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On Posterior Distributions for Signals in Gaussian
Noise With Unknown Covariance Matrix

Lennart Svensson and Magnus Lundberg

Abstract—A Bayesian approach to estimate parameters of sig-
nals embedded in complex Gaussian noise with unknown color is
presented. The study specifically focuses on a Bayesian treatment
of the unknown noise covariance matrix making up a nuisance
parameter in such problems. By integrating out uncertainties re-
garding the noise color, an enhanced ability to estimate both the
signal parameters as well as properties of the error is exploited.
Several noninformative priors for the covariance matrix, such as
the reference prior, the Jeffreys prior, and modifications to this,
are considered. Some of the priors result in analytical solutions,
whereas others demand numerical approximations. In the linear
signal model, connections are made between the standard Adap-
tive Maximum Likelihood (AML) estimate and a Bayesian solution
using the Jeffreys prior. With adjustments to the Jeffreys prior, cor-
respondence to the regularized solution is also established. This in
turn enables a formal treatment of the regularization parameter.
Simulations indicate that significant improvements, compared to
the AML estimator, can be obtained by considering both the de-
rived regularized solutions as well as the one obtained using the
reference prior. The simulations also indicate the possibility of en-
hancing the predictions of properties of the error as uncertainties
in the noise color are acknowledged.

Index Terms—Adaptive beamforming, Bayesian estimation, Jef-
freys prior, nuisance parameters, posterior distribution, reference
prior, regularization.

1. INTRODUCTION

STIMATING parameters of signals embedded in additive

complex Gaussian noise is one of the most frequently
encountered problems in statistical signal processing. Depending
on the signal model, the problem finds a variety of applications.
Some of the most extensively studied areas include adaptive
beamforming [1]-[3] and direction-of-arrival estimation [3], [4].
Inmostapplications, the ever-increasing demand of functionality
and performance has led to a trend in which the number of
features and degrees of freedom continue to increase, resulting
in problems of high dimensionality. A typical example is Space-
Time-Adaptive-Processing (STAP) [5], [6], where the traditional
temporal-then-spatial processing technique is replaced by ajoint
approachthatdrastically increases dimensionality. A crucialissue
in many of these applications is the lack of knowledge regarding
the noise covariance matrix. Although of no interest in itself, it
is essential for the inference of the desired signal parameters. To
aid the estimation procedure, information regarding the noise
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color is commonly provided by a training data set containing
noise-only measurements. For small training sets, however,
large uncertainties regarding the noise color most often lead
to substantial degradation in the estimator performance. For
applications with high dimensionality, it is therefore crucial that
the information provided by the training data set is exploited
in the best possible way.

The traditional approach to treat the problem of unknown
noise color is to use the noise-only measurements to form the
sample covariance matrix [7]; this is an estimate that is known
to be optimal in the maximum likelihood (ML) sense, rendering
good asymptotic properties. This estimate is then used in place
of the true underlying covariance [2], [6] through the Certainty
Equivalence (CE) principle. Although not explicitly stated, this
strategy is also frequently considered for algorithms derived
under a white noise assumption. These algorithms are often
claimed to be equally applicable in colored noise scenarios due
to prewhitening using the sample covariance matrix; see [8]
for an array processing example. Unfortunately, despite good
asymptotic behavior, the sample covariance estimate has certain
undesirable properties for small sample sizes. This is particularly
well studied for the case of real matrices [9]. The main weakness
noted in [9], and references therein, is a significant spread
in the distribution of the eigenvalues, especially when some
of the eigenvalues of the underlying covariance are close to
identical. See [10] for related results for the complex setting. A
frequently used attempt to improve on the performance that has
proven successful in many applications is to update the sample
covariance estimate according to the regularization procedure
[3]. In recent years, adjustments based on truncation of the
Multistage Wiener Filter (MWF) have also received considerable
interest [5], [11]. Both of these approaches, however, have
the drawback of containing a design parameter that is not
straightforward to assign.

Besides methods based on the CE principle, there exist nu-
merous other alternatives in the literature. Within the signal
processing community, perhaps the most recognized alternative
is joint ML, where the parameter of interest and the covari-
ance are estimated jointly [12]. Alternatives based on specific
physical insight enabling parametrization of the covariance
are also commonly encountered [13], [14]. Nevertheless, the
vast majority of solutions concern different types of classical
treatments. The very foundations of the classical treatment of a
nuisance parameter (in this case the noise color) are questioned
by most Bayesians [15]. The main arguments concern the fact
that uncertainties in the nuisance parameter are not acknowl-
edged. It is argued that since one cannot claim to know the
nuisance parameters, all possible values should be taken into
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account. The potential drawbacks of the classical approach are
illustrated by examples where the classical CE approach leads
to inconsistencies. Besides this criticism, which is of a general
and philosophical character, it is, of course, particularly trou-
blesome that the standard estimate of the nuisance parameter
has well-documented weaknesses for the current scenario.

In this paper, we explore the possible advantages of a
Bayesian treatment of the noise covariance matrix. By doing
so, our aim is twofold. First, we hope to improve the esti-
mator performance for small sets of training data (all methods
considered here have about the same performance for large
sets of data). Second, by incorporating the uncertainties in
the covariance matrix, we hope to achieve a more appropriate
description of the likelihood function. A desirable consequence
of the latter, which we will discuss further later on, is a more
accurate description of posterior uncertainties. Having said that,
it is important to note that applying the Bayesian methodology
is not done without effort. Generally speaking, the Bayesian
approach leads to two other difficulties in that 1) one has to
find a reasonable prior for the nuisance parameter, and 2) the
solution includes a marginalization with respect to the covari-
ance matrix; therefore, computation can be very demanding.
An essential part of this study is therefore to propose well-per-
forming prior distributions and to investigate how to implement
them; some priors will enable analytical solutions, whereas
others require numerical evaluations.

To maintain a general perspective, we do not assume to
have any prior knowledge regarding the covariance matrix. To
reflect this ignorance, we apply noninformative priors. Deriving
such priors is far from straightforward. In fact, formal ways of
obtaining themare stillunderinvestigation [16]. Among the priors
that we investigate are common noninformative alternatives
such as the Jeffreys prior [17], [18] and the Reference prior
[9], [19]. Observations made in connection to this will also
lead us to propose priors of our own. While performing this
study, we do not put any restrictions on the signal model. Thus,
the paper is not intended for any particular application, even
though the results may be more useful in high-dimensional
settings. We will, however, put some extra focus on the linear
signal model. This is done partly because it is an important
model, which is well studied from a classical perspective [20],
[21] and partly because its simplicity enables the derivation
of further results.

A. Notation

Throughout this paper, bold lowercase symbols represent
complex-valued vectors, whereas bold uppercase symbols
denote complex matrices. Superscript H denotes Hermitian
transpose, | - | defines the determinant, and etr(-) stands for
exp(tr(-)), where tr is the trace operator. The matrix de-
noted diag(Aq,Az2,...,Ap) is diagonal of size p x p with

’

A1, A2,...,A, along the diagonal, whereas vec(A) is the
vectorized A, ie., vec(A) = [Af A¥ ... AFH where
A = [A;,As,...,A,]. Further, ® denotes the Kronecker

product, d; is Kronecker’s delta function, and T is the gamma
function. Two distributions are central in the paper.
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o If x is complex Gaussian of dimension px 1, i.e., if
x ~ CN,(p,R), we denote its density as
CN (x|, R) =777 R etr { — (x — p) (x — ) "R7'}.

. If R is complex Wishart of dimension p X p, i.e., if
R ~ CW, (¥, M), we denote its density as

R rer { -2 'R} BV
c(p, M)

CW, (RIS, M) =

where ¢(p, M) = n?®=D/2 T[_ T(M — p + ).

II. DATA MODEL

Consider the following model of the p-dimensional complex
measurement vector at time k:

xi, = 8x(0) + ny. (1)

Here, the parameters of interest are contained in the G'-dimen-
sional parameter vector . The measurement noise ny, is com-
plex Gaussian distributed with zero mean and unknown covari-
ance matrix R. Further, it is assumed independent (in time) and
identically distributed (i.i.d.), i.e., E {nkan} = 6 R. To aid
the estimation procedure, knowledge regarding noise color is
provided from a set of i.i.d. noise-only training data samples
Z.,. These samples are drawn from the same distribution and
are assumed to be independent of the measurement noise n.
As a consequence, z,, ~ CN,(0,R), and E{z,,nI} = 0.
For notation, we collect the N; primary data into the measure-
ment matrix X = [x1,Xg,...,Xn,] of size p X Np, while
denoting the corresponding signal and noise matrices S(0) =
[s1(0),82(0),...,sn,(#)] and N = [ny,no,...,nx,], respec-
tively. We can now express (1) in the equivalent form

X = S(#) + N. 2)

The secondary data consists of N training noise samples, which
are collected into the matrix Z = [z1, 2o, ..., 2zny,] of size p x
Ns.

