
Imperial College London

Department of Computing

Inductive Learning of Answer Set Programs

Mark Law

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College London, April 2018

1

2

Declaration of Originality

I, Mark Law, declare that the work in this thesis is my own. The work of others has been appropriately

referenced. A full list of references is given in the bibliography.

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence

terms of this work.

3

4

Abstract

The goal of Inductive Logic Programming (ILP) is to find a hypothesis that explains a set of examples

in the context of some pre-existing background knowledge. Until recently, most research on ILP tar-

geted learning definite logic programs. This thesis constitutes the first comprehensive work on learning

answer set programs, introducing new learning frameworks, theoretical results on the complexity and

generality of these frameworks, algorithms for learning ASP programs, and an extensive evaluation of

these algorithms.

Although there is previous work on learning ASP programs, existing learning frameworks are either

brave – where examples should be explained by at least one answer set – or cautious where examples

should be explained by all answer sets. There are cases where brave induction is too weak and

cautious induction is too strong. Our proposed frameworks combine brave and cautious learning

and can learn ASP programs containing choice rules and constraints. Many applications of ASP use

weak constraints to express a preference ordering over the answer sets of a program. Learning weak

constraints corresponds to preference learning, which we achieve by introducing ordering examples.

We then explore the generality of our frameworks, investigating what it means for a framework to be

general enough to distinguish one hypothesis from another. We show that our frameworks are more

general than both brave and cautious induction.

We also present a new family of algorithms, called ILASP (Inductive Learning of Answer Set Pro-

grams), which we prove to be sound and complete. This work concerns learning from both non-noisy

and noisy examples. In the latter case, ILASP returns a hypothesis that maximises the coverage

of examples while minimising the length of the hypothesis. In our evaluation, we show that ILASP

scales to tasks with large numbers of examples finding accurate hypotheses even in the presence of

high proportions of noisy examples.

5

6

Acknowledgements

Firstly, I would like to express my gratitude to my PhD supervisors, Professor Alessandra Russo and

Dr Krysia Broda for their support and encouragement throughout my PhD, and for their continuous

enthusiasm and commitment, even when reading the many drafts of this thesis. Secondly, I would like

to thank my parents, who always prioritised and stressed the importance of my education (although

I’m not sure they ever expected me to still be in education at the age of 27...). I must also thank the

members of the SPIKE group at Imperial, particularly Graham Deane for introducing me to Answer

Set Programming and Andrea Gaglione for generating the journey simulation data used in Chapters 8

and 11. I would also like to thank Nikos Katzouris, Peter Schüller and Richard Evans for making their

datasets available, and for their guidance on how to use them. Finally, I thank Lucy for everything

she does.

7

8

Dedication

For my grandfather, Howell Phillips.

9

10

Contents

Notation . 18

Meta Programs . 21

1 Introduction . 25

1.1 Motivation of Learning ASP Programs . 25

1.2 Contributions . 27

1.2.1 Frameworks for Learning Under the Answer Set Semantics 27

1.2.2 Algorithms for Learning ASP Programs . 28

1.2.3 Learning ASP Programs from Noisy Examples 28

1.2.4 Publications . 29

1.3 Thesis Structure . 29

2 Preliminaries . 32

2.1 The Syntax of ASP . 32

2.1.1 Literals . 33

2.1.2 Rules . 33

2.1.3 Weak Constraints . 34

2.2 The Semantics of ASP . 34

2.2.1 Shorthands . 38

2.2.2 Optimal Answer Sets . 40

2.2.3 Alternative Definitions of Answer Sets . 41

2.2.4 Useful Results on ASP . 43

2.3 Computational Complexity . 45

3 Inductive Logic Programming . 48

3.1 An Overview of ILP . 48

3.1.1 Learning Frameworks . 48

3.1.2 Learning Algorithms . 52

3.2 Approaches to ILP Under the Answer Set Semantics 56

3.2.1 Learning Frameworks . 56

3.2.2 Learning Algorithms . 60

11

I Learning Answer Set Programs from Non-Noisy Examples 66

4 Learning from Answer Sets . 67

4.1 Language Biases and Hypothesis Spaces . 69

4.1.1 Hypothesis Length and Optimality . 70

4.2 Learning from Answer Sets . 70

4.3 Learning from Ordered Answer Sets . 73

4.4 Context-Dependent Learning from Ordered Answer Sets 76

4.4.1 Translation to Non-Context-Dependent Tasks 77

4.5 Complexity . 79

4.5.1 Learning from Answer Sets with Stratified Summing Aggregates 80

4.5.2 Relationships Between the Learning Tasks . 80

4.5.3 Complexity of Deciding Verification, Satisfiability and Optimum Verification for

each Framework . 81

4.6 Related Work . 83

4.6.1 Comparison with Traditional ILP . 83

4.6.2 Preference Learning . 88

4.6.3 Comparison with Probabilistic ILP . 91

4.6.4 Related Complexity Results . 92

4.6.5 Summary . 92

5 Generality . 93

5.1 Distinguishability . 96

5.2 The One-To-Many-Distinguishability Class of a Learning Framework 101

5.3 The Many-To-Many-Distinguishability Class of a Learning Framework 107

5.4 Discussion . 110

5.5 Related Work . 112

5.5.1 Summary . 114

6 Using ASP for Inductive Learning of Answer Set Programs 115

6.1 Meta Representation . 117

6.2 Searching for Positive and Violating Hypotheses . 123

6.3 The ILASP1 Algorithm . 128

6.3.1 Scalability Issues with the ILASP1 Approach 131

6.4 Related Work . 132

6.4.1 ASPAL . 132

6.4.2 XHAIL . 135

7 Scalable Learning of Answer Set Programs . 137

7.1 ILASP2 . 137

12

7.1.1 Violating Reasons . 139

7.1.2 Representing Violating Reasons in ASP . 141

7.1.3 The ILASP2 Meta-Level Program . 147

7.2 ILASP2i – Incremental Mode . 150

7.2.1 Finding the Relevant Examples . 151

7.2.2 The ILASP2i Algorithm . 152

7.3 Related Work . 154

7.3.1 Violating Reasons . 154

7.3.2 The Relationship Between ILASP2i and Other Incremental Techniques 154

8 Evaluation . 156

8.1 Hamilton Graphs . 156

8.2 Urban Mobility: User Journey Preferences . 159

8.3 Scheduling Preferences . 163

8.4 Agent Navigation Problem . 167

II Learning Answer Set Programs from Noisy Examples 175

9 Learning from Noisy Answer Sets . 176

9.1 Context-Dependent Noisy Learning from Ordered Answer Sets 176

9.2 The Complexity of Noisy Learning Tasks . 178

9.3 The Generality of Noisy Learning Tasks . 181

9.4 Solving ILPnoise
LOAS Tasks with ILASP2 and ILASP2i . 186

9.4.1 ILASP2 . 186

9.4.2 ILASP2i . 187

9.5 Related Work . 188

10 The ILASP3 Algorithm for Scalable Learning from Noisy Examples 190

10.1 Hypothesis Schemas . 193

10.1.1 Ordering Schemas . 194

10.2 Translating Examples to Schemas . 198

10.2.1 The Translation of an Answer Set . 198

10.2.2 Translating an Example . 201

10.2.3 Converting a Pair of Answer Sets into an Ordering Schema 202

10.2.4 The Translation of an Ordering Example . 203

10.3 Representing Hypothesis Schemas . 204

10.3.1 Representing Ordering Schemas . 206

10.4 Solving Intermediate Tasks . 208

10.5 ILASP3 . 209

10.6 Optional Features of ILASP3 . 211

13

10.6.1 Propagation . 211

10.6.2 Implication . 212

10.6.3 Schema Generalisation . 213

10.6.4 Maximum Translation . 215

10.6.5 Restricting Hypotheses to a Single Weak Constraint at each Priority Level . . 215

10.7 Related Work . 215

11 Evaluation . 218

11.1 Synthetic Datasets . 219

11.1.1 Hamilton Graphs . 219

11.1.2 Noisy Journey Preferences . 222

11.2 Comparisons with Other Algorithms . 224

11.2.1 CAVIAR Dataset . 224

11.2.2 Sentence Chunking . 227

11.2.3 Car Preference Learning . 228

11.2.4 SUSHI Preference Learning . 230

11.2.5 Comparison to �ILP . 231

12 Conclusion . 235

12.1 Completeness . 236

12.1.1 Predicate Invention . 237

12.2 Future Work . 238

Appendix 250

A Language Biases used in the evaluations of ILASP 250

A.1 The ILASP Mode Bias . 250

A.2 Language Biases Used in the Evaluation Chapters . 253

A.2.1 Hamilton Graphs . 253

A.2.2 Scheduling . 256

A.2.3 Journey Preferences . 256

A.2.4 Agent A . 257

A.2.5 Agent B . 257

A.2.6 Agent C . 257

A.2.7 Agent D . 258

A.2.8 Predecessor . 258

A.2.9 Less Than . 258

A.2.10 Member . 258

A.2.11 Connected . 259

A.2.12 Undirected Edge . 259

14

A.2.13 Sentence Chunking . 260

A.2.14 Cars . 260

A.2.15 SUSHI . 260

B Proofs and Meta-programs Omitted from the Main Thesis 262

B.1 Proofs and Meta-programs from Chapter 10 . 309

15

List of Figures

4.1 (a) shows the general paradigm of answer set programming; (b) shows the general idea

of Learning from Answer Sets. 69

4.2 Chains of polynomial reductions that hold for the three decision problems considered

in this section (each arrow represents that there is a polynomial reduction from one

framework to another). 80

8.1 (a) the average computation time and (b) the memory usage of ILASP2, ILASP2i and

ILASP2i pt for Hamilton A and B. 158

8.2 Average accuracy of ILASP2i with and without equality orderings on the task of learning

journey preferences. 161

8.3 (a) the average computation time and (b) the peak memory usage of ILASP2, ILASP2i

and ILASP2i pt for learning journey preferences. 162

8.4 Average accuracy with varying (a) numbers of examples; (b) fullness of examples. . . . 165

8.5 Average running time of ILASP2 and ILASP2i with varying numbers of examples. Each

experiment had a timeout of 600s, after which the computation was terminated (each

timeout was counted as 600s). ILASP2 timed out in 107 of the 2100 experiments and

ILASP2i timed out in 3 experiments. 166

8.6 Cells with diagonal lines are locked and the agent must visit the corresponding key

before it can enter these cells. Link cells allow the agent to jump to the indicated

destination cell. The thick black lines represent walls. 167

8.7 Average computation time and peak memory usage used by ILASP2i with varying

numbers of examples on each of the four scenarios. 173

10.1 The output of ILASP3 with the two advanced features on an ILPnoise
LOAS task. The target

hypothesis describes what it means to be a Hamiltonian graph. 214

11.1 (a) the average computation time and (b) average accuracy of ILASP3I,P for the Hamil-

ton learning task, with varying numbers of examples, and varying noise. 222

11.2 (a) and (c) show the average computation time and (b) shows average accuracy of

ILASP3I,P,SG,SWC for the journey preference learning task, with varying numbers of ex-

amples, and varying noise. Each of the point in the graphs is an average of ILASP3I,P,SG,SWC ’s

performance on 50 di↵erent tasks. 223

16

11.3 (a) An extract from the background knowledge, and (b) a CDPI example for the

CAVIAR dataset. 225

11.4 The average mean squared error of �ILP and ILASP3I,P,SG on five synthetic datasets

from [EG18]. 233

17

Notation

AS(P) The set of all answer sets of P 37

AS⇤(P) The set of all optimal answer sets of P 40

ApproxCoverage(H,T,CC) The approximate coverage of a hypothesis H over the examples in T

with respect to the coverage constraints in CC. 191

Coverage(H,T) The set of examples in T which are covered by H. 191

DISJ(SC) DISJ(SC) denotes the set of all rule-disjunctions that appear

in SC . 204

HBP The Herbrand base of P . 34

HBrel
P The relevant Herbrand base of P 44

ILPX(TX) The set of all inductive solutions of TX 48

Oid An identifier, which is unique to the object O. 117

P ⌘s Q P is strongly equivalent to Q. 38

[id1 : �1, . . . , idn : �n] This represents a mapping from rule IDs idi to the integers �i. 197

