 0.4538 0.1182
0.30 0.9648 0.0300 0.4337 0.1271
0.50 0.9490 0.0363 0.4207 0.1489
0.75 0.9329 0.0427 0.4242 0.1804
1.00 0.9200 0.0444 0.4275 0.2020

Table 4.9. Results from using the second approach to Pij when the minimum term
occurence is 1 and maximum occurence is 84

tributes.

Conclusions

We clearly see that the highest weighted attributes actually have some informational
meaning. They are also relevant in the area of computer science. Though, the
classifiers for users who wants fewer documents are not performing equally good.
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Weight Attribute
1.25683 algorithm
1.25215 prediction
1.25215 linguistics
1.25048 philosophy
1.25048 diagnosis
1.25048 biological
1.25048 belief
1.24814 rule
1.24814 induction
1.24814 choose
1.24814 anonymous
1.24814 *vasant
1.24814 *honavar
1.24465 underlie
1.24465 ulster
1.24465 tr
1.24465 signal
1.24465 neuroscience
1.24465 nearby
1.24465 molecular
1.24465 medicine
1.24465 los_*angeles
1.24465 inquiry
1.24465 inference
1.24465 hybrid
1.24465 graphical
1.24465 graph
1.24465 grammar
1.24465 genetic
1.24465 brain
1.24465 biology
1.24465 *riichiro
1.24465 *mizoguchi
1.24465 *keane
1.24465 *informatics
1.24465 *i*j*c*a*i-99

Table 4.10. The 104 highest weighted attributes of user number 6

The wanted attributes drown in the amount of unwanted attributes. Our suspicion
of faulty classfier behavior can hereby be eliminated.
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4.3.7 Testing on the training set

To eliminate the possibility of that the system is working incorrectly (due to human
errors while programming) we must to test on the training set. If this test fails,
something is wrong.

We will test the system setup that works as good as possible, minimum occurence
1, maximum occurence 84, one unit per attribute, first approach.

Results
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Figure 4.13. Test on the training sets. Measures for the plot can be found in table
(4.11).

Conclusions

The system is behaving correctly when 0.0001 < α < 0.3. The best mutual infor-
mation is approximately 0.65. The mean value of maximum mutual information
over all users, meanuser(I(X;Y )max) in this environment is 0.6797. The classifier
has almost maximized its performance on the training set compared to this value.
The bad crossvalidating behavior of the system has to origin from the nature of the
problem or the model.

This test is also indicates that α > 0.3 decreases the performance of the classifier.
The precision drops as the classifier makes more and more incorrect save-predictions.
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Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9948 0.6533 0.9735 0.9989

1/C=0.012 0.9938 0.6485 0.9696 0.9989
0.05 0.9938 0.6461 0.9679 0.9989
0.10 0.9938 0.6461 0.9679 0.9989
0.20 0.9929 0.6438 0.9519 0.9989
0.22 0.9924 0.6437 0.9519 0.9989
0.30 0.9886 0.6374 0.9213 0.9989
0.50 0.9338 0.6110 0.8361 0.9989
0.75 0.8395 0.5682 0.7309 0.9989
1.00 0.7338 0.5167 0.6409 0.9989

Table 4.11. Results from test on the training sets. One unit per attribute, minimum
term occurence is 1 and maximum occurence is 84

4.4 Using a multi-layer Bayesian Artificial Neural Network

Words in the text documents probably have relations, i.e. the words ’artificial’ and
’intelligence’, which destroys the probability estimates that rely on the independence
assumption from section (3.2.1). This is a problem and the one-layer Bayesian Clas-
sifier, with its indepentent-assumption, may not be suitable for classification task.
Introducing complex columns, here in form of word pairs may improve the classifier
behavior.

How many pairs are needed? How should the pairs be chosen? This section will
describe some ways to implement the Complex Columns from section (3.4), suitable
or not suitable for text analysis.

We could construct all possible combinations of attributes, but all of them is prob-
ably not interesting. We could look at attribute pairs, triplets and higher orders
of combinations, but we limit ourselfs to only examining pairs, due to the large
memory consumption. (The matrix containing the mutual information of all possi-
ble attribute pairs is 575MB, using MATLAB. Constructing triplet-columns would
make the memory requirement too big.)

We will not take into consideration whether the pairs are sequenced or unsequenced
in the text document. The pairs are choosen on the basis of the mutual information
between their attributes. The pair is constructed if the mutual information is higher
than a set threshold.

