
i

Decoding of Error Correcting codes Using Neural
Networks

Atif Haroon

Fahad Hussain

Muhammad Raheel Bajwa

This thesis is presented as part of the Degree of Master of Sciences in Electrical
Engineering

Blekinge Institute of Technology 2012

School of Engineering Blekinge Institute of Technology, Sweden

Supervisor: Maria Erman

Examiner: Dr. Sven Joahnsson

ii

Page Left Blank Intentionally

iii

ABSTRACT

Error Correcting codes are used to ensure integrity, accuracy and fault-tolerance in transmitted
data. These are categorized as Block Codes and Convolutional Codes. This report primarily
focuses on decoding of Block Codes, whereas Convolutional Codes have been discussed and
guidelines given for their decoding.

Different techniques have been developed for correction of errors from the received data. Instead
of using traditional error correcting techniques, Artificial Neural Networks have been used
because of their adaptive learning, self-organization, and real time operation and to project what
will most likely happen on the analogy of human brain.

A Back propagation Algorithm for the Artificial Neural Networks has been simulated using
Matlab for decoding block codes. The Simulator is trained on all possible code words to
detect/correct the errors.

Block Codes have systematic structure whereas Convolutional Codes are produced sequentially
in which every coming bit produces some output from the encoder depending upon the input and
the past state of the encoder. Therefore, same algorithm cannot be implemented on either. An
approach has been developed for decoding Block codes using Artificial Neural Networks and an
error vector has been calculated for updating the synaptic weights during the training.

iv

Acknowledgement

IN THE NAME OF ALLAH, MOST BENIFICIENT AND MERCIFUL

We are really thankful to Almighty Allah who has given us with all the resources, so that we
have made the thorough use for the welfare and boom of mankind.

 We are also honored to have a respectable thesis supervisor Maria Erman and examiner Dr.
Sven Johansson for their worthy guidance, response and support all over our thesis. Nothing can
be more helpful than the support and guidance of them.

We would also like to thank our friends, school mates and especially our parents who kept
backing us in every hard time.

 Atif Haroon

Fahad Husssain

Muhammad Raheel Bajwa

v

Page Left Blank Intentionally

vi

Contents

Chapter1: THESIS INTRODUCTION …………………………………………………..…1

 1.1 Introduction ……………………………………………………………………………… 1

 1.2 Error Correcting Codes ……………………………………………………………. 1

 1.2.1 Basic Concept of Error Correcting System …………….…………………………………. 2

 1.2.2 Need for Error Correction …………………………………………………………………. 2

 1.2.3 Error Correction and Fault-tolerance ……………………………………………………. 3

 1.3 Motivation …………………………………………………………………………………..... 2

 1.4 Artificial Neural Networks ……………………………………………………………......… 3

 1.5 Goals and Specifications …………………………………………………………………..…. 3

 1.6 Thesis Layout ……………………………………………………………………………..….... 4

Chapter 2: LINEAR BLOCK CODES …………………………………………………………….. 5

 2.1 Introduction ………………………………………………………………………………….. 5

 2.2 Linear Block Codes – Encoding……………………………………………………………... 5

 2.3 Standard Arrays……………………………………………………………………………… 11

 2.4 Syndrome Decoding ………………………………………………………………………….. 12

 2.4.1 Syndrome Tables ………………………………………………………………………….... 12

 2.5 Weight Distributions and Error Probabilities………...………………………………………13

CHAPTER 3: CONVOLUTIONAL CODES ……………………………………………………… 14

 3.1 Introduction ………………………………………………………………………………….. 14

 3.2 Coding and Decoding with Convolutional Codes ………………………………….……….. 14

vii

 3.2.1 Code Parameters and Structure of Convolutional Code ………………………………...…... 15

 3.3 Coding an Incoming Sequence....…………………………………………………………….. 16

 3.3.1 The Encoder Design ……………………………………………………………………… 18

 3.3.2 State Diagram ……………………………………………………………………………… 20

 3.3.3 Tree Diagram ……………………………………………………………………………… 22

 3.3.4 Trellis Diagram …………………………………………………………………………….. 23

3.4 Decoding using Viterbi Algorithm ...…………………………………………………………. 24

CHAPTER 4: ARTIFICIAL NEURAL NETWORKS …………………………………………...25

 4.1 Introduction ………………………………………………………………………………….. 25

 4.2 Basic Features of Artificial Neural Networks……………………………………..…………25

 4.3 Learning Process of Human Brain …………………………………………………………. 25

 4.4 Basic Neuron Model …………………………………………………………………………. 26

 4.5 Backpropagation Algorithm for Multilayer Perceptrons ………………………………… 28

CHAPTER 5: DECODING BLOCK CODES USING NEURAL NETWORKS …………….. ..29

 5.1 Introduction ………………………………………………………………………………..... 29

 5.2 Backpropagation Network ………………………………………………………………….. 29

 5.2.1 Mapping …………………………………………………………………………………….. 29

 5.2.2 Layout ……………………………………………………………………………………….. 30

 5.2.3 Training …………………………………………………………………………………….... 30

 5.3 Adjustment of Weights of Connections from a Neuron in the Hidden Layer …………… 31

 5.4 Adjustment of Weights of Connections from a Neuron in the Input Layer .……..…… …31

 5.5 Adjustments to Threshold Values or Biases .……………………………………………..… 32

 5.6 Notation and Equations …………………………………………………………………..... 32

viii

 5.6.1 Notation ...…………………………………………………………………………………....33

 5.6.2 Equation ….………………………………………………………………………………….34

 5.7 Objectives Specified for Backpropagation Simulator ……………………………………..35

 5.8 How to Use the Simulator …………………………………………………………………....35

 5.8.1 Training Mode …………………………………………………………………………….....35

 5.8.2 Non-training Mode (Test Mode) .…………………………………………………………. 35

 5.8.3 Operation …………………………………………………………………………………. .36

 5.9 Summary of Files used in the Backpropagation Simulators …………………………….. 36

 5.9.1 Weights.dat …….……………………………………………………………………….36

 5.9.2 Training.dat ….…………………………………………………………………………. ….37

 5.9.3 Test.dat …………………………………………………………………………………… 37

 5.9.4 Output.dat ………………………………………………………………………………… 37

CHAPTER 6: NEURAL NETWORK DECODING APPROACH FOR CONVOLUTIONAL
CODES ………………………………………………………………………………………….. …38

6.1 Introduction ……………………………………………………………………………… …38

6.2 Convolutional Codes ……………………………………………………………………. … 38

6.3 Design Approach …………………………………………………………………………… 39

 6.3.1 Neural Network Architecture Selection …………………………………………………. .…39

 6.3.2 Updating the Synaptic Weights for Convolutional Decoder…………………………………40

 6.3.3 Training Pattern Generation ….………………………………………………………………41

 6.3.4 Design Requirements for Convolutional Decoder ….……………………………………. …42

CHAPTER 7: RESULTS AND DISCUSSION ………………………………………………. 43

7.1 Introduction ………………………………………………………………………………..43

7.2 Simulated Codeword and its Input-Output Relationship ………………………………43

ix

7.3 Simulated Artificial Neural Network and its Input-Output Relationship……………..44

7.4 Limitations …………………………………………………………………………...…… 48

7.5 Future Work and Recommendations ………………………………………………….....48

REFERENCES …………………………………………………………………………………50

x

Page Left Blank Intentionally

1

 Chapter 1
 Thesis Introduction

1.1 Introduction

With the advent of modern digital communication system, there have been challenging
problems in hand. One of the problems that have been a constant feature of any
communication system right from the onset of development of earlier inventions is error
correction.

In this chapter error correcting codes including their types, brief history and the reason as to
why we carry out error correction are presented. Artificial Neural Networks [1] (ANNs) have
also been introduced highlighting their salient features. Finally goals and specifications and
thesis layout has been discussed.

1.2 Error Correcting Codes

When binary information is passed from one point to another, there is always some chance
that a mistake can be made, a 1 interpreted as a 0, or a 0 taken to be a 1. This can be caused
by media defects, electronic noise, component failure, poor connections, deterioration due to
age and other factors. When a bit is mistakenly interpreted, a bit error has occurred.

Error correction is the process of detecting bit errors and correcting them [2]. This correction
can be done in software or hardware. For high data rates, error correction is done in special-
purpose hardware.

The two main types of error correcting codes are convolutional codes [3] and block codes
[4]. In each case, strings of bits are divided into blocks of data and each block of data is
encoded into a longer block of data.

Convolutional codes tend to operate on smaller blocks of data than block codes and, unlike
block codes, the encoding of one block of data depends on the state of the encoder as well as
on the data to be encoded. Decoding of convolutional codes is usually done by executing
some type of decoding algorithm in a processor.

2

1.3 Basic concept of error correcting Systems

Each bit can be thought of as one of two letters, 0 or 1. Error correcting systems add extra
or redundant bits to computer words. The extra letters (bits) add a certain structure to each
word. If that structure is altered by errors, the changes can be detected and corrected.

1.3.1 Need for error correction

Error correction is needed to ensure the accuracy and integrity of data and in some cases, to
create fault-tolerance [5]. (where components can fail with no loss of performance or data).

No electronic data transmission or storage system is perfect. Each system makes errors at a
certain rate. As data transfer rates and storage densities increase, the error rate also increases.
If bit error rate is viewed in terms of media, some electronic systems experience more errors
than others. For instance, optical disk has a higher error rate than magnetic disk. Magnetic
tape has a higher error rate than magnetic disk. Fiber optic communications cable and
semiconductor memory have a low error rate.

1.3.2 Error Correction and Fault-tolerance

If encoded data is written to a storage device in such a way that each byte of the encoded data
is recorded on a separate component then it results into creation of fault-tolerance. If one or
more components fail, they can only corrupt the data bytes that are written on them.

As long as number of component failures is less than or equal to the correction capability of
the error correcting code, the failures will not result in any loss of data or performance.

1.4 Motivation

The basic objective of carrying out this research is the study of ANNs and the error
correcting codes. The power of ANNs like self-organization, adaptive learning and the ability
to predict as to what is going to happen next on the analogy of human brain has been used for
decoding of error correcting codes. This ensures integrity, accuracy and fault tolerance in the
transmitted data. Back propagation algorithm for ANNs was simulated using Matlab. It was
confirmed during the course of research that if the training parameters are cautiously selected
and the network is properly trained, the network can identify the actual code words and hence
the desired messages.

3

1.5 Artificial neural networks

An ANN is a network of artificial neurons [3]. These artificial neurons are specialized
computational elements performing simple computational functions. The manners in which
these neurons are interconnected define the topology or architecture of the network. Whereas
a classical digital computer is programmed, an ANN is trained. Adjusting the strengths of
interconnections (weights) among the neurons constitutes training or learning. The concept of
memory in a conventional computer corresponds to the concept of weight settings in ANNs.