Eb and Ec Eb(P) (resp. Ec(P)) denotes the set of conjunctions of literals that are

true in at least one (resp. all) answer set of P 98

ASP
R The restricted class of ASP programs containing only normal rules,

choice rules and hard and weak constraints. 41

18

ASP
ch The restricted class of ASP programs containing only normal rules,

choice rules and hard constraints. 41

A A(P, lit) is the ASP program generated by appending lit to every

rule in P . 117

M
�1
as A function used to extract object-level answer sets from meta-level an-

swer sets . 117

M
�1
in h M

�1
in h(A) is the hypothesis extracted from the meta-level

answer set A . 117

M
�1
vi M

�1
vi (A) is the violating interpretation extracted from the meta-level

answer set A . 141

M
�1
vp M

�1
vp (A) is the violating pair extracted from the meta-level answer set

A . 141

P(T) The positive hypotheses of T . 125

P
n(T) The positive hypotheses of T of length n. 125

S(H,T) The score of the hypothesis H. 177

Slb(H,T,CC) The lower bound score of H with respect to CC. 192

V(T) The violating hypotheses of T . 125

V
n(T) The violating hypotheses of T of length n. 125

R A function used to reify ASP programs. 117

NR A function used to reify a conjunction of atoms, while also negating

each atom. 143

Rin as A shorthand for a common reification used in the ILASP meta-level

programs . 117

19

" The first non-zero element of an ordered list. The function returns 0 if

no such element exists. 197

⇤ILPX(T) and nILPX(T) The set of all optimal inductive solutions of T , and the set of all solutions

of T that are of length n, respectively. 70

agg atoms(R) The set of atoms that occur in the aggregate elements in body(R). 34

body(R) The set of literals that occur in the body of the rule R. 34

body+(R) The set of atoms that occur as positive naf-literals in the body of the

rule R. 34

body�(R) The set of atoms that occur in negative naf-literals in the body of the

rule R. 34

ground(P) The complete grounding of P . 35

groundrel(P) The relevant grounding of P . 44

head(R) The head of the rule R. 33

heads(R) The set of atoms that occur in the head of the rule R. 33

ids(S) The set of identifiers of all objects in the set S. 117

inverse inverse(o) is the CDOE o with the operator inverted. 76

sc1 [sc2 The combination of two hypothesis schemas, sc1 and sc2 203

solve(P) A function that uses Clingo to find a single optimal answer set of P if P

is satisfiable (in the case that P is unsatisfiable, nil is returned). 138

20

Meta Programs

M(T) This is the main meta-level program used by ILASP1. Its answer sets

represent the positive hypotheses of T 127

M
n(T) Used by the ILASP1 algorithm. The answer sets of this program rep-

resent the positive hypotheses of length n. 128

M1(T) M1(T) is a meta level program which transforms T so that many

object-level answer sets can be reasoned about in one meta-level

answer set. 118

MILASP2(T, V R) Given an ILP context
LOAS task T and a set of violating reasons

V R, this represents the meta-level representation used by the

ILASP2 algorithm. 148

Mfre(T,H) The meta-level program used to check the coverage of H (used by the

findRelevantExamples procedure). 152

Mosc(OSC, SM) The program Mosc(OSC, SM) is used for deciding which hypotheses

H ✓ SM conform to which ordering schemas in OSC. 206

Mpair(T,OSC, o) The program Mpair(T,OSC, o) is used to find an accepting pair of

answer sets of o, wrt a hypothesis H that does not conform to any

schema in OSC. 320

Mreduct(P, int id) This program-fragment is used to check whether the object-level answer

set represented by the in int atoms with id int id is an answer set of

the object-level program. It does so by computing the minimal model

of the reduct of the object level program. 143

21

Msc(SC, SM) The program Msc(SC, SM) is used for deciding which hypotheses H ✓

SM conform to which schemas in SC. 205

Msolve(CC, SM , E) This program is used to find the optimal hypothesis given the schemas

and coverage constraints that have been found by the ILASP3 algorithm

so far. 208

Mtrans(T, e, SC) This program searches for a hypothesis that does not conform to any

schema in SC, but does accept the example e. It finds an accepting

answer set of e wrt H. 317

Mu(P, SM , I, sc) Given an interpretation I and a hypothesis schema sc, this meta-level

program finds a hypothesis that conforms to sc, but for which I has at

least one unfounded set with respect to B [H. 314

Mviolating ord(T) This is the program fragment which gives a preference ordering to the

answer sets of the meta-level representation in ILASP2. 148

Mvio(T, S) Given a task T and a set of violating reasons S, ILASP2 uses this

program fragment to rule out any hypotheses that share any of the

violating reasons in S. 145

Mvp(T, S) This program fragment is used in order to determine whether each of a

set of violating pairs is a violating pair of another hypothesis. . 146

check(e, as id) This program fragment is used to check whether the object-level answer

set represented by the in as atoms with id as id is an is an accepting

answer set of e. 119

check ord(T, o, a1, a2) This program fragment is used to check whether the pair of object-level

answer sets represented by the in as atoms with ids a1 and a2 is an

accepting pair of answer sets of o. 121

constraint(H) The constraint used by ILASP1 to rule out a single hypothesis H. 129

22

List of Tables

3.1 A summary of some of the main algorithms for traditional ILP. 52

3.2 The main systems for ASP-based ILP . 60

4.1 A summary of the complexity of the various learning frameworks. 80

5.1 A summary of the su�cient and necessary conditions in each learning framework for

a hypothesis H1 to be distinguishable from another hypothesis H2 with respect to a

background knowledge B. 98

5.2 A summary of the relationships between the di↵erent measures of generality. 110

8.1 The running times and peak memory usages of ILASP1, ILASP2 and ILASP2i on a

single instance of Hamilton A and Hamilton B. TO stands for time out (30 minutes).

The two learning tasks in this table are available to download from https://www.doc.

ic.ac.uk/~ml1909/ILASP/. 157

8.2 The running time and peak memory usage of ILASP1, ILASP2 and ILASP2i on a single

instance of the journey preference learning problem. OOM stands for out of memory.

The learning task in this table is available to download from https://www.doc.ic.ac.

uk/~ml1909/ILASP/. 160

8.3 The running times and peak memory usages of ILASP1, ILASP2 and ILASP2i on a three

instances of the scheduling preference learning problem, with pairwise examples of 3, 4

and 5 day timetables. TO stands for time out (30 minutes). The two learning tasks in

this table are available to download from https://www.doc.ic.ac.uk/~ml1909/ILASP/.164

8.4 The running time and peak memory usage of ILASP1, ILASP2 and ILASP2i on single

instances of each of the four agent navigation scenarios. OOM stands for out of memory.

The learning tasks in this table are available to download from https://www.doc.ic.

ac.uk/~ml1909/ILASP/. 172

10.1 The optional features of ILASP3. For any subset S of {P, I,SG,MT ,SWC}, ILASP3S

denotes ILASP3 with the features in S enabled. 211

23

11.1 The running times of ILASP2 (extended), ILASP2i (extended) and ILASP3 for Hamil-

ton problems with 5% noise and varying numbers of examples. “-” represents the case

of a time out (where the system did not return a solution in 30 minutes). Note that we

do not test the e↵ect of the “single weak constraint” feature, as this task does not use

weak constraints. 220

11.2 The F1 scores for Inspire and ILASP3I,MT on the various sentence chunking tasks. We

also show the average computation time for ILASP3I,MT 227

11.3 The attributes of the car preference dataset, along with the possible range of values for

each attribute. The integer next to each value is how that value is represented in the

data. 228

11.4 The accuracy results of ILASP3SWC compared with the method in [QK17] on the car

preference dataset. 229

11.5 The attributes of the SUSHI preference dataset, along with the possible range of values

for each attribute. 230

11.6 The average accuracy results of ILASP3I,P,SWC compared with the methods used

in [QK17] on the sushi preference dataset. 231

24

Chapter 1

Introduction

Over the last two decades there has been a growing interest in Inductive Logic Programming (ILP)

[Mug91, MDRP+12], where the goal is to learn a logic program called a hypothesis, which together

with an existing background knowledge base, explains a set of observations. Advantages claimed

for ILP over statistical machine learning approaches are that the learned hypotheses can be easily

expressed in plain English and explained to a human user, and that it is possible to reason with (and

correct) learned knowledge. Much of the work on ILP frameworks has focused on learning definite

logic programs (e.g. [Mug91, BDR98, Sri01, RBR04, MDRP+12, ML13]) and normal logic programs

(e.g. [Sak01, CRL10]).

On the other hand, Answer Set Programming [GL88] is a purely declarative language for knowl-

edge representation and reasoning. Due to its non-monotonicity, ASP is particularly well suited to

common-sense reasoning [EIK09, Mue14, GK14]. The typical workflow in ASP is that a real world

problem is encoded as an ASP program, whose answer sets – a special subset of the models of the

program – correspond to the solutions of the original problem. Because of its expressiveness and

e�cient solving, ASP is also increasingly gaining attention in industry [EGL16]; for example, in

decision support systems [NBG+01], in e-tourism [RDG+10] and in product configuration [SN99].

Consequently, the scope of ILP has recently been extended to learning under the answer set seman-

tics [Ote01, Sak01, Ray09, CRL12]. Learning ASP programs allows us to learn a variety of declarative

non-monotonic, common-sense theories, including for instance Event Calculus [KS86] theories [KAP15]

and user preference models from real user data [Ath15].

1.1 Motivation of Learning ASP Programs

Learning ASP programs has several di↵erences when compared to learning Prolog programs. Firstly,

when learning Prolog programs, the goal directed SLDNF procedure of Prolog must be taken into

account. Specifically, when learning programs with negation, it must be ensured that the programs

are locally stratified, or otherwise the learned program may loop under certain queries. No such

25

CHAPTER 1. INTRODUCTION

consideration needs to be taken into account when learning ASP programs. Another key di↵erence

between ASP and Prolog is that ASP is declarative, whereas in Prolog knowledge is represented

procedurally. In ASP, logical specifications are separated from control [MT99], meaning that an ASP

program can represent the definition of a problem, rather than a procedure to find solutions to that

problem. When considering ILP, this distinction is important for two reasons: firstly, explaining a

procedure to a non-expert human may be much more di�cult than explaining the definition of what

that procedure computes; and secondly, in some problems it may be easier to learn a definition,

rather than attempting to learn an e�cient procedure. In some sense, learning Prolog programs

mixes machine learning with program synthesis, where the goal is to learn a procedure to meet a

specification. Conversely, because ASP programs separate the procedure from the specification, only

the specification needs to be learned by an ASP learner. A third, more fundamental, di↵erence of

learning ASP programs is that the theory learned can be expressed using extra types of rules that are

not available in Prolog, such as choice rules and weak constraints.

One concept which may be important when learning is the notion of choice. For example, when

learning a policy, we may need to learn that in a specific scenario, sc1, at least one of a set of possible

actions, a1, . . . , an, must be executed. This can be expressed in ASP with the following choice rule.

1{execute(a1), . . . , execute(an)}n : - holds(sc1).

This choice rule expresses that in any answer set where the scenario holds (the answer set contains

holds(sc1)), the answer set must contain between 1 and n of the atoms, execute(a1), . . . , execute(an).

In other words, whenever the scenario holds, at least one (but possibly more) of the actions must be

executed. When learning choice rules, we can also learn non-deterministic concepts such as the possible

outcomes of tossing a coin. Note that learning choice rules is di↵erent from probabilistic ILP settings

such as [DRKT07, RBZ14, Nic16] where, in similar coins problems, the focus would be on learning the

probabilities of the outcomes of tossing a coin. In simple settings when learning ASP programs, the

aim is for the answer sets of the learned program to represent the set of possible instances of a problem;

for example, the two outcomes of tossing a coin. In these cases, positive and negative examples should

be possible and impossible (partial) instances of a problem. Choice rules are useful to generate the

answer sets required to cover all the positive examples of possible instances. In some cases, hard

constraints are also necessary in the learned program in order to rule out impossible instances (given

by the negative examples).