To understand the spreading of the mutual information we look at the histogram
plot (4.14).
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Figure 4.14. Histogram over mutual information for all attribute pairs.

We see that the mutual information is very low for almost all pairs; only 22000
of 72000000 pairs have mutual information greater than 0.1. The pairs with the
highest mutual information can be found in tables (A.3), (A.3) and (A.3). The
tables show the pairs with mutual information greater than 0.225, and which ones
that are created when using partitioning or fragmented complex columns.

In the following tests, the first approach of the Bayesian estimate of Pij (equa-
tion 3.21) and one unit per attribut will be used as they previously proved to be
the best choices. We will not erase any attributes, neither low nor high frequent.

Partitioning complex columns (from section 3.4.1) and fragmented complex columns
(from section 3.4.3) will be tested.

4.4.1 Partitioning complex columns

Results

As there are two interesting parameters, we choose to plot only the mutual in-
formation for all alphas over all numbers of combinations, to find the best alpha.
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Figure 4.15. Pairs constructed with partitining complex columns. Corresponding
α-values are found on the right hand side.

As seen in figure (4.15), α = 0.1 gives the best performance, so we choose to
plot all the measures for that configuration.

Conclusions

When using α = 0.012, 0.05, 0.1, 0.3, adding complex columns increase the perfor-
mance of the classifier. When using α > 0.1, substituting ’all’ single word attributes
with pair complex columns seems to give as good result as not adding any combi-
nation attributes at all.

The highest mutual information can be found when using α = 0.1 and 557 par-
titioning complex columns.

4.4.2 Fragmented complex columns

Here we will test fragmented columns. As we are using only one unit per attribute,
fragmented and overlapping columns give the same results. (Overlapping columns
creates all combinations of yes- and no-units. Here we use only yes-yes columns).
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Figure 4.16. Pairs constructed with partitining complex columns. α = 0.1. Mea-
sures for the plot can be found in table (4.12).

Number Mutual info Correct Mutual
of pairs threshold fraction information Precision Recall

0 - 0.8962 0.0520 0.4979 0.2938
63 0.225 0.8933 0.0538 0.4972 0.3069

106 0.22 0.8938 0.0523 0.4964 0.3029
191 0.18 0.8838 0.0515 0.4801 0.3307
557 0.16 0.8595 0.0572 0.4724 0.3639
697 0.14 0.8348 0.0548 0.4650 0.3847
956 0.12 0.7890 0.0549 0.4561 0.4432

3980 0.09 0.8719 0.0453 0.4935 0.2901
Table 4.12. Results from adding partitioning complex columns, α = 0.1.

Results

Conclusions

Adding complex columns does not improve mutual information measure of the clas-
sifier! The more pairs we add the worse gets the performance, according to plot
(4.18). The best mutual information is produced with α = 0.2 and without any
complex columns. Though, adding 150 complex columns gives almost the same
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Figure 4.17. 557 partitioning complex columns with mutual information > 0.16.
Measures for the plot can be found in table (4.13).

Correct Mutual
Alpha fraction information Precision Recall
0.0001 0.9790 0.0143 0.4286 0.0423
0.012 0.9867 0.0194 0.5148 0.0667
0.05 0.9414 0.0294 0.4872 0.1739
0.10 0.8595 0.0572 0.4724 0.3639
0.20 0.7095 0.0504 0.4242 0.5242
0.22 0.6895 0.0492 0.4097 0.5484
0.30 0.5990 0.0479 0.3853 0.6008
0.50 0.4729 0.0419 0.3607 0.7083
0.75 0.3995 0.0366 0.3404 0.7719
1.00 0.3610 0.0323 0.3230 0.7943

Table 4.13. Results from adding 557 partitioning complex columns with mutual
information > 0.16

performance. But if we look at the precision and recall measures both adding 150
and 328 pairs gives better results than adding non. The plot (4.19) has the same
characteristics as plot (4.16) but with lower values.