A. Linear Signal Model

In general, the signal S(#) can have any dependence on 6,
depending on the application. However, in this paper, some of
the results are specialized to the linear model, which is one of
the most commonly used models. Here, the signal lies in a p-di-
mensional subspace spanned by the columns of some known
matrix H of size p x L. For this model, the parameter vector
is divided into N; vectors 81,6, ...,0N, of size Lx 1, and the
parameter vector 8, now determines the unknown signal ampli-
tudes at time k. The signal at time instant k£ can then be written
as!

sk(a) = H0k. (3)

INote that s, is, in fact, only dependent of 8.
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With slight abuse of notation,2 we use § = [01,605,...,0N,],
and therefore, the modeled signal can be expressed as
S(8) = H. @)

Important examples of this model arise naturally in applications
employing antenna arrays such as sonar, radar, and wireless
communications, where the task is to extract the desired signals
by suppressing interfering signals and noise. Here, the columns
of H model the steering vectors, whereas the parameters model
the strength of the desired signals.

If the covariance R is known, the ML estimate of the param-
eter @ is given by

0y = (H'R'H)"'H'R'X (5)

(see [20]). In our setting, however, the noise covariance is not
known, and one has to treat it as a nuisance parameter. As men-
tioned, the joint ML and the CE principle are common classical
ways to approach this. In fact, for the linear model, it can be
shown that the resulting estimators for @ coincide. This esti-
mator, which is commonly referred to as the Adaptive Maximum
Likelihood (AML) estimator, is given by

O = (HTR'H)'HPR'X (6)
where
1 X 1
R= — H_ — z7H 7
A k;zkzk oA @)

For large sets of training data (large N, compared to p), this
procedure performs well since the estimated covariance is close
to the true one. However, as discussed in the introduction, it is
also known to have certain weaknesses for small data sets and
a commonly used procedure to improve on it is regularization.
Here, the covariance estimate is adjusted according to

R, = -

777 + ol
NQ( + o)

(®)
where I is the identity matrix. With an appropriate choice of
«, this strategy often offers significant improvements compared
with AML. Traditionally, the parameter « is a design parameter
chosen based on assumptions of the signal and noise environ-
ment; see [22] and references therein. In reality, such knowl-
edge may not be available. Some alternative approaches on how
to select o from data have been proposed [3], [23]. Nevertheless,
these techniques are more or less ad hoc, promoting the need for
a more formal treatment. We will return to this in Section VL.

B. General Signal Models

Besides the linear model, there exists a tremendous variety of
important models with applications in the most varying fields.
It is impossible within this framework to give a fair and exten-
sive overview. The many important nonlinear signal models in-
clude sinusoids, chirps, and harmonics, among several others.
We note that for some of these models, it is common that not

2Clearly, 8 is now a matrix of size L x N instead of vector.
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only the parameters of interest, but also the order G, is consid-
ered unknown. One such typical case is the superposition of an
unknown number of sinusoids, which is frequently considered
in array processing. Such issues, involving model selection, are
not considered in this paper. See the strategies in, for instance,
[24] and [25]. Besides that, many of the results derived here
apply to a general signal model. However, we frequently spe-
cialize to the linear model, for which further results are derived.

III. PROBLEM FORMULATION

The main purpose of this paper is to promote and investigate
Bayesian treatment® of the noise covariance R~!. Here, instead
of estimating the nuisance parameter through the CE or Joint
ML approach, we consider the integrated likelihood

f(X,Z|9) = / f(X,Z|g,R"H)n(R7'B)dR™  (9)

(see [15]). This likelihood can be interpreted as an average
over all conditional likelihoods given R !, weighted by their
corresponding prior probabilities. The main advantage of this
strategy, compared to traditional ones, is that the integrated like-
lihood automatically incorporates the uncertainties regarding
the noise color. As a consequence, this likelihood will typically
have an increased spread as a function of #. Once derived, it
can either be used within the classical framework, treating 6
deterministically, or as we choose, used in a fully Bayesian
approach considering @ to be stochastic.

By treating the covariance in a Bayesian manner, we have
two aims. First, and most importantly, we want to estimate 6
and investigate if the performance can be improved, compared
to the classical approaches. Second, we want to be able to esti-
mate properties of the error. We are, for instance, interested in
the question “How big is the squared magnitude of the error
for this particular set of data?”. Answering this question can
indeed be of great interest in many applications. Important ex-
amples arise in post-processing tasks such as tracking and signal
detection, where it is often useful to know the quality of the es-
timate for the data at hand. To be able to describe the posterior
uncertainties in the parameter of interest (given that we treat
stochastically), properties of the likelihood other than the posi-
tion of the maximum are also important. By incorporating the
uncertainties in R~ through (9), we believe that a more appro-
priate description of the overall likelihood for @ can be achieved.

One can, of course, try to approach the above issues also using
classical methods. The second issue, however, cannot easily be
addressed from this perspective. In fact, conditioning on mea-
sured data leads to philosophical problems if we want to study
uncertainties within the classical framework. The reason is that
the estimate can no longer be treated stochastically, and since
all underlying parameters are treated deterministically, there are
no uncertainties left to consider.* A commonly used ad hoc so-
lution is, however, to estimate the underlying parameters and

3Since the likelihood is expressed more easily in terms of R~', we regard
this to be our nuisance parameter instead of R.
4These difficulties are highly connected to the ones from which classical

methods suffer in the context of the post-processing task in hypotheses testing
[26], [27].
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evaluate the squared magnitude of the error averaged over data
by using the estimated parameters in place of the true ones. In
the Bayesian framework, on the other hand, considering poste-
rior uncertainties is something very natural. Here, the parameter
of interest, and not the estimate, is considered to be stochastic.
Therefore, the estimation error is also stochastic, enabling the
opportunity to estimate its properties.

In principle, one may be interested in any property of the
error. In a multidimensional setting, for instance, it may be de-
sirable to estimate the direction of the error vector. We, however,
focus on estimating the squared error, which appears to be a nat-
ural measure on the estimation quality. More precisely, given an
e§timate 0 of 0, we want an estimate 62 of the squared error
|6 — 8|? for the particular data at hand. The performance of the
different estimators 2 are considered in the mean square error
(MSE) sense, i.e., in terms of E{(52 —|0—8|?)?}. This measure
is by no means the only possible one to study. Nevertheless, we
believe it is reasonable and serves the purpose of illustrating the
different methods’ ability to describe posterior uncertainties.

One problem with comparing different methods is that they
are estimating different errors. In principle, different Bayesian
methods correspond to different choices of prior, and for every
particular choice of prior, both # and 62 are derived. Depending
on the ability to estimate 6, the task of estimating |6 — 6|* will
differ in difficulty in the sense that it will affect the feasibility
to achieve a small MSE. If the fluctuations (the variance) in
| — 6|2 are small, it is much easier to obtain a small MSE in
&% compared to when the fluctuations are large. Therefore, to
compare the quality of different estimators, we normalize our
Eerformance measure (the MSE of 42) with the variance of |0 —
6|?. We refer to the resulting measure as the Mean Square Error
Prediction Factor (MSEPF)

E{(&2 Y. i)|2)2 ‘(LR}

M = {|o - é|2‘o, R}

(10)

Note that one reasonable estimator 62 is one that is near the
mean square error £{|0 — 8| |0./ R}, rendering a MSEPF value
close to one independently of the variance of | — é|2

In conclusion, to fulfill our aims of estimating both the pa-
rameter @ as well as the quality of the estimate, we model 6
stochastically. In order to find the estimates, we require the pos-
terior distribution f(8|X, Z), or to be more precise, we need at
least to be able to evaluate properties of this distribution such as
the mean and covariance.

IV. CHOICE OF PRIORS

In order to carry out a Bayesian analysis, we need a prior
distribution on the parameters # and R~!. Finding a reason-
able prior distribution is a vital part of Bayesian analysis. It is
through the choice of prior that the statistical properties of the
resulting estimator are determined. As we assume to have no
prior information regarding the parameters, we will resort to the
use of noninformative priors. These priors are motivated to a
great extent by their ability to describe our ignorance regarding
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the parameters. In addition, they can be used as default priors
when it is not feasible to elicit our priors subjectively due to,
for example, high dimensionality or in some other way compli-
cated settings.5 Finding a noninformative prior is far from easy.
In fact, it has yet to be agreed upon as how to measure the in-
formation in a prior. Therefore, given two different priors, it is
generally not possible to decide which one contains the least
information. However, many serious attempts have been made
to develop schemes to derive good noninformative (or default)
priors; see [16], [17], and [19]. We will discuss a few of these
below.
We assume that our prior distributions can be factorized as
7(0,R7Y) =7(8) n(R1). (11)
Hence, we assume that the parameter of interest # does not
contain any information a priori about the nuisance parameter
R~! and vice versa. This assumption is in agreement with most
common methods to derive noninformative priors and is there-
fore not to be considered ad hoc. As our aim is to propose
and compare different methods to treat uncertainties regarding
the noise color, we will limit our discussion to the choice of
7(R~1). We are, however, interested in carrying out a complete
Bayesian analysis at least for the linear model and, therefore,
need a reasonable prior 7 (@) for this scenario. Doing a complete
study on how to choose this prior is beyond the scope of this
paper. We only consider the uniform prior, which is the one sug-
gested by most formal methods to derive noninformative prior
distributions. For the covariance matrix, on the other hand, we
will, in principle, consider four priors. The first three can be
joined in a uniform framework, whereas the last is treated sep-
arately.