The processing and storage functions in ANNs are not centralized and distinct, each neuron
acts as a processor and the set of weights associated with that neuron act as distributed
storage. In a typically ANN one can expect to find hundreds of processors and thousands of
storage elements.

Methods based on neural networks have a distinctly different flavor from those based on
artificial intelligence (AI) techniques [7]. In classical AI, a symbolic representation of the
external world is the starting point and a digital computer is used as a symbol manipulating
engine. The symbol string obtained as a solution is converted back into a physical
representation for human cognition. ANNs, by virtue of their training, exhibit a more
“plastic” behavior. For this reason, ANNs more appropriately belong to a class of methods
that are being dubbed as “soft computing”.

1.5.1 Goals and Specification

The primary objective is to carryout decoding of block codes using neural networks. The
back propagation algorithm for neural networks has been simulated using Matlab. Linear
block code (7, 4) has been decoded making use of the simulator. The actual message blocks
along with the code words have been used initially to train the neural network simulator in
such a way that it has the capability to detect and correct at the most one error per message
block during the processing of training. In order to know the efficiency of the simulator it is
exposed to the code words in which errors have been embedded and its response is viewed
for knowing as to how much responsive neural network is when it has been trained properly.

1.6 Thesis Layout

Chapter 1 gives introduction to thesis. Basic concept of error correction, block codes,
convolutional codes and ANNs have been introduced and the motivation to pursue the
research has been discussed. In chapter 2 linear block codes with special emphasis on the fact
as to how they are encoded and their decoding using standard array and syndrome decoding

4

techniques have been discussed. In chapter 3 encoding of convolutional codes and their
decoding using maximum likelihood decoding by utilizing Viterbi algorithm has been
discussed in considerable details.

In Chapter 4 neural networks have been discussed starting from basic features and
applications of ANNs their analogy to human brain, an engineering approach which includes
a simple neuron and the basic neuron model, its architecture and back propagation algorithm.
In chapter 5 decoding of block codes using neural networks has been discussed in detail. For
this back propagation algorithm has been simulated by using Matlab. The training of neural
network has been carried out by specifying various parameters of the network, selecting list
of code words and actual massages. In order to test the simulator, codes having errors were
given as an input and the response was monitored.

The network has the ability to at least detect and correct one error bit per message block. In
chapter 6 an approach for decoding convolutional codes using neural networks has been
included for further study. Finally, in chapter 7 an overview of the presented work is
discussed, in the shape of results and discussions including achievements and limitations.
Source code used for the decoding of linear block codes, the files used for (7, 4) linear block
codes results achieved have been attached as appendices.

5

 Chapter 2
LINEAR BLOCK CODES

2.1 Introduction

 Error-Control coding techniques detect and possibly correct errors that occur when messages are
transmitted in a digital communication system. To accomplish this, the encoder transmits not
only the information symbols but also extra redundant symbols. The decoder interprets what it
receives, using the redundant symbols to detect and possibly correct errors occurred during
transmission.

Block coding is a special case of error-control coding [5]. Block coding techniques maps a fixed
number of message symbols to a fixed number of code symbols. A block coder treats each block
of data independently and is a memory less device.

In this chapter linear block codes have been discussed. Their encoding and decoding techniques
have been explained to have a good knowledge of the block codes before considering the
decoding of block codes [6] using ANNs.

2.2 Linear Block codes-Encoding

The output of an information source is always a sequence of binary digits “0” or “1”. In block
coding, this binary information sequence is segmented into message blocks of fixed length. Each
message block, denoted by u, consists of k information digits. There are a total of 2𝑘 distinct
messages. The encoder, according to certain rules, transforms each input message u into a binary
n-tuple v with n > k. This binary n-tuple v is referred to as the code word (or code vector) of
message u. Therefore, corresponding to the 2𝑘 possible messages, there are 2𝑘 code words. This
set of 2𝑘 code words is called a block code. For a block code to be useful, the 2𝑘 code words
must be distinct. Therefore, there should be a one-to-one correspondence between a message u
and its code word v [1].

For a block code with 2𝑘 code words and length n, unless it has a certain special structure, the
encoding apparatus would be prohibitively complex for large k and n since it has to store the 2𝑘
code words of length n in a dictionary. A desirable structure for a block code to possess is the
linearity. With this structure in a block code, the encoding complexity is greatly reduced [2].

A block code of length n and 2𝑘 code words is called a linear (n, k) code if and only if its code
words form a k-dimensional subspace of the vector space of all the n-tuples.

6

A binary block code is linear if and only if the mod-2 sum of two code words is also code word
[7]. The (7, 4) linear block code can be express in the form of table as shown in table 2.1. It can
be easily checked that sum of any two code words in this code is also a code word.

Since an (n, k) linear code C is a k-dimensional subspace of the vector. Space Vn of all the
binary n-tuples, it is possible to find k linearly independent code words 𝑔0 , 𝑔1,….., 𝑔𝑘−1 in C
such that every code word v in C is a linear combination of these k code words. Mathematically
it can be expressed by Equation (2.1)

Messages Code Words
0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 1 1 0 1 0 0 0
 0 1 0 0 0 1 1 0 1 0 0
 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1 0 1 0
 0 1 1 0 1 0 0 0 1 1 0
 1 1 1 0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 0 0 0 1
 1 0 0 1 0 1 1 1 0 0 1
 0 1 0 1 1 1 0 0 1 0 1
 1 1 0 1 0 0 0 1 1 0 1
 0 0 1 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1

 TABLE 2.1 LINEAR BLOCK CODE WITH k=4 and n=7

v=uogo+ u1g1 = …+uk-1gk-1 (2.1)

Where ui=0 or 1 for 0 < i < k. These k linearly independent code words can be arranged as the
rows of (k × n) matrix G.

7

G=

⎣
⎢
⎢
⎢
⎡
𝐠𝐨
𝐠𝟏
𝐠𝟐
⋮

 𝐠𝐤−𝟏 ⎦
⎥
⎥
⎥
⎤
 = �

g00
g10

g01
g11

g02
g12

⋮ ⋮ ⋮
gk−1,0 gk−1,1 gk−1,2

…

…
…

g0,n−1
g1,n−1
⋮

gk−1,n−1

� (2.2)

Where gi = (gi0, gi1, ….., gi,n-1) for 0 ≤ i < k-1. if u= (u0, u1, ….., uk-1) is the message to be
encoded. The corresponding code word can be expressed by equation (2.3).

 v=uG

 = (uo , u1, …. , uk−1)�
𝐠𝟎
𝐠𝟏...
𝐠𝐤−𝟏

�

 = uo𝐠𝟎+u1𝐠𝟏 +… . . uk−1𝐠𝐤−𝟏 (2.3)

Clearly, the rows of G generate (or span) the (n, k) linear code C. For this reason, the matrix G is
called a generator matrix for C.

A desirable property for a linear block code to possess is the systematic structure of the code
words as shown in figure 2.1 where a code word is divided into two parts, the message part and
the redundant checking part. The message part consists of k unaltered information (or message)
digits and the redundant checking part consists of (n-k) parity-check digits, which are linear
sums of the information digits. A linear block code with this structure is referred to as a linear
systematic block code. The (7, 4) code given in Table 2.1 is a linear systematic block code; the
rightmost four digits of each code word are identical to the corresponding information digits.

Redundant Checking part Missing Part
| ←--------- n-k Digits ---------→ | ←----------- k Digits ----→ |

 Figure 2.1 Systematic Format of a Code Word

8

A linear systematic (n,k) code is completely specified by a k × n matrix G shown in equation
(2.4)

G=

⎣
⎢
⎢
⎢
⎡

go
g1
g2
⋮

 gk−1 ⎦
⎥
⎥
⎥
⎤
 = �

p00
p10

p01
p11

…
…

⋮ ⋮ ⋮
pk−1,0 pk−1,1 …

p0,n−k−1
p1,n−k−1

⋮
pk−1,n−k−1

1
0

0 0
1 0

… 0
⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 … 1

� (2.4)

Where P Matrix =�

p00
p10

p01
p11

…
…

⋮ ⋮ ⋮
pk−1,0 pk−1,1 …

p0,n−k−1
p1,n−k−1

⋮
pk−1,n−k−1

�

And K×K Identity Matrix=�
1
0

0 0
1 0

… 0
⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 … 1

�

Where Pij =0 or 1. Let Ik denote the k x k identity matrix. Now Matrix G can be written as

 G = (P Ik) If u= (u0, u1, …., uk-1) be the message to be encoded. The corresponding code word
will be

 v =(v0, v1, v2, …… vn-1)

 = (u0, u1, …… uk-1). G (2.5)

From equation (2.2) and (2.3) the components of v are

 vn-k+i = ui for 0 < i < K (2.6)

and

 vi = uopoj + u1p1j +…..+ uk-1pk-1,j (2.7)

For 0≤ j <n – k. Equation (2.6) shows that the rightmost k digits of a code word v are identical to
the information digits u0, u1,……., uk-1 to be encoded and equation (2.7) shows that the leftmost
(n-k) redundant digits are linear sums of the information digits. The (n-k) equations given by
equation (2.7) are called parity-check equations of the code.

9

For any k × n Matrix G with k linearly independent rows, there exists an (n-k) × n matrix H with
n-k linearly independent rows such that any vector in the row space of G is orthogonal to the
rows of H and any vector that is orthogonal to the rows of H is in the row space of G. Hence, (n,
k) linear code generated by G can be defined in an alternate way as, “an n-tuple v is a
code word in the code generated by G if only if v 𝑯𝑻 = 0”. Matrix H is called parity-
check matrix of the code. The 2𝑛−𝑘 linear combinations of the rows of matrix H form an (n,
n-k) linear code Cd. This code is null space of the (n, k) linear code C generated by matrix G (i.e,
for any v ϵ C and any w ϵ Cd, v. w = 0). Cd is called dual code of C. Therefore a parity-check
matrix for a linear code C is a generator matrix for its dual code Cd.

If generator matrix of an (n, k) linear code is in the systematic form of equation (2.2), the parity-
check matrix will be

H= (𝑰𝒏−𝑘 𝑷𝑇)

�
1
0

0 0
1 0

… 0
⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 … 1

𝑝00
𝑝10

𝑝10
𝑝11

…
…

⋮ ⋮ ⋮
 𝑝0,𝑛−𝑘−1 𝑝1,𝑛−𝑘−1 …

 𝑝𝑘−1,0
 𝑝𝑘−1,1

⋮
 𝑝𝑘−1,𝑛−𝑘−1

� (2.8)

Where 𝑷𝑇 is the transpose of the matrix P. If hj is the jth row H. It can be verified that the inner
product of the jth row of given by equation (2.2) and the jth row of H given by equation (2.5) is

 𝑔𝑖,ℎ𝑗= 𝑃𝑖𝑗 + 𝑃𝑖𝑗 = 0 (2.9)

For 0 ≤ i < k and 0 ≤ j < n-k. This implies that G. 𝑯𝑇 = 0. Also, the (n-k) rows of H are linearly
independent. Therefore, the H matrix of equation (2.8) is a parity-check matrix of the (n, k)
linear code generated by the matrix G of equation (2.4)

The parity-check equations given by equation (2.7) can also be obtained from the parity-check
matrix H of equation (2.8). if u = (u0, u1, ….., u0, u0, …, uk-1) are the message to be encoded. In
systematic form the corresponding code word would be

 v = (v0, v1..… vn-k-1, u0, u1, …… uk-1) (2.10)

Using the fact that v. 𝐻𝑇 = 0, we obtain

vj+uopoj+u1p1j+ uk-1pk-1j= 0 (For 0≤ j< n-k) (2.11)

10

Rearranging the equations of equation (2.11), the same parity-check equations of equation (2.7)
are obtained. Therefore, an (n, k) linear code is completely specified by its parity-check matrix.