Fragmented complex columns should generally require less trainingsets than prati-
tioning complex colums, but since we are using only yes-yes combinations they do
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Figure 4.18. Pairs constructed with fragmented complex columns. Corresponding
α-values are found on the right hand side.
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Figure 4.19. Pairs constructed with fragmented complex columns. α = 0.2. Mea-
sures for the plot can be found in table (4.14).
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Number Mutual info Correct Mutual
of pairs threshold fraction information Precision Recall

0 - 0.7614 0.0564 0.4258 0.4948
82 0.225 0.7571 0.0549 0.4301 0.4942

150 0.22 0.7576 0.0557 0.4344 0.5016
328 0.18 0.7443 0.0551 0.4338 0.4963
935 0.16 0.7181 0.0508 0.4160 0.5069

1277 0.14 0.6976 0.0495 0.4240 0.5358
2100 0.12 0.6238 0.0411 0.3874 0.5526
8284 0.09 0.9714 0.0161 0.4223 0.0493
Table 4.14. Results from adding fragmented complex columns, α = 0.2.

not.

The reason why fragmented complex colums are worse than partitioning complex
columns has to be the method of choosing complex columns or how the the classifier
is compensated by inhibition.

4.4.3 Method of choosing pairs
In this section fragmented complex columns are used together with the partitioning
method of choosing columns; a word attribute can only be used once when creating
columns, even though it does not create any loops in the dependency graph. We
can then exclude one of the conclusions from section (4.4.2).

If the following results show that fragmented complex columns are better than par-
titioning we can conclude that the method of choosing fragmented complex columns
are bad. If the results show that the fragmented complex colums are worse than
the partitioning we can conclude that the reason of tha bad performance is the
fragmented inhibition.

Results

Conclusions

It is possible to get higher mutual information measure when adding complex
columns! Several of the different alphas gets higher performance when adding
columns. When α = 0.3 and adding 3980 complex columns the mutual information
measure is 0.0641, the highest value of all performed tests.

This test shows that the method of choosing how to create complex columns is
crucial. Creating only one complex column including one specific attribute (parti-
tioning method) is to prefer. Fragmented complex columns, with the inhibition of
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Figure 4.20. Pairs constructed with fragmented complex columns but with the
partitioning method of choosing word pairs.

attributes along with the contribution of the single attribute, is the best column
type.
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Figure 4.21. Pairs constructed with fragmented complex columns but with the
partitioning method of choosing word pairs. α = 0.3. Measures for the plot can be
found in table (??).

Number Mutual info Correct Mutual
of pairs threshold fraction information Precision Recall

0 - 0.6538 0.0479 0.3908 0.5870
63 0.225 0.6500 0.0474 0.3884 0.5900

106 0.22 0.6495 0.0476 0.3886 0.5930
191 0.18 0.6438 0.0483 0.3881 0.5905
557 0.16 0.6290 0.0498 0.3910 0.5967
697 0.14 0.6181 0.0490 0.3919 0.6047
956 0.12 0.5990 0.0477 0.3856 0.6163

3980 0.09 0.7662 0.0641 0.4599 0.4726
Table 4.15. Results from adding fragmented complex columns and partitioning
method of choosing columns.
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Chapter 5

Discussion

In the beginning of thesis work I thought the system used would classify the data
much better than it did. There are definitely a vast number of improvements to do
with this method.

The best result was achieved with a one-layer Artificial Neural Network, with one
unit per attribute (section (4.3.4)). Deleting low frequent attributes decreases the
classifiers performance, as we are destroying the input (sections (4.3.2) and (4.3.3)).
The classifier need those attributes, but it needs more trainingsets. The fact that
one unit per attribute is working better than two may also indicate that the train-
ingset is too small. Enough information for this size of training set is lying in the
yes-nodes.

Adding complex columns only made the situation worse, as they require a big-
ger training set (section (4.4)).

The inspected attributes in section (4.3.6) show that more wanted documents must
be ’seen’ by the classifier before performing properly. Also the plot (5.1), which
shows the mutual information over wanted documents for the best one-layer BANN,
indicates that the classifier for a user wanting more documents performs better.

Generally, for all the tests performed, a low α results in high precision and a
high α in high recall.

Comparing the best result with the results from the study of Waern and Rudström
[Waern and Rudström, 2000] and the reference classifier in table (5.1), we see that
our classifier has a significantly better precision but worse recall.

For a task of filtering conference calls I would not pick our classifier. Its recall
is too low. A low precision is not that dangerous as a low recall. Waerns classifier
saves too many calls, hence the low precision. Our classifier is pickier on what to
save, with the result of missing calls. Hence, the low recall value. However we

57



CHAPTER 5. DISCUSSION

0 5 10 15 20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Wanted documents

M
ut

ua
l i

nf
or

m
at

io
n

Mutual information for all users, using the best two−layers BANN classifier

Figure 5.1. Mutual information over number of wanted documents, using the best
two-layers BANN, α = 0.3, 3980 fragmented complex columns using partitioning
method of choosing columns.

can construct a classifier that is as good as the Waern and Rusdtröms modified
profiles-classifier, with a one layer BANN with α = 0.75, one unit per attribute and
deleting some high occurence words.

