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Abstract 

The purpose of this thesis is to identify the best volatility model for Value-at-Risk 

(VaR) estimations. We estimate 1 % and 5 % VaR figures for Nordic indices and 

stocks by using two symmetrical and two asymmetrical GARCH models under 

different error distributions. Out-of-sample volatility forecasts are produced using 

a 500 day rolling window estimation on data covering January 2007 to December 

2014.  The VaR estimates are thereafter evaluated through Kupiec’s test and 

Christoffersen’s test in order to find the best model. The results suggest that 

asymmetrical models perform better than symmetrical models albeit the simple 

ARCH is often good enough for 1 % VaR estimates. 
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1  Introduction 
Risk and uncertainty on financial assets has always played an integral part in 

financial theory and practice. A customary gauge for the riskiness of an asset is 

the standard deviation of returns, in finance known as volatility. Markowitz (1952) 

mentioned the benefits of diversification as a mean for mitigating portfolio risk 

and followed up with the conclusion that more risk is inevitable in order to obtain 

higher expected returns in his classic book on portfolio theory (Markowitz, 1959).  

The distribution of returns has also been of great interest for researchers. 

Mandelbroit (1963) noted that large price changes tend to be followed by large 

changes – of either sign – and small changes tend to be followed by small 

changes. His findings are today known as volatility clustering – something that 

Schwert (1989) noted is more prominent during times of economic recession. 

Fama (1965) found similar results as Mandelbroit and observed “fat tails” in the 

unconditional distribution of price changes, in contrast to what is expected from a 

Gaussian distribution. Researchers have for a lengthy period tried to fit returns to 

various distributions, and Praetz (1972), followed by Blattberg & Gonedes (1974), 

found that stock returns described by Student’s t distribution are better than by 

symmetric-stable distributions such as the Normal distribution. 

Financial risk has indeed been an inherent interest for the general as well as the 

professional investor. Since the investment bank J.P Morgan began publishing 

RiskMetrics in 1994, a methodology to measure potential losses at the trading 

desk, the concept of value at risk (VaR) has become a widespread measure of 

market risk. Today, financial institutions are obliged to report VaR estimates 

according to the Basel III framework presented by The Basel Committee on 

Banking Supervision as an attempt to strengthen the banks capability to deal with 

financial stress. Although criticized; see e.g. Nwogugu (2006), VaR is one of the 

primary components determining the banks daily capital requirements and it can 

be a difficult task selecting the appropriate methodology since different methods 

lead to different capital requirements (Dardac & Grigore, 2011). The methodology 

used in this thesis will be presented in the second section. 

One way of modelling volatility, a fundamental component in VaR estimates, is to 

use the Auto Regressive Conditional Heteroscedasticity (ARCH) model by Engle 
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(1982), later generalized independently by Bollerslev (1986) and Taylor (1986).  

The ARCH models capture the characteristic of volatility clustering and are today 

the most popular way of parameterizing this dependence (Teräsvirta, 2006). 

Although risk management for portfolios requires multivariate GARCH models, 

univariate models can serve as tools for risk measurement (Andersen et. al, 2007), 

as well as providing accurate volatility forecasts (Andersen & Bollerslev, 1998).  

Today, the number of extensions to the original GARCH model is vast. A 

thorough survey by Poon & Granger (2003) finds that GARCH generally 

dominates ARCH. However, asymmetric models, such as the exponential 

GARCH by Nelson (1991) and GJR-GARCH by Glosten et. al (1993), tend to 

perform better than the original GARCH. A comprehensive study by Hansen & 

Lunde (2005) comparing a large number of models concludes that GARCH 

dominates other models on forecasting volatility for exchange rates but that 

models incorporating leverage effects are more suitable for stocks. Similar 

conclusions are presented by Köksal (2009) and by Hung-Chun & Jui-Cheng 

(2010). The models tested in this thesis are the ARCH, GARCH, EGARCH and 

GJR-GARCH. 

The error term in the financial time series modelled by GARCH, nonetheless 

needs to be assumed and Bollerslev (1987) proposed the Student’s t distribution 

rather than the Normal distribution originally assumed by Engle (1982) and 

Bollerslev (1986). Nelson (1991) suggested another density function that takes fat 

tails into account, namely the Generalized Error Distribution (GED) by Harvey 

(1981). However, a study by Hung-Chun & Jui-Cheng (2010) concludes that the 

error distribution does not significantly improve volatility forecasting using 

GARCH after testing different distributions e.g. the skewed generalized t (SGT) 

distribution by Theodossiou (1998). Wilhelmsson (2006) nonetheless, finds that 

allowing for leptokurtic error distributions leads to significant improvements 

compared to the Normal distribution. The distributions used in this thesis are the 

Normal distribution, Student’s t distribution and the Generalized Error 

Distribution. 
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Hence, the purpose of this thesis is to answer the question: 

Which volatility model, given different assumptions of the error distribution, 

provides the best VaR estimates for a selection of Nordic equity assets? 

1.1  Earlier research 
Earlier studies using GARCH volatility forecasts in VaR estimates fail to provide 

a definite answer on which model is the best. Yet, the use of GARCH in VaR has 

been extensive and the need for research continues to be of interest. Vlaar (2000) 

tested the GARCH model under different distribution assumptions on Dutch bond 

portfolios and concluded that the GARCH model under the Normal distribution 

dominates the common practice of using historical simulation models.  