A. Jeffreys Prior

Undoubtedly the most commonly used noninformative (or
default) prior is the uniform prior m(R~=') o 1. Even though it
is intuitive at first, there are some well-documented difficulties
with the uniform prior. Perhaps the most recognized is the lack
of invariance to parametrization [16]. Indeed, it is not appealing
that the choice of parametrization may influence the resulting
estimate.

Jeffreys acknowledged this problem and proposed a different
prior, which is commonly referred to as the Jeffreys prior; see,
e.g., [16] and [17]. This prior, which we denote 77(R 1), can
generally be described as follows. Let ¢ denote the parameters
describing R~'. To be precise, one should thus write R~!(¢)
instead of R™!, but the dependence on ¢ will be dropped for
notational convenience. Denoting the Fisher information matrix
as I(¢), where

16 = -5 { 5 ) (12)
Y 0;i0¢;
and [ is the log-likelihood, 77 (R 1) is defined as
y (R7') o [(9)]'/. (13)

50ne could question if this is possible even in the simplest of settings.
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Among the many intuitively appealing properties of the Jef-
freys prior is the invariance to reparametrization. The standard
parametrization is to use

¢= [Rl_llv R2_217 s 7R;p17 Re{Rl_Ql}v Im{R1_2l}v
Re{Ryy }, Im{Ryy},... . Re{R; 1, }. Im{R L, 1]

For this parametrization and the complex data model, the prior
is given by

my(R7Y) oc R77? (14)
(see [18]). Here, the differential volume element is given by
dR™! = d¢ = dR; dRy; ---dRe{R;*; }dIm{R ' }.
For Z complex Gaussian as above, the use of the Jeffreys prior
results in a posterior that is complex Wishart distributed ac-
cording to RY|Z ~ CW,((ZZ*)', Ny) [28]. Hence, the
posterior mean [29] will equal the standard sample covariance
estimate in (7). This supports the use of the Jeffreys prior as
the resulting estimate is commonly used. At the same time, it
also gives us reason to question it since the sample covariance
is known to have a significant spread in the distribution of the
eigenvalues. In fact, it has previously been reported that the Jef-
freys prior can have problems in multidimensional settings [19].
All in all, this leads us to study its behavior with respect to the
eigenvalues in the current setting.

As the prior is given with respect to the parametrization ¢
defined above, it is very difficult to draw any conclusions about
the distribution of the eigenvalues from the expression in (14).
However,as R~ 1isa positive-semidefinite Hermitian matrix, it
can be written as R™! = BDB | where D is a diagonal matrix
that contains the eigenvalues d; of R~! along the diagonal, and
B is a unitary matrix. Parameterizing R ™! in terms of B and D
requires the change-of-variables formula

77(D,B)dDdB = 7;(R™') dR™* (15)

where

dR™! =11, ;(d; — d;)* dD dB (16)

(see [10]). Hence, in the eigenvalue parametrization, we have

< (di — dj)?

m7(D,B) x 7 7
i=14;

a7)
The distribution is now represented in such a way that it is pos-
sible to interpret some properties regarding the distribution in
respect to the eigenvalues d;. Clearly, the prior is zero when two
or more of the eigenvalues are identical and small when they are
close to identical. These properties will carry over to the poste-
rior distribution. We regard this as a deficiency of this prior since
it is likely to lead to estimators with poor performance when the
true covariance matrix has these properties. Further, saying a
priori that the eigenvalues are well separated is not what we con-
sider noninformative. To illustrate this phenomenon, we study
the following example.

Example 1: Consider a two-dimensional (2-D) (p = 2) white
noise scenario in which the true covariance matrix is given by
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Posterior Distribution — Jeffreys Prior

Posterior Distribution — Reference Prior

Fig. 1. Posterior distributions of the eigenvalues of R~' when the underlying
covariance matrix has eigenvalues (1,1). (a) Result using the Jeffreys prior. (b)
Result using the regularization prior, with & = 5. (c) Result using the reference
prior.

R = diag(1,1). We generate No = 10 training data samples
z;, ~ CN,(0,R) and draw a large number of samples R *
from the posterior distribution f(R~!|Z), using the Jeffreys
prior on R™!. The inherent problem of the Jeffreys prior is illus-
trated by plotting a histogram for the eigenvalues of R,:l. This
is done in Fig. 1(a). It can be observed that even though we have
five times as many training data as the dimension of the matrix,
very few samples are found in the region close to the point (1,1),
which corresponds to the true eigenvalues. This is in agreement
with the observations made from (17). [ |

Obviously, the Jeffreys prior has certain undesirable proper-
ties regarding its treatment of the eigenvalues. An interesting
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observation in connection to this is that also the sample covari-
ance is complex Wishart distributed [7]. Thereby, the above ex-
ample also illustrates the previously mentioned weaknesses of
this estimate. Despite its drawbacks, it is important to note that
for applications where the eigenvalues are of minor importance,
employing the Jeffreys prior on the unknown covariance may
still be a suitable choice. The reason for this is that this prior, al-
though in some sense unsound with respect to the eigenvalues,
has the advantage of enabling analytical marginalization of the
covariance matrix [18]. Due to this beneficial property, it is of
interest to circumvent its weakness regarding the distribution of
the eigenvalues while maintaining the possibility of analytical
marginalization.

B. Family of Jeffreys-Like Priors

To propose adjustments to the Jeffreys prior, it is important
to identify those modifications that maintain the property of an-
alytical marginalization. In essence, the marginalization proce-
dure involves computation of the integral

f(01X,Z)

- / FO1X,Z, R™Y) f(R™}[X, Z)dR ! (18)

x / [OX.ZRY AXRAZR)r® )R (19)

where the fact that X and Z are independent given
the covariance R™!, ie., that f(X,ZR7!) =
FXIR™YHf(ZIR™1), is used in the second step. As
FZIR™Y) o« [R7YMetr{-R~'ZZ"}, we can include
factors of the form |[R7!|Ketr{—R~'A}, where A is a
positive-semidefinite Hermitian matrix, in the prior without
losing the ability to integrate out R~! analytically. Thus, we
define a family of priors

7(R7YA, K) o [R7HFetr{—R7'A} (20)
where A is a positive-semidefinite Hermitian matrix. Note that
this family includes the family of complex Wishart distributions,
which is the conjugate prior for R™!, i.e., when the prior is
a Wishart distribution, so is the a posteriori distribution [30].
The scalar K relates to p and K through K = p — K. The
family includes both the Jeffreys prior and the uniform prior and
enables analytical marginalization of R~!. The conditioning on
K and A denotes the specific choice of prior within the family.
As a guideline on how to choose K and A, we recall that if
K > 0 and A is positive definite

; AN
! Kol —R-1AY = [ 2
arg max IR™ " etr{-R™"A} < ) 21

(see, e.g., [7]). Hence, to attain an increase compared to the Jef-
freys prior in a certain region, one can choose K and A so that
(A/(K —p))~! is in this region. We note that including the
factor etr{ —R~'A} in the prior in principle means changing
ZZ" t0 ZZH + A [see (19)], which corresponds to having ad-
ditional training data 7 for which ZZ¥ = A.
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In the light of the previous discussion, there are, of course,
various ways to choose K and A. We focus on the choice A =
a I, the main reason being that it has interesting connections to
classical estimators. Compared to the Jeffreys prior, this prior
is reinforced in a region where all eigenvalues are close to each
other. For such a choice, the posterior distribution of R! |Z is
complex Wishart according to CW, {(ZZ* +a 1)~ No— K +
p}, and the usage of this prior gives [29]

—1
H
7.7 —I—aI) | )

E{RTI2} = (m

To prevent the mean of R~! from being either too large or too
small, K and « should be chosen jointly. However, as we will
see, in the case of the linear signal model, K is of little impor-
tance. Therefore, to simplify things for this scenario, we simply
use K = 0, rendering a prior that can be normalized to a proper
distribution. For notation, let 7, (R 1) denote this normalized
prior as

1 ~R'Ta} ¥
r® Y=o, (R 11p) = etr{—-R 'Ta}«
a c(p, )

(23)
which by construction is included in the family (20). Note that
this prior, in contrast to the ones discussed previously, is normal-
ized to have volume one. Clearly, what we have proposed here
is merely an ad hoc suggestion that does not solve the problem;
the prior is still zero if two or more of the eigenvalues are iden-
tical. To study the proposed adjustments, we return to the white
noise example.

Example 2: Again, consider the 2-D white noise scenario. A
large number of samples Rk_,1 is generated from the posterior
distribution, given the same training data samples z;. Although
this time, instead of the Jeffreys prior, the prior 7, (R 1) is used
with o = 5. Fig. 1(b) shows the corresponding histogram. In
comparison to the former histogram, it has a similar behavior,
and thus the same difficulties, even though the peaks are now
closer together. ]

As noted, the proposed adjustment does not remove the
problem. However, it compensates for it and does so without
significantly complicating the solution. Considering the linear
signal model and 7 () o 1, this prior is of particular interest
as the resulting estimator is the standard so-called regularized
estimator. Reflecting on this, we hereafter refer to this prior as
the regularization prior.

C. Reference Prior

As discussed above, the Jeffreys prior has certain weaknesses
in this scenario. An alternative prior is the Reference prior,$
which was derived by Bernardo and Berger in [19]. It was de-
veloped to cover for weaknesses of the Jeffreys prior in multidi-
mensional settings. The prior is based on a reasonable informa-
tion measure, but since it was first proposed, it has been refined
in order to cover for new paradoxes as they were discovered. By

6Some authors use different notation. In [16], reference prior is used to denote
default priors in general. We use the notation as proposed in [31].
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now, reference priors have been applied in various settings with
good results.