Based on the equation (2.6), encoding circuit for an (n,k) linear systematic code can be
implemented easily. In the encoding circuit in Figure 2.2. The encoding operation is very simple.
The message u = (u0, u1, ….., uk-1) to be encoded is shifted into the message register and
simultaneously into the channel.

As soon as the entire message has entered the message register, the (n-k) parity-check digits are
formed at the outputs of the (n-k) mod-2 adders. These parity-check digits are then serialized and
shifted into the channel. Figure 2.3 shows the encoding circuit for the (7,4) code given in the
Table 2.1.

 Message Register to Channel

V
0
 V

1
 V

n-k -1
to channel

Parity Register

Figure 2.2 Encoding circuit for a Linear system (n,k) code.

U
0

U
1 U

2
U

k-1

P10 P11

P1, n-k-1

Pk-1, n-k-1 Pk-1,1

P0, n-k-1
P10 Pk-1,0 P00

U
0
 U

1
 U

k-

U

0
 U

1
 U

k-1
 U

0
 U

1
 U

k-1

11

Input U

 Message

 To channel

 Parity Register

 Figure 2.3 Encoding Circuit for (7, 4) Systematic Code

2.3 Standard Arrays

Linear block codes have some properties that simplify the process of encoding [3]. For the BSC,
lower weight, the sum of the transmitted vectors are more probable that higher weight ones, and
maximum likelihood decoding corresponds to minimum distance (or minimum error weight)
decoding. By partitioning all the possible received vectors a look-up table is made for minimum
distance decoding. This look-up table is called the standard array.

If C is an (n, k) linear block code over GF (q) then C is a subspace of V= GF (q), the vector
space of all n-tuples over GF (q). As such it is also a subgroup of <V, +> (under vector addition).
A standard array for the code C is generated by removing from V the code words in C and
writing the code words, starting with 0 as the first row of the table. Selecting from the remaining
elements of V a vector e that has minimum weight and writing in the next row the closet e + C,
in the order dictated by the first row and removing the elements of this closet from V and
repeating the procedure until V becomes empty [3].

V1 V2

 U0 U1 U2 U3

V0

+ + +

12

The received vector r is decoded by looking it up in the table. The code word C appearing at the
top of the column in which r appears is the maximum likelihood code word. The vector e in the
first column of the row in which r appears is the most likely error pattern. The construction of
the array ensures that

e = r– c has minimum weight.

Since there are 2𝑛−𝑘 rows in the standard array, a(n, k) linear block code can correct 2𝑛−𝑘
different error patterns.

2.4 Syndrome decoding

The syndrome vector s of a received r is the vector

 S= rHT (2.12)

For r ϵ C, the syndrome is all-zero vector. Syndromes are used to simplify decoding using the
standard array.

If e is the closet leader of the row e+ C, and if r =C+ e is some other element of e+ C. then

 r𝐇𝐓 = (c+ e) 𝐇T

 =𝐜𝐇T + 𝐞𝐇T

 = 𝐞𝐇T (2.13)

Hence all element of the row have the same syndrome, which depends only upon the closet
leader (or error pattern). Therefore syndromes for single weight error patterns are just the
columns of H.

2.4.1 Syndrome Table

The storage requirements for decoding may be reduced if instead of storing the whole standard
array, a table is made of each closet leader and its associated syndrome. Decoding is carried out
by computing the syndrome of the received vector, looking up the associated error pattern (cost
leader) in the table, and subtracting this from the received vector.

Using the algebraic structure of linear codes, decoding method can be designed which requires
only (n + (n -k)) 2𝑛−𝑘 bits of storage (for binary codes, there are 2𝑛−𝑘 correctable error patterns
of length n, each with a unique n-k bit syndrome) and one vector-matrix multiply, as compared

13

to 𝑛2𝑛 bits of storage (an n bit code word for each of the 2𝑛 possible received vectors) for the
standard array.

For (6, 3) systematic linear code generated by

𝑮 = �
 1 1 0
 0 1 1
 1 0 1

1 0 0
0 1 0
0 0 1

� (2.14)

A standard array for this code is shown in Table 2.2. The code words appear in the first row and
the correctable error patterns as the first entry row.

Table 2.2 Standard Array for the (6, 3) Code

000000 101001 011010 110011 110100 011101 101110 000111
000001 101000 011011 110010 110101 011100 101111 000110
000010 101011 011000 110001 110110 011111 101100 000101
000100 101101 011110 110111 110000 011001 101010 000011
001000 100001 010010 111011 111100 010101 100110 001111
010000 111001 001010 100011 100100 001101 111110 010111
100000 001001 111010 010011 010110 111101 001110 100111
001100 100101 010110 111111 111000 010001 100010 001011

By using the array of table 2.2 all single bit errors in the received code words can be corrected.

2.5 Weight distribution and error Probabilities

For transmission over a memory less BSC with error probability P, the number of errors in a
block of length n are binomially distributed and hence the probability of a decoding error for a t-
error correcting (n, k) block code is bounded by [4].

 P (error)≤∑ �𝑛𝑖 � 𝑃
𝑖(1 − 𝑃)𝑛−𝑖𝑛

𝑖=𝑡+1 (2.15)

If the code is linear, and standard array (maximum likelihood) decoding is used, an error occurs
if and only if the error pattern is not a closet leader. For a BSC, the probability of a particular
error pattern of weight w is given later.

14

If there are αi leaders of weight i then the error probability for standard array decoding is given
by

 P(SA Decoding Failure)= 1- ∑ 𝛼𝑖𝑃𝑖(1 − 𝑃)𝑛−𝑖𝑛
𝑖=0 (2.16)

Standard array decoding is maximum likelihood, and hence any other decoding method is lower
bounded by this value.

For a linear block code, the undetectable error patterns are the set of non-zero code words. If
there are Ai code words of weight i, then the probability of an undetectable error pattern over a
BSC with crossover probability p is given by

 P(Undetected error)= 1- ∑ 𝐴𝑖𝑝𝑖(1 − 𝑃)𝑛−𝑖𝑛

𝑖=𝑙 (2.17)

15

 Chapter 3
CONVOLUTIONAL CODES

3.1 Introduction

Convolutional codes were first introduced by Elias [5] in 1955 as an alternative to block codes.
Shortly thereafter, Wozencraft [6] proposed sequential decoding as an efficient decoding scheme
for convolutional codes. In 1963, Massey [7] proposed a less efficient but simpler-to-implement
decoding method called threshold decoding. In 1967, Viterbi [8] proposed a maximum likelihood
decoding scheme that was relatively easy to implement for codes with small memory orders.

Convolutional coding is a special case of error-control coding. Unlike a block coder, a
convolutional coder is not a memory less device. Even though a convolutional coder accepts a
fixed number message symbols and produces a fixed number code symbols, its computations
depend not only on the current set of input symbols but on some of the previous input symbols.

In this chapter, structure of the convolutional codes has been discussed and as to how a incoming
sequence is coded. The method of encoding the convolutional codes by making use of the state
diagram, tree and trellis diagrams has been explained in detail. At the end Viterbi decoding has
been used in order to decode the given sequence in steps at various time intervals.

3.2 Coding and Decoding With Convolutional Codes

Convolutional codes are commonly specified by three parameters, (n, k, and m).

The quantity k/n called the code rate is a measure of the efficiency of the code. Commonly k and
n parameters range from 1 to 8, m from 2 to 10 and the code rate from 1/8 to 7/8.

Often the manufacturers of convolutional code chips specify the code by parameters (n, k and L),
the quantity L is called the constraint length of the code and is defined by

L = k (m-1)

3.2.1 Code Parameters and Structure of Convolutional Code

The convolutional code structure is easy to draw from its parameter. First m boxes are drawn
which represent the m memory registers. Then n mod II adders are draw to represent the n output

16

bits. Memory registers are connected to the adder using the generator polynomial as shown in the
Figure 3.1

 V1 (1,1,1)

 u1

 (0,1,1) V2

 (1,0,1) V3

Figure 3.1 Convolutional Code (3,1,3)

Where u1 is the input. This is a rate 1/3 code. Each input bit is coded into 3 output bits. The
constraint length of the code is 2. The 3 output bits are produced by the 3 mod-2 code. Each
input bit is coded into 3 output bits. The constraint length of the code is 2. The 3 output bits are
produced by the 3 and mod-2 adders by adding up certain bits in the memory registers. The
selection of which bits are to be added to produce the output bit called the generator polynomial
(G) for that output bit. In this case, the first output bit has a generator polynomial of (1, 1, 1).
The second output bit has a generator polynomial of (0,1,1) and the third output bit has a
polynomial of (1,0,1). The output bits just the sum of these bits.

 V1= mod2 (u1 +u0 +u-1)

 V2= mod2 (u1 +u-1)

 V3= mod2 (u1 +u-1)

+

u1 u0 u-1

+
+

17

The polynomials give the code its unique error protection quality. One (3,1,4) code can have
completely different properties from an another one depending on the polynomials chosen.

3.3 Coding and Incoming Sequence

The output sequence V, can be computed by convolving the input sequence u with the impulse
response g.

 V= u*g (3.1)

Where * is the convolution

Or in a more generic form

 𝑣𝑙

𝑗= ∑ 𝑢𝑙−𝑖 − 𝑔𝑙
𝑗𝑚

𝑖=0 (3.2)

Where 𝑣𝑙
𝑗the output is bit l from the encoder j, and 𝑢𝑙−𝑖 is the input bit, and 𝑔𝑙

𝑗 is the ith term in
the polynomial. The process of encoding a solo 1 bit once it is passed through the (2, 1, 4)
convolutional encoder showing its output bits at various time intervals will be as shown in figure
3.2

18

 1 1

1 1

a) t=0, input state=000 b) t=1, Input state 100

Input bit=1, output bits=11 Input bit=0, output bits=11

 1 1

0 0

a) t=2, input state=010 b) t=3, Input state 001

Input bit=1, output bits=10 Input bit=1, output bits=01

Figure 3.2 Sequence of a solo 1 bit passed through the encoder [7].