Correct Mutual
Classifier fraction information Precision Recall
Best MI, one-layer BANN 0.76 0.0564 0.43 0.49
Best MI, two-layers partitioning BANN 0.86 0.0572 0.47 0.36
Best MI, two-layers fragmented BANN 0.77 0.0641 0.46 0.47
As good as Waerns, one-layer BANN 0.43 0.0467 0.35 0.77
Reference one-layer BANN 0.99 0.0178 0.44 0.05
Waern Original profiles 0.21 0.70
Waern Modified profiles 0.35 0.77
Waern Generated profiles 0.31 0.62

Table 5.1. Comparison of the best classifiers, reference classifier and the classifiers
from the study of Waern and Rudström. The best two-layers fragmented BANN
classifier from section (4.4.3) has α = 0.3, one unit per attribute, without erasing any
attributes and using the first bayesian estimate approach.
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5.1 Sources of errors

I think the biggest source of error, or reason to the bad performance, is as mentioned
above, the small test set. The number of training sets are too small for compared
to the large attribute set.

There is always a factor of human error in tasks like this. The system has to
be constructed by hands. We have performed tests on the training set, which shows
that the system behaves correctly. But of course, there might exist errors which do
not show up in that kind of test.

As mentioned in section (4.1.2) the input information used was only the lemma-
attribute of the word token. When doing that one loose the linguistic relations
between words, and that probably results in worse predictions.

The SGML input also contains a source of error. It is not totally clean. For instance
are the words ’artificial’ and ’intelligence’ sometimes merged into one word ’artifi-
cial_intelligence’. Furthermore should the words ’classify’ and ’classifier’ result in
the same lemma ’class’, which they do not.

What says that a word occurring several times in one document is worth less than a
word occurring few times in many documents? The importance of a word does not
only show in the occurence or non-occurence in a document. That measure may be
to course. One could consider to calculate the term frequency of the specific word
(section (2.1.1)). This requires the use of a Bayesian classifier that handles graded
attribute values.

Another interesting aspect of this problem is the difference between users. Some
users might not be consequent in their collection of documents. The alpha value
has also been picked to suit all users as good as possible. The classifier peaks its
preformance on different alphas for different users, as shown in the plots (4.8) and
(4.9)

5.2 Further work

What can be done to improve the used method?

Is there any way of prefiltering the text? For example, could it be good a idea
to delete all words shorter than three characters.

As tested in section (4.4), constructing more complex columns may result in better
predictions. The limitation to construct complex columns representing only word
pairs may be wrong. There are probably also combinations of three, four or more
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words that would be interesting to introduce to prevent overriding of independence
assumption. The cruical point is to use a bigger train set. Constructing higher
levels of combinations also requires either more processing time or memory.

Is the method used to choose pairs correct? The mutual information between input
attributes gives us a value of how descriptive the word combination is to the text.
But can it be considered as a good combination in a class point of view? Section
(4.4.3) shows that the method of choosing pairs is cruicial. Are there other better
ways to help the classifier when constructing the complex columns? Are sequencial
word pairs (bigrams, trigrams etc.) better than unsequenced pairs?

It would be interesting to build complex columns representing word combinations
interesting to the user. One way to determine these pairs is to use the Kullback-
Leibler distance, and look at the difference in weight between the complex column
and the class and the single attributes and the class.

Another improvement might be to find a method of setting the Bayesian factor
α dependant of the user and his/her behavior.

5.3 My thoughts
Waern and Rudström point out the fear of loosing information when using auto-
matic filtering [Waern and Rudström, 2000]. In their study edited buzzwords are
added to the documents and the user has to create a profile containing interesting
attributes. The user is also allowed to add attributes not in the buzzword list. This
helps the classifier when classifying a document with new attributes.

Of course, using manually created attribute lists should perform much better in
a test set as small as the one used in this thesis.

The solution of these complicated retrieval tasks is to use these mathematical ap-
proaches together with ideas from linguistics. Reducing the linguistic information
to ones and zeros is crucial.