Brooks & Persand (2003) tested the effect of asymmetries on VaR estimations for 

a selection of Southeast Asian stock indices. They found that models ignoring 

asymmetrical effects in returns lead to inappropriately small VaR estimates 

compared to models taking the asymmetries in account. Angelidis et. al (2004) 

found no clearly superior model but concluded that leptokurtic distributions 

outperformed the Normal distribution – especially for the ARCH model – and that 

the estimation window length had an influence on the VaR estimates for a 

selection of major stock indices. In a more recent study, Orhan & Köksal (2012) 

concluded that the ARCH model and leptokurtic error distributions yielded the 

best results for VaR estimations after testing a wide range of volatility models. 

Thus, the need for continued testing is of great interest to financial risk managers 

searching for the optimal volatility forecasting model.     

2  Theoretical framework 
The theoretical framework in this thesis will firstly consider the volatility models 

that are used to perform forecasts. Secondly, the assumed distributions for the 

error terms will be presented followed by a third part covering the theory of VaR 

and its implications. Lastly, the tests used for evaluating the VaR forecasts will be 

presented and explained. 
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Returns will throughout this thesis be defined as 

 
𝑟𝑡 = 𝑙𝑛 (

𝑃𝑡

𝑃𝑡−1
) = (𝑙𝑛 𝑃𝑡 − 𝑙𝑛 𝑃𝑡−1) (1) 

where 𝑟𝑡 is the daily return and  𝑃𝑡 is the price at time t .1 

2.1  Volatility models 
Volatility is defined as the standard deviation of the daily returns and is 

commonly denoted as 𝜎. However, this thesis focuses mainly on the conditional 

volatility of the daily returns, i.e. 𝜎𝑡. Nevertheless, the mean has to be addressed 

and in order to capture the conditional volatility with the models below, the mean 

of the daily returns is assumed to be zero, i.e. 𝐸(𝑟𝑡) = 0. Returns are in financial 

econometrics commonly defined as a MA(1)-process as shown by Equation (2). 

 𝑟𝑡 = 𝜃𝜀𝑡−1 + 𝜀𝑡 (2) 

where 𝜀𝑡 is the error term. Hence, the returns have been de-meaned and the 

residuals will further on be given as 

 𝜀𝑡 = 𝜎𝑡𝑍𝑡 (3) 

where 𝑍𝑡 is a sequence of independently and identically distributed random 

variables with zero mean and variance one. Different assumptions on the 

distribution of 𝑍𝑡 will be discussed below. 

The Auto Regressive Conditional Heteroscedasticity model (ARCH), presented 

by Engle (1982), was the first model to capture time varying variance of returns. 

ARCH is defined as 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2  

𝑞

𝑖=1

 (4) 

under the assumption that 𝜔 and 𝛼𝑖 are strictly positive but 𝛼𝑖 < 1 and where 𝑞 is 

the number of lags taken in account. Hence, using one lag results in the ARCH(1) 

model which states that today’s conditional variance of the return is equal to a 

constant plus yesterday’s squared return. A 1-step ahead forecast is given by 

 𝜎𝑡+1
2 = 𝜔 + 𝛼1𝜀𝑡

2. (5) 

                                                           
1
 For illustrative reasons, the returns have been multiplied by 100 in order to be expressed as a 

percentage. 
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Bollerslev (1986), developed the Generalized ARCH model – GARCH – by 

adding the lagged variance as shown by 

 

𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2  

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 (6) 

where 𝜔, 𝛼𝑖 and 𝛽𝑗 being positive for all 𝑖 and 𝑗 is sufficient to guarantee positive 

conditional variance.  

Subsequently, a GARCH(1,1) model is obtained by setting 𝑝 = 𝑞 = 1 which 

results in the following equation for an 1-step ahead forecast: 

 𝜎𝑡+1
2 = 𝜔 + 𝛼1𝜀𝑡

2 + 𝛽1𝜎𝑡
2. (7) 

The assumption 𝛼1 + 𝛽1 < 1 is sufficient to guarantee positive conditional 

variance. 

A GARCH(1,1) model therefore states that today’s volatility depends on a 

constant plus yesterday’s squared return and yesterday’s conditional variance. The 

unconditional variance is given by 

 𝜎2 =
𝜔

1 − (𝛼1 + 𝛽1 )
. (8) 

The terms 𝛼1 + 𝛽1 determines the time it takes for the variance forecast to 

converge to the unconditional variance in an 𝑙-step ahead forecast. 

The exponential GARCH, or the EGARCH, introduced by Nelson (1991) differs 

from other GARCH models as it models the logarithm of the conditional variance. 

The model is asymmetric in the sense that it takes the impact of negative 

innovations in account unlike the GARCH model. The EGARCH includes a 

multiplicative dummy variable in order to check whether negative shocks are 

statistically significant as Nelson (1991) noted that negative shocks give rise to 

larger volatility than positive shocks. The EGARCH is given by 

ln(𝜎𝑡
2) =  𝜔 + ∑ 𝛼𝑖 (|

𝜀𝑡−𝑖

𝜎𝑡−𝑖
| − √

2

𝜋
)

𝑞

𝑖=1

+ ∑ 𝛾𝑘

𝜀𝑡−𝑖

𝜎𝑡−𝑖
𝐼𝑡−𝑘

𝑟

𝑘=1

+ ∑ 𝛽𝑗ln (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

 (9) 