0 1 0 0 1 0 0 0

0 0 0 1

0 0 1 0

19

At t=0, the initial state of the encoder is all zeros. Input bit 1 causes two bits 11 to appear at the
output obtained by mod-2 sum of all bits in the registers for the first bit and mod-2 sum of three
bits for second output bit per the polynomial coefficients. At t=1, the input bit 1 moves forward
one register. The input register is now empty and filled with a flush bit of 0. The encoder is now
in state 100. The output bits are now again 11 by the same method.

At t=2 input bit 1 move forward again. Now the encoder state is 010 and another flush bit is
moved into the input register. The output bits are now 10.

At t=3, the input bit moves to the last register and the input state is 001. The output bits are now
11. At t=4, the input bit 1 has passed completely through the encoder and the encoder has been
flushed to an all zero state, ready for the next sequence.

It can be seen that a single bit has produced an 8-bit output although nominally the code rate is
½. This shows that for small sequence the overhead is much higher than the nominal rate, which
only applies to long sequences. If a 0 bit passed through the encoder, an 8 bit all zero sequence
will be obtained. The output produced is called the impulse response of the encoder. The 1 bit
has a response of 11 11 10 11. The 0-bit similarly has an impulse response of 00 00 00 00.

Convolving the input sequence with the code polynomials produced these two output sequences
that are why these codes are called convolutional codes.

3.3.1 The Encoder Design

The encoder for convolutional code uses a table look up to do the encoding. The look up table
consists of input bit, Vstate of the encoder, which is one of the 8 possible stated in the case of (2,
1, 4) code and the output bits. For the code (2, 1, 4), since two bits appear at the output, the
choices are 00, 01, 10, 11 and the output state which will be the input state for the next bit. Table
3.1 is the look up table for the code (2, 1, 4), which uniquely describes the code. The look up
table is different for each code depending on the parameters and the polynomials used.

20

Table 3.1 Look-up Table for the Encoding of (2, 1, 4) Convolutional Code

Input Bits Input State Output Bits Output State
I1 S1 S2 S3 O1 O2 S1 S2 S3
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

 0 0
1 1
1 1
0 0
1 0
0 1
0 1
1 0
1 1
0 0
0 0
1 1
0 1
1 0
1 0
0 1

0 0 0
1 0 0
0 0 0
1 0 0
0 0 1
1 0 1
0 0 1
1 0 1
0 1 0
1 1 0
0 1 0
1 1 0
0 1 1
1 1 1
0 1 1
1 1 1

Graphically, there are three ways in which we can look at the encoder to gain better
understanding of its operation. These are state diagram, tree diagram and trellis diagram.

21

3.3.2 State Diagram

The state diagram for the (2, 1, 4) code is shown in figure 3.3

Figure 3.3 state diagram for the (2, 1, 4) code [8].

Each circle in the diagram represents a state. At any one time, the encoder resides in one of these
states. The lines to and from it show state transitions that are possible as bits arrive. Only two
events can happen at each time, arrival of a 1 bit or arrival of a 0 bit. Each of these two events
allows the encoder to jump into a different state. The stage diagram does not have time as a
dimension and hence it tends to be not intuitive.

The state diagram contains the same information that is in the table look-up but it is a graphic
representation. The solid line indicates the arrival of a 0 and the dashed lines indicate the arrival
of a 1. The output bits for each case shown on the line and the arrow indicates the state
transition. Some encoder states allow outputs of 11 and 00 and some allow 01 and 10. No state
allows all four options.

The encoding of a given sequence 1011 has been depicted in the figure 3.3. At state 000. The
arrival of a 1 bit outputs 11 and the output state now becomes 100. The arrival of the next 0 bit
outputs 11 and the output state now will be 010. The arrival of the next 1 bit outputs 01 and the
output state as 101. The last bit 1 gives output state 110 and outputs 11. So up till now the output
bits are 1111 01 11. But this is not the end. The encoder has to be taken to all zero state.

22

From state 110, by giving input as 0 bit, output state changes to 011 giving 01 as output. From
state 011, input bit 0 yields state 001 outputting 01. Last input bit 0 gives state 00 with a final
output of 11. The final answer is: 11 11 01 11 01 01 11.

3.3.3 Tree Diagram

Figure 3.4 shows the tree diagram for the code (2, 1, 4). The tree diagram attempts to show the
passage of time as we go deeper into the tree branches. It is somewhat better than a state diagram
still not the preferred approach for representing convolutional codes.

Instead of jumping from one state to another, the branches of the tree are followed depending on
whether a 1 or 0 is received.

The first branch in figure 3.4 indicates the arrival of a 0 or a 1 bit. The starting state is assumed
to be 000. If a 0 is received, branch goes up and if a 1 is received, it goes downward. In figure
3.4, the solid lines show the arrival of a 0 bit and the shaded lines the arrival of a 1 bit. The first
two bits show the output bits and the number inside the parenthesis is the output state.

23

Figure 3.4 Tree Diagram of (2, 1, 4) Code

24

For the same sequence 1011 as before. At branch 1, going down gives output 11 and the state
changes to 100. Now with 0 bit, going up, the output bits become 11 and the state is now 011.
With next incoming bit 1 the output changes to 01 and now the output state is 101.

The next incoming bit 1 outputs bits 11. From this point, in response to a 0 bit input, an output of
01 is obtained and an output state of 011. The encoder needs to be flushed by 0 bits so the
sequence actually becomes 1011000, with the last 3 bits being the flush bits. The output of the
complete of sequence becomes 11 11 01 11 01 01 11. The answer remains the same which was
obtained while decoding the sequence using state diagram.

3.3.4 Trellis Diagram

Trellis diagrams are messy but generally preferred over both the tree and the state diagrams
because they represent linear time sequencing of events. Trellis diagram for (2, 1, 4)
convolutional code is shown in figure 3.5

Figure 3.5 Trellis Diagram of (2, 1, 4) code [6]

25

The x-axis is discrete time and all possible states are shown on the y-axis. With the passage of
time the trellis is traversed horizontally. Each transition means new bits have arrived.

The trellis diagram is drawn by lining up all the possible states (2𝐿) in the vertical axis. Each
state is connected to the next state by the allowable code words for that state. There are only two
choices possible at each other state, which are determined by the arrival of either a 0 or a 1 bit.
The arrows show the input bit and the output bits are shown in parentheses. The arrows going
upwards represent a 0 bit and going downwards represent a 1 bit. The trellis diagram is unique to
each code, same as both the state and tree diagrams are with starting point as state 000, the trellis
expands and in L bits becomes fully populated such that all transitions are possible. The
transitions then repeat from this point on.

3.4 Decoding using Viterbi algorithm

Viterbi decoding is the best-known implementation of the maximum likely hood decoding [9].
Here the options are narrowed systematically at each time tick. The principal used to reduce the
choices is that the errors occur infrequently and the probability of error is small. Also the
probability of two errors in a row is much smaller than a single error that is the errors are
distributed randomly.

The Viterbi decoder examines an entire received sequence of a given length. The decoder
computes a metric for each path and makes a decision based on this metric. All paths are
followed until two paths converge on one node. Then the path with the higher metric is kept and
the one with lower metric is discarded. The paths selected are called the survivors.

For an N bit sequence, total numbers of possible received sequences are 2𝑁. Of these only 2𝑘𝐿
are valid paths. Where L is the number of states and K is the sequence. The Viterbi algorithm
applies the maximum likelihood principles to limit the comparison to 2 to the power of kL
surviving paths of instead of checking all paths.

 The most common metric used is the Hamming distance metric[8] shown in Table 3.2 this is just
dot product between the received code word and the allowable code word.

26

If the received sequence is 01 11 01 11 01 01 11, it can be decoded using Viterbi algorithm and
finally the trellis looks like as shown in Figure 3.6

Figure 3.6 Final Trellis Diagram [7]

The paths with the highest metric are the winner paths. The path traced by states 000, 100, 010,
110, 011, 001, 000 corresponding to bits 1011000 is the decoded sequence.

The length of the trellis in this case is 4 bits +m bits. Ideally this should be equal to the length of
the message, but by a truncation process, storage requirements can be reduced and decoding need
not be delayed until the end of the transmitted sequence.

27

 Chapter 4
ARTIFICIAL NEURAL NETWORKS

4.1 Introduction

This chapter has been included to give the reader an insight of as to what are Artificial Neural
Networks ANNs. The feature and applications of Artificial Neural Netwroks ANNs have been
highlighted. Similarities amongst human brain and Artificial Neural Netwroks ANNs have been
investigated. In an engineering approach a simple neuron and McCulloch –Pits model of
artificial neurons has been discussed to have an idea as to how an ANN looks like [9].

4.2 Basic Features of ANNs

An artificial neural network is an abstract simulation of real nervous system. ANNs are
computing systems made up of a number of highly interconnected information processing units
i.e. neurons [10] [11].

 Neural networks are trained and not programmed. Neutrons of ANNs are so highly
interconnected that a state of neuron affects the potential of the large number of other neurons to
which it is connected according to the weights. In ANNs connection weights are adaptive and
processing units have not linear activation functions.

 The network may use imprecise and unreliable elements but because of highly redundant
distributed structure, it is highly robust to noisy input and neuron failure. An ANN can create its
own organization or representation of the information it receives during learning time.

4.3 Learning Process of a Human Brain

Much is still unknown about how the brain trains itself to process information. In the human
brain, a typical neuron collects signals from others through a host of fine structures called
dendrites [8].

The neuron sends out spikes of electricity activity through a long, thin strand known as an axon,
which splits into thousands of branches. At the end of each branch, a structure called a synapse
[10], converts the activity from the axon into electrical effects that inhibit or excite activity in the
connected neurons.

28

When a neuron receives excitatory input that is sufficiently large compared with its inhibitory
input, it sends a spike of electrical activity down its axon. Learning occurs by changing the
effectiveness of the synapses so that the influence of one neuron on another changes.

4.4 Basic Neuron Model

The McCulloch-Pits model [8] of artificial neuron is a formal neuron model and it is a multi-
input non-linear model with interconnection weights Wij which are also called synaptic weights
or strengths. A non linear limiting or threshold function Ψ (uj) is represented as cell body. The
simplest model of an artificial neuron sums the weighted inputs and passes the result through a
nonlinear threshold function as shown in the equation.

yj = Ψ [∑ 𝑤𝑖𝑗 + Θ𝑗𝑛
𝑗=1] (4.1)

Where

 Ψ is a limiting or threshold function called an activation function.

 Θj is the external threshold called an offset or bias.

 wij are synaptic weights or strengths.

 xi are the inputs (i= 1,2,….., n)

 n is the number of inputs.

 yj represents the output.

Sometimes θj is taken as weight wj0 therefore additional input will be equal to +1. So eqn (4.1)
becomes

yj = Ψ[∑ 𝑤𝑖𝑗 𝑥𝑛
𝑖=1 𝑖

] (4.2)

A weighted sum of all inputs xj is compared with threshold value θj if sum is greater θj neuron’s
output is equal to logic 1 otherwise logic will be 0.