Most of the types of rules in ASP are used for defining the answer sets of a program. Learning

these kinds of rules allows us to perform classification tasks. Another important area of machine

learning is preference learning, where the goal is to learn a user’s preferences over a set of objects,

given examples of which objects the user prefers to other objects. For instance, given a set of a

user’s pairwise preferences over possible schedules, cars, holiday packages or journeys, it is possible

to learn to predict the user’s preferences over future schedules, cars, holiday packages or journeys. If

these preferences are encoded in logic, it is even possible to search for (or in some cases, construct)

26

1.2. CONTRIBUTIONS

an optimal solution. Preferences in ASP can be encoded using weak constraints. Unlike other rules

in ASP, weak constraints do not a↵ect what is (or is not) an answer set of a program, but instead

represent a preference ordering over the answer sets of a program. For instance, a program can be

defined to represent a set of possible journeys a user might take to get from one location to another.

The weak constraints in this program could express the user’s preferences; for instance, the user may

like to minimise the walking distance, or minimise the driving distance through congested cities. It

is even possible to represent that some preferences are more important than other preferences (and

should therefore be given priority).

This thesis aims to provide the first comprehensive work on learning ASP programs including normal

rules, choice rules and both hard and weak constraints.

1.2 Contributions

1.2.1 Frameworks for Learning Under the Answer Set Semantics

The idea of learning ASP programs has been considered before [Ote01, SI09], and several frameworks1

for learning under the answer set semantics have been introduced. The main approaches can be

divided into brave learning frameworks – where examples should be covered in at least one answer set

of the learned program – and cautious learning frameworks – where examples should be covered in all

answer sets. One immediate question is whether any of these frameworks are general enough to learn

ASP programs including constructs such as choice rules or weak constraints. For that matter, what

does it even mean for a framework to be general enough to learn a particular class of programs?

We present, as a first contribution of this thesis, a definition of the generality of a learning framework

and an investigation of the generalities of existing learning frameworks under the answer set semantics.

We prove that none of the existing frameworks is general enough to learn the full class of ASP programs

that we target in this thesis.

As a second contribution, this thesis presents a collection of progressively more general frameworks

for learning ASP programs [LRB14, LRB15a, LRB16]. In particular, our most expressive framework,

called context-dependent learning from ordered answer sets (ILP context
LOAS) [LRB16], is able to learn

programs consisting of normal rules, choice rules and both hard and weak constraints. We show that

ILP context
LOAS is general enough to learn any ASP program (up to strong equivalence in ASP), making it

more general than any other existing framework.

An obvious question would be whether the extra generality of ILP context
LOAS over other frameworks means

that it is computationally harder to solve its tasks. In fact, this is not the case, and we show that

on three important decision problems – verification, satisfiability and optimum verification – each

1
In this thesis, a learning framework refers to a general setting for learning, which consists of a definition of the

structure of examples and a definition of the inductive solutions of learning tasks in the framework. A learning task is a

particular learning instance, consisting of a background knowledge, a hypothesis space and a set of examples.

27

CHAPTER 1. INTRODUCTION

of our learning frameworks has the same computational complexity as cautious induction (the exist-

ing learning framework with highest complexity). The verification problem corresponds to deciding

whether a given hypothesis is a solution of a given learning task, the satisfiability problem corresponds

to deciding whether a learning task has any solutions at all, and the optimum verification problem

corresponds to deciding whether a given hypothesis is the optimal (shortest) solution of a given task.

1.2.2 Algorithms for Learning ASP Programs

The third major contribution of this thesis is a collection of new algorithms, called ILASP, for solving

ILP context
LOAS learning tasks. In recent years, there have been several ILP systems that have used ASP

solvers to solve brave induction tasks. XHAIL [Ray09] and ILED [KAP15], for example, use an ASP

solver at various stages of their computation. The ASPAL [CRL12] and RASPAL [ACBR13] systems

go one step further, and encode an ILP task as a meta-level ASP program, whose optimal answer sets

correspond to the optimal inductive solutions of the original task. These existing systems for ILP that

use an ASP solver as a computation engine were only designed to solve brave induction tasks. Hence,

they cannot learn the full class of ASP programs targeted in this thesis.

We present a collection of progressively more e�cient ILASP algorithms for finding optimal solutions

to tasks of our learning frameworks. Each of these algorithms is sound and complete with respect to

the optimal inductive solutions of a task, meaning that if they are run on a satisfiable task, then they

are each guaranteed to return an optimal inductive solution of that task.

In Chapter 8, we evaluate these algorithms on several synthetic datasets and show that the scalability

across these algorithms increases with respect to the number of examples. In particular, the ILASP2i

algorithm scales to tasks with hundreds of examples. Conversely, we show that at least on these

synthetic datasets, the ILASP algorithms are able to learn highly accurate hypotheses using relatively

few (tens of) randomly selected examples.

1.2.3 Learning ASP Programs from Noisy Examples

The above three contributions are presented in Part I of this thesis and they refer to learning tasks

where all examples are assumed to be perfectly labeled, meaning that any inductive solution of a task

must cover every example of that task. In practice, of course, examples are unlikely to be perfectly

labeled. In real datasets, there is likely to be noise, and a more realistic approach is to search for

a hypothesis that covers the majority of examples, and weighs the example coverage against the

complexity of the hypothesis – dramatically increasing the hypothesis complexity in order to cover a

few more examples is undesirable, as these examples may well be incorrectly labeled.

Part II of this thesis generalises our work, enabling the learning of ASP programs from noisy examples.

The first step of this generalisation is to extend our learning frameworks with a notion of penalties

on examples – a cost that needs to be paid for not covering a particular example. We also extend our

28

1.3. THESIS STRUCTURE

generality and complexity results, showing that the “noisy” extension of ILP context
LOAS is more general

than similar extensions of other existing learning frameworks, and that the complexity of ILP context
LOAS

on the three decision problems presented in Part I is una↵ected by this extension.

As a second step of this generalisation to noisy tasks, we show that although our non-noisy ILASP

algorithms can be extended to solve these tasks, they may not be very e�cient. In Chapter 10, we

propose a new algorithm, called ILASP3, which uses a very di↵erent approach to the other ILASP

algorithms, as it is specifically targeted at learning in the presence of noise. ILASP3 is sound and

complete with respect to the optimal solutions of any “noisy” ILP context
LOAS task.

We evaluate ILASP3 both on synthetic datasets, and on real datasets. On the real datasets, we

compare the accuracy of hypotheses learned by ILASP3 with that achieved by the ILP algorithms

that have been applied to those datasets (in [KAP16, KSS17, QK17, EG18]). We show that, in most

cases, ILASP3 achieves a higher accuracy than the other systems.

1.2.4 Publications

Some of the work in this thesis has appeared in the following publications:

[LRB14] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set pro-

grams. In Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Fun-

chal, Madeira, Portugal, September 24-26, 2014. Proceedings, pages 311–325, 2014

[LRB15a] Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer set

programming. Theory and Practice of Logic Programming, 15(4-5):511–525, 2015

[LRB16] Mark Law, Alessandra Russo, and Krysia Broda. Iterative learning of answer set programs

from context dependent examples. Theory and Practice of Logic Programming, 16(5-

6):834–848, 2016

[LRB18a] Mark Law, Alessandra Russo, and Krysia Broda. The complexity and generality of learning

answer set programs. Artificial Intelligence, 259:110–146, 2018

[LRB18b] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs

from noisy examples. Advances in Cognitive Systems, 2018

1.3 Thesis Structure

We first recall relevant background material in Chapter 2 and discuss the relevant literature related

to Inductive Logic Programming in Chapter 3. The remainder of the thesis is spilt into two parts,

presenting our work on learning from non-noisy examples in Part I and then from noisy examples in

Part II.

29

CHAPTER 1. INTRODUCTION

Part I: Learning Answer Set Programs from Non-Noisy Examples

Chapter 4 introduces our three frameworks for ILP under the answer set semantics, which were

presented in [LRB14, LRB15a, LRB16]. This chapter also contains the complexity results for the

learning frameworks considered in this part of the thesis, in addition to complexity results for three

existing frameworks (brave induction, cautious induction and induction of stable models). We show

that our frameworks can all simulate any of the three existing frameworks.

Chapter 5 introduces three new measures of the generality of a learning framework, which were

presented in [LRB18a]. We show that under each measure, ILP context
LOAS is the most general learning

framework out of the frameworks for learning under the answer set semantics.

Chapter 6 describes the first ILASP algorithm, which was presented in [LRB14], and proves it to

be sound and complete with respect to the optimal inductive solutions of any ILP context
LOAS task.

Chapter 7 describes two ways of scaling up the first ILASP algorithm. The first, ILASP2 [LRB15a],

is based on the new notion of violating reasons which can be used to eliminate many violating hypothe-

ses. The second, ILASP2i [LRB16], is an iterative version of ILASP2 that incrementally computes a

set of relevant examples.

Chapter 8 evaluates the ILASP1, ILASP2 and ILASP2i algorithms on several synthetic datasets,

and shows that the algorithms are able to find highly accurate hypotheses from relatively few (tens of)

examples. We also show that ILASP2i can scale to tasks with hundreds of examples. The experiments

in this chapter are based on the evaluations in [LRB15a] and [LRB16].

Part II: Learning Answer Set Programs from Noisy Examples

Chapter 9 extends our learning frameworks to handle noise. We show how this extension a↵ects

the complexity and generality results presented in Chapters 4 and 5 (respectively), and explain why

our previous ILASP algorithms are not well suited to solving noisy tasks.

Chapter 10 introduces the notion of hypothesis schemas and ordering schemas, which can be used

in order to represent examples in a much more compact way. The ILASP3 algorithm presented in this

chapter is based on the idea of translating examples into these schemas, and searching for a hypothesis

that conforms to the computed schemas.

Chapter 11 evaluates the ILASP3 algorithm, both on synthetic datasets and on real datasets, and

compares it to existing ILP algorithms that have been applied to the same datasets. We show that,

in most cases, ILASP3 achieves a higher accuracy than the other systems.

30

1.3. THESIS STRUCTURE

Chapter 12 concludes the thesis, summarising the key contributions and outcomes. We also discuss

our intended directions for future work.

Appendix A formalises the ILASP language bias, and gives the language biases of the ILASP tasks

described in Chapters 8 and 11.

Appendix B presents the proofs which were omitted from the main body of the thesis.

31

Chapter 2

Preliminaries

In this chapter we recall the background material used throughout this thesis. In particular, we outline

the subset of the language of ASP used in the rest of the thesis. For a more complete overview of

the standardised syntax used by the leading ASP solvers, please see [CFG+13]. Our learning systems

accept a restricted form of ASP program, which include only normal rules, choice rules and hard and

weak constraints. We denote this class of restricted programs as ASP
R. As our systems use meta-level

ASP programs using a wider class of rules (e.g. summing aggregates), we first present this wider class

of programs, and then define the restriction.

2.1 The Syntax of ASP

This section summarises the syntax of the subset of the ASP standard from [CFG+13] that we use. A

basic symbol is a string of characters that starts with a lower case letter and contains only letters, digits

and the ‘ ’ (underscore) character. Predicates and functions are each basic symbols and a constant is

either an integer or a basic symbol.

A term is one of the following:

• A constant c.

• A variable V, where V is a string of letters and digits and underscores, beginning with an uppercase

letter.

• An arithmetic term �(t1) or (t1 ⇧ t2), where t1 and t2 are terms and ⇧ 2 {+, �, ⇥, /}. When

brackets are omitted, standard operator precedences apply (multiplication and division are given

higher precedence than addition and subtraction).

• A functional term f(t1, . . . , tn), where f is a function symbol and t1, . . . , tn are terms.

32

2.1. THE SYNTAX OF ASP

Given a functional term t of the form f(t1, . . . , tn), we refer to n as the arity of t and t1, . . . , tn as

the arguments of t.

An atom is of the form p(t1, . . . , tn), where p is a predicate symbol and t1, . . . , tn are terms. When

n = 0, we omit the brackets and write the atom as p. We define the arity and arguments of an atom

similarly to functional terms.

2.1.1 Literals

A naf-literal is either a or not a where a is an atom, and not denotes negation as failure [Cla77].

We do not consider classical negation in this thesis, as it can be trivially simulated through additional

atoms and constraints in ASP.