When a person investigates a document to see if it is interesting or not she usually
does not read the entire text. With her knowledge about how texts is written she
quickly scans a fraction of the text and makes her throw or save decision.

There is probably enough information in that section, so why must automatic filter
systems read the entire text to do the task? My answer is that the approach is
seriously incorrect. A classifier should, with a small in-data-window, be able to do
the prediction with great result.
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Appendix A

Mutual information between attributes

Here we list the attribute combinations with the highest mutual information within
the document set. The listed combinations have mutual information > 0.225. A
star (*) in the attribute columns means that the next character is capital. The
Partitioning- and Fragmented-columns list the partitioning and fragmented complex
columns which are created.
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Mutual information Attribute 1 Attribute 2 Partitioning Fragmented
0.61270 camera ready x x
0.49124 univ univ. x x
0.45372 *mellon carnegie x x
0.34838 data mine x x
0.33879 bring together x x
0.33216 agent intelligent x x
0.32555 *p*a*r*c xerox x x
0.32555 *honavar *vasant x x
0.32555 *compaq *s*r*c x x
0.32117 artificial intelligence x x
0.31232 but not x x
0.27954 author must x x
0.27912 pa pittsburgh x x
0.27912 1993 1995 x x
0.27912 *vasant iowa x
0.27912 *honavar iowa
0.27695 reality virtual x x
0.27620 p.*o p.o x x
0.27620 i*r mitre x x
0.27620 division mitre x
0.27620 division i*r
0.27620 clement non-exclusive x x
0.27620 b*t bt x x
0.27620 408 approval x x
0.27620 14th arizona x x
0.27620 *tanaka li x x
0.27620 *s*i*g*i*r non-exclusive x
0.27620 *s*i*g*i*r clement
0.27620 *mizoguchi *riichiro x x
0.27620 *kobsa alfred x x
0.27620 *kobe li x
0.27620 *kobe *tanaka
0.27620 *katsumi li x
0.27620 *katsumi *tanaka
0.27620 *katsumi *kobe x
0.27620 *almaden non-exclusive x
Table A.1. Attribute pairs with mutual information > 0.225.
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0.27620 *almaden clement
0.27620 *almaden *s*i*g*i*r x
0.27384 clarity soundness x x
0.26766 date important x x
0.26326 no=more than x x
0.26205 acceptance notification x x
0.26084 discovery knowledge x x
0.25867 computational robotics x x
0.25811 computer science x x
0.25635 high quality x x
0.25602 how participant x x
0.25583 l s x x
0.25491 clarity significance x
0.25362 specification verification x x
0.25158 name title x x
0.24732 france germany x x
0.24613 figure table x x
0.24613 e r x x
0.24613 c r x
0.24613 c d x x
0.24570 p r x
0.24557 inc lab x x
0.24557 illinois lab x
0.24557 c l x
0.24460 learn plan x x
0.24460 2 3 x x
0.23941 clarity originality x
0.23570 site web x x
0.23549 1 2 x
0.23465 postal reorganization x x
0.23380 figure title x
0.23322 reorganization san_*jose x
0.23322 northwestern pdf x x
0.23322 mitre xerox x
0.23322 kent ridge x x
0.23322 i*r xerox

Table A.2. Attribute pairs with mutual information > 0.225.
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Mutual information Attribute 1 Attribute 2 Pratitioning Fragmented
0.23322 dom visualize x x
0.23322 documentation san_*jose x x
0.23322 division xerox
0.23322 convert retrieve x x
0.23322 command deployment x x
0.23322 china korea x x
0.23322 attractive room x x
0.23322 assist work-in-progress x x
0.23322 arizona documentation x
0.23322 accessibility disability x x
0.23322 14th documentation
0.23322 *yu non-exclusive x
0.23322 *yu clement
0.23322 *s*r*c aggregate x
0.23322 *s*i*g*i*r *yu
0.23322 *p*a*r*c mitre
0.23322 *p*a*r*c i*r
0.23322 *p*a*r*c division
0.23322 *compaq aggregate
0.23322 *bharat as=well x x
0.23322 *almaden *yu
0.23291 leave right x x
0.23118 l p
0.23101 proceeding submit x x
0.22946 each manuscript x x
0.22944 fax tel x x
0.22846 discovery mine x
0.22841 should than x
0.22837 data discovery
0.22549 significance soundness
0.22537 i*b*m talk x x

Table A.3. Attribute pairs with mutual information > 0.225.
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