29

The simple model is shown in the Figure

 Ɵj

 X1 wj1 + Ψ(uj) x1 wj1

 x2 wj2 + uj yj x2 wj2 yj

 xn wjn + xn

 input Synpses cell body axon(output) Symbol

Figure 4.1 Basic Neuron cell and its symbols

The activation level or the state of neuron is measured by the output signal. For example, yj=1 if
the neuron is active and yj=0 if the neuron is inactive. In the basic neuron model the output signal
is usually determined by a monotonically increasing sigmoid function of a weighted sum of the
input signals. Such a sigmoid function can mathematically be described as [8]

 yj= tanh (Υ u) = 1−𝒆
−𝟐Υ 𝒖𝒋

1+𝒆−𝟐Υ 𝒖𝒋
 (4.3)

For a symmetrical bipolar representation or [9]

 y j = 1

 1+𝑒−2Υ 𝑢𝑗
 (4.4)

Where γ is a positive constant variable which controls the “steepness”

Slope of the sigmoid function. The basic artificial neuron is characterized by its nonlinearity and
the threshold. McCulloch pits model of the neuron uses only the binary (hard limiting) function.

 Σ Ψ

30

4.5 Backprpogation algorithm for multilayer Perceptrons

The approach of the adaptive learning (updating) of synaptic weights can be extended to
multiplayer perceptron. For simplicity a multilayer perceptron of three layers is considered. First
hidden layer consists n0 inputs and n1 units, the second layer with n2 units and the output layer
with n3 units.

The behavior of the network is determined on the basis of inputs and outputs pairs. The input
output pairs are expressed as stable states of neurons which are usually represented by +1 (ON)
and -1 (OFF). The learning of multiplayer perceptrons for a specific task is equivalent to finding
the values of all synaptic weights such that the desired output is generated for a given input.

Therefore learning of a multiplayer perceptrons consists in adjusting all weights such that error
measure between the desired output signal djp and the actual output signal yjp averaged overall
learning examples p will be minimum (possibly zero). The standard back propagation uses the
steepest decent gradient approach [9] to minimize the mean square error function. Such a local
error function for any pth learning example can be written as

 Ep= 1
2
∑ (𝑑𝑗𝑝 − 𝑦𝑗𝑝)2𝑛
𝑗=1 = 1

2
 ∑ 𝑒𝑗𝑝2𝑛

𝑗=1 (4.5)

Now the global error function may be written as

 Ep= ∑ 𝐸𝑝 = 1
2𝑝 ∑ ∑ (𝑑𝑗𝑝 − 𝑦𝑗𝑝)2𝑗

𝑛
𝑝 (4.6)

Where djp and yjp are desired and the actual output signals of the jth output neuron for the pth
pattern.

Architecture of the standard back propagation algorithm of a three layer perceptron is shown in
the figure 4.4 [9].

There are two basic approaches to find the minimum of global error function E. The first
technique [9] is the online or as per example learning in which the training patterns are presented
sequentially usually in random order. The second technique [10] is batch learning in which the
total error function E is minimized in such a way that the weight changes are accumulated using
over all learning examples before the weights are actually changed.

31

∑ ∑ ∑ X1

∑ ∑ ∑ X2

Xn ∑
∑

∆Wij
 [2]=ηδj

[2]oi
[1]

∆Wij
 [1]=ηδj

[1]xi

∑

∑

∑

 ∑

∑

∑

∑

∑

W[2]=[w[2]
ij]

∑

W[1]=[w[1]
ij]

W[2]=[w[2]
ij]

 y1

 y2

 yn

∆Wij
[3]=ηδj

[3]oi
[2]

 d2

 dn ∑

d1

 U1
[1] O1

[1] U1
[2] U1

[3]

 U2
[1] U2

[2] U2
[3]

 Un1
[1] Un2

[2] Un3
[3]

 δ 2[1]δ2[2]δn2[3] δ 2[1]δ2[2]δn2[3]

 δ1[1]δ2[2]δn1[3]

Figure 4.2 Network Architecture for the standard Back propagation Algorithm

of a three layer perceptron

32

In the online learning approach the gradient search in the synaptic weight space is carried out on
the basis of a local error function Ep. First determine an updating formula for the synaptic
weights Wsji (s=3) of the output layer. Using the chain rule

∆𝗐𝑗𝑖
[3] = −𝜂 𝜕𝐸𝑝

𝜕𝗐𝑗𝑖
[3] = −𝜂 𝜕𝐸𝑝

𝜕u𝑗𝑖
[3]

𝜕u𝑗𝑖
[3]

𝜕w𝑗𝑖
[3] (4.7)

Here

 𝑢𝑗
[3] = ∑ 𝑤𝑗𝑖

[3]𝑥𝑖3𝑛3
𝑖=1 = ∑ 𝑒𝑗𝑖

[3]𝑜𝑖2𝑛3
𝑖=1 (4.8)

And the local error called delta is defined as

δ𝑗
[3]= 𝜕𝐸𝑝

𝜕𝗐𝑗
[3]= 𝜕𝐸𝑝

𝜕𝑒𝑗𝑝

𝜕𝑒𝑗𝑝
𝜕𝑢𝑗

[3] = - 𝑒𝑗𝑝
𝜕Ψ𝑗

[3]

𝜕𝑢𝑗
[3] (4.9)

A general formula for updating the weights in the output layer will be

∆𝗐𝑗𝑖
[3] = −𝜂δ𝑗

[3]X𝑖
[3]= −𝜂δ𝑗

[3]o𝑖
[2] (4.10)

Where

δ𝑗
[3] = 𝑒𝑗𝑝(Ψ𝑗

[3]𝑖)(𝑑𝑗𝑖 − 𝑦𝑗𝑝)
𝜕Ψ𝑗

[3]

𝜕𝑢𝑗
[3] (4.11)

Updating the synaptic weights in the hidden layers is a little more complicated.

For the second hidden layer it can be shown as

∆𝗐𝑗𝑖
[2]= −𝜂 𝜕𝐸𝑝

𝜕𝗐𝑗𝑖
[2] = −𝜂 𝜕𝐸𝑝

𝜕u𝑗
[2]

𝜕u𝑗
[2]

𝜕𝗐𝑗𝑖
[2] = 𝜂δ𝑗

[2]x𝑖
[2] (4.12)

33

Where the local error for the second hidden layer is defined as

δ𝑗𝑖
[2]= - 𝜕𝐸𝑝

𝜕𝗐𝑗
[2] (j= 1, 2, 3 …n2) (4.13)

However this local error cannot be directly evaluated as is done for the local errors in the output
layer. Using the chain rule we can write

δ𝑗𝑖
[2]= - 𝜕𝐸𝑝

𝜕u𝑗
[2] = - 𝜕𝐸𝑝

𝜕o𝑗
[2]

𝜕o𝑗
[2]

𝜕u𝑗
[2] (4.14)

δj can be expressed as

δ𝑗
[2] = Ψ𝑗

[2]u𝑗
[2] (4.15)

Therefore

δ𝑗
[2] = - 𝜕𝐸𝑝

𝜕o𝑗
[2] = −𝜕Ψ[2]

𝜕u𝑗
[2] (4.16)

The factor can be evaluated

𝜕𝐸𝑝
𝜕o𝑗

[2]= - ∑ 𝜕𝐸𝑝
𝜕u𝑖

[3]
𝑛3
𝑖=1

𝜕u𝑖
[3]𝑗

𝜕o𝑗
[2] = ∑ 𝜕𝐸𝑝

𝜕u𝑖
[3]

𝑛3
𝑖=1

𝜕

𝜕o𝑗
[2] [∑ 𝑤𝑖𝑘

[3]𝑥𝑘
[3]]𝑛3

𝑖=1

= ∑ δ𝑗
[3]𝑛3

𝑖=1 δ𝑗
[3] 𝜕

𝜕o𝑗
[2]∑ 𝑤𝑖𝑘

[3]𝑥𝑘
[3]𝑛3

𝑖=1 (4.17)

The local error in the second layer can be evaluated as

 δ𝑖
[2]= 𝜕Ψ[2]

𝜕u𝑗
[2] [∑ δ𝑗

[3]𝑛3
𝑖=1 𝑤𝑖𝑗

[3]] (4.18)

34

Analogously

 ∆𝗐𝑗𝑖
[1] = 𝜂δ𝑗

[1]𝑥𝑖
[1]= 𝜂δ𝑗

[1]𝑜𝑖
[0] (4.19)

Generally the local error of the hidden layers is determined on the basis of the local errors at an
upper layer. Starting with the highest output layers δj is computed, the errors δj can be
propagated backward to the lower layers. Figure 4.8 shows the functional schemes of the back
propagation algorithm. The major difference of the learning rules for the output layer is the
evaluation of the local errors δj (s = 1,2, 3). In the output layer the error is the function of the
desired and the actual output and the derivative of the sigmoid activation function. For the
hidden layers the local errors are evaluated on the basis of the local errors in the upper layers.

The basic back propagation algorithm can be performed by initialize all synaptic weights Wij to
small random values. Inputs in forms of learning examples are presented and the actual outputs
are calculated for all neurons using the present value Wij and the patterns. The desired output are
specified and local errors δj for all layers are calculated. The synaptic weights are adjusted
according to the synaptic formula.

 ∆𝗐𝑗𝑖
[1] = 𝜂δ𝑗

[𝑥]𝑥𝑖
[𝑥] (4.20)

 Another input pattern is presented corresponding to the next learning example and the complete process
is repeated. All the learning examples are presented cyclically until the weights are stabilized i.e until the
error of the entire set is acceptably low and the network converges. After training the multilayer
perceptron usually has the feature of generalization i.e it has the ability for proper response to input
patterns not presented during the learning process. Such a generalization is a important feature of
multilayer perceptron.

35

 Chapter 5
DECODING BLOCK CODES USING NEURAL NETWORKS

5.1 Introduction

In this chapter neural networks has been utilized to decode the block codes [10]. Back
propagation algorithm is used in order to train the neural network having one hidden layer to
decode various block codes. The complete procedure for implementation and the training, testing
and operation of the neural network simulator used has been discussed in detail.

5.2 Back propagation Network

Back propagation network is a very popular model in neural networks. It does not have a
feedback connection, but errors are back-propagated during training. Least mean square error is
used to correct synaptic weights. Errors in the output determine measures of hidden layer output
errors, which are used as a basis for adjustment of connection weights between the input and
hidden layers. Adjusting the two sets of weights between the pairs of layers and recalculating
the outputs is an iterative process that continues until the errors fall below a tolerance level.
Learning rate parameters scale the adjustments to weights. A momentum parameter is used for
scaling the adjustments from a previous iteration and adding to the adjustments in the current
iteration.