The binary comparison operators that we consider in this thesis are {<, >, , �, =, 6=}. A comparison

literal is of the form t1 � t2, where t1 and t2 are both terms and � is a binary comparison operator.

There is another form of literal in ASP called an aggregate. Aggregate elements are of the form

t1, . . . , tj : l1, . . . , lk, where t1, . . . , tj are terms and l1, . . . , lk are naf-literals. In general, an ag-

gregate is of the form #aggr{e1; . . . ; en} � u, where e1, . . . , en are aggregate elements, � is a binary

comparison operator, u 2 Z and #aggr is an aggregate function name, which specifies the mean-

ing of the aggregate. The two aggregate function names that we use in this thesis are #count and

#sum (we refer to the corresponding aggregate atoms as counting aggregates and summing aggregates,

respectively).

Example 2.1. #sum{1, X : p(X); 2, Y : q(Y), not r(Y)} > 3 is an aggregate atom. Its aggregate ele-

ments are 1, X : p(X) and 2, Y : q(Y), not r(Y). We will revisit the meaning of aggregates such as this

when we discuss the semantics of ASP later in this chapter, but essentially, it is satisfied whenever

the number of X’s for which p(X) is true plus double the number of Y’s for which q(Y) is true and r(Y)

is false is greater than 3.

In this thesis, the term literal is used to mean any naf-literal, comparison literal or aggregate.

2.1.2 Rules

There are several di↵erent types of rule that we consider in this thesis, each of which has various

restrictions on what can occur in the rule. Given a set of atoms h1, . . . , hj and a set of literals

b1, . . . , bk, a general rule is of the form:

h1 _ . . . _ hj : - b1, . . . , bk.

h1 _ . . . _ hj is called the head of R and is denoted head(R). We also write heads(R) to represent

the set of atoms that occur in head(R). The set of literals {b1, . . ., bk} is called the body of R and is

33

CHAPTER 2. PRELIMINARIES

denoted body(R). We also write body+(R) and body�(R) to denote the atoms that occur in positive

and negative naf-literals in body(R) (respectively). agg atoms(R) denotes the set of atoms that occur

in the aggregate elements in body(R).

A disjunctive rule is a rule with no aggregate literals. A hard constraint is a disjunctive rule R such

that heads(R) is empty. A normal rule is a disjunctive rule such that |heads(R)| = 1 and a definite

rule is a normal rule R such that body�(R) is empty. We refer to sets of disjunctive, normal and

definite rules as disjunctive, normal and definite logic programs, respectively.

2.1.3 Weak Constraints

A weak constraint W is of the form :⇠ b1, . . . , bm.[wt@lev, t1, . . . tn], where b1, . . . , bm are naf-literals

or comparison literals called (collectively) the body of W , wt and lev are terms called (respectively)

the weight and priority level of W and t1, . . . , tn are terms. We call [wt@lev, t1, . . . tn] the tail of W ,

and write tail(W) to refer to the tuple (wt, lev, t1, . . . , tn).

Weak constraints have a very di↵erent role to other rules in ASP programs. As such, it is often useful

to separate them. Given a program P , we write weak(P) and non weak(P) to refer to the set of weak

constraints in P and the set of rules in P , respectively.

2.2 The Semantics of ASP

The semantics of an ASP program is defined in terms of its answer sets. Usually, when we solve an

ASP program, we compute its answer sets, although sometimes solving an ASP program can mean

searching for a single answer set.

The Herbrand universe of any ASP program P is the set of all terms that can be constructed from

function symbols and constant symbols in P . We write HUP to denote the Herbrand universe of P .

The Herbrand base of P , denoted HBP , is the set of all atoms constructed using a predicate symbol

that occurs in P and whose arguments are terms from HUP .

The first step to solving an ASP program is to ground it. This means transforming the program into

an equivalent ground program, where any term, atom or rule is said to be ground if it contains no

variables. Given a program P :

• vars(P) is the set of all variables that occur in P (we extend this notation to terms, atoms and

rules).

• A substitution ✓ over a program P is a partial function ✓ : vars(P) ! HUP (i.e. the domain of

✓ is a subset of vars(P) and the range of ✓ is a subset of HUP).

34

2.2. THE SEMANTICS OF ASP

• Given any rule, weak constraint, term, literal or aggregate element L in P , and any substitution

✓ over P , we write ✓(L) to denote the result of applying ✓ to the variables in L that occur in the

domain of ✓.

• Given a rule or weak constraint R in P , a global substitution of R is a substitution ✓ such that

the domain of ✓ is equal to those variables in R that occur at least once outside of the aggregate

elements in R.

Example 2.2. Consider the rule R, p(X) : - q(X, Y),#sum{Z, X : q(X, Z)} < Y. Any global substitution of

R must map the variables X and Y, but not the variable Z (as Z only occurs in an aggregate element).

One global substitution is ✓ = {X ! 1, Y ! 2}. Applying ✓ to R (denoted ✓(R)) yields the rule

p(1) : - q(1, 2),#sum{Z, 1 : q(1, Z)} < 2.

Having defined substitutions over terms, atoms, rules and weak constraints, we can now describe the

ground instances of each. As variables that occur in an aggregate element in a rule (but not in the rest

of the rule) are considered “local” to the aggregate element, rules with aggregates are ground in two

steps: first, the “global” variables that occur outside the aggregate elements are ground, and then the

local variables are ground. We define the ground instances of rules and weak constraints as follows:

• Given an aggregate literal a of the form #aggr{e1; . . . ; en} � u, the ground instantiation of a

is the aggregate #aggr{g1; . . . ; gm} � u, where {g1, . . ., gm} = {✓(ei) | i 2 [1, n], ✓ : vars(P) !

HUP , st ✓(ei) is ground}.

• Given a rule or weak constraint R the ground instances of R can be computed in two steps:

1. Compute the set GR of all rules R0 for which there is a global substitution ✓ of R such that

R0 = ✓(R).

2. For each aggregate literal a in GR, replace a with the ground instantiation of a.

Example 2.3. Consider a program P such that HBU = {1, 2}. Reconsider the rule R from Exam-

ple 2.2. Given this Herbrand universe, there are four global substitutions of R ({{X ! 1, Y ! 1}, {X ! 1,

Y ! 2}, {X ! 2, Y ! 1}, {X ! 2, Y ! 2}}). This leads to four ground instances of R – one for each

global substitutions.

Consider the substitution ✓ = {X ! 1, Y ! 2}. ✓(R) contains the aggregate #sum{Z, 1 : q(1, Z)} < 2.

The substitutions for the single aggregate element in this literal are {Z ! 1} and {Z ! 2}, meaning

that the ground instantiation of this literal is #sum{1, 1 : q(1, 1); 2, 1 : q(1, 2)} < 2. Hence, one of the

four ground instances of R is the rule p(1) : - q(1, 2),#sum{1, 1 : q(1, 1); 2, 1 : q(1, 2)} < 2.

The complete grounding of a program P , denoted ground(P) is the program consisting of all ground

instances of all rules and weak constraints in P . As in many cases this grounding is infinite, in practice

ASP solvers use a smaller equivalent ground program called the relevant grounding. In Section 2.2.4,

35

CHAPTER 2. PRELIMINARIES

we present the notion of relevant grounding used in this thesis. We next define the semantics of ground

ASP programs.

A Herbrand interpretation I of a program P is an assignment from every atom inHBP to a truth value,

> or ? (true or false). By convention, we write a Herbrand interpretation I as the set of all atoms

in HBP that I assigns to >. As in some parts of this thesis, it is necessary to treat interpretations

separately from any program (e.g. when the program has yet to be learned, and is thus unknown), we

will loosely refer to any set of atoms as an interpretation.

We now define what it means for a Herbrand interpretation I to satisfy ground naf-literals and

comparison literals in a program.

• Let a be an atom. I satisfies a if and only if a 2 I

• Let a be an atom. I satisfies not a if and only if a 62 I

• Let l be the comparison literal t1 � t2. I satisfies l if and only if t1 � t2, where the <, >, ,

and � operators are defined lexicographically over ground terms.

Given any interpretation I and any aggregate literal a of the form #aggr{e1; . . . ; en} � u, we write

tuples(a, I) to denote the set of tuples (t1, . . . , tj) for which there is at least one aggregate element

t1, . . . , tj : l1, . . . , lk in {e1, . . ., en} such that l1, . . . , lk are all satisfied by I.

• Let c be the ground counting aggregate #count{e1; . . . ; en} � u. I satisfies c if and only if

|tuples(c, I)| � u.

• Let s be the ground summing aggregate #sum{e1; . . . ; en} � u. I satisfies s if and only if⇣P
(wt,t1,...,tj)2tuples(s,I),wt2Zwt

⌘
� u.

• Let l1, . . . , ln be a set of literals. I satisfies the conjunction l1, . . . , ln if and only if I satisfies

each literal in {l1, . . ., ln}.

• Let l1, . . . , ln be a set of literals. I satisfies the disjunction l1 _ . . . _ ln if and only if I satisfies

at least one literal in {l1, . . ., ln}. Note that this means that the head of a hard constraint

cannot be satisfied by any interpretation.

• A rule R is satisfied by I if either head(R) is satisfied by I or body(R) is not satisfied by I.

A Herbrand interpretation I is said to be a (Herbrand) model of a program P if it satisfies every rule

in P (i.e. for every rule R such that I satisfies the body of R, I must also satisfy the head of R). A

model I of a program P is said to be a minimal model of P if no proper subset of I is a model of P .

Fact 2.1. [VEK76] Any definite logic program P has exactly one minimal model. We call this model

the least Herbrand model of P , and denote it M(P).

36

2.2. THE SEMANTICS OF ASP

In order to determine whether an interpretation I is an answer set (often called a stable model) of a

program P , we construct the reduct [GL88] of P with respect to I. Many definitions of the reduct1 of

an ASP program exist [Lif08]. We follow the reduct defined in [CFG+13].

Definition 2.1. ([CFG+13]) The reduct of a ground program P with respect to an interpretation I

(denoted P I) is the program:

n
h1 _ . . . _ hj : -b1, . . . , bk 2 non weak(P)

��� b1, . . . , bk is satisfied by I
o

An interpretation I is said to be an answer set of a program P if and only if I is a subset-minimal

model of P I (i.e I is a model of P I and no proper subset of I is a model of P I). The answer sets

of a non-ground program P are the answer sets of the complete grounding of P . We write AS(P) to

denote the set of all answer sets of P .

Example 2.4. Consider the program P below.

P =

8
><

>:

p : - b, not q.

q : - not p.

a _ b : -#sum{1 : p; 2 : q} < 2.

9
>=

>;

Consider the interpretation X1 = {q}, the reduct of P wrt X1 (denoted PX1) is as follows:

PX1 =
n

q : - not p.
o

This reduct has two minimal models, {p} and {q}, one of which is X1, and hence X1 is an answer set

of P . The reducts for all 16 Herbrand interpretations of P (and their minimal models) are summarised

by the following table.

X’s PX Minimal models of PX X 2 AS(P)?

{q} q : - not p. {p} and {q} Yes

{p, b}
p : - b, not q.

a _ b : -#sum{1 : p; 2 : q} < 2.
{p, b}, {a} and {q} Yes

{a, b}, {b}

p : - b, not q.

q : - not p.

a _ b : -#sum{1 : p; 2 : q} < 2.

{p, a}, {p, b} and {q} No

;, {a}
q : - not p.

a _ b : -#sum{1 : p; 2 : q} < 2.
{p, a}, {p, b} and {q} No

{p}, {p, a} a _ b : -#sum{1 : p; 2 : q} < 2. {a}, {b} and {q} No

{p, q}, {p, q, a},

{p, q, b}, {p, q, a, b}
; ; No

{p, a, b}
p : - b, not q.

a _ b : -#sum{1 : p; 2 : q} < 2.
{p, b}, {a}, {q} No

{q, a}, {q, b}, {q, a, b} q : - not p. {p} and {q} No

1
For the subset of ASP programs considered in this thesis, these definitions are all equivalent. In general, however,

when programs contain unstratified aggregates, there are multiple di↵erent semantics for ASP.