 6 

The term |
𝜀𝑡−𝑖

𝜎𝑡−𝑖
| − √

2

𝜋
= |𝑒𝑡−𝑖| − √

2

𝜋
 is the expected value of the absolute value of 

a normal random variable,|𝑒𝑡−𝑖|, minus its expectation, so the shock has a mean of 

zero. 𝐼𝑡−𝑘 is a dummy variable indicating whether the return is positive or 

negative. The indicator is formally expressed as  

 
𝐼𝑡 = {

1     𝑖𝑓 𝑟𝑡 < 0
0     𝑖𝑓 𝑟𝑡 ≥ 0

. (10) 

The term 𝑒𝑡−𝑖, is also a mean zero shock and the final term is the lagged log 

variance. Given the asymmetric structure of the EGARCH, the two shocks behave 

differently as the first term yields a symmetric rise in the log variance whereas the 

second term produces an asymmetric effect. The parameter 𝛾𝑘 is restricted to be 

< 0 and represents the rise in volatility following negative shocks. Since the 

EGARCH models the logarithm of the variance, the conditional volatility can 

never be negative and the assumption of positive parameters is no longer 

necessary (Sheppard, 2013).  

 

By letting 𝑝 = 𝑟 = 𝑞 = 1, the EGARCH(1,1) is obtained and subsequently the 1-

step ahead forecast is expressed as 

 

ln(𝜎𝑡+1
2 ) =  𝜔 + 𝛼1 (|

𝜀𝑡

𝜎𝑡
| − √

2

𝜋
) + 𝛾1

𝜀𝑡

𝜎𝑡
𝐼𝑡 + 𝛽1ln (𝜎𝑡

2). (11) 

Glosten et. al (1993) introduced another asymmetric model that takes the sign in 

front of the return in account. The GJR-GARCH includes a similar multiplicative 

dummy variable as in the EGARCH; see Equation (10). The GJR-GARCH can be 

written as  

 

𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝛾𝑘𝜀𝑡−𝑘
2 𝐼𝑡−𝑘

𝑟

𝑘=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

, (12) 

Sheppard (2013). If 𝐼𝑡 = 1, the model includes the effect of the negative lagged 

return expressed by 𝛾𝑘. The GJR-GARCH(1,1) is obtained by letting 𝑝 = 𝑟 =

𝑞 = 1 and the 1-step ahead forecast is therefore expressed as  

 𝜎𝑡+1
2 = 𝜔 + 𝛼1𝜀𝑡

2 + 𝛾1𝜀𝑡
2𝐼𝑡 + 𝛽1𝜎𝑡

2. (13) 
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2.2  Distributions  
For the models to fully function, the error term has to have zero mean i.e. 

 𝜀𝑡 ~ 𝑁(0,1)  

where the error term in this case is normally distributed with zero mean and 

variance one. The density function for the Normal distribution is  

 
𝑓(𝜀) =

1

𝜎√2𝜋
𝑒

(−
(𝜀𝑡−𝜇)2

2𝜎2 )
 (14) 

where μ constitute the mean and σ is the standard deviation. 

The fatter tails, frequently observed in stock returns, are allowed for in the 

Student’s t distribution assumed by Bollerslev (1987) which is given by the 

density function  

 

𝑓(𝜀) =  
Γ (

𝜐 + 1
2 )

Γ (
𝜐
2) √𝜋(𝜈 − 2)𝜎𝑡

2
(1 +

𝜀𝑡
2

(𝜈 − 2)𝜎𝑡
2)−

(𝜐+1)
2  (15) 

where υ is the degrees of freedom and we assume 𝜐 > 2. Γ(∙) is the gamma 

function, 

 
Γ(𝜀) = ∫ 𝑡𝜀−1𝑒−𝑡

∞

0

𝑑𝑡. (16) 

The t distribution converges to the Normal distribution as  𝜐 → ∞. 

The Generalized Error Distribution is useful since it can easily transform a 

Normal density function into a leptokurtic or platykurtic distribution by altering 𝛽 

in Equation (17). Its density function is given by  

 
𝑓(𝜀) =  

𝛽

2𝜎Γ (
1
𝛽

)
exp {− (

|𝜀 − 𝜇|

𝜎
)

𝛽

}. (17) 

The GED assumes a symmetrical shape and is equal to the Normal distribution 

when 𝛽 = 2.  
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2.3  Value-at-Risk 
VaR can be viewed as a gauge that summarizes the worst loss over a target 

horizon that will not be exceeded with a given level of confidence (Jorion, 2007). 

More formally, a (𝛼)VaR is expressed as  

 Pr(𝐿 > 𝑉𝑎𝑅) = 𝛼 (18) 

where 𝐿 is the loss on a given day and 𝛼 is the significance level. VaR is therefore 

a quantile in the distribution of profit and loss that is expected to be exceeded 

only with a certain probability, formally expressed as  

 
𝑝 = ∫ 𝑓𝑞(𝑥)𝑑𝑥

−𝑉𝑎𝑅(𝑝)

−∞

. (19) 

Throughout this thesis, the VaR figures will be given using a 1 % and 5 % 

significance level, i.e. 1 % and 5 % VaR estimates will be presented. 

VaR is computed using the conditional volatility of returns multiplied by the 

quantile of a given probability distribution, e.g. the Normal distribution as shown 

in Equation (20): 

 (𝛼)𝑉𝑎𝑅 = −𝜎𝑡𝜙𝛼 (20) 

where 𝜙𝛼 in the Normal distribution is equal to -2,33 for a 1 % VaR and -1,65 for 

a 5 % VaR. Thus, VaR is presented as a positive number. 