5.2.1 Mapping

The back propagation network maps input vectors. Pairs of input and output vectors are chosen
to train the network. Once training is complete, the weights are set and the network can be used
to find outputs or new inputs. The number of neurons in the input layer determines the dimension
of the inputs, and the number of neurons in the output layer determines the dimension of outputs.
If there are k neurons in the input layer and m neurons in the output layer, then this network can
make a mapping of the k-dimensional space to an m-dimensional space. Of course, what that
mapping depends on what pair of patterns or vectors are used as exemplars to train the network.
Once the network is trained, the network gives the image of a new input vector under this
mapping. Knowing what mapping is required, the back propagation network to be trained, tells
the dimensions of the input space and the output space, in this way the number of neurons in the
input and output layers can be determined.

36

5.2.2 Layout

The architecture of a back propagation network used for decoding block codes is shown in
Figure 5.1 While there can be many hidden layers, back propagation network with only one
hidden layer has been used for explanation. Also, the number of neurons in the input layer and
that in the output layer are determined by the dimensions of the input and output patterns,
respectively. As for the hidden layer, it is not easy to determine how many neurons are needed.
In order to avoid cluttering the figure, the layout in Figure 5.1 has five input neurons, three
neurons in the hidden layer, and four output neurons with a few representative connections.
Therefore there are three fields, one for input neurons, and one for hidden processing elements,
and one for the output neurons. There are feed forward connections from every neuron in fields
A to every neuron in field B, and in turn, from every neuron in field B to every neuron in field C.
Thus there are two sets of weights; those figuring in the activations of hidden layer neurons and
those that help determine the output neuron activations. In training, all of these weights are
adjusted by considering cost function in terms of the error in the computed output pattern and the
desired output pattern.

 V12 V13 V14
 V11 W52 V34
 V53
 W1 W21 W31 W41 W51

Field A(Input Layer) Field B (Hidden Layer) Field C (Output Layer)

Figure 5.1 Layout of a Back propagation Algorithm

5.2.3 Training

The back propagation network undergoes supervised training, with a finite number of pattern
pairs consisting of an input pattern and a desired or target output pattern. An input pattern is
presented at the input layer. The neurons here pass the pattern digits to the next layer neurons,
which are in a hidden layer. The outputs of the hidden layer neurons are obtained by using a bias,
and also a threshold function with the activations determined by the weights and the inputs.
These hidden layer outputs become inputs to the output neurons, which also process using
possibly a bias and a threshold function with their activations to determine the final output from
the network. The computed pattern and the input pattern are compared, a function of this error
for each component of the pattern is determined, and adjustment to weights of connections
between the hidden layer and the output layer is computed. A similar computation, still based on
the error in the output, is made for the connection weights between the input and hidden layers.
The process is then repeated as many times as needed until the error within a prescribed

37

tolerance is achieved. This procedure is repeated with each pattern pair assigned for training the
network.

5.3 Adjustment of Weights of connections from a neuron in hidden layer

The activation of a neuron in a layer other than the input layer is the sum of products of its inputs
and the weights corresponding to the connections that bring in those inputs. Considering the jth
neuron in the hidden layer and taking j= 2. If the input pattern is (1.1, 2.4, 3.2, 5.1, 3.9) and the
target output pattern is (0.52, 0.75, 0.97). If the weights given for the second hidden layer neuron
are given by the vector (-0.33, 0.07, -0.45, 0.13, 0.37). The activation will be (- 0.33. 1.1) +
(0.07. 2.4) + (- 0.45 . 3.2) + (0. 13. 5.1) + (0.37 . 3.9) =0.471. Now adding to this an optional
bias, or threshold value e.g. 0.679 to give 1.15 and using the sigmoid function given by 1 I (1 +
exp (- x)), with x = 1.15, the output of this hidden layer neuron will be 0.7595. If the computed
output pattern also turns out to be (0.61, 0.41, 0.57, 0.53), while the desired pattern is (0.52, 0.25,
0.75, 0.97). Obviously, there is a discrepancy between what is desired and what is computed.
The component wise differences are given in the vector (- 0.09, - 0.16, 0.18, 0.44). This vector is
used to form another vector where each component is a product of the error component,
corresponding computed pattern component and the complement of the later with respect to 1.
For the first component, error is - 0.09, computed pattern component is 0.61, and its complement
is 0.39. Multiplying these together, we get - 0.02. Calculating the other components similarly, the
vector comes out to be (- 0.02, - 0.04, 0.04, 0.11). Now the weights on the connections are
needed between the second neuron in the hidden layer and the different output neurons. If these
weights are given by the vector (0.85, 0.62, - 0.10, 0.21). The error of the second neuron in the
hidden layer can be calculated using its output. Error = 0. 7595 . (1 - 0.7595) . (0.85 . -0.02) +
(0.62 . - 0.04) + (-0.045) (-0.10 . 0.4) + (0.21 . 0.11)) = -0.0041. Next, learning rate parameter
for this layer is needed. It is now set as 0.2. Multiplying this output of the second neuron with
learning rate parameter of 0.2 in the hidden layer, to get 0.1519. Each of the components of the
vector (- 0.02, - 0.04, 0.04, 0.11) is multiplied now by 0.1519, which is the latest computation
attained. The result is a vector that gives the adjustments to the weights on the connections that
go from the second neuron in the hidden layer to the output neurons. These values are given in
the vector (- 0.003, - 0.006, 0.006, 0.017). After these adjustments are added, the weights to be
used in the next cycle on the connections between the second neuron in the hidden layer and the
output neurons become those in the vector (0.847, 0.614, ;... 0.094, 0.227).

5.4 Adjustment of weights of connections from a neuron in the input layer

To calculate the adjustments for the weights on connections going from the ith neuron in the
input layer to neurons in the hidden layer and assuming I = 3.
To determine the adjustments for the weights on connections between the input and hidden layer,
the errors determined for the outputs of hidden layer neurons, a learning rate parameter, and the
activations of the input neurons, which are just the inputs, are needed. If the learning rate
parameter is 0.15. Then the weight adjustments for the connections from the third input neuron
to the hidden layer neurons are obtained by multiplying the particular hidden layer neuron's
output error by the learning rate parameter and by the input component from the input neuron.
The adjustment for the weight on the connection from the third input neuron to the second
hidden layer neuron is

38

 0.15 • (- 0.0041) = - 0.002.

If the weight on this connection is, - 0.045, then adding the adjustment of - 0.002, the modified
weight of - 0.452 is achieved, to be used in the next iteration of the network operation. Similar
calculations are made to modify all other weights as well.

5.5 Adjustments of threshold values or biases

The bias or the threshold value which were added to the activation, before applying the threshold
function to get the output of neuron, will also be adjusted based on the error being propagated
back. The adjustment for the threshold value of a neuron in the output layer is obtained by
multiplying the calculated error (not just the difference) in the output at the output neuron and
the learning rate parameter used in the adjustment calculation for weights at this layer. In the
example, we had the learning rate parameter as 0.2, and the error vector as (- 0.02, - 0.04, 0.04,
0.11), so the adjustments to the threshold values of the four output neurons are given by the
vector (- 0.004, - 0.008, 0.008, 0.022). These adjustments are added to the current levels of
threshold values at the output neurons. The adjustment to the threshold value of a neuron in the
hidden layer is obtained similarly by multiplying the learning rate with the computed error in the
output of the hidden layer neuron. Therefore for the second neuron in the hidden layer, the
adjustment to its threshold value is calculated as 0.15 (- 0.0041), which is - 0.0006. Adding to
this to the current threshold value of 0.679 to get 0.6784, which is to be used for this neuron in
the next cycle of operation of the neural network.

5.6 Notations and equations

In order to explain the mathematical equations which have been used during the course of
implementation of back propagation algorithm, various notation used are required to be
explained so that the equations used to specify the output of various neurons in different layers
and adjustment of weights of neurons is completely understood.

5.6.1 Notation

Two matrices have been specified, in order to understand the equations used, whose elements are
the weights on connections. One matrix refers to the interface between the input and hidden
layer, and the second refers to that between the hidden layer and the output layer. Since
connections exist from each neuron in one layer to every neuron in the next layer, there is a
vector of weights on the connections going out from any one neuron. Putting this vector into a
row of the matrix, there will as many rows as there are neurons from which connections are
established.
If M1and M2 be these matrices of weights, then M1 [i] [j] represents the weight on the
connection between the ith input neuron to the jth neuron in the hidden layer. Similarly, M2 [i]
[J] denotes the weight on the connection between the ith neuron in the hidden layer and the jth
output neuron.

39

Notations x, y and z are used for the outputs of neurons in the input layer, hidden layer, and
output layer, respectively, with a subscript attached to denote which neuron in a given layer is
being referred. If P denote the desired output pattern, with p; as the components and m be the
number of input neurons, so that according to our notation (X1, X2….., Xm) will denote the input
pattern. Let’s say if P has r components, the output layer needs r neurons. λ is the learning rate
parameter for the hidden layer, and μ is for the output layer, also θ with the appropriate subscript
represents the threshold value or bias for a hidden layer neuron, and τ with an appropriate
subscript refers to the threshold value of an output neuron. The errors in output at the output
layer are denoted by ej's and those at the hidden layer by ti's. The /', prefix to any parameter means
change in or adjustment to that parameter. Also the threshold function used is the sigmoid
function, f(X) = 1/ (1 + exp (-x)).

5.6.2 Equations

Output of jth hidden layer neuron:

 Yj = f (∑ x𝑖 𝑖 M1 [i] [j] + 𝜃j) (5.1)

 Output of jth output layer neuron:

 Zj = f (∑ y𝑖 𝑖 M2 [i] [j] + 𝜏j) (5.2)

 ith component of vector of output differences: desired value-computed value = Pi- Zi,
 ith component of output error at the output layer:

 ei = zj(1- zj)(pi -zj) (5.3)

 ith component of output error at the hidden layer:

 ti= Yi(1- Yi) (∑ M2[i][j] e𝑖 𝑗) (5.4)

 Adjustment for weight between ith neuron in hidden layer and jth output neuron:

 ∆M2[i][j] 𝜇Yi e𝑗 (5.5)

 Adjustment for weight between ith input neuron and jth neuron in hidden layer:

 M1[i][j] = 𝜆ti 𝑋𝑖 (5.6)

 Adjustment to the threshold value or bias for the jth output neuron:

40

 ∆𝑡𝑖 =𝜇 e𝑗 (5.7)

Adjustment to the threshold value or bias for the jth hidden layer neuron:

∆θ𝑗 = 𝜆 e𝑗 (5.8)

Use of momentum parameter ϒ instead of Eqn (5. 7) and (5.8) results into

∆M2[i][j](t) = 𝜇Yi e𝑗 + 𝜆∆M2[i][j](t − 1) (5.9)

and

∆M1[i][j](t) = 𝜇Xi e𝑗 + 𝜆∆M1[i][j](t − 1) (5.10)

5.7 Objectives Specified for a back propagation simulator

The simulator that is used allows the user to specify the number and size of all layers. More than
one hidden layers can be used depending upon the requirement. The state of the network can be
saved and restored for subsequent use and it has the ability to run from an arbitrarily large
training data set or test data set. The user is asked to provide key network and simulation
parameters. The key information is displayed at the end of the simulation.