The reference prior has previously been derived for real co-
variance matrices [9], whereas to our knowledge, it has yet to be
derived for the complex data setting. In order to obtain the ref-
erence prior for R™!, we basically follow the approach given
in [9]. The derivation of the reference prior includes ordering of
the parameters in accordance to relevance. This can differ from
problem to problem. Following [9], we say that the eigenvalues
contained in D are of greater importance than B.

Theorem I: The reference prior for the parameter (D, B) is
as follows, providing D is considered to be more important than
B and the d; are ordered monotonically (either increasing or
decreasing):

1
(Hledi)ni<j(di — d])

TRet (D, B) dD dB s dR™.(24)

Thus, the reference prior can be expressed as

1

Trer(R™1
Ret (I_y di) I (ds —

) (25)

d;)*
Proof of Theorem 1: Presenting the proof is beyond the
scope of this paper. Those interested should see [32].
From (16) and (24), we observe that the reference prior in the
eigenvalue parameterization is given by

1

7TRef(D7B> X m

(26)
which, in contrast to the previously discussed priors, is not zero
when two or more of the eigenvalues are close to identical. Once
again, the white noise example is used for illustration.

Example 3: This time, the samples R;l are generated using
the reference prior, and the resulting histogram is plotted in
Fig. 1(c). Clearly, this prior does not have the same difficul-
ties regarding the distribution of the eigenvalues. Here, we have
many samples in the region close to the true eigenvalues (1,1).1

This prior appears to have a favorable distribution with re-
spect to the eigenvalues d;. Unfortunately, to our knowledge,
there does not exist an analytical solution to the marginalization
with respect to R~ using this prior. It is therefore likely that the
implementation of the corresponding estimator is very complex
for large dimensions p. A possible framework for implementa-
tion is discussed in the next section.

In conclusion, we study the priors m7(R™1), 7, (R™1),
7(R7YA, K), and 7res(R™1). We note that 7;(R~!) and
7Rret (R 1) both require that N > p in order for the posterior
to be proper and, thereby, applicable. The priors 77(R ') and
7o (R 1) are both special cases of the family (R~ |A, K). All
priors in this family have the advantage of offering analytical
marginalization. Major drawbacks concerning the eigenvalue
distribution of the Jeffreys prior 7;(R™!) is somewhat helped
by introducing 7,(R~1). The reference prior mres(R™1)
seems to solve the issue but does not, on the other hand, offer an
analytical solution. It is understood that when deriving posterior
distributions and expected means, these will depend on the
choice of prior. To specify which prior is used, we condition on
A and K if a prior from the family 7(R~!|A, K) is employed,
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on J if the Jeffreys prior is used, on « if the regularization prior
is used, and on Ref if applying the reference prior.

V. POSTERIOR DISTRIBUTIONS

A central component in Bayesian analysis is the posterior dis-
tribution for the parameter of interest. Given this information,
one can calculate different estimates such as the MMSE and the
MAP estimate as well as find measures of posterior uncertain-
ties regarding the parameter. In this section, we show how to cal-
culate the posterior distributions for the priors discussed in the
previous section. This is done both for a general signal model
and for the specific case of a linear signal model with a uni-
form prior on 8. As we will see, some parts and scenarios have
analytical solutions, whereas others demand numerical approx-
imations.

A. Family of Jeffreys-Like Priors

It is well known that the Jeffreys prior 7 (R™!) enables an-
alytical marginalization of the covariance matrix; see [18]. Due
to its special structure, this does not only apply to the Jeffreys
prior but, in fact, for the whole family described in (20). We start
by deriving the integrated likelihood considering this family of
priors.

Theorem 2: Suppose we observe the data matrices X =
S(#) + N and Z according to the assumptions in Section II
Further assume that N7 + N + rank(A) > p. Considering the
family of Jeffreys-like priors 7(R~|A, K), the integrated like-
lihood is then given by

F(X,Z]0,A, K)  |Q™M 27)
where Q = ZZ" + (X — S(0))(X — S(0))” + A, and M =
Ni+ N, — K +p.

Proof of Theorem 2: See Appendix A.

Finding analytical expressions of the integrated likelihood
is indeed advantageous, especially as the needed multidimen-
sional integrals can be very computationally demanding to eval-
uate numerically. The integrated likelihood itself can, in fact, be
of great interest. For instance, doing maximum likelihood esti-
mation using this likelihood is known to be a sound way to treat
the nuisance parameters [15].

Even so, the aim of this paper is not to study integrated like-
lihood methods but to invoke a fully Bayesian approach. Using
Theorem 2, we can easily find an expression for the resulting
posterior distribution.

Corollary 1: For any signal model S(6) and prior distri-
bution 7(#), the posterior distribution, using 7(R~!A, K) is
given by

F(X. ZI6, A, K)x(6)
f01X,Z,A, K)= TT(X.Z00.A F)n(8) 8 ™ Q™™ ().
(28)
Except for the scaling factor, this gives analytical expressions
for the posterior distribution of @ for any signal model S(6),
any prior in the family (20), and any prior 7(#). The virtues of
this result are enforced by the fact that the scaling factor is often
not needed. Common examples include settings where a max-
imum a posteriori (MAP) estimate is desired or where a Markov
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Chain Monte Carlo (MCMC) method is applied. Despite its use-
fulness, however, for a large dimension of 8, it is still impor-
tant to obtain analytical expressions for the posterior so that the
need for numerical methods can be avoided. For a general signal
model S(6) and arbitrary prior (@), this is not possible. How-
ever, for the special case of a linear model and a uniform prior
on @, closed-form expressions (including the scaling factor) can
be found for any prior in the family 7(R~!|A, K).

Theorem 3: If L < p and Ny + rank(A) > p, then under the
linear model S() = H#, a prior 7(R™!|A, K) and a uniform
prior on @, 7(#) 1, the posterior distribution of 8 is given by

[V|MT|M =
IT+(0-0)7V(0—6)M

fOIX,Z,A,K) = (29)

Here, M = N\+Notp— K, A = n = ENie(L, M) /e(L, M — Ny),
V = HIUH, T = I+ X#(U™! - U 'HH?
U-'H)"'HIU-)X, U = ZZ¥ + A, and § = (HU!
H) “1HHU-1X. Moreover, the posterior mean and covariance
of @ are given by

E¥X,Z A, K}=HIUH)'HA U~'X (30)

-1
Cov{vec(6)|X,Z, A, K}—M N L TV . 3
Proof of Theorem 3: See Appendix B.

We note that the different 8y s are correlated in the poste-
rior sense, which is not the case for known noise covariance.
The theorem also confirms the previous statement that the actual
value of K is of marginal importance, as the posterior mean here
is independent of K . Furthermore, to simplify the understanding
of the above theorem, we observe that if N, > 0, a natural es-
timate of the covariance matrix is Ry = (1/N5)U. Using this
notation, U~ can be replaced by (1/N2)R;, !, which is easier
to interpret.

By studying some particular choices of prior distributions for
RL, within the family described in (20), we will see that the
corresponding MMSE estimates using these priors can be con-
nected to well-known classical estimates. We first consider the
Jeffreys prior, which corresponds to K = p and A = 0. For this
specific choice, U = N, R, and we note that the MMSE es-
timator using the Jeffreys prior simply reproduces the classical
AML, or CE, estimator in (6) and (7). Nevertheless, integrating
out the uncertainties in R™! results in a different posterior co-
variance for 6. If we study (31) using K = p and A = 0 for the
simple case when N1 = L = 1 we see that

Ny 1+ 0%
N>, —1 HER-'H

Cov{0|X,Z,J} = (32)
where 02 = X#(R™! - RT'THH”R'H)"'H'R)X.
This can be compared to a method where the Bayesian anal-
ysis only includes the parameter 8, and the covariance is treated
using the classical CE approach
1

HAR-'H
It is interesting to note that the covariance using the Jeffreys
prior is always larger than that of the CE approach. This is nat-

Cov{f|]X,R =R} = (33)
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ural as the Bayesian treatment of the nuisance parameter ac-
knowledges the uncertainties in R~!.