2.4  Backtesting VaR 
Finding suitable forecast models for VaR estimates requires a method for 

evaluating the predictions ex-post. The VaR estimates in this thesis will be 

evaluated using two tests: an unconditional and a conditional test of coverage 

originally developed by Kupiec (1995) and Christoffersen (1998) respectively. 

Henceforth, daily returns will be labelled according to Equation (21) in order to 

define whether the daily return exceeded the VaR estimate or not. The indicator 

variable is constructed as 

 
𝜂𝑡 = {

1     𝑖𝑓 𝑟𝑡 < −𝑉𝑎𝑅
0     𝑖𝑓 𝑟𝑡 ≥ −𝑉𝑎𝑅

 (21) 
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where 1 indicates a violation and 0 indicates a return less than the VaR. The 

violations are thereafter summed and divided by the total number of out-of-sample 

VaR estimates with the intention of obtaining the empirical size.  

2.4.1  Kupiec’s test 
Kupiec’s test was developed to test whether the empirical proportion of violations 

congregate with the nominal proportion specified by the VaR significance level. 

Kupiec (1995) suggests a likelihood ratio test constructed as in Equation (22) 

below.   

 
𝐿𝑅𝑢𝑐 = 2ln [(1 −

F

T
)

T−F

(
F

T
) F] − 2ln[(1 − p)T−FpF] (22) 

where T is the number of out-of-sample estimates and F the observed number of 

violations. Hence, F/T is the empirical VaR size which follows the binominal 

distribution so F ~ B(T, p). 𝐿𝑅𝑢𝑐 follows the chi-square distribution with one 

degree of freedom, i.e. 𝐿𝑅𝑢𝑐  ~ χ2
(1), under the null hypothesis which states that 

F/T = p. Hence, a rejection of the null hypothesis implies that the empirical VaR 

size is significantly different from the stated VaR significance level, i.e. the 

nominal size.  

2.4.2  Christoffersen’s test of independence 
Ideally, a violation today does not reveal any information about the likelihood of a 

violation tomorrow, i.e. the violations occur independently of each other. A 

disadvantage with Kupiec’s test is its ability detect whether the violations occur 

independently or clustered in a sequence. Christoffersen (1998) developed a test 

to detect clusters of violations. The advantage with the Christoffersen test of 

independence is its deference to the conditionality in the volatility forecasts. Good 

volatility forecasts ought to respond to periods of high and low volatility and 

subsequently adjust its predictions accordingly after the volatility clusters.  

The probability of two subsequent violations are therefore defined as  

 𝑝𝑖𝑗 = P(𝜂𝑡 = 𝑖|𝜂𝑡−1 = 𝑗) (23) 

 

where 𝜂 is either 0 or 1 as in Equation (21). Independence of violations is 

therefore defined as violations that do not occur in two subsequent days. A 
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drawback with this test is arguably the definition of independence as a violation 

today followed by a violation the day after tomorrow is not detected in this test. 

Christoffersen (1998) nonetheless, suggests as likelihood ratio test of conditional 

coverage, shown in Equation (25) below. 

𝐿𝑅𝑖𝑛𝑑 = −2 ln[(1 − 𝑝)𝑇−𝐹𝑝𝐹] + 2ln [1 − 𝜋01)𝜂00𝜋01
𝜂01(1 − 𝜋11)𝜂10𝜋11

𝜂11 

 (24) 

where 𝜂𝑖𝑗 is the number of observations with the value 𝑖 followed by 𝑗 for 

𝑖, 𝑗 = 0, 1 and 

 𝜋𝑖𝑗 =
𝜂𝑖𝑗

∑ 𝜂𝑖𝑗𝑗
 (25) 

are the corresponding probabilities. 𝐿𝑅𝑖𝑛𝑑  ~ 𝜒(1)
2  under the null hypothesis which 

states that the violations are independently distributed. Hence, a rejection of the 

null hypothesis infers that the violations are clustered and consequently not 

independent. 

3 Data 
The data in this thesis is collected from Nasdaq OMX and contains closing price 

data on the Swedish index OMXS30, the Danish index OMXC20 as well as a 

selection of two stocks from each country; see Table 1 below. The daily closing 

price data starts on January 1
st
 2007 extending to December 1

st
 2014 leading to a 

total number of 1992 trading days in Sweden and 1981 trading days in Denmark. 

Company Sector 

H&M Retail 

Volvo Heavy equipment 

Carlsberg Beverages 

Maersk Shipping 
Table 1 - Description of company sectors 

The selected companies comprise some of the most frequently traded equities in 

Sweden and Denmark. The Danish index OMXC20 is heavily influenced by 

chemical companies and retail firms whereas the Swedish index OMXS30 is 

largely comprised by heavy industrial companies as well as a prominent financial 

sector. Swedish OMXS30 and Danish OMXC20 are relatively dissimilar in their 
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compositions and together make up a somewhat fair picture of the Nordic equity 

markets. Descriptive statistics for the return series are displayed below in Table 2. 