5.8 How to use a simulator

There are two modes of operation in the simulator. The user should know which mode of
operation is desired. These modes are Training mode and Non -training mode (Test mode).

5.8. 1 Training Mode

In this mode training file prepared to train the simulator is given to the current directory of the
simulator called training.dat. This file contains input and corresponding output patterns on which
the simulator is given necessary training. Each input value is separated by one or more spaces.
As a convention, a few extra spaces are used to separate the inputs from the outputs. An example
of a training.dat file that contains two patterns can be expressed as:-

41

0.4 0.5 0.89
0.23 0.8 -0.3

-0.4 -0.8
 0.6 0.34

The first pattern has inputs 0.4, 0.5, and 0.89 with an expected output of -0.4 and - 0.8. The
second pattern has inputs of 0.23, .08 and - 0.03 and outputs of 0.06 and 0.34. Since there are
three inputs and two outputs, the input layer size for the network must be three neurons and the
output layer size must be two neurons. Another file that is used in training is the weights file.
Once the simulator reaches the error tolerance that was specified by the user or the maximum
number of iterations, the simulator saves the state of the network, by saving all of its weights in a
file called weights.dat. This file can then be used subsequently in another run of the simulator in
non-training mode. The total and average error is presented at the end of the simulation to have
an idea of the trained network. In addition, the output generated by the network for the last
pattern vector is stored in an output file called output.dat.

5.8.2 Non-training Mode (Test Mode)

In this mode, test data is given to the simulator in a file called test.dat. This file contains only
input patterns. When this file is applied to an already trained network, an output.dat file is
generated, which contains the outputs from the network for all of the input patterns. The network
goes through one cycle of operation in this mode, covering all the patterns in the test.dat file. To
start up the network, the weights file, weights.dat is read to initialize the state of the network and
the network size parameters are to be specified which were used during training of the network.

5.8.3 Operation

The simulator is trained for a chosen architecture. Keeping in mind the fact that input and output
layer sizes are dictated by the input patterns presented to the network and the outputs expected
form the network. Once architecture has been decided, the training data is prepared and saved in
the training.dat file.

For training the network mode 1 is selected and the values for the error tolerance and the
learning rate parameter, lambda or beta are specified. The maximum number of cycles, or passes
through the training data required to train the network are also given. The number of layers
(between three and five, three implies one hidden layer whereas five implies three hidden layers)
and the size for each layer, from the input to the output is also specified.

The simulator then begins training and reports the current cycle number and the average error for
each cycle. Error must decrease with time. If it is not then the simulator is restarted with a brand
new set of random weights to get better solution. Once the simulation is over the information
about the number of cycles, patterns used and the average error that resulted can be viewed. The
weights are saved in the weights.dat file. The same can be renamed to subsequently use this
particular state of the network later. The size and number of layers can be obtained from the

42

information contained in this file. To get a full blown accounting of each pattern and the match
to that pattern, by copying the training file to the test file and deleting the output information
from it and running the simulator in the test mode to get a full list of all the input stimuli and
responses in the output.dat file.

5.9 Summary of the files used in back propagation simulation

In order to carry out the training of the simulator and then using the same values of the network
while giving the test data and monitoring the output various file are used to store the training and
test data and also the weight of the trained network.

5.9.1 Weights.dat

This file is used to store the weights for the network. It shows the layer number followed by the
weights that feed into the layer. The first layer, or input layer, layer zero does not have any
weights associated with it. An example of the weights.dat file is shown for a network with three
layers of sizes 3, 5 and 2. The row width for layer n matches the column length for layer n+ 1:

1 -0.199660 -0.859660 -0.339660 -0.259660 0.520340
1 0.293860 -0.487140 0.212860 -0.967140 -0.427140
1 0.542106 -0.177894 0.322106 -0.977894 0.562106
2 -0.175350 -0.835350
2 -0.330167 -0.250167
2 0.503317 0.283317
2 -0.477158 0.222842
2.-0.928322 -0.388322

In this file the row width for layer 1 is 5, corresponding to the output of that (middle) layer. The
input for the layer is the column length, which is 3, just as specified. For layer 2, the output size
is the row width, which is 2, and the input size is the column length, 5, which is the same as the
output for the middle layer.

5.9.2 Training.dat

This file contains the input patterns for training. Large training file can be made without
degrading the performance of the simulator. The simulator caches data in memory for
processing. This is to improve the speed of the simulation since disk accesses are expensive in
time. A data buffer, which has a maximum size specified, define statement in the program, is
filled with data from the training.dat file whenever data is needed.

43

5.9.3 Test.dat

The test.dat file is just like the training.dat file but without expected outputs. This file is given to
a trained neural network in test mode to see what responses it gives for untrained data.

5.9.4 Output.dat

The output.dat file contains the results of the simulation. In Test mode, the input and output
vectors are shown for all pattern vectors. In the training mode, the expected output is also shown,
but only the last vector in the training set is presented, since the training set is usually quite large.
Output file in training mode is shown as

 For input vector:

0.400000 -0.400000

Output vector is:

0.880095

Expected output vector is:

0.900000

44

 Chapter 6
DECODING CONVOLUTIONAL CODES USING NEURAL NETWORKS

6.1 Introduction

In 1967, Viterbi proposed a maximum likelihood decoding scheme that was relatively easy to
implement convolutional codes with small memory orders. Since Viterbi algorithm has been
implemented in sequential and parallel processing environments to speed up the decoding
process [11].

In this Chapter an approach of decoding the convolutional codes using neural networks has been
discussed. The neural network architecture selected consists of one hidden layer. Viterbi
algorithm has been recommended for generating the training patterns for the neural network
decoder. A detailed mathematical treatment of how to update the synaptic weights is carried out
for the neural network has been explained by first calculating the error vector. Flow chart for the
neural network training programmed has also been shown to be considered for implementation.

6.2 Convolutional Codes

A convolutional encoder is designated by (n, k, J), where n is the number of encoder outputs, k is
the number of inputs, and J is known as the constraint length [10], [11].

In this chapter during the course of discussion the convolutional encoder (2, 1, 3) shown in
Figure 6.1 will be used. Figure 6.2 shows its trellis diagram. In general, the trellis structure is
repeated after trellis depth J is reached.

 Switch

 Output

 input bit

 Branch

 Word

Figure 6.1 Convolutional Encoder (2,1,3)

U1

U2

45

6.3 Design Approach

Since one of the goals to be achieved is to improve the speed of the decoding process of
convolutional code, it is necessary to find a neural network with an optimum structure to
accomplish this task [8] [9].

 t1 t2 t3 t4 t5 t6

 Input Bit 0

 Input Bit 1

 Figure 6.2 Trellis Diagram of the (2, 1, 3) Encoder shown in Figure 6.1

6.3.1 Neural Network Architecture Selection

A simple perception with one hidden layer is chosen as the basic structure to keep the network as
simple as possible and the dynamic node creation method is used in training the network to
assure that the optimum network with the minimum number of neurons in the hidden layer is
created.

Because the decoding of convolutional code is dependent on historical data, the input to the
neural network decoder must contain previously received code words. The output of the neural
network should be the decoded result of the given input it should also be able to keep track of
previously received code words. In order to achieve this, the neural network maps the most
recently received code words, excluding the least recently received code word (the obsolete one),
to the output of the network and feeds this information back to the input of the network for
decoding the next code word as shown in Figure 6.3.

S0=00

S1=10

S2=01

S3=11

46

 Input Code Word Previous Code Words

 Decoded Current Code Words
 Results

Figure 6.3 Neural Network convolutional decoder.

6.3.2 Updating the Synaptic Weights for Convolutional Decoder

If di is the desired output and yi is the actual output of the decoder, then

E= ∑ |𝑒𝑘|2𝑛

𝑘=1 (6.1)

Where n = number of code words in the training file
In neural network convolutional decoder of Figure 6.3 there is an offset of 6 bits.
Present code word +2 x (Past code words) = 6 bits offset

 E= ∑ |𝑒𝑘|2 n

k=1

 E= ∑ (𝑑𝑘 − (tanh(yk))2n
k=1 6.2)

 ∂E

∂wl
= ∑ 𝜕

𝜕𝑤𝑙
(𝑑𝑘 −n

k=1 tahnhy(∑ 𝑤𝑖𝑥𝑖
nw
i=1))2

Where k= ∑ 𝑤𝑖𝑥𝑖

nw
i=1

∂E
∂wl

= ∑ 2(𝑑𝑘 − tahnhy(∑ 𝑤𝑖𝑥𝑖
nw
i=1)) (− ∂

∂wl
tahnhy(∑ 𝑤𝑖𝑥𝑖

nw
i=1))n

k=1

47

∂E
∂wl

= −2∑ (𝑑𝑘 − tanhy(∑ 𝑤𝑖𝑥𝑖
nw
i=1)) (∂

∂wl
tanhy(∑ 𝑤𝑖𝑥𝑖

nw
i=1))n

k=1 (6.3)

∂E
∂wl

 = −2∑ (𝑑𝑘 − tanhΥ�∑ 𝑤𝑖𝑥𝑖
nw
i=1 �)Υ(1 − tanhΥ(∑ 𝑤𝑖𝑥𝑖

nw
i=1))2))(�∑ ∂wi

∂wl
𝑥𝑖�)n

k=1

 ∂E
 ∂wl

 = −2∑ (𝑑𝑘 − tanhΥ�∑ 𝑤𝑖𝑥𝑖
nw
i=1 �)Υ(1 − tanh2n

k=1 Υ(∑ 𝑤𝑖𝑥𝑖
nw
i=1)) (6.4)

 Where �∑ ∂wi

∂wl
xi�=∑ 𝛿𝑖𝑙𝑥𝑖i =𝑥𝑙 (6.5)

∂E
∂wl

 =−2∑ (𝑑𝑘 − tanhΥ�∑ 𝑤𝑖𝑥𝑖
nw
i=1 �)Υ(1− tahnΥ(∑ 𝑤𝑖𝑥𝑖

nw
i=1))2))((𝑥𝑙))n

k=1 (6.6)

 (wl)new = (wl)old − η ∂E

∂wl
 (6.7)

6.3.3 Training Pattern Generation

It is essential to train the network with a set of patterns which result in the correct decoding of
any sequence of code words. The simplest approach to this task is to utilize the conventional
encoding and decoding procedures in the pattern generating process. For a decoder which
decodes Q-1 previously received code words along with the current code word there are 2 Q
possible combinations of data sequences to decode. Training patterns can be generated by
passing all possible combinations of data sequences through the encoder to generate the code
word sequences which should be received by the decoder.

However, these 2Q patterns do not include those code sequences which contain transmission
errors. Therefore, it is necessary to append the patterns of those sequences which contain
transmission errors to assure error-correcting capabilities of the neural network decoder. The
target patterns can be generated by decoding the erroneous code word sequences with
conventional decoding, methods such as the Viterbi algorithm.