The posterior covariances above can also be put in connection
to the classical performance measures. As mentioned in Sec-
tion III, these are substantially different measures that evaluate
the mean performance of the estimator for a particular scenario.
Reed et al. [2] derived the covariance for the present setting

p N, 1
Cov{f|R,0} = N, —p 11 HAR-TH

(34)

We note that this measure acknowledges the uncertainty in the
covariance, as it averages the distribution of the ML estimate
over the distribution of the sample covariance estimate. To pro-
vide an answer to the question “How big is the squared mag-
nitude of the error for this particular set of data?”, the first
two measures above can easily be used as estimates. To apply
the third one, on the other hand, the underlying parameters de-
scribing the scenario must first be estimated. If the sample co-
variance estimate is used, we see that both (32) and (34) ac-
knowledge the uncertainties in the covariance and, therefore,
yield larger estimates than (33). Still, when the uncertainties in
the covariance decrease, as No — 00, all measures coincide.
The AML estimator is not the only classical estimator that
can be connected to an MMSE approach using the family of
Jeffreys-like Priors. In Section IV-B, we claimed that the usage
of the prior 7, (R 1) corresponding to A = al and K = 0 re-
sults in the regularized estimate. This can be verified by studying
Theorem 3 for this specific choice of A and by comparing the
corresponding results to (7) and (8). As before, the MMSE esti-
mator is merely a reproduction of a classical estimator. In fact,
the posterior distribution of 6 is symmetric around its mean so
that many other estimates, such as, for example, the MAP esti-
mate, also render the same solution. The covariance expression§,
corresponding to (32) and (33), are also the same, except that R
is replaced by R... The classical performance measure in (34),
on the other hand, to our knowledge, does not even have an an-
alytical equivalence for the regularized estimator. This makes
the covariance expression in (31) even more useful as one can
no longer rely on this classical alternative. Even so, perhaps the
main contribution with the connection between the regularized
and a Bayesian solution is that this enables a proper treatment
of the parameter «, as this parameter is now simply a nuisance
parameter in our model. This will be discussed in more detail
in Section VI. Note also that the regularized prior 7, (R™!), as
opposed to the Jeffreys prior, can be applied even when Ny = 0.

B. Reference Prior

In the previous section, we derived analytical expressions for
the integrated likelihood. We also saw that for the particular case
of a linear model with a uniform prior on @, the posterior distri-
bution and some of its properties could be derived analytically.
Unfortunately, for the reference prior, no analytical solution has
been found for the marginalization integral. Instead, we have to
resort to the use of numerical methods. One family of suitable
methods is the family of MCMC methods. An MCMC method
works by generating a Markov chain whose stationary distribu-
tion is the distribution of interest [33]. Through this framework,
samples @,,, from the posterior distribution f(8|X, Z) are gener-
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ated.” These can be used to approximate relevant features of the
posterior distribution, such as the posterior mean or variance.
Here, we describe, in a general fashion, how such a method can
be designed. The algorithm is not designed for any particular
signal model but can be applied for any model S(8).

Our approach is to generate samples (8,,, R-}) from the
joint distribution f(6, R™!|X,Z,Ref). This is accomplished
using a Metropolis-Hastings (MH) strategy that is closely re-
lated to Gibbs sampling [26]. We use the following.

1) set m = 0 and initiate 6y. We use
6o = 0.4nr -

2) Generate R;!~ f(R7YX,Z,0,,_1,Ref).

3) Generate #,, ~ f(8|1X,Z,R;}!).

4) Set m=m+1, and go back to step 2.

The desired samples are the 8,, samples obtained in step 3.
To generate samples in steps 2 and 3, the MH algorithm is gen-
erally used; see [33] and below. However, step 3 can, for cer-
tain scenarios, be accomplished much more easily as 6,, ~
f(0)1X,Z,R;') has a special structure. For instance, a linear
signal model and a uniform prior on @ will result in a Gaussian
posterior. MH is the most commonly used mechanism to pro-
duce a Markov chain with a specified stationary distribution and
is thus an essential part of most MCMC methods. An important
part of MH is to propose a new candidate state in the chain. How
this is done will have a great influence on the efficiency of the
algorithm. In step 2) above, designing this part is particularly
complicated in the original parametrization. The reason is that
the distribution here is singular when two or more of the eigen-
values are identical, which is clear from (25) and the relation
f(R71|X7 Z, 0m—17Ref) X f(X/ Z|0m—17 Ril) WROf(Ril)'
One way to solve the problem is to instead parameterize R ™!
in terms of its eigenvalues and parameters describing the eigen-
vectors. The advantage is clearly indicated by comparing (25)
and (26). We will address the problem of specifying such a
parametrization in a future publication [32]. Nevertheless, once
a suitable parametrization is specified, it is possible to present a
pseudo-algorithm. Let p denote the parameters in the considered
parametrization R~*(p), and let |9R~!/9p| denote the Jaco-
bian for the change of variables. Further, if q(p;,|p;._) denotes
the conditional distribution from which new states are proposed,
MH can be described as follows.

1) set k = 1 and initiate p,. We use p, so
that R7!(p,) = R7t.

2) Generate pNe'w ~ q(pNﬁ’U/‘|pk—1) .
3) Let

f(R_l(pNew)|X7 Z: 07 Ref)q(pk—l |pNe.w) B%—;

FR(py—1)|X, 2,8, Ref)a(pryeslprr) | 22

P=Py_1

’y:

P=PnNecw

"Note that, different from previous notation, the subindex rn denotes the 1:th
vector in a sequence of vectors and not the mth element of a vector.
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4) Take

_ pNow7
P = { Pr—1,

with probability min(vy,1).
otherwise.

5) set R;' =R Yp,), k=k+1, and go back
to step 2.

We should point out that the use of any valid parametrization
will yield the same asymptotic distribution. However, the choice
of parametrization, and the means by which one proposes new
states in the chain, will affect the convergence rate of the ac-
companying posterior moment estimates [32], [33].

VI. TREATING THE REGULARIZATION PARAMETER o

Despite its weaknesses for small training sets, the AML es-
timator, which is given by (6) and (7), is widely used for the
linear model. Two motivations for this are its nice asymptotic
properties and its comparatively low complexity. It is important,
however, to find alternatives to the AML estimator that not only
improve the estimator performance but do so without signifi-
cantly increasing the complexity. As mentioned, one approach
that has proved successful for many scenarios with low sample
support is regularization [3]. Here, the sample covariance ma-
trix in (7) is replaced by an adjusted estimate given in (8).

One problem with the regularization approach is to find an
appropriate value for the parameter «. Traditionally, this is a
design parameter set according to some general rule of thumb,
based on prior knowledge on the signal and noise environment.
In reality, such prior knowledge may be absent, and one would
like to replace existing design methods by one that uses the
given data in a systematic way. As we will see, such a design
can be accomplished by considering a Bayesian approach using
the prior 7, (R ™). By comparison, it was identified in Sec-
tion V-A, that the posterior mean, and thus the MMSE estimate
of @, using 7, (R 1) is identical to the regularization solution
in (6) and (8). Now, when reflecting on how to choose the pa-
rameter « in the prior, it should be noted that in this setting, «
is merely a nuisance parameter. In fact, . enters the integrated
likelihood f(X,Z|6, @) in the same manner as the covariance
matrix did in, e.g., (9). Therefore, one faces the same variety
of options on how to treat the nuisance parameter; one can ei-
ther estimate the parameter or integrate out its dependence. The
latter is the main focus of this paper, and we start by deriving
the MMSE solution using such an approach.

To employ a full Bayesian approach, we consider the poste-
rior distribution f(#|X,Z) using a prior 7(«) on . Marginal-
ization with respect to « renders

FO1X.2.1.) = [ F(B.0X Z)do= [ (61X Z.0) f0]X, 2) do

(35)
where I, is introduced in accordance to previous notation to
distinguish this posterior from the others. As a reflection, this
approach can be seen as an alternative way to treat the prior on
R~!. In essence, we use

(R = n(RYa)7(a). (36)



SVENSSON AND LUNDBERG: POSTERIOR DISTRIBUTIONS FOR SIGNALS IN GAUSSIAN NOISE

This way to model the prior distribution is commonly known as
a Hierarchical Bayesian method [26].

Finding the posterior distribution in (35) requires both
f(01X,Z,«) and f(|X,Z). The first is given by (29), re-
calling that here, A = I o« and K = 0, whereas the second can
be expressed as

falx.z) - X Zla)n(@)

B J (X, Z|o)m(a) da” (37)

Considering the previous discussions, choosing a prior 7 ()
is not a trivial task. For convenience, we use a uniform prior
m(a) o 1, hoping that the choice of prior is of minor impor-
tance. The appropriateness of this is further discussed below. In
conclusion, to derive the posterior distribution, we require the
likelihood f (X, Z|«), which is given in the following theorem.

Theorem 4: If L < p, then given measurements X and Z
according to Section II-A, the likelihood f(X,Z|«), using a
uniform prior on @, is given by

2

oP
JOL210) o e R e T [V (@)
(38)
where U(a) = ZZ¥ + oI T(a) = I+ XH(U! —

U 'HHYUH)'HfU )X, and V(o) = HF U 'H.
The specific dependence of « through U is here ignored in
T(«) and V(«) for notational convenience.

Proof of Theorem 4: See Appendix C.

Note that if N, is positive, then U~! can be replaced by
(1/N2)R;1, where R, is given in (8). By combining (35),
(37), and (38), the posterior can be derived. Unfortunately, no
closed-form solution to the integral in (37) has been found.
However, as « is real and one-dimensional (1-D), the drawback
from having to rely on numerical methods is not that severe. If
« is integrated out, the posterior mean is given by

E{0|X, 7,1} = /a/f(o|x,z,a)f(a|x,Z) dov d

- / 8(c) f(a|X, Z)da (39)

where é(a) is the MMSE estimate of 6 for a given «; see
Section V-A and (7) and (8). A natural interpretation is that
the mean of the distribution, and therefore the MMSE estimate
of @ as well, is now the average over all regularized solutions
weighted by their respective posterior probability.