37

CHAPTER 2. PRELIMINARIES

We say a program P bravely entails an atom a (written P |=b a) if there is at least one answer set A

of P such that a 2 A. Similarly, P cautiously entails a (written P |=c a) if for every answer set A of

P , a 2 A. Two ASP programs P and Q are strongly equivalent (written P ⌘s Q) if for every ASP

program R, AS(P [R) = AS(Q [R).

Example 2.5. Consider the programs P1, P2 and P3 below.

P1 =

(
p.

q.

)
P2 =

(
p : - q.

q.

)
P3 =

(
p : - not r.

q.

)

All three programs have the same answer sets (a single answer set {p, q}). P1 and P2 are strongly

equivalent, as for any program R, AS(P1 [R) = AS(P2 [R) – regardless of the rules R contains,

any answer set of each program must contain both p and q. P3 is not strongly equivalent to either

P1 or P2. To see this, consider the program R = {r.}. AS(P1 [R) = AS(P2 [R) = {{p, q, r}}, but

AS(P3 [R) = {{q, r}}.

2.2.1 Shorthands

A choice rule is of the form lb{h1, . . . , hm}ub : - b1, . . . , bn, where lb and ub are integers, h1, . . . , hm are

atoms and b1, . . . , bn are naf-literals or comparison literals. It is a shorthand for the rules:
8
>>>>>><

>>>>>>:

h1 _ bh1 : - b1, . . . bn.
. . .

hm _ bhm : - b1, . . . bn.
: - b1, . . . bn,#count{h1 : h1; . . . ; hm : hm} < lb.

: - b1, . . . bn,#count{h1 : h1; . . . ; hm : hm} > ub.

9
>>>>>>=

>>>>>>;

where bh1, . . . , bhm are each new atoms that do not occur anywhere in the rest of the program. Essentially,
bhi stands for the negation of h1. Note that each hi occurs both on the left and right hand side of the

:’s in aggregate elements. On the left hand side, it is treated as a term (the predicate symbol is treated

as a function symbol2). Using the atom as a term on the left hand side ensures that each aggregate

element is counted as unique3.

Example 2.6. Consider the choice rule 1{p(X), q(X), r(X, Y)}2 : - s(X, Y). This rule represents the set

of rules below:
8
>>>>>>><

>>>>>>>:

p(X) _[p(X) : - s(X, Y).
q(X) _[q(X) : - s(X, Y).
r(X, Y) _ \r(X, Y) : - s(X, Y).
: - s(X, Y),#count{p(X) : p(X); q(X) : q(X); r(X, Y) : r(X, Y)} < 1.

: - s(X, Y),#count{p(X) : p(X); q(X) : q(X); r(X, Y) : r(X, Y)} > 2.

9
>>>>>>>=

>>>>>>>;

2
ASP allows the same symbol to be used as both a predicate and a function symbol.

3
If two or more aggregate elements share exactly the same list of terms on the left hand side of the :’s then they are

counted only once, as the set of tuples that are counted does not allow for duplicate elements.

38

2.2. THE SEMANTICS OF ASP

Loosely speaking, the choice rule states that for every X and Y, if s(X, Y) is true then between 1 and

2 of the atoms p(X), q(X) and r(X, Y) must be true. The first three rules in the translation above

state that if s(X, Y) is true, then all combinations of the possible truth values of the atoms in the head

of the choice rule should be generated as possible answer sets. The final two rules are constraints

which enforce the lower and upper bounds of the choice rule (respectively). In Section 2.2.3, we

define the semantics of choice rules directly (without the need for a translation). This definition is

equivalent to using this translation and the standard definition of the ASP semantics (using the reduct

in Definition 2.1) [LRB15b].

As the summing aggregates used in this thesis take a very specific form, we introduce another short-

hand, which is similar to the summing aggregates used in the input of the Clingo 3 solver [GKK+10]. A

simple summing aggregate is of the form #sum{a1 = w1, . . . , an = wn} � u, where a1, . . . , an are atoms

and w1, . . . , wn are integers. It is a shorthand for the aggregate #sum{w1, a1 : a1; . . . ; wn, an : an} � u

(where on the left hand side of the :’s, the ai atoms are treated as functional terms rather than as

atoms).

Example 2.7. Consider the simple summing aggregate #sum{p(X) = X, q(X) = 3} < 40. The truth

value of the aggregate (wrt an interpretation) can be evaluated directly. An interpretation I satisfies

this aggregate if and only if the following inequality holds:

0

B@3⇥
�� {t | q(t) 2 I}

�� +
X

p(t)2I,t2Z

t

1

CA < 40

The standard aggregate AGG represented by this simple summing aggregate is #sum{X, p(X) : p(X);

3, q(X) : q(X)} < 40. This aggregate is satisfied by any interpretation I if and only if the following

inequality holds:

0

@
X

(wt,t1,...,tn)2tuples(AGG,I),wt2Z
wt

1

A < 40

For any interpretation I, tuples(AGG, I) = {(t, p(t)) | p(t) 2 I} [{(3, q(t)) | q(t) 2 I}. Hence the

inequality is equivalent to:

0

B@
X

q(t)2I

3 +
X

p(t)2I,t2Z

t

1

CA < 40

This is equivalent to the inequality derived directly from the original simple summing aggregate.

39

CHAPTER 2. PRELIMINARIES

2.2.2 Optimal Answer Sets

Unlike hard constraints in ASP, weak constraints do not a↵ect what is (or is not) an answer set of a

program P . Hence Definition 2.1 also applies to programs with weak constraints. Weak constraints

create an ordering over AS(P) specifying which answer sets are “preferred” to others. At each priority

level lev that appears in weak(P), the aim is to discard any answer set that does not minimise the

sum of the weights of the ground weak constraints with level lev whose bodies are true. The higher

levels are minimised first. The terms in the tail of a weak constraint specify which ground weak

constraints should be considered unique.

Definition 2.2. Let P be a ground program and let I be an interpretation. weak(P, I) is the set:

(
(wt, lev, t1, . . . , tn)

�����
:⇠ b1, . . . , bk.[wt@lev, t1, . . . , tn] 2 weak(P)

b1, . . . , bk is each satisfied by I

)

The score of I at a priority level lev (denoted P I
lev) is equal to the sum:

X

(wt, lev, t1, . . . , tn)2weak(P,I),wt2Z

wt

Given a pair of interpretations I1 and I2, I1 is said to dominate I2 (denoted I1 �P I2) if there is a

priority level lev such that P I1
lev < P I2

lev and there is no lev0 such that lev0 > lev and P I1
lev0 > P I2

lev0 . An

answer set A of a program P is said to be optimal if there is no answer set A0
2 AS(P) that dominates

A. We write AS⇤(P) to denote the set of optimal answer sets of P .

Example 2.8. Let P be the program {0{p(1), p(2), p(3)}3.}. P has 8 answer sets, which are the

various combinations of making each of the three p atoms true or false. Consider the two weak

constraints :⇠ p(X).[1@1] and :⇠ p(X).[1@1, X]. The first weak constraint states that if any of the p

atoms is true then a penalty of 1 must be paid. This penalty is only paid once, regardless of whether

one, two or three of the p atoms are true. Conversely, the second weak constraint says that a penalty

of 1 must be paid for each p atom that is true. In both cases, ; is the only optimal answer set; however,

in the first case, none of the remaining answer sets dominate each other, whereas in the second case,

the answer sets with only one p atom dominate those with two p atoms, which in turn each dominate

the single answer set with three p atoms.

We now introduce some extra notation which will be useful in later chapters. Given a set of interpre-

tations S, the set ord(P, S) captures the ordering of the interpretations given by the weak constraints

in P . It generalises the dominates relation; so it not only includes hA1, A2, <i if A1 �P A2, but it also

includes tuples for other binary comparison operators. Formally, hA1, A2, <i2ord(P, S) if A1, A2 2 S

and A1 �P A2; hA1, A2, >i2ord(P, S) if A1, A2 2 S and A2 �P A1; hA1, A2,i 2 ord(P, S) if A1, A2 2

S and A2 6�P A1; hA1, A2,�i 2 ord(P, S) if A1, A2 2 S and A1 6�P A2; hA1, A2,=i 2 ord(P, S) if

40

2.2. THE SEMANTICS OF ASP

A1, A2 2 S, A1 6�P A2 and A2 6�P A1; hA1, A2, 6=i 2 ord(P, S) if A1, A2 2 S and A1 �P A2 or

A2 �P A1. Given an ASP program, we write ord(P) as a shorthand for ord(P,AS(P)).

2.2.3 Alternative Definitions of Answer Sets

The meta-level programs we introduce in this thesis use each of the components described so far;

however, the programs learned by our algorithms take a slightly more restricted form. We introduce

the restricted class ASP
R to denote the class of programs containing only normal rules, choice rules

and hard and weak constraints (i.e. programs with no aggregates in the body and no disjunction).

Unless stated otherwise, we assume all background knowledges and hypothesis spaces in this thesis

to be ASP
R programs. We also use ASP

ch to denote the class of programs containing normal rules,

choice rules and hard constraints – i.e. the ASP
R programs with no weak constraints. We now

present two definitions of answer sets of ASP
R programs, which are both equivalent to the definition

in [CFG+13].

Simplified Reduct for Choice Rules

In this section, we present our simplified semantics for programs in ASP
R. This does not involve

the translation of choice rules in Section 2.2.1 before solving; instead it uses an extended definition of

reduct. This removes the need to “invent” extra helper (bhi) atoms that do not appear in the answer

sets of a program. It also has the added benefit that the reduct is guaranteed to have exactly one

minimal model.

Definition 2.3. The simplified reduct of a ground program P with respect to an interpretation I, is

constructed in the following 4 (sequential) steps.

1. Remove any rule whose body contains not a for some a 2 I and remove any negative literals

from the remaining rules.

2. For any constraint R, : -body(R), replace R with ? : -body+(R) (? is a new atom which cannot

appear in any answer set of P).

3. For any choice rule R, l{h1, . . . , hn}u : -body(R) such that l  |I \ {h1, . . ., hn}|  u, replace R

with the set of rules {hi : -body+(R) | hi 2 I \ {h1, . . ., hn}}.

4. For any remaining choice rule R, replace R with the constraint ? : -body+(R).

Example 2.9. Consider the program P .

P =

8
><

>:

1{p; q}1 : - r.

r.

: - not p, r.

9
>=

>;

41

CHAPTER 2. PRELIMINARIES

The simplified reduct wrt the interpretation I = {p, r} is

(
p : - r.

r.

)

The minimal models of the reduct is I, and hence, I is an answer set of P .

Consider now the alternative interpretation I 0 = {q, r}.

The simplified reduct wrt I 0 is

8
><

>:

q : - r.

r.

? : - r.

9
>=

>;

The minimal model of the reduct is: {q, r, ?}. Hence, as ? 62 I 0, I 0 62 AS(P).

Consider the third interpretation I 00 = {p, q, r}.

The simplified reduct wrt I 0 is

(
? : - r.

r.

)

The minimal model is {r, ?}, and hence, as {?} 62 I 00, I 00 62 AS(P).

In contrast, the standard reduct of P wrt I 00 is

8
>>>>>><

>>>>>>:

p _ bp : - r.
q _ bq : - r.
: - r,#count{p : p; q : q} < 1.

: - r,#count{p : p; q : q} > 1.

r.

9
>>>>>>=

>>>>>>;

Similarly it can be seen that I 00 is not a minimal model of the standard reduct, as it violates the second

constraint.

Theorem 2.10. ([LRB15b]) Given any ASP
R program P , an interpretation I is in AS(P) if and

only if A is equal to the minimal model of the simplified reduct of P with respect to I.

In the rest of this thesis, whenever P is an ASP
R program, we use P I to denote the simplified reduct,

rather than the standard reduct.

Unfounded Sets

We now recall an alternative definition of answer sets, based on the notion of unfounded sets [LRS97].

This alternative definition is central to the ILASP3 algorithm presented in Chapter 10.

Definition 2.4. Let P be a program and I be an interpretation. For any subset U ✓ I, U is an

unfounded subset of I wrt P i↵ there is no rule R 2 P that satisfies conditions 1-3.