Index/Equity OMXS30 H&M VOLVO OMXC20 CARL MAERSK 

Mean 0,011 0,030 -0,005 0,027 0,007 0,006 

St.d. 1,540 1,657 2,455 1,428 2,297 2,230 

Min -7,513 -10,248 -15,377 -11,723 -19,213 -13,918 

Max 9,865 9,549 15,128 9,496 14,547 12,292 

Skewness 0,093 0,028 0,014 -0,225 -0,352 0,089 

Kurtosis 7,307 6,989 6,372 9,411 12,267 6,516 

Jarque-Bera 1534,5 1315,0 939,1 3390,4 7102,7 1017,9 
Table 2 - Descriptive statistics for the period 2007-01-01 to 2014-12-01 

The indices and stocks exhibits leptokurtic characteristics as the returns reveal 

excess kurtosis as well as centred mean of zero. This indication is further 

strengthened by the large Jarque-Bera statistics which suggests the returns are 

incongruent with the Normal distribution. Swedish OMXS30 displays a slight 

positive skewness whereas the Danish OMXC20 exhibits a slight negative 

skewness. Carlsberg displays the largest kurtosis of 12,267 and Volvo the smallest 

kurtosis of 6,372 – both equities are well over a kurtosis of 3 which is implied by 

the Normal distribution. The plotted returns for the two indices are displayed 

below in Figure 1 & 2.
2
  

 

Figure 1 – Plotted daily returns for OMXS30. The data exhibits volatility clustering. 

                                                           
2
 Plotted returns for the equities are found in the appendix. 
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Figure 2 – Plotted daily returns for OMXC20. The data exhibits volatility clustering. 

Figure 1 & 2 shows the plotted returns and the returns appear stationary but 

exhibits distinct volatility clusters. Hence, the variance cannot be assumed to be 

constant over time and estimations by ARCH/GARCH models appear appropriate. 

The initial volatility in the figures is mainly explained by the financial crisis of 

2007-2009. The volatility cluster in the latter part of the figures is associated with 

the European debt crisis of 2012 which led to tumble in the financial markets. 

4  Methodology 
The data set containing a given number of observations has been divided into an 

estimation window and a test window. The first 500 observations have been used 

to estimate the GARCH parameters and the remaining observations are used as an 

out-of-sample testing window for the 1-day VaR estimates, i.e. the estimation 

window length: 𝑊𝐿 = 500. The GARCH parameters are subsequently updated 

throughout the data set using rolling window estimation instead of being held 

constant over time. This is made in order to achieve flexibility in the parameters. 
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Figure 3 - Rolling window estimation 

At time 𝑡 = 𝑊𝐿, an out-of-sample forecast is made for time 𝑊𝐿 + 1 by using the 

first 500 observations. The volatility forecasts are used to calculate the VaR 

estimate for time 𝑊𝐿 + 1 and the estimate is thereafter compared to the actual 

return for that day – leading to either a violation or not. The same procedure is 

then repeated for a forecast for time 𝑊𝐿 + 2 when the first observation is dropped 

whilst the actual return for time 𝑊𝐿 + 1 observation is added. Thus, the window 

moves forward step by step until the end of the data set as illustrated by Figure (3) 

above. 

All operations have been performed using the programming software Matlab 

version 2014a with the MFE Toolbox. The out-of-sample VaR estimates are 

calculated using a 1 % and 5 % significance level which corresponds to an 

expected violation every 100
th

 and 20
th

 trading day respectively. 

5 Results 
The VaR estimates produced by the volatility models are evaluated by Kupiec’s 

test of unconditional coverage and Christoffersen’s test of independence. The tests 

are evaluated on the 5 % significance level, hence the null hypothesis is rejected 

and the model subsequently discarded, if the p-value is below five percent. Table 

3 displays the models that yielded the VaR estimates closest to the stated nominal 

size. In many cases, more than one model and distribution for each equity/index 

passed both tests. Hence, the models in Table 3 are not necessarily significantly 
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better than other models but nonetheless performed the most accurate VaR 

estimates with this data and time period.
3
  

Index/Equity 1% 5% 

OMXS30 GARCH - t GJR - N, t, GED 

H&M ARCH - t EGARCH - t 

Volvo GJR - N - 

OMXC20 ARCH - t EGARCH - N 

Carlsberg ARCH - GED EGARCH - GED 

Maersk GJR - N, t GJR - GED 
Table 3 – Most accurate models that also passed Christoffersen’s test 

A striking result is that the volatility models tend to underestimate the risk for 1 % 

nominal VaR estimates and overestimate the risk for 5 % nominal VaR estimates. 

All models except one yielded an empirical size larger than 1 % for the examined 

data. Albeit, the empirical sizes were not necessarily significantly larger than the 

empirical size according to Kupiec’s test. The ARCH model yielded the best 

results for half of the equities/indices on 1 % VaR estimates and the common 

denominator is that leptokurtic error distributions produced the best results for the 

ARCH model as well as for the GARCH model for OMXS30.  

One explanation of the good performance of the ARCH model for 1 % VaR 

estimates could be that since the ARCH model excludes the lagged conditional 

variance and only models the lagged squared return, it responds faster to changes 

in the conditional variance. When a ‘high volatility’ cluster starts, the lagged 

squared return captures that change immediately and thus adapts faster than the 

GARCH model where the lagged conditional variance contributes to keeping the 

conditional variance at time t closer to its previous conditional variance, i.e. the 

previous ‘low volatility’ cluster. 

The GJR-GARCH dominated the GARCH model for the Danish data but the t-

distributed GARCH produced the best results for OMXS30. In the cases where 

GJR-GARCH yielded the best results, there was no error distribution that clearly 

dominated although the Normal distribution worked well for both equities. 