An alternative to the fully Bayesian approach described in
(35)—(39) is to estimate « and proceed by using this value to de-
fine a fixed regularization prior. One way to find an appropriate
estimate is through the likelihood derived in Theorem 4

QnL = arg max (X, Z|a). (40)
Again, the complex structure of (38) prevents us from finding
an analytical solution. Nevertheless, since it only requires a
1-D maximization, the complexity is minor. Once an estimate
is obtained, inference on @ is based on the posterior distribution
f(01X,Z, o = Gy1,), thus rendering the estimate

8. = 0(Aa). (41)
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This method—to estimate a parameter in the prior from data—is
known as an Empirical Bayesian approach [26]. These estima-
tors have proved to yield good performance for many scenarios.
A well-known example is the super efficient estimator com-
monly referred to as Steins estimator [26].

It should be noticed that so far, we have only considered
Bayesian inference on . One may as well use the integrated
likelihood directly, for example, through the use of joint ML

(9, &) = argmax (X, Z|0, a).
6,

(42)

In fact, there exist a variety of possible approaches, depending
on if o and @ are modeled stochastically or deterministically.
Nevertheless, as concluded above, we restrict our studies in this
paper to the case when @ is modeled stochastically.

The analysis above was performed under the assumption of a
linear signal model. Regularization is a powerful tool not only
for this case but has found applications to numerous methods
employing an estimated covariance matrix. For a general signal
model, the dependence on # is too complicated to integrate out
analytically. One way to target this problem is to disregard the
information contained in X while treating . By doing so, we
can form the likelihood function f(Z|«).

Theorem 5: Given the measurement Z according to Sec-
tion II-A, the likelihood f(Z|«a) is given by

a?’
|ZZ" + aX|Netr’

f(Z]a) (43)
Proof of Theorem 5: See Appendix D

This can now be used in place of f(X, Z|«) using any of the
methodologies described above, enabling a formal treatment of
«, even in the case of a general signal model. One can, for in-
stance, use a fully Bayesian approach similar to (39) or conduct
an empirical Bayesian approach as in (41).

We will end this section with a brief study on the choice of
prior on . As mentioned above, w(a) o 1 is chosen in an ad
hoc manner and is not based on any formal rules. Although it is
well known to the Bayesian community that priors on second-
order parameters are generally of minor importance [34], it is
still of interest to study the robustness to the choice of prior 7(«)
for this specific example. We recall from (39) that the resulting
MMSE estimator is the average of 6 () over the posterior distri-
bution f(«|X,Z). Since f(a|X,Z) x f(X,Z]a) 7(a), we ex-
pect the estimate to be sensitive to the choice of prior if the esti-
mate () varies significantly within the support of f(X, Z|«),
whereas it can be considered insensitive if the estimator is close
to constant therein. In an initial study, we consider a small three-
dimensional simulation example (p = 3).

Example 4: A linear model is used with H = [1, 1, 1]#
and R = diag(1,0.1,0.01). In the simulation, we employ five
training data No = 5 and one primary data N; = 1. Fig. 2 shows
the integrated likelihood f(X,Z|) along with the estimation
error |6(«) — 8| for two “typical” realizations of X and Z. Both
the error and the likelihood are normalized to yield a maximum
value of one. The actual value is not interesting as we want to
investigate the fluctuations of #(«) within the support of the
likelihood function. In the first realization, the estimate varies



3564

15 -
18(c)- I
(X, Zlor)
9]
o
3 1 -
© -
o) -
£
k] . ’
[ [
o5 /
S
z
KN
| N
% 05 1 15 2 25 3
o
(a)

15, : ~
18(c))- 0l
f(X,Zlor)

w
4
2 1
© |
(0]
£
©
[0}
N
5
£05 |
o
Z |
0 | .‘\\\w ‘ ’
0 05 1 15 2 25 3
o
(b)

Fig. 2. Shape of the likelihood and the magnitude of the error as functions of
« for two arbitrary realizations of X and Z.

significantly within the support of the likelihood function while
it is almost constant in the second.

Thus, even though we cannot draw any general conclusions,
the choice of prior appears to have some, but a far from pro-
found, influence. It is beyond the scope of this paper to fully
evaluate its effect.

VII. SIMULATIONS

In this section, we study and evaluate the performance of the
different methods discussed in the paper. The signal model con-
sidered is the linear model in (3). Due to the Steins effect, we
know that if either Ny or L is large, then the prior on 8 can
have a significant influence on the performance [26]. The main
purpose of this paper is not to discuss priors for the parameter
of interest @ but to study and evaluate the treatment of the nui-
sance parameter R ~!. Therefore, we only evaluate the methods
for small N7 and L. In fact, we only study the simplest of all
cases: N7 = L = 1. The performance evaluation includes two
parts. First, the quality of the different estimates of 8 are mea-
sured in terms of the mean square error. Second, the ability to
estimate properties of the estimation error is studied. The per-
formances are evaluated in the frequentist sense, i.e., we fix R
and @ and generate many different data sets X and Z to which
the different methods are applied. More precisely, all estimators
are evaluated using 30 000 sets of data for each scenario.
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To investigate the different methods’ ability to handle un-
certainties in the nuisance parameter R~!, we primarily vary
the size of the training data set. Asymptotically, in the amount
of training data, all methods perform equally well as the un-
certainties can be neglected. Hence, we evaluate the different
methods for small training sets implying large uncertainties. As
noted in Section IV, the considered set of priors show significant
differences when two or more of the eigenvalues of the covari-
ance matrix are close to identical. To further investigate this
issue, we find it interesting to study one scenario for which the
eigenvalues are identical and one where they are well separated.
For simplicity, we choose two low-dimensional examples ac-
cording to Ry = diag(1,1,1) and R, = diag(1,0.15,0.05).
We observe that the prior distributions for the covariance
matrix are all invariant to unitary transformations. It is thus
sufficient to study the performance for diagonal matrices such
as R; and R». However, unless the noise covariance matrix
has eigenvalues with multiplicity, the performance depends on
the angle between the signal mode H and the corresponding
eigenvectors. We therefore study two different signal modes:
one that aligns with one of the eigenvectors for both cases of
R—H = H, = [1,0,0]¥ —and one that appears at an angle
H = H; = [1,1,1]%. During the simulations, we employ
0 = 3, although we note that the specific value of @ does
not influence the MSE.

A. Estimator Performance

Consider four different estimators. The first two are the
MMSE estimators of @ using the Jeffreys prior and the
Reference prior, respectively. The first of these is given as
the conditional mean in (30), whereas the second is obtained
through numerical evaluations; see Section V-B. The remaining
two estimators are the results from the usage of the regulariza-
tion prior. One is the MMSE estimator using 7, (R~!) and a
uniform prior on «, see (39). We refer to this as the Hierarchical
Bayesian estimator, whereas the final estimator is the Empirical
Bayesian method defined in (41). One purpose is to compare
Bayesian methods to classical approaches. Nevertheless, as
the classical AML estimator here coincides with the MMSE
estimator using the Jeffreys Prior, it does not need to be treated
separately.

In Fig. 3(a), the performance of the different estimators is
shown for the scenario defined by R = R; and H = H;.
As can be seen, it is possible to significantly improve on the
AML estimator (or, equivalently, on the estimator originating
from the Jeffreys prior). It is interesting to note that for this
scenario, the performances of the other estimators are almost
independent of the number of training data. Overall, the es-
timator corresponding to the reference prior has the best per-
formance. Even for small data sets, its MSE is very close to
(HFR™'H) — 1/3, which is the performance of the ML es-
timator with a known covariance matrix; see [20]. Hence, there
is almost no degradation in performance due to uncertainties in
R, and even an infinite training set Z would not improve the es-
timates. Clearly, this is connected to the appealing properties of
the reference prior for identical eigenvalues; see Section I'V. In
addition, the regularized solutions give good performance with
MSE:s fairly close to 1/3. Comparing the two, there is a slight
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Fig. 3. Performance of the various estimators in terms of Mean Square Error
(MSE). (a) White noise scenario R = R; and H = H,. (b) Scenario with a
noise covariance with significant eigenvalue spread R = R, and H = H;.
(c) Scenario where, again, R = R, but H is an eigenvector to R, namely,
H = H..

advantage, for small sets of training data, to integrate out the
dependence on the regularization parameter through the Hierar-
chical Bayesian method compared to estimating it through the
Empirical Bayesian approach.

Considering the properties of the different priors, the scenario
defined by R = R; is very special; see Section IV. Fig. 3(b)
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presents the corresponding results when the true covariance in-
stead is given by R (we still have H = H;). As a comment, we
note that this is a much simpler estimation problem as it includes
two dimensions in which the noise has significantly lower vari-
ance than in the previous case. The MSE of the ML estimator
for a known covariance matrix is here 0.037. Compared to the
previous scenario, the performances of the different estimators
are much more dependent on the amount of training data. Still,
the estimator using the Jeffreys prior performs the worst, but
the reference prior estimator is no longer the best. Instead, it is
the Empirical and Hierarchical Bayesian solutions that show the
best performances. For this case, it also appears that integrating
out or estimating the regularization parameter yields the same
performance.