The training pattern generation program utilizes the encoding object and the Viterbi decoding
object. The encoding object is used to generate those at terms which do not contain transmission
error and the Viterbi decoding object is used to generate those which do contain transmission
errors. The network training program, with flow chart shown in Figure 6.4, does the
construction, training, and storage of the weight matrices file of a network based on the training
pattern file. The network is trained by adjusting weight matrices after each pass of the training
pattern file. Convergence is achieved when the maximum error at the output neurons becomes
less than the specified amount given in the training pattern file. The network decoder program
simulates the network described by the weight matrices file which decodes on a given input code

48

word data file. The outputs of the network decoder program can then be used to compare the
performance of a neural network decoder with that of a conventional decoder.

6.3.4 Design Requirements for Convolutional Decoder

For the convolutional decoder there is a requirement of writing three programs for simulation of
the network if Matlab is used.

A training pattern generates program by utilizing the encoding object and Viterbi decoding
object. A network training program for which the flow chart is shown in Figure 6.4. The network
is trained by adjusting weight matrices after each pass of the training pattern file.

Convergence is achieved when the maximum error at the output neurons becomes less than the
specified amount given in the training pattern file. The network decoder program to simulate the
network described by the weight matrices file which decodes a given input code word data file.

49

FLOW CHART

50

 Chapter 7
RESULTS AND DISCUSSION

7.1 Introduction

The original data in the form of blocks can although be reconstructed by various techniques as
discussed in considerable detail in chapter 2 and chapter 3, but instead of using conventional
techniques neural network has been used to do the same job. In this technique a three layer
neural network was used. Back propagation algorithm was utilized for its training and least mean
squared error to adjust the weights between input layer and hidden layer and hidden layer and
output layer. The network does not have feedback connections, but errors are back propagated
during training. The network thus used was trained before the actual data (output of the
simulated channel) was provided as input. The whole procedure comprising source code and the
deliberations on the results thus achieved can be viewed in the sequence as presented in the
succeeding paragraphs.

7.2 Simulated Codeword and Its Input-Output Relationship

Linear block code (7,4) was used to train the ANN simulator by copying the code into
training.dat file. The Matlab source code was used to train the network keeping in view the
procedure explained in chapter 5.

7.3 Simulated ANN and Its Input-Output Relationship

The utilized neural network was Multilayer Perceptron (MLP). In this network back-propagation
algorithm was used during training mode to adjust the weights of the connections existing
between input layer and hidden layer and also between hidden layer and output layer. In this
proposed network all the nodes were connected to all the nodes in the adjacent layer through
unidirectional links.
First of all the most important part of this implementation was training the network. Initially all
the synaptic weights were given small random values. Then the message blocks along with their
code words were provided as input to the network. For each input, network provided a relevant
output. This output was compared with the actual source symbol. The difference between this
output and the desired output was calculated as explained in chapter 5. This constituted the error
function which was propagated back through the network and the weights were adjusted till the
time the error was reduced as per the specified error function which can be varied according to
the requirement and the application.
The lesser is the intended error, the more time it takes for the network to be trained. Since the
nature of the error space cannot be known a-priori, neural network analysis often requires a large

51

number of individual runs to determine the best solution. Most learning rules have built-in
mathematical terms to assist in this process which control the 'speed' (Beta-coefficient) and the
'momentum' of the learning. A trained neural network can be used as an analytical tool on other
data. We have calculated and draw this learning curve in figure 7.1.

In order to test the network a test.dat file in which the errors were appended was given to the
simulator. To test the simulator, there is no need to specify any training runs and instead the
network works in forward propagation mode. New inputs are presented to the input pattern
where they filter into and are processed by the middle layers as though training was taking place,
however, at this point the output is retained and no back propagation occurs. The output of a
forward propagation run is the predicted model for the data, where the input vector and also the
output vector achieved after processing the data through the trained neural network has been
shown. The output.dat file also contains the rounded output vector as well.

 Figure 7.1: Learning curve of training mode [11]

The above figure shows the learning of neural network. The x-axis shows the number of times
we make it run to achieve the threshold. Y-axis shows the mean square error.

Run time ---->

52

 Figure7.2: Plot showing the decoded bits using single hidden layer

Figure 7.2 shows the testing curve with the number of hidden layers is 1 and the percentage of
the accuracy in bits received.
This curve shows that the maximum accuracy that we can achieve is 98% in the case of one
hidden layer.

5 10 15 20 25
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
Testing Curve Using one Hidden Layer

No of Neurons in a Hidden Layer

R
ec

ie
vi

ng
 b

its
 A

cc
ur

ac
y

ra
te

53

Figure7.3: The plot of the decoded bits using 2 hidden layers

Figure 7.3 shows the decoded bits after the error correction when we use 2 hidden layers.
The result is almost the same as in figure 7.2 with just little difference.

The number of neurons we use in all the cases is the same.

Figure 7.4 shows the plot for 3 hidden layers but with the same number of neurons.

According to the calculations and results the number of hidden layers may change the time to
reach the accuracy, but the level of accuracy is almost the same there maybe the difference of 1
or 2 percent.

5 10 15 20 25
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Testing Curve Using Two Hidden Layers

No of Neurons in a Hidden Layer

R
ec

ie
vi

ng
 b

its
 A

cc
ur

ac
y

ra
te

54

Figure7.4: The plot of the decoded bits using 3 hidden layers

So after looking at the curves in the above figures 7.2 and 7.3 we can conclude that the bits that
are received after the error correction are decoded 97% correctly.

5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
Testing Curve Using Three Hidden Layers

No of Neurons in a Hidden Layer

R
ec

ie
vi

ng
 b

its
 A

cc
ur

ac
y

ra
te

55

Figure7.4: Plot of the decoded bits using BPSK

If we take a case of BPSK the Bit Error Rate we calculate is almost 1 in 100000, but this is the
ideal case which does not happen and if we include the factors like AWGN, forward error
correction, frame synchronization it will obviously be changed to around 10 %.

7.4 Summary and Conclusions

We used different data for learning and testing. Although the simulated network provided the
output which corresponds to the original data but there is a limitation associated with it. That is
the desired output was known a priori and the network was trained according to that. However in
many applications the desired output is not known a priori. In that particular case the network
makes the decision as to what it was in the absence of any reference information. However this
network cannot be expected to provide the correct output in the absence of a reference.

During training the network on various codes it has been observed that the number of neurons in
the input and output layers can be exactly specified because they depend upon the message bits
in the code word respectively. But, it is difficult to specify the number of neurons in the hidden
layer. Therefore, more time is consumed for selecting different values of hidden layer neurons,
learning rate parameter and also the number of cycles required to train the network so that the
output should converge for the specified value of error tolerance.

-2 0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No, dB

B
it

E
rro

r R
at

e
BER Vs Eb/No for BPSK modulation

theoratical
simulated

56

The network was given an input of 200 bits generated using the algorithm and was asked to
predict the next bit. This algorithm was used to generate a set of 2000 training facts to train a
back propagation network. The first data sets generated were generated with sets of correlated
data that is 10 sets of 200 bits were generated using the algorithm.

We generated a database of 1000 sets of 200 bits for a test on the trained network. The network
got 982 out of 1000 correct which is 98.2% using a threshold of 0.3 to determine correct
responses. This was a result with a very high degree of probability was better than random. Now
we introduced 5% noise into the training data and then it was trained on that until it could
correctly predict all of the 1000 training patterns.

To make the problem more difficult, a network was next trained on a set where each of the 1000
training sets was generated with a different 31 bit seed. These were used first without noise and
produced a net which got 427 out of 500 correct. Corrupting the training set with 10% random
noise produced a network which produces 402 correct out of 500 noisy test sets. The noisy data
coupled with the fact that we trained this net also using uncorrelated data (the 31 bit seeds were
unrelated for each set) greatly lengthened the training time. It took 43 hours and 28 minutes for
the network to learn the training set in this worst case training set (i.e. noise and uncorrelated
data sets).

If we sum up the results and conclusion for the tests we have done, we can conclude that the
threshold level that we achieve is almost the same in all the cases whether its single, double or 3
layer that is 98% , 97 % so it’s not much difference. But the time that takes to reach that level is
little different and is the least in case of single layer.

7.5 Future Work and Recommendations

In order to make use of ANN's for decoding the convolutional codes, an approach which can be
followed for further study has been discussed in considerable detail in chapter 6 which includes
the design architecture to be used and basing upon the same mathematical calculations have been
made for updating the synaptic weights for convolutional decoder. For training pattern
generation a flow chart for neural network training program has also been included. The same
may be used to design a simulator for decoding convolutional codes.

57

References:

[1] Shih-Chi Huang and Yih-Fang Huang, “ Bounds on the Number of Neurons in Multilayer
Perceptions”. IEEE Trans. Neural Networks, Vol. 2, no. 1, January 1991.

[2] Gomez, J.M Lopez, O. Montes, M. Bota, SA. Juvells, I. Herms, A. Fac, de Fascia,
“Implementation and design of new model of neural network with application on typographical
character recognition”. IEEE international conference on image processing 1996.

[3] Ciocoiu, I.B “Analaog decoding using gradient-type Neural Network ,” IEEE Trans.
Communications, Vol. 7, pp. 1034-1038, July, 1996.

[4] Data & Analysis center for Software, “Artificial Neural Networks Technology”, 1992.(http://
www.dasc.dtic.mil/techs/neural/neural.title,html) printed November 1998.

[5] Haykin S, Neural Networks, 2nd ed, prentice Hall, 1999.

[6] Hamalainen, A. , “Convolutional Decoding using recurrent neural networks” IEEE Trans.
Optical Networks, Vol. 5, pp. 3323-3327, 1999.

[7] Wells and Richard B, Applied Coding and Information Theory for Engineers, Upper Saddle
River, NJ: Printice- Hall 1999.

[8] Lin and Ming-Bo, “New Path History Management Circuits for Viterbi Decoders,” IEEE
Trans. Communications, Vol. 48, pp. 1605-1608, October, 2000.

[9] Secker, P.J., “A Generalized framework for convolutional decoding using a recurrent neural
network” IEEE Trans. Communications, Vol. 3, pp. 1502-1506, December, 2003
[10] Berber, S.M, “Convolutional decoders based on artificial neural networks” IEEE Trans.
Communications, Vol. 2, pp. 1551-1556, December, 2004

[11] Rajbhandari, S., “The performance of PPM using Neural Network and Symbol Decoding for
Diffused Indoor Optical Wireless Links, Vol. 3, pp. 161-164, July, 2007

http://www.dasc.dtic.mil/techs/neural/neural.title,html

	[9] Secker, P.J., “A Generalized framework for convolutional decoding using a recurrent neural network” IEEE Trans. Communications, Vol. 3, pp. 1502-1506, December, 2003
	[10] Berber, S.M, “Convolutional decoders based on artificial neural networks” IEEE Trans. Communications, Vol. 2, pp. 1551-1556, December, 2004