1. 9h 2 heads(R) such that h 2 U

2. body+(R) ✓ I\U

42

2.2. THE SEMANTICS OF ASP

3. body�(R) \ I = ;

The answer sets of a program can be defined as the models of the program which have no non-empty

unfounded subsets. As the original definitions of unfounded sets do not consider choice rules, for

completeness we prove in Lemma 2.11 that this result holds for ASP
R programs.

Lemma 2.11. (proof on page 262)

Let P be an ASP
R program and I be an interpretation. I is an answer set of P if and only if I is a

model of P and there is no non-empty unfounded subset of I wrt P .

2.2.4 Useful Results on ASP

In this section, we present some results about ASP programs that are used throughout the thesis.

Lemma 2.12. (proof on page 264)

Let P be any ASP program, and C be an ASP program containing only hard constraints. A 2

AS(P [C) if and only if A 2 AS(P) and A does not satisfy the body of any instance of any constraint

in C.

Another useful result that we use in the proofs in this thesis is the Splitting Set Theorem [LT94].

This theorem relies on the notions of a splitting set and the partial evaluation of a logic program.

Given a ground disjunctive logic program P , a set U ✓ HBP is a splitting set of P if and only if

for every rule R 2 P such that heads(R) \ U 6= ;, heads(R) [body+(R) [body�(R) ✓ U . Given a

ground rule R and a set of atoms U , we write R\U to denote the rule R with all (positive or negative)

occurrences of atoms in U removed from the body of R. Given a program P a splitting set U of P and

a set X ✓ U , the partial evaluation of P with respect to U and X, written eU (P,X), is the program

{R\U | R 2 P, heads(R) \ U = ;, (body+(R) \ U) ✓ X, body�(R) \X = ;}.

Theorem 2.13. ([LT94]) Given any ground ASP program P , and splitting set U of P :

AS(P) =

(
X [Y

�����
X 2 AS({R 2 P | heads(R) \ U 6= ;}),

Y 2 AS(eU (P,X))

)

The intuition behind the splitting set theorem is that if a set of atoms U is known to split the program

P , then we can find the answer sets of the subprogram that defines the atoms in U first. For each of

these answer sets X, we can partially evaluate P using X and solve this partially evaluated program

for answer sets. The splitting set theorem then guarantees that for each answer set Y of the partially

evaluated program, X[Y is an answer set of P . Furthermore, every answer set of P can be constructed

in this way. Sometimes in our proofs, we use the following Corollary of the Splitting Set Theorem.

43

CHAPTER 2. PRELIMINARIES

Corollary 2.14. Given any ground ASP program P , and splitting set U of P :

AS(P) =

(
Y

�����
X 2 AS({R 2 P | heads(R) \ U 6= ;}),

Y 2 AS({R 2 P | heads(R) \ U = ;} [{a. | a 2 X})

)

Grounding

Recall that the first step of solving any ASP program is to ground it. In principle, this means that

a program P should be replaced with the set of all ground instances (within the language of P) of

rules in P . In general, this grounding is infinite; however, there are some cases where even though

the complete grounding is infinite, there is an equivalent subset of the grounding, called the relevant

grounding, which is finite.

Definition 2.5. Let P be any ASP program. fP : P(HBP) ! P(HBP), is the function fP (I) =

I [{h|R 2 ground(P), body+(R) is satisfied by I, h 2 heads(R)}

Lemma 2.15. Consider any ASP program P and any two interpretations I1 and I2. If both I1 and

I2 are fixpoints of fP then I1 \ I2 is a fixpoint of fP .

Proof. Assume that I1 and I2 are fixpoints of fP for some program P . Assume for contradiction that

9a 2 fP (I1 \ I2) such that a 62 I1 \ I2. There are two cases: either a 62 I1 or a 62 I2. Without

loss of generality, assume that a 62 I1. As I1 = fP (I1), this means that @R 2 ground(P) such that

a 2 heads(R) and body+(R) ✓ I1. Hence, @R 2 ground(P) such that a 2 heads(R) and body+(R) ✓

I1 \ I2. This means that a can not be in fP (I1 \ I2), contradicting our initial assumption.

Corollary 2.16. Given any program P , fP has exactly one least fixpoint.

Proof. HBP is a fixpoint, so there must be at least one least fixpoint. Now assume for contradiction

that both I1 and I2 are least fixpoints and I2 is not equal to I1. Then I1 \ I2 is also a fixpoint, and

it must be a strict subset of at least one of I1 and I2. This contradicts that both I1 and I2 are least

fixpoints. Hence there is exactly one least fixpoint of fP .

Given any program P , we call the least fixpoint of fP the relevant Herbrand base of P , and denote it

as HBrel
P .

Definition 2.6. Let P be any ASP
R program. The relevant grounding of P , written groundrel(P)

is the set of all rules R 2 ground(P) such that for each a 2 body+(R), a 2 HBrel
P .

Theorem 2.17 shows that if HBrel
P is finite, then groundrel(P) is also finite and AS(groundrel(P)) =

AS(P). We will use this result extensively when proving termination of our algorithms, as any finite

ground ASP program can be solved in a finite time.

44

2.3. COMPUTATIONAL COMPLEXITY

Theorem 2.17. (proof on page 265)

Let P be any ASP
R program such that |HBrel

P | is finite.

1. |groundrel(P)| is finite

2. AS(P) = AS(groundrel(P))

2.3 Computational Complexity

We assume the reader is familiar with the fundamental concepts of complexity, such as Turing machines

and reductions; for a detailed explanation, see [Pap03].

Many of the decision problems for ASP are known to be complete for classes in the polynomial

hierarchy [Sto76]. We now summarise the classes of the polynomial hierarchy. P is the class of

all problems which can be solved in polynomial time by a Deterministic Turing Machine (DTM);

⌃P
0 = ⇧P

0 = �P
0 = P ; �P

k+1 = P⌃P

k is the class of all problems which can be solved by a DTM in

polynomial time with a ⌃P
k oracle; ⌃P

k+1 = NP⌃P

k is the class of all problems which can be solved by a

non-deterministic Turing Machine in polynomial time with a ⌃P
k oracle; and finally, ⇧P

k+1 = co-NP⌃P

k

is the class of all problems whose complement which can be solved by a non-deterministic Turing

Machine in polynomial time with a ⌃P
k oracle. ⌃P

1 and ⇧P
1 are NP and co-NP (respectively), where

NP is the class of problems which can be solved by a non-deterministic Turing machine in polynomial

time and co-NP is the class of problems whose complement is in NP .

DP is the class of problems that can be mapped to a pair of problems D1 and D2 such that D1 2 NP

and D2 2 co-NP . It is well known that the following inclusions hold: P ✓ NP ✓ DP ✓ �P
2 ✓ ⌃P

2

and P ✓ co-NP ✓ DP ✓ �P
2 ✓ ⇧P

2 [Pap03].

Complexity results for two classes of ASP programs are useful for later chapters. First we recall the

definition of aggregate stratification from [FPL11]. We slightly simplify the definition by considering

only ground programs such that every rule has an atom as its head. For any program fragment P , let

atoms(P) denote the set of all atoms that occur in P .

Definition 2.7. A ground program P , in which aggregates occur only in bodies of rules, is stratified

on an aggregate agg if there is a level mapping || || from HBP to ordinals, such that for each rule

R 2 P , the following holds:

1. 8b 2 atoms(body(R)) : ||b||  ||head(R)||

2. If agg 2 body(R), then for each atom a 2 atoms(agg): ||a|| < ||head(R)||

P is said to be aggregate stratified if it is stratified on every aggregate in P .

45

CHAPTER 2. PRELIMINARIES

The intuition is that aggregate stratification forbids recursion through aggregates. Aggregate stratifi-

cation has nothing do with negation as failure, and therefore, whether a program is aggregate stratified

is unrelated to whether it is stratified in the usual sense.

Note that constraints and choice rules can be added in to any aggregate stratified program without

breaking stratification so long as no atoms in the head of the choice rule are on a lower level than any

atom in the body. This is illustrated by the following example.

Example 2.18. Any constraint : - b1, . . . , bn, not c1, . . . , not cm can be rewritten as s : - b1, . . . , bn,

not c1, . . . , not cm, not s where s is a new atom. For any mapping proving that the rest of the

program is stratified on an aggregate, s can be added to the mapping, taking a higher level than any

other atom.

A choice rule lb{h1, . . . , ho}ub : - b1, . . . , bn, not c1, . . . , not cm can be rewritten as:

h1 : - b1, . . . , bn, not c1, . . . , not cm, not h01.

h01 : - b1, . . . , bn, not c1, . . . , not cm, not h1.

. . .

ho : - b1, . . . , bn, not c1, . . . , not cm, not h0o.

h0o : - b1, . . . , bn, not c1, . . . , not cm, not ho.

s : - b1, . . . , bn, not c1, . . . , not cm,#count{h1 : h1; . . . ; hn : hn} < lb, not s.

s0 : - b1, . . . , bn, not c1, . . . , not cm,#count{h1 : h1; . . . ; hn : hn} > ub, not s0.

where h01, . . . , h
0
o, s, s

0 are all new atoms. Provided the rest of the program is aggregate stratified, then

this new one is too. For any mapping that proves that the rest of the program is stratified on an

aggregate, we can extend the mapping by assigning s and s0 a new highest level and each h0i the same

level as hi (if they do not occur in the rest of the program then they should be given a new level one

below s and s0). Note that the whole program can be shown to be stratified on the two new counting

aggregates by using a level mapping that maps s and s0 to 2 and every other atom to 1. Hence, the

whole program is aggregate stratified, as it is stratified on every aggregate in the program. To avoid

constantly using this mapping, we will refer to programs with choice rules and constraints as also being

aggregate stratified.

Lemma 2.19. [FPL11] Deciding whether an aggregate stratified propositional program without dis-

junction cautiously entails an atom is co-NP -complete.

Corollary 2.20. Deciding whether an aggregate stratified propositional program without disjunction

bravely entails an atom is NP -complete.

Proof. We first show that deciding whether an aggregate stratified propositional program without

disjunction bravely entails an atom is in NP . We do this by showing that there is a polynomial

46

2.3. COMPUTATIONAL COMPLEXITY

reduction from this problem to the complement of the problem in Lemma 2.19 (which by definition of

co-NP must be in NP). The complement of the problem in Lemma 2.19 is deciding whether a non

disjunctive aggregate stratified program does not cautiously entail an atom. Take any non-disjunctive

aggregate stratified program P and any atom a. P |=b a if and only if P [{neg a : - not a.} 6|=c neg a.

So the decision problem is in NP .

It remains to show that deciding whether an aggregate stratified propositional program without dis-

junction bravely entails an atom is NP -hard. We do this by showing that any problem in NP can

be reduced in polynomial time to deciding the satisfiability of an aggregate stratified propositional

program without disjunction.

Consider an arbitrary NP problem D. The complement of D, D̄, must be in co-NP (by definition

of co-NP). Hence, by Lemma 2.19, there is a polynomial reduction from D̄ to deciding whether an

aggregate stratified propositional program without disjunction cautiously entails an atom.

We define the polynomial reduction from D to deciding whether an aggregate stratified propositional

program without disjunction bravely entails an atom as follows: for any instance I of D, let P and a

be the program and atom given by the polynomial reduction from the complement of I to cautious

entailment; define P 0 as the program P [{neg a : - not a.} (where neg a is a new atom). I returns

true if and only if P 6|=c a if and only if P 0
|=b neg a. Hence, as P 0 is still aggregate stratified (the new

atom neg a can be mapped to the highest ordinal used by any level mapping that is used to prove

that P is stratified on an aggregate), this is a polynomial reduction from D to deciding whether an

aggregate stratified propositional program without disjunction bravely entails an atom. Hence, the

decision problem is NP -hard.

Lemma 2.21. [EG95] Deciding whether a disjunctive logic program has at least one answer set is

⌃P
2 -complete.

We have now summarised the main background material on ASP that is necessary to understand

the rest of the thesis. In the next chapter, we review the relevant literature on Inductive Logic

Programming before presenting our own work.

47

Chapter 3

Inductive Logic Programming

Traditionally, Inductive Logic Programming has addressed the problem of learning Prolog programs.