Previously, we suggested that the angle between the signal
mode and the noise eigenvector can influence the overall perfor-
mance of the noise adaptive estimators. Above, the signal mode
H, was aligned with a possible eigenvector of R;, whereas
this was not the case for Ry. As a finale, we therefore address
the scenario defined by R = R, and H = H;, for which this is
again true; see Fig. 3(c). By studying the results and comparing
them to the corresponding ones in Fig. 3(a), the major trends
and properties are all very similar. The reference prior again
shows almost perfect performance, as the asymptotic MSE
for this scenario is 1. Meanwhile, the regularized solutions
again show good performance, whereas the method based on
the Jeffreys prior performs significantly worse. The alignment
of H with an eigenvector of R certainly appears to bring
most of the estimation procedures closer to the asymptotic
performance. In particular, the reference prior tends to produce
very good results. In fact, the superiority of this method does
not only extend to the above cases, but additional simulations
indicate that the reference prior often performs best out of
the derived approaches.

In conclusion, all estimators, except the one based on the Jef-
freys prior, are well performing. Taking into account the tremen-
dous difference in complexity, the Empirical and Hierarchical
Bayesian solutions, implementing a regularized approach, are
natural choices. Because of complexity concerns, the Refer-
ence prior only seems to be a suitable option for problems with
small dimensionality. However, due to its appealing properties,
it serves as a good benchmark if compared with other less-de-
manding approaches.

B. Error Prediction

In addition to good estimator performance, it is, in many ap-
plications, also desirable to gain knowledge regarding the error.
Depending on the application, different features of the error can
be of interest. Here, we study the ability to estimate the quality
of the estimate of #. We primarily do so using the MSEPF de-
fined in (10).

We consider both Bayesian and Classical alternatives to
estimate the squared errors. In the Bayesian framework, we
use the MMSE estimate, which now is the posterior variance.
In total, the study includes six different methods. Four of these
are the natural Bayesian solutions that correspond to the four
different estimators that we evaluated in the previous subsection.
Again, the Jeffreys prior renders an analytical solution [see
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(32)], whereas the posterior variance of the reference prior has
to be found by numerical evaluations; see Section V-B. The
corresponding estimate for the Empirical Bayesian estimator is
given in (31), replacing A by I&x and setting K = 0, whereas the
posterior variance using the Hierarchical prior is found through
numerical integration with respect to .. Note that all these are
estimates of different entities |§ — 8|2 as @ differs. The final
two are alternative methods to estimate the squared error of the
AML estimator described in Section V-A. The first of these
is the semi-Bayesian method in which the uncertainties in the
covariance matrix are ignored. The expression for this estimator,
which we refer to as Bayesian CE, is given in (33). Finally, a
Classical CE approach is taken where the covariance expression
in (34) is used while replacing the unknown parameters # and R
with the AML and sample covariance estimates, respectively.
It is important to note that the expression in (34) actually
incorporates the uncertainties in the covariance matrix, even
though it is done in a classical manner; see the discussion
in Section V-A.

Fig. 4 shows the MSEPF for the same three scenarios that
were studied before. Perhaps the most striking property is the
poor performance of the reference prior in Fig. 4(b). A more
detailed study reveals that the error realizations are all similar
in magnitude. Therefore, the scaling factor Var{|8 — 8|?|0, R}
is small, suggesting that the MSEPF is sensitive for a bias in the
error estimate (which is the case here). Still, this behavior is very
disappointing, and we return to the understanding of this defi-
ciency below. Apart from the reference prior, it appears that the
methods that apply the Bayesian treatment of the uncertainties
in the covariance matrix offer significant improvements com-
pared to the ones that use the classical approach. The worst of
the classical methods is the Bayesian CE, which completely ig-
nores these uncertainties. This indicates the value of a proper
treatment of the unknown noise color. Again, for large enough
training data sets, all methods perform the same; here they all
approach one as [V, goes to infinity.

Of course, comparing performances between estimators that
do not have the same task (they estimate different errors) can
only be done on a survey level. Moreover, all aspects of these
estimators cannot be illustrated by studying one single feature
such as the MSEPF. To gain additional insight, we therefore
find it interesting to further consider the three measures that
do estimate the same error, namely, Jeffreys, Classical CE, and
Bayesian CE. Studying Fig. 4 closely, we note that for small sets
of training data, at least for N, = 3, the method based on the
Jeffreys priors gives an MSEPF value of less than one. It even
outperforms the estimator 5 = E{|§—6|*|6, R} (note that this
estimator cannot be implemented since it depends on the un-
known parameters # and R). To do so, it must have an ability to
track the error and “not only” give ensemble properties. To study
this in more detail, we consider the scenario given by R = Ro,
H = H,, and N, = 3, which is also interesting because of the
poor performance of the reference prior estimator. We want to
illustrate the ability to predict the errors by studying the con-
nection between large 52 and large |# — 8|>. We do this by 1)
generating a large number of realizations and 2) sorting the error
estimates from small to large and permuting the corresponding
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Fig. 4. Performance of the various methods to estimate the error in terms of
the MSEPF measure. (a) White noise scenario R = R; and H = H,. (b)
Scenario with a noise covariance with significant eigenvalue spread R = R,
and H = H;. (¢) Scenario where again, R = R, but H is an eigenvector to
R, namely, H = H,.

errors accordingly. The result for the Classical CE, Bayesian
CE, and Jeffreys methods are shown in Fig. 5 using 30 000 real-
izations. As the Bayesian CE estimates are only scaled versions
of the Classical CE estimates [see (33) and (34)], they can be
plotted in the same figure. Originally, the error curves are very
“noisy.” To enhance visibility, we average the errors over 100
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realizations, where the averaging is done on consecutive sam-
ples after they are permuted. At first, this procedure might seem
peculiar or even misleading. However, as the sorted estimates
vary very slowly, the error curve can be seen as a measure on the
average error corresponding to one particular error estimate. In
Fig. 5(a), it is apparent that the Bayesian CE method generally
underestimates the error. This is natural since a great source of
performance degradation (the uncertainties in R) is completely
ignored. Nonetheless, the MSEPF [see (10)] is limited as a result

of large variance of the error Var{ |0 — 9|2

0, R}, compared to

L \2
the entitys £ { (|9 - 0|2) ’07 R}. The Classical CE estimates,

on the other hand, are in a sense of the right magnitude but do
not have any visible connection, sample by sample, to the error.
In contrast, Fig. 5(b) shows that the estimator based on the Jef-
freys prior evidently has an ability to track the error, especially
for large errors. This ability is due to a capability of judging
the amount of influence the uncertainties in the covariance ma-
trix will have sample by sample. The fact that the Jeffreys esti-
mator slightly underestimates the error can be connected to the
discussion in Section IV. There, it was concluded that the Jef-
freys prior barely has any mass in the region where two or more
of the eigenvalues are close to identical. Since this region typi-
cally corresponds to a more difficult scenario, it is natural that
this prior therefore leads to a slight underestimation of the error.
The overall behavior of this estimator is still very satisfying and
shows the possible advantage of the Bayesian treatment of the
nuisance parameters. The ability to track the magnitude of the
errors is, of course, also present for training sets larger than
Ny = p but is then less evident. In fact, for sufficiently large
training sets, all methods give approximately the same error pre-
diction for all realizations. This stems from the fact that there is
far less uncertainty in R™! as N, becomes large; see the dis-
cussion below.

For completeness, Fig. 6 shows the corresponding sorted
plots for the remaining methods. Note again that we cannot
directly compare the ability of the different methods since they
estimate errors of different parameter estimates. However, there
are some properties that can be identified. Primarily, we observe
that these Bayesian approaches tend to have significantly less
ability to track the error. Only a small ability can be observed
for the largest errors. This can be explained by the fact that
here, there is far less uncertainty to consider. In principle, the
error has two components: one due to the noise in X and one
due to lack of knowledge about the covariance. It is clear that
if we have perfect knowledge regarding R, it is not possible
to track the magnitude of the error since the error is due to
the noise outcome only. Then, the estimate of the error should
ideally be the same for all realization: a straight line. What
can be tracked, at least to some extent, is, instead, the amount
of available and relevant information about the noise color.
Since the performance of the Empirical Bayesian, Hierarchical
Bayesian, and the Reference prior are all fairly close to the
asymptotic performance even for small training data sets, the
influence from the uncertainties in R™! on the estimate is

8For this particular scenario, and =29 AL, the estimator 2 = 0 would
render MSEPF = 1.22.
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Fig. 5. Sorted error estimates and the corresponding errors. (a) Classical CE

and the Bayesian CE approach. (b) Jeffreys prior method.

comparably small. Thereby, the error is again primarily due
to the noise outcome, and it is understood that the possibility
to track the magnitude of the error is only marginal. From
Fig. 6, we also identify the tendency of the Reference prior to
overestimate the error. Combined with a small normalization
factor Var{|0—0|2 9,R}, this renders the large MSEPF
values observed in Fig. 4. Empirical observations indicate that
the overestimation of the error is caused by having too much
density in the region where the eigenvalues for R~! are small.
This suggests that the reference prior could be adjusted, and
perhaps replaced by, for instance, 7(D, B) o 1. To investigate
and evaluate such corrections to the reference prior is, however,
left for future work.