For the 5 % VaR estimates however, the asymmetrical models thoroughly 

dominated the symmetrical models. The symmetrical models tended to fail 

                                                           
3
 Complete tables with test statistics and p-values are found in the appendix 
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Kupiec’s test of conditional coverage and were subsequently discarded. No error 

distribution stands out as better than the other, although leptokurtic distributions 

appear to have a slight edge on the Normal distribution. Notably, not a single 

model yielded any acceptable VaR estimates for the Volvo data as the estimates 

could not pass Christoffersen’s test of independence.  

6  Conclusion 
The purpose of this thesis has been to evaluate VaR estimates produced by various 

ARCH/GARCH forecasts, made under different error distributions, through a 500 

day rolling window estimation. The estimates are based on a Swedish and Danish 

equity index as well as a selection of two frequently traded stocks from each 

country during the time period January 1
st
 2007 to December 1

st
 2014. Overall, no 

model is clearly superior, however asymmetrical models appear to outperform 

symmetrical models for 5 % VaR estimates after evaluation through Kupiec’s 

unconditional coverage test and Christoffersen’s test of independence. For 1 % 

VaR estimates, the ARCH model under leptokurtic distributions yields accurate 

results throughout the data set, albeit asymmetrical models yield acceptable results 

as well. Lastly, leptokurtic distributions appear to improve forecasting with 

symmetrical models but no overall dominating distribution could be found for all 

models in this thesis. 

6.1  Recommendations for further studies 
Further research is necessary and it would be a good idea to expand the number of 

models as well as test whether a skewed t distribution would yield better results 

than the models and distributions tested in this thesis. Finally, altering the 

estimation window length to see whether this improves the forecasts would be an 

interesting approach. 

6.2  Recommendations for practitioners 
The recommendations for practitioners are that conservative risk managers should 

use a simple ARCH model for VaR estimates since it almost always overestimates 

the risk. Asymmetrical models did nonetheless yield empirical VaR sizes closer to 

the nominal VaR size for most assets in this thesis, although they sometimes 

underestimated the risk. The models that passed both tests are summarized in 

tables that are found in the appendix.  
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8   Appendix 
The appendix includes plots over daily returns for the equities used in this thesis 

as well as the complete results with test statistics and p-values presented below. 

Finally, the models that passed Kupiec’s and Christoffersen’s test are summarized 

in two separate tables for facilitating purposes.   

 

 
Figure 4 – Plotted daily returns for H&M. Exhibits of volatility clustering. 

 
Figure 5 – Plotted daily returns for VOLVO. Exhibits of volatility clustering. 
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Figure 6 – Plotted daily returns for CARLSBERG. Exhibits of volatility clustering. 

 
Figure 7 – Plotted daily returns for MAERSK. Exhibits of volatility clustering. 

 
 

ARCH 

OMXS30 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,41% 3,69% 1,34% 3,36% 1,41% 3,76% 

Kupiec 2,238 5,886 1,593 9,544 2,238 5,271 

 
(0,135) (0,015) (0,207) (0,002) (0,135) (0,023) 

Christoffersen 1,075 5,680 1,221 7,451 1,075 5,363 

  (0,300) (0,017) (0,269) (0,006) (0,300) (0,021) 
Table 4 – GARCH for OMXS30. Kupiec, Christoffersen statistics and p-values in parenthesis. 
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GARCH 

OMXS30 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,28% 5,30% 1,21% 5,37% 1,28% 5,37% 

Kupiec 1,048 0,281 0,611 0,418 1,048 0,418 

 
(0,306) (0,596) (0,434) (0,518) (0,306) (0,518) 

Christoffersen 0,491 3,131 0,441 4,512 0,491 4,512 

  (0,483) (0,077) (0,507) (0,034) (0,483) (0,034) 
Table 5 – GJR-GARCH for OMXS30. Kupiec, Christoffersen statistics and p-values in parenthesis. 

EGARCH 

OMXS30 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,95% 6,11% 1,95% 5,84% 1,95% 6,04% 

Kupiec 10,559 3,604 10,559 2,100 10,559 3,192 

 
(0,001) (0,058) (0,001) (0,147) (0,001) (0,074) 

Christoffersen 5,583 6,607 2,336 4,320 5,583 6,945 

  (0,018) (0,010) (0,126) (0,038) (0,018) (0,008) 
Table 6 – EGARCH for OMXS30. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GJR-GARCH 

OMXS30 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,34% 5,30% 1,41% 5,30% 1,34% 5,30% 

Kupiec 1,593 0,281 2,238 0,281 1,593 0,281 

 
(0,207) (0,596) (0,135) (0,596) (0,207) (0,596) 

Christoffersen 0,545 0,165 0,601 0,165 0,545 0,165 

  (0,461) (0,685) (0,438) (0,685) (0,461) (0,685) 
Table 7 – ARCH for OMXS30. Kupiec, Christoffersen statistics and p-values in parenthesis. 