Often these programs have no negation as failure (i.e. they consist of definite clauses). In Section 3.1

we give a short overview of ILP, introducing the main frameworks and algorithms for learning. This

overview is by no means complete, but serves as a means of comparison between traditional approaches

and recent approaches to learning ASP programs. In Section 3.2 we then review the state of the art

frameworks and algorithms for learning under the answer set semantics.

3.1 An Overview of ILP

3.1.1 Learning Frameworks

Research in ILP has mainly addressed three learning settings: learning from entailment, learning from

interpretations and learning from satisfiability. In this section we present the definitions of each, and

give examples of simple learning tasks.

We refer to a theoretical setting for ILP as a learning framework. We will usually write ILPX to

denote a framework X. A particular problem associated with a framework X is called a learning task

of ILPX and will be denoted TX
1. A learning task TX will usually consist of a background knowedge

B, which is a logic program, a hypothesis space SM , defining the set of rules that are permitted to be

in a hypothesis and some examples, the form of which varies between the learning frameworks. Every

framework X will come with a definition of what it means for a hypothesis (a subset of the hypothesis

space) to be an inductive solution of a task.

Notation (ILPX(TX)). Given any ILP framework ILPX , and any ILPX task TX , ILPX(TX)

is the set of all inductive solutions of TX .

1
When it is clear which framework is being discussed, we will omit the X.

48

3.1. AN OVERVIEW OF ILP

Throughout this thesis, given any framework ILPX , learning task TX and example e, we say that e is

covered by a hypothesis if the hypothesis meets all conditions that TX imposes on e.

Learning from Entailment

The most common framework for ILP is Learning from Entailment (LFE). The goal in learning from

entailment is to find a hypothesis that (together with the background knowledge) entails each of a set

of clauses called the positive examples, and which is consistent with a second set of clauses called the

negative examples. Definition 3.1 formalises the Learning from Entailment framework.

Definition 3.1. A Learning from Entailment (ILPLFE) task T is a tuple hB,SM , hE+, E�
ii where B

is a clausal theory, called the background knowledge, SM is a set of clauses, called the hypothesis space

and E+ and E� are sets of ground clauses, called the positive and negative examples, respectively. A

hypothesis H ✓ SM is an inductive solution of T if and only if:

1. B [H |= E+

2. B [H [E�
6|= ?

As learning from entailment has been researched by many di↵erent groups, the language of the back-

ground knowledge, hypothesis space and examples di↵ers between papers. In many cases (e.g. [Mug95],

[RBR03] and [ML13]) the language of the background knowledge and hypothesis space is restricted

to either definite or Horn clauses, whereas [RI07] allowed a language of full clausal theories as in Def-

inition 3.1. In the common special case where both the background knowledge and hypothesis space

consists of definite clauses and positive and (resp. negative) examples are positive (resp. negative)

literals, B [H is guaranteed to have a unique minimal Herbrand model M and H is an inductive

solution of the task if and only if M includes all of the positive examples and does not include (the

negation of) any negative examples (i.e. if B [H entails each of the positive examples and does not

entail (the negation of) any negative examples).

Example 3.1. Consider the ILPLFE task T = hB,SM , hE+, E�
ii, where:

B =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

parent(X, Y) : - father(X, Y).

parent(X, Y) : - mother(X, Y).

father(mike, mark).

mother(sue, mark).

father(howell, sue).

mother(norma, sue).

person(mark).

person(mike).

person(sue).

person(howell).

person(norma).

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

SM =

8
>>>>>>>>><

>>>>>>>>>:

h1 :

h2 :

h3 :

grandfather(X, Y) : - parent(X, Z),

parent(Z, Y).

grandfather(X, Y) : - father(X, Z),

parent(Z, Y).

grandfather(X, Y) : - mother(X, Z),

parent(Z, Y).

9
>>>>>>>>>=

>>>>>>>>>;

E+ =
n

grandfather(howell, mark).
o

49

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

E� =

(
: - grandfather(howell, mike).

: - grandfather(norma, mark).

)

• ; 62 ILPLFE(T), as B does not entail grandfather(howell, mark).

• For each H 2 {{h1}, {h3}, {h1, h2}, {h1, h3}, {h2, h3}, {h1, h2, h3}}, H 62 ILPLFE(T), as B [H

entails grandfather(norma, mark), so B [H [{: - grandfather(norma, mark).} is inconsistent.

• {h2} 2 ILPLFE(T), as B [{h2} entails grandfather(howell, mark) and is consistent with

: - grandfather(howell, mark) and : - grandfather(norma, mark).

Learning from Interpretations

Another common ILP setting is Learning from Interpretations (LFI). Definition 3.2 formalises the

ILPLFI framework. In the LFI literature (e.g. [DRVL95]), a set of (possibly incomplete) facts is often

called an interpretation. We avoid this usage of the term interpretation to avoid confusion with our

own usage of the term.

Definition 3.2. A Learning from Interpretations (ILPLFI) task T is a tuple hB,SM , hE+, E�
ii where

B is a definite clausal theory, SM is a set of clauses and each element of E+ and E� is a set of facts.

A hypothesis H ✓ SM is an inductive solution of T if and only if:

1. 8e+ 2 E+: M(B [e+) satisfies H

2. 8e� 2 E�: M(B [e�) does not satisfy H

Note that with no background knowledge, this definition is equivalent to saying that each positive

example (treated as an interpretation) must be a model of H, and no negative example should be

a model of H. In ILPLFI systems that allow background knowledge, the background knowledge in

ILPLFI is used to “complete” the interpretation, so that not all atoms need to be specified in the

example.

Example 3.2. Consider the ILPLFI task T = hB,SM , hE+, E�
ii, where:

B =
n

father(X, Y) : - male(X), parent(X, Y).
o

SM =

8
><

>:

h1 : son(X, Y) : - father(Y, X).

h2 : son(X, Y) : - parent(Y, X).

h3 : son(X, Y) : - parent(Y, X), male(X).

9
>=

>;

E+ =

8
>>>>>><

>>>>>>:

(
parent(richard, lucy).

male(richard).

)
,

8
><

>:

parent(mike, mark).

male(mike). male(mark).

son(mark, mike).

9
>=

>;

9
>>>>>>=

>>>>>>;

E� =

((
parent(mike, mark).

male(mike). male(mark).

))

50

3.1. AN OVERVIEW OF ILP

The minimal models of B combined with each example are M1 = {parent(richard, lucy),

male(richard), father(richard, lucy)}, M2 = {parent(mike, mark), male(mike), male(mark),

father(mike, mark), son(mark, mike)}, M3 = {parent(mike, mark), male(mike), male(mark),

father(mike, mark)}, where M1 and M2 have been derived from the positive examples, and M3 has

been derived from the negative example.

The task is to find a hypothesis H such that M1 and M2 are both models of H and M3 is not.

• ; 62 ILPLFI(T) as M3 is a model of ;.

• {h1} 62 ILPLFI(T) as M1 is not a model of {h1}. This means that no hypothesis containing h1

can be an inductive solution of T .

• {h2} 62 ILPLFI(T) as M1 is not a model of {h2}. This means that no hypothesis containing h2

can be an inductive solution of T .

• {h3} 2 ILPLFI(T) as M1 and M2 are both models of {h3} but M3 is not.

Learning from Satisfiability

The third common setting for ILP is Learning from Satisfiability (LFS) [DRD97b].

Definition 3.3. A Learning from Satisfiability (ILPLFS) task T is a tuple hB,SM , hE+, E�
ii where

B is a clausal theory, SM is a set of definite clauses and E+ and E� are sets of clausal theories. A

hypothesis H ✓ SM is an inductive solution of T if and only if:

1. 8e+ 2 E+: B [H [e+ has at least one model

2. 8e� 2 E�: B [H [e� has no models

Example 3.3. Consider the ILPLFS task T = hB,SM , hE+, E�
ii, where:

B =
n

p : - q, r.
o

SM =
n

h1 : p.
o

E+ =
n

{r. : - q.}
o

E� =
n

{: - p. : - q.}
o

• ; 62 ILPLFS(T) as B [{: - p. : - q.} is satisfiable (; is a model).

• {h1} 2 ILPLFS(T) as B [{h1} [{r. : - q.} is satisfiable, and B [{h1} [{: - p. : - q.} is unsat-

isfiable.

In [DR97], it was shown that ILPLFS can simulate ILPLFE by using the fact that P |= e if and only if

P [¬e has no models. Example 3.4 shows how the task in Example 3.1 can be encoded as an ILPLFS

task.

Example 3.4. Recall the ILPLFE task T = hB,SM , hE+, E�
ii from Example 3.1 and consider the

task TLFS with the same background knowledge and hypothesis space and the following examples.

51

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

E+ =

((
: - grandfather(howell, mike).

: - grandfather(norma, mark).

))
E� =

n
{: - grandfather(howell, mark).}

o

Note that the original negative examples have become a single positive example. The condition for

the negative examples under ILPLFE is that B [H [E� must be consistent (i.e. it must have at

least one model). This is exactly the same as the condition for a positive example under ILPLFS.

The original positive examples have been negated, and added as negative examples. For example, the

original task said that B [H must entail grandfather(howell, mark), which is equivalent to saying

that no model of B [H could not contain grandfather(howell, mark). This is equivalent to saying

that B [H [{: - grandfather(howell, mark).} must have no models.

3.1.2 Learning Algorithms

This section concentrates on the algorithms proposed to solve the learning tasks of three frameworks

presented in Section 3.1.1. In the rest of this thesis we refer to these frameworks and algorithms as

traditional ILP in order to di↵erentiate them from ASP-based approaches to ILP. Early algorithms

for ILP were divided into two classes: bottom-up algorithms such as Progol [Mug95], Aleph [Sri01]

and HAIL [RBR03, Ray05], which compute a most specific hypothesis to cover an example, and then

generalise it; and top-down algorithms such as HYPER [Bra99, OB10], which first computes a most

general hypothesis and then specialises it. More recently, a new class of meta-level algorithms, such as

TAL [Cor12] and Metagol [ML13, MLPTN14], has emerged, which encode learning tasks as meta-level

logic programs.

Algorithm Learning Framework Language of B [H Category

Aleph [Sri01] ILPLFE
Definite clauses

(in the standard mode)
Bottom-up

Claudien [DRD97a] ILPLFI Clausal theories Top-down
Claudien-Sat [DRD97b] ILPLFS Clausal theories Top-down

FOIL [Qui90] ILPLFE Definite clauses Top-down
HAIL [RBR03] ILPLFE Definite clauses Bottom-up
HYPER [Bra99] ILPLFE Definite clauses Top-down
ICN [MV96] ILPLFE Normal clauses Top-down
ICL [DRVL95] ILPLFI Clausal theories Top-down

ICL-Sat [DRD97b] ILPLFS Clausal theories Top-down
LOGAN-H [AKM07] ILPLFI Horn clauses Bottom-up

Metagol [ML13] ILPLFE Definite clauses Meta-level
Progol [Mug95] ILPLFE Definite clauses Bottom-up

Toplog [MSTN08] ILPLFE Definite clauses Top-down
TAL [CRL10] ILPLFE Normal clauses Meta-level

Table 3.1: A summary of some of the main algorithms for traditional ILP.

52

3.1. AN OVERVIEW OF ILP

Table 3.1 gives a summary of some available systems along with the learning framework they support,

the language of their background knowledge and hypothesis space and the category of the algorithm

(bottom-up, top-down or meta-level). As the focus of this thesis is on learning ASP programs, we

only go into detail on those algorithms that have influenced later algorithms for induction under the

answer set semantics, or that are related to our own approach.

Many of the systems specify hypothesis spaces with a language bias consisting of mode declarations

(which specify which atoms can appear in the head and in the body of rules in the hypothesis space).

As the form of language bias varies for di↵erent systems, and to avoid confusion with our own lan-

guage bias, we do not formalise mode declarations here (for an example of a common style of mode

declaration, see [Mug95]).

Progol 5

The most well known ILP system is Progol, which solves Learning from Entailment tasks, with the

background knowledge, hypothesis space and examples all restricted to Horn clauses. Progol uses a

cover loop, sequentially picking an uncovered positive example ei, called a seed example, and finding a

hypothesis hi which covers this example and which is consistent with all the negative examples. When

all positive examples are covered, Progol terminates with the hypothesis H = h1 [. . . [hn (where

n  |E+
|).