Comparing the performance of the different methods, both
in terms of the ability to estimate the parameter and the ability
to track the error, we observe that the method based on the
Jeffreys prior shows superior performance in terms of tracking
the magnitude of the error. Meanwhile, the other methods
are significantly better at actually estimating the parameter
itself. Although a good parameter estimate leaves less room
for tracking the error, we would like to design a strategy
that performs well in both categories. In most applications,
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Fig. 6. Sorted error estimates and the corresponding errors. (a) Reference prior
solution. (b) Hierarchical Bayesian method. (c) Empirical Bayesian estimates.

however, the ability to successfully estimate the parameter
of interest is of much greater importance than approximating
the error. Therefore, for the priors considered in this paper,
the regularized solutions, along with the Reference prior, are
preferred. However, due to computational issues, the regularized
solutions are recommended.
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VIII. CONCLUSIONS

We studied a Bayesian treatment of the unknown covariance
matrix R, making up the nuisance parameter in our model. This
was performed for a number of different priors 7(R~1), some of
which enabled analytical marginalization. For the linear model,
we showed the connection between the AML estimator and the
MMSE estimator using the Jeffreys prior on 7(R 1) and a uni-
form prior on the parameter of interest. By a slight adjustment to
the Jeffreys prior, we also found a connection between the cor-
responding MMSE estimate and the regularized solution. This
in turn enabled a formal treatment of the regularization param-
eter as it could be treated as a nuisance parameter. In addition
to these, a prior called the Reference prior was derived. This
prior resolved certain inconsistencies present in the previous
proposals but, on the other hand, did not provide analytical so-
lutions. Besides offering a tool to derive powerful estimators,
simulations also showed that the Bayesian approach provides
an enhanced possibility to estimate properties of the estimation
error by treating the nuisance parameter in a sound way.

APPENDIX A
PROOF OF THEOREM 2

The measurements are i.i.d. according to f(x;|R71,6) =
CNp(xk|sk(8k), R) and f(z,|R™1) = CN,(zx|0,R). Then,
in matrix notation

f(X, Z|0,R_1) = W—P(N1+N2)|R—1|N1+N2
xetr {—R—l (ZZH + (X — S(O))(X _ S(o)H)} )
Using the notation
Q = 2Z" + (X - $(8))(X - S(8))" + A

and M = N; + N» — K 4 p, we can now marginalize with
respect to R™1

f(X,Z|0,A, K)
:/ f(X,Z|0,R"H)7n(R7YA, K)dR ™

> / r NN R M rey(~RTIQ) dR
o</CW10(R’1|Q’1,M)delc(p_/ M)|Q| M P(N1HN)

oc QM.

Implicitly, this assumes that Q is invertible. This is true, with
probability 1, if and only if Ny + Ny + rank{A} > p.

(44)

APPENDIX B
PROOF OF THEOREM 3

By Theorem 2

F(X.ZI6 A, K) o |Q ™ (45)

where Q = ZZ" + A + (X — HO)(X — HO)?, and M =
N1 + N3 — K + p. To derive the determinant |Q|, we define
U = ZZ" + A and assume that U is invertible. This is true
with probability 1 if and only if Ny +rank(A) > p. Employing



SVENSSON AND LUNDBERG: POSTERIOR DISTRIBUTIONS FOR SIGNALS IN GAUSSIAN NOISE

the general determinant relation I + AB| = |I + BA] then
gives

Q| = |U| I+ (X -HHTU (X -HE)|. (46)

Let § = (HEU 'H) 'HHU X, V = HEU 'H, and
T=I1+X4(U !'-U 'HHZU 'H) 'HYU 1)X. Then

(X —HOHPU (X -HI) =X*U 'X +"H? U 'HY
—¢"HIU 'X-X"U 'H#

—_T_ _A\H Ny
and hence =T I+(a 0) V(a 0) 47

Q| =|U[|T + (6 - 8)"V (8 - 0)]
=|U||T|[L+ T~ (6 -8)"V(8 - 0)]
=|U||T|[T+ V(6 - )T (0 — 6)"]

= [U|T[[V][V™' + (0~ )T} (0 - 6)"]. (48)
Thus, for a uniform prior on , (45) renders
FOX,Z,A K)o [V '+ (0 —8)T (8 —6)7| M. (49)
Now introduce
6=(0-6T "/ (50)
According to the change-of-variable formula
FBX,Z,A K) = [0X,Z, A, K) ‘g—z 1)
where |00/08| = |T|"; see, e.g., [2]. Hence
FOOIX,Z,A, K)o [V~ + 08" | (52)

We only miss the scaling factor for the distribution in (52) to be
completely known. The easiest way to find it is to identify the
expression as proportional to a well-known distribution. Before
we do so, we need some more notation. Let ;. be the kth column

of @ so that § = [01,0,...,0x,], and let f,.. be the vectorized
. S ~ H -H ~H
version of 0, i.e., let Oyec = [0 .0, ,...,05,]". Now, (52)

can be identified as the somewhat peculiar distribution achieved
when the columns @y, are i.i.d. according to CA (0, X), whereas
vl ~owyg (V, M — Ny). To clarify this, the columns are only
independent given the covariance matrix ¥, and will become
dependent through the outcome of 2! To justify this and to
derive the distribution

f(é):/HQ;ICNL((MO,z)ch(z—lw,NZ—K+p)dz—1

VR P e (VL8R
e 2_
/ AN (L, M — Ny) d

_ —11v—1, aa7\—1 -1
— L ’
/cw (= (V1480 1, M)z

a— L NlC(L./M) —_1|M—N, -1, pa M
R VI V88 (5
nENe(L, M) oy vyt gaT M

ST VT v e s
7LN1 L M - ~
AL M) vy g v (55)

~ o(L,M — Ny)
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From (54), it is clear that this probability density func-
tion is proportional to f(8|X,Z,A, K) in (52) and, hence,
identical. By combining this result with (51) and denoting
A = 7 ENig(L, M)/e(L, M — Ny), we obtain the desired
result

[V T|M-E
IT+ (0 —0)2EV(0— )M

Furthermore, a convenient way to derive the mean and covari-
ance matrix of #. is first to derive them for ... and then use
(50). The mean and covariance of .., for a given covariance
matrix X, are given as 0 and I ® X, respectively. As the mean is
independent of X, we have E{fy..} = 0. Further, since rla
CWr(V,M — Ni), then E{¥} = (1/~(M - N, —L)V~L
see, e.2., [29]. The covariance matrix of 6., is thereby given as

Cov{Buec} = E{fyecbin.} = ml @Vl (57)
Moreover, writing (50) in vectorized form gives
Buce = (T71/2 @ T)(Buce — Buec). (58)
In conclusion, we obtain the posterior mean
E{fvec} = bvec + (T2 @D E{frec} = biec  (59)

and covariance matrix

Cov{ove(‘,}: E{(ove(‘, - 9ve(‘,)(avec - éve(‘,)H}
= (T2 QD) E{Bbe J(T 20 )H  (60)

— T—1/2 I —141 V—l T—1/2 I —H
(TN e 1oV (T )
(61)
1
= m(T1/2 & I)(I ® V_l)(T1/2 & I)
APPENDIX C

PROOF OF THEOREM 4

First, we derive f(X,Z|d,«). In principle, this is a spe-
cial case of f(X,Z|f, A, K) given in Theorem 2. However,
Theorem 2 only gives the expression up to a proportion-
ality factor. The reason is that the prior and, hence, the
integrated likelihood is not proper in general. As this factor
depends on «, we need to calculate it. Using the notation
Q(a) = ZZ" + (X — HO)(X — HI)" + I and the prior
To(R71) = etr{—R_la}apz/c(p,p), we have (63)—(66),
shown at the top of the next page. Now, the likelihood
f(X, Z|«) is achieved through marginalization of 6

(X, Z]o) |
pz
:/f(X7Z|97a)7r(0) da“/@(a)ﬁvwda )
p> . A ) .
“w@&m/w@ +O—0)F V()0 6)| N +N2+P)gp.
(68)
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fX,206.0) = [ F(X.Z8,0. R )ma(R 1) aR
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[ RN AN —R-Y(ZZY + (X - HO)(X — HY)? + 1a)}
= aP(N1+N2) c(p,p)

_ /CWp(R_1|Q(a)_1,N1 + Ny +p)dR™

c(p, N1 + N2+ p) ar’

R ¢(p,p) | Qo) VN

(63)

dR™ o’ (64)

a?’ ¢(p, Ny + Na + p) 65)
mP(N+N2) ¢(p, p) Q) [Vr 2 +r

(66)

Here, the last step follows from (48), and we specifically note
that U, V, and T depend on «. Using that the expression in (56)
integrates to one along with K = 0 renders

/ IT() + (6 — )7 V() (8 — )|~ N1 +N=42) g
X V(@] ™ L) "D (69)

In conclusion, by inserting the result into (67), we obtain the
desired result

2
of
(X, Z]a) o [U(a)[Nt+N24p | T() |N1+N24p—L |V ()| N1
(70)
APPENDIX D

PROOF OF THEOREM 5

Using the prior o, (R™1) = etr{—R~a}a?” /c(p, p) gives

f(2le) = [ F(Zla R (R aR!
:/|R_1|N26tr{—R_1(ZZH+Ia)}
7P N2 ¢(p, p)
= /cw,,(R—1|(zzH +Ta)™L, Ny +p)dR7!

dR™hP” (71)

« o c(p, N3 + p)
7N o(p, p) |ZZ7 + Lo Notp
_ C(p,N2 +p) ap2
N2 c(p,p) |ZZ7 + TafNatr

(72)

(73)
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