ARCH 

HM B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,27% 3,15% 1,21% 2,68% 1,27% 3,15% 

Kupiec 1,037 12,307 0,603 20,177 1,037 12,307 

 
(0,309) (0,001) (0,438) (0,000) (0,309) (0,001) 

Christoffersen 0,491 1,300 0,440 0,682 0,491 1,300 

  (0,484) (0,254) (0,507) (0,409) (0,484) (0,254) 
Table 8 – GARCH for HM B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GARCH 

HM B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,41% 3,42% 1,41% 3,49% 1,47% 3,69% 

Kupiec 2,222 8,799 2,222 8,025 2,961 5,941 

 
(0,136) (0,003) (0,136) (0,005) (0,085) (0,015) 

Christoffersen 0,600 0,808 0,600 0,705 0,942 0,441 

  (0,439) (0,369) (0,439) (0,401) (0,332) (0,507) 
Table 9 – GJR-GARCH for HM B. Kupiec, Christoffersen statistics and p-values in parenthesis.  
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EGARCH 

HM B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 2,01% 4,42% 1,88% 4,69% 1,88% 4,56% 

Kupiec 11,904 1,084 9,208 0,305 9,208 0,633 

 
(0,001) (0,298) (0,002) (0,581) (0,002) (0,426) 

Christoffersen 5,234 4,628 5,957 2,018 5,964 2,391 

  (0,022) (0,032) (0,015) (0,156) (0,015) (0,122) 
Table 10 – EGARCH for HM B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GJR-GARCH 

HM B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,54% 3,62% 1,47% 3,82% 1,47% 3,95% 

Kupiec 3,793 6,597 2,961 4,742 2,961 3,688 

 
(0,052) (0,010) (0,085) (0,029) (0,085) (0,055) 

Christoffersen 0,721 0,001 0,659 0,016 0,659 0,055 

  (0,396) (0,974) (0,417) (0,898) (0,417) (0,816) 
Table 11 – ARCH for HM B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

ARCH 

VOLVO B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,07% 3,22% 1,07% 3,15% 1,07% 3,35% 

Kupiec 0,077 11,366 0,077 12,307 0,077 9,613 

 
(0,781) (0,001) (0,781) (0,001) (0,781) (0,002) 

Christoffersen 6,606 8,267 6,606 8,690 6,606 7,464 

  (0,010) (0,004) (0,010) (0,003) (0,010) (0,006) 
Table 12 – GARCH for VOLVO B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GARCH 

VOLVO B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,34% 3,75% 1,34% 4,09% 1,34% 3,95% 

Kupiec 1,579 5,323 1,579 2,776 1,579 3,688 

 
(0,209) (0,021) (0,209) (0,096) (0,209) (0,055) 

Christoffersen 1,223 10,947 1,223 11,613 1,223 12,623 

  (0,269) (0,001) (0,269) (0,001) (0,269) (0,000) 
Table 13 – GJR-GARCH for VOLVO B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

EGARCH 

VOLVO B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,74% 4,96% 2,01% 5,16% 1,81% 5,03% 

Kupiec 6,804 0,005 11,904 0,081 7,968 0,002 

 
(0,009) (0,943) (0,001) (0,777) (0,005) (0,962) 

Christoffersen 3,036 6,328 2,135 7,446 2,790 8,192 

  (0,081) (0,012) (0,144) (0,006) (0,095) (0,004) 
Table 14 – EGARCH for VOLVO B. Kupiec, Christoffersen statistics and p-values in parenthesis. 
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GJR-GARCH 

VOLVO B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,21% 3,95% 1,34% 4,16% 1,27% 3,95% 

Kupiec 0,603 3,688 1,579 2,371 1,037 3,688 

 
(0,438) (0,055) (0,209) (0,124) (0,309) (0,055) 

Christoffersen 0,440 6,848 0,544 5,829 0,491 6,848 

  (0,507) (0,009) (0,461) (0,016) (0,484) (0,009) 
Table 15 – ARCH for VOLVO B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

ARCH 

OMXC20 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,08% 3,52% 1,01% 3,45% 1,08% 3,59% 

Kupiec 0,099 7,587 0,003 8,341 0,099 6,873 

 
(0,753) (0,006) (0,954) (0,004) (0,753) (0,009) 

Christoffersen 0,351 6,814 0,308 7,186 0,351 6,455 

  (0,554) (0,009) (0,579) (0,007) (0,554) (0,011) 
Table 16 – GARCH for OMXC20. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GARCH 

OMXC20 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,22% 3,72% 1,22% 3,86% 1,29% 3,72% 

Kupiec 0,663 5,562 0,663 4,401 1,116 5,562 

 
(0,416) (0,018) (0,416) (0,036) (0,291) (0,018) 

Christoffersen 0,444 1,600 0,444 1,305 0,495 1,600 

  (0,505) (0,206) (0,505) (0,253) (0,482) (0,206) 
Table 17 – GJR-GARCH for OMXC20. Kupiec, Christoffersen statistics and p-values in parenthesis. 

EGARCH 

OMXC20 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,29% 4,94% 1,49% 5,14% 1,22% 5,07% 

Kupiec 1,099 0,016 3,068 0,054 0,649 0,013 

 
(0,294) (0,900) (0,080) (0,817) (0,420) (0,910) 

Christoffersen 1,369 2,947 0,929 5,736 1,543 2,535 

  (0,242) (0,086) (0,335) (0,017) (0,214) (0,111) 
Table 18 – EGARCH for OMXC20. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GJR-GARCH 

OMXC20 Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,08% 3,92% 1,15% 4,06% 1,15% 3,86% 

Kupiec 0,099 3,876 0,321 2,933 0,321 4,401 

 
(0,753) (0,049) (0,571) (0,087) (0,571) (0,036) 

Christoffersen 0,351 0,921 0,396 1,115 0,396 0,831 

  (0,554) (0,337) (0,529) (0,291) (0,529) (0,362) 
Table 19 – ARCH for OMXC20. Kupiec, Christoffersen statistics and p-values in parenthesis. 
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ARCH 

CARL B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 0,88% 2,84% 0,88% 2,57% 1,01% 2,84% 

Kupiec 0,233 17,191 0,233 22,312 0,003 17,191 

 
(0,629) (0,000) (0,629) (0,000) (0,961) (0,000) 

Christoffersen 2,693 0,487 2,693 0,880 2,171 0,487 

  (0,101) (0,485) (0,101) (0,348) (0,141) (0,485) 
Table 20 – GARCH for CARL B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GARCH 

CARL B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,55% 3,78% 1,55% 3,58% 1,55% 3,78% 

Kupiec 3,915 5,039 3,915 6,962 3,915 5,039 

 
(0,048) (0,025) (0,048) (0,008) (0,048) (0,025) 

Christoffersen 0,810 0,354 0,810 0,592 0,810 0,354 

  (0,368) (0,552) (0,368) (0,442) (0,368) (0,552) 
Table 21 – GJR-GARCH for CARL B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

EGARCH 

CARL B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,35% 4,12% 1,42% 4,05% 1,49% 4,39% 

Kupiec 1,656 2,569 2,313 2,992 3,068 1,212 

 
(0,198) (0,109) (0,128) (0,084) (0,080) (0,271) 

Christoffersen 1,212 0,821 1,066 0,932 0,932 0,451 

  (0,271) (0,365) (0,302) (0,334) (0,334) (0,502) 
Table 22 – EGARCH for CARL B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GJR-GARCH 

CARL B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,35% 3,92% 1,42% 3,78% 1,42% 3,92% 

Kupiec 1,656 3,944 2,313 5,039 2,313 3,944 

 
(0,198) (0,047) (0,128) (0,025) (0,128) (0,047) 

Christoffersen 1,212 0,231 1,066 0,354 1,066 0,231 

  (0,271) (0,631) (0,302) (0,552) (0,302) (0,631) 
Table 23 – ARCH for CARL B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

ARCH 

MAERSK B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,22% 2,84% 1,22% 2,84% 1,22% 2,84% 

Kupiec 0,649 17,191 0,649 17,191 0,649 17,191 

 
(0,420) (0,000) (0,420) (0,000) (0,420) (0,000) 

Christoffersen 0,443 0,035 0,443 0,035 0,443 0,035 

  (0,506) (0,853) (0,506) (0,853) (0,506) (0,853) 
Table 24 – GARCH for MAERSK B. Kupiec, Christoffersen statistics and p-values in parenthesis. 
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GARCH 

MAERSK B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,28% 3,85% 1,35% 3,92% 1,42% 3,85% 

Kupiec 1,099 4,473 1,656 3,944 2,313 4,473 

 
(0,294) (0,034) (0,198) (0,047) (0,128) (0,034) 

Christoffersen 0,494 1,313 0,548 1,178 0,605 1,313 

  (0,482) (0,252) (0,459) (0,278) (0,437) (0,252) 
Table 25 – GJR-GARCH for MAERSK B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

EGARCH 

MAERSK B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,42% 4,86% 1,42% 4,73% 1,35% 4,59% 

Kupiec 2,313 0,060 2,313 0,237 1,656 0,534 

 
(0,128) (0,806) (0,128) (0,626) (0,198) (0,465) 

Christoffersen 1,066 6,921 1,066 5,429 1,212 8,416 

  (0,302) (0,009) (0,302) (0,020) (0,271) (0,004) 
Table 26 – EGARCH for MAERSK B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

GJR-GARCH 

MAERSK B Normal Student's t GED 

Nominal size 1,00% 5,00% 1,00% 5,00% 1,00% 5,00% 

Empirical size 1,08% 3,85% 1,08% 3,92% 1,15% 3,98% 

Kupiec 0,094 4,473 0,094 3,944 0,312 3,451 

 
(0,759) (0,034) (0,759) (0,047) (0,576) (0,063) 

Christoffersen 0,350 0,289 0,350 2,706 0,395 2,502 

  (0,554) (0,591) (0,554) (0,100) (0,530) (0,114) 
Table 27 – ARCH for MAERSK B. Kupiec, Christoffersen statistics and p-values in parenthesis. 

Index/Equity 1% 

OMXS30 GARCH - N - t - GED, GJR - N - t - GED, ARCH - N - t -GED 

HM B GARCH - N - t - GED, GJR - N - t - GED, ARCH - N - t - GED 

VOLVO B GARCH - N - t -GED, GJR - N - t - GED 

OMXC20 All models with all error distributions 

CARL B GJR - N - t -GED, EGARCH - N - t - GED, ARCH - N - t - GED 

MAERSK B All models with all error distributions 
Table 28 – Models that passed Kupiec’s and Christoffersen’s test 

Index/Equity 5% 

OMXS30 GARCH - N, GJR - N - t - GED 

HM B GJR - GED, EGARCH - t - GED 

VOLVO B None of the models passed both tests 

OMXC20 GJR - t, EGARCH - N - GED 

CARL B EGARCH - N - t - GED 

MAERSK B GJR - GED 
Table 29 - Models that passed Kupiec’s and Christoffersen’s test 

 