When processing a seed example e, Progol uses the principle of Inverse Entailment (B [H |= e ,

B [¬e |= ¬H [Mug95]) in a technique called Bottom Generalisation. The first step in Bottom

Generalisation is to construct the bottom clause, which is the disjunction of all literals which are

entailed by B [ē, where ē is the complement of e2. Any Horn clause which subsumes the bottom

clause is said to be derivable from e by Bottom Generalisation. For each seed example e, Progol 5

attempts to compute a clause that is compatible with the language bias, and is derivable from e by

Bottom Generalisation.

Bottom Generalisation is not complete, in that it cannot learn multiple clauses from the same example.

Example 3.5. Consider a background knowledge B = {p : - q, r.}, and a seed example p. The hypoth-

esis H = {q. r.} covers the example but neither of its two clauses are derivable by Bottom Generali-

sation – the bottom clause is ¬p, meaning that the only clause that can be derived is “p.”.

In fact, in [RBR03, Ray05] it was shown that Progol 5 is not even complete with respect to the

semantics of Bottom Generalisation. In [RBR03], the incompleteness of Progol 5 and the inability

of Bottom Generalisation to learn multiple clauses from the same example was used to motivate the

HAIL system.

2
Given a Horn clause e, the complement ē is the theory: (¬head(e) ^ (

V
l2body(e)

l))✓ Where ✓ replaces each variable in

e with a Skolem constant symbol.

53

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

Hybrid Abductive Inductive Learning (HAIL)

Kernel Set Subsumption[RBR04] is a generalisation of Bottom Generalisation.

Definition 3.4. [RBR04] Let B be a Horn theory and e be a ground atom, then a definite theory

K is a Kernel Set of B and e if and only if B [{head(R) | R 2 K} |= e and for each rule R 2 K,

8b 2 body(R), B |= b.

Let K be a Kernel Set of a Horn theory B and e st B 6|= e. A definite theory H is derivable by Kernel

Set Subsumption if and only if every clause in K is ✓-subsumed by at least one clause in H.

Note that Kernel Set Subsumption extends Bottom Generalisation by allowing mutiple clauses to be

learned from a single example. The Hybrid Abductive Inductive Learning (HAIL) algorithm [RBR04]

computes hypotheses using a cover loop, using the Kernel Set Subsumption principle to compute new

clauses for each seed example. For each seed example e, the procedure is split into 3 phases: an

abductive phase, a deductive phase, and a search phase. In the abductive phase, a set of ground

atoms � is found such that B [� |= e, each element of � is compatible with at least one mode

(head) declaration and B [� is consistent with all the examples. The atoms in � become the heads

of the rules in the Kernel set. The deductive phase uses the background knowledge (and the current

hypothesis, computed in previous iterations) to deduce the ground atoms that are allowed to appear

in the body of rules in the Kernel Set (and which are compatible with the mode body declarations).

The search phase then finds the most compressed (shortest) set of clauses that clausally subsumes

K (and which is consistent with the full set of examples). This set of clauses is then added to the

background knowledge and the next uncovered example is selected as the seed example.

TAL

Top-directed Abductive Learning (TAL) is a meta-level learning technique proposed in [CRL10], which

solves an ILP task by mapping it to an equivalent Abductive Logic Programming (ALP) task. The idea

is that every rule h in the hypothesis space can be represented by a unique meta-level atom �h. The

ILP task T = hB,M,E+, E�
i (where M is a set of mode declarations, rather than a full hypothesis

space) is then transformed into a Prolog program Tmeta, which can be used to find the inductive

solutions of T . Each hypothesis H is an inductive solution of T if and only if Tmeta [{�hi
| hi 2 H}

entails the positive examples and does not entail any negative examples. This means that the original

ILP task can be represented as an abductive task, where the goal is to abduce a minimal subset of the

possible �h atoms in order to cover the examples.

Originally this technique was implemented as TAL which achieved nonmonotonic ILP under the three

valued Fitting semantics [Fit02]. More interestingly (as this thesis addresses learning under the answer

set semantics) this same technique, with a di↵erent meta-representation, was then implemented under

the answer set semantics as ASPAL [CRL12]. ASPAL is discussed in greater detail in Section 3.2.2.

54

3.1. AN OVERVIEW OF ILP

Algorithms for Learning from Interpretations and Learning from Satisfiability

Inductive Constraint Logic (ICL) [DRVL95] solves a learning from interpretations task with both

positive and negative examples. It iteratively computes a hypothesis, searching in each iteration for a

clause that is satisfied by each positive example e+ (or by M(B [e+) in the case that a background

knowledge B is given) and fails to satisfy at least one negative example that is not yet covered. The

clauses are constructed using a top-down refinement operator (from general to specific). This approach

can be thought of as the reverse of what many learning from entailment algorithms do. For example

Progol searches, in each iteration, for a clause that satisfies at least one positive example (the seed

example) and does not satisfy any negative examples. Progol also searches in a bottom-up fashion

(from specific to general).

Claudien [DRD97a] is a top-down system for learning from interpretations. Unlike many ILP systems,

it does not search for a compressed hypothesis, but instead searches for a maximally specific hypothesis

that is consistent with a set of positive interpretation examples. This setting is called characteristic

learning from interpretations. Claudien begins with an initial hypothesis H = ; and a set of clauses

Q = {?}. In each iteration it processes each clause in c 2 Q as follows: if each example interpretation

is a model of c, then c is removed from Q and added to H; if not, then c is replaced in Q with every

possible maximally general refinement of c. As soon as Q is empty, H is guaranteed to be a maximally

specific hypothesis (in that it accepts as few models as possible). [DRD97a] also presented a parallel

version of Claudien, which is made possible because the clauses in Q are independent from each other.

In [DRD97b], ICL and Claudien were extended to ICL-Sat and Claudien-Sat, respectively, in order

to allow them to solve learning from satisfiability tasks. As clauses in the hypothesis space cannot

be considered independently for learning from satisfiability (in general h1 [e 6|= ? and h2 [e 6|= ?

does not imply that h1 [h2 [e 6|= ?), both algorithms must be slightly modified. ICL-Sat’s search

no longer builds a single hypothesis as in the ICL algorithm, but builds a set Q of tuples of the form

hH,N, ci, where H is a hypothesis, N is a set of negative examples which are not covered by N and c

is a single clause which can be refined. In each iteration, for each tuple hH,N, ci 2 Q, if each positive

example is consistent with H [c and at least one negative example is not consistent with H [c then

hH,N, ci is replaced in Q by hH [{c}, N 0,?i (where N 0 is the subset of examples in N that are not

covered by H [{c}); if not, then hH,N, ci is replaced in Q with every tuple hH,N, c0i such that c0 is a

maximally general refinement of c. If the algorithm encounters a tuple hH,N, ci such that N = ; then

H is an inductive solution of the task, and the algorithm terminates. Claudien-Sat is modified such

that a clause c is added to H when H [c is consistent with each example interpretation, rather than

when each interpretation is a model of c. The more important di↵erence is that Claudien-Sat can not

be parallelised in the same way as Claudien, as the clauses can no longer be considered independently.

55

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

3.2 Approaches to ILP Under the Answer Set Semantics

3.2.1 Learning Frameworks

In ASP, there can be one, many or even no answer sets of a program. This leads to two di↵erent stan-

dard notions of entailment under the answer set semantics: brave entailment and cautious entailment.

Recall from Chapter 2 that an atom a is bravely (resp. cautiously) entailed by a program P i↵ at

least one (resp. every) answer set of P contains a.

These two di↵erent notions of entailment naturally lead to two di↵erent frameworks for learning from

entailment under the answer set semantics: brave induction and cautious induction. Early approaches

to ILP under the answer set or stable model semantics tended to adopt cautious induction3 [IK97,

SBP00, Sak00], as this is closer to standard learning from entailment, where examples must be covered

in every model. In [SI09], it was argued that in some cases cautious induction can be too strong, and

that in those cases a weaker form of induction – brave induction – is needed. It was in [SI09] that the

notions of brave and cautious induction were first defined.

Some of the frameworks in this section were originally presented with no hypothesis space, as they

were considered only theoretically. Hypothesis spaces are, however, an integral part of many practical

ILP algorithms. For example, although brave induction was originally presented with no hypothesis

space, every publicly available system for brave induction requires a hypothesis space to function. The

definitions of learning frameworks in this section are therefore reformulations of the original definitions,

extended with hypothesis spaces and defined over the language of ASP considered in this thesis.

Cautious Induction

Cautious induction (ILPc), first presented in [SI09], defines a learning task in which all examples

should be covered in every answer set (i.e. entailed under cautious entailment in ASP) and B [H

should be satisfiable (have at least one answer set)4.

Definition 3.5. A cautious induction (ILPc) task Tc is a tuple hB,SM , hE+, E�
ii, where B is an

ASP program, SM is a set of ASP rules and E+ and E� are sets of ground atoms. A hypothesis

H ✓ SM is an inductive solution of Tc if and only if AS(B [H) 6= ; and 8A 2 AS(B [H), E+
✓ A

and E�
\A = ;.

Example 3.6. Consider the ILPc task T = hB,SM , hE+, E�
ii, where:

3
As the notions had not been defined at the time, they did not call it cautious induction, but the definitions are the

same.
4
The original definitions of brave and cautious induction did not consider atoms which should not be present in an

answer set (negative examples). Publicly available algorithms that realise brave induction, on the other hand, do allow

for negative examples. We therefore upgrade the definitions in this thesis to allow negative examples. Note that a

negative example e can be easily simulated by adding a rule a : - not e to the background knowledge and giving a as a

positive example (where a is a new atom that does not appear anywhere in the original task).

56

3.2. APPROACHES TO ILP UNDER THE ANSWER SET SEMANTICS

B =

8
>>>><

>>>>:

bird(X) : - penguin(X).

bird(X) : - sparrow(X).

penguin(b1).

sparrow(b2).

9
>>>>=

>>>>;

E+ = {flies(b2)}

E� = {flies(b1)}

SM =

8
>>>>>>>>><

>>>>>>>>>:

h1 :

h2 :

h3 :

h4 :

flies(X) : - bird(X).

flies(X) : - bird(X),

not penguin(X).

0{flies(X)}1 : - bird(X).

0{flies(X)}1 : - bird(X),

not penguin(X).

9
>>>>>>>>>=

>>>>>>>>>;

• ; 62 ILPc(T) as B has exactly one answer set, and it does not contain flies(b2).

• {h1} 62 ILPc(T) as B [{h1} has exactly one answer set, and it contains flies(b1).

• {h2} 2 ILPc(T) as B [{h2} has exactly one answer set, and it contains flies(b2) but does not

contain flies(b1).

• {h3} and {h4} are not in ILPc(T), as they both have answer sets (when combined with B) that

do not cover the examples.

Enforcing that examples are covered in every answer set is sometimes too strong a requirement, as

shown in Example 3.7.

Example 3.7. Consider the background knowledge B = ; and the hypothesis space SM :

SM =

(
h1 : p : - not q.

h2 : q : - not p.

)

There is no ILPc task T , with background knowledge B and hypothesis space SM such that {h1, h2} is

a solution of T and ; is not. This can be seen as follows. There are only two atoms (p and q) in the

Herbrand base of B[SM . There are therefore only two atoms which would be meaningful as examples.

Neither can be given as a positive example as for each atom there is an answer set of B [{h1, h2}

that does not contain it. Similarly, neither can be given as a negative example as for each atom there

is an answer set that contains it. This means that the only ILPc task T (without introducing extra

redundant negative examples that are outside the Herbrand base) such that {h1, h2} 2 ILPc(T) is

hB,SM , h;, ;ii. As there are no examples in T , ; is clearly also an inductive solution of T . As in

practice ILP systems search for the shortest possible hypothesis, and no hypothesis is shorter than ;,

this means that no examples can be given such that a cautious induction system would return {h1, h2}.

Brave Induction

Brave induction (ILPb) was also formalised in [SI09]. It defines an inductive task where all of the

examples should be covered in at least one answer set (i.e. entailed under brave entailment in ASP).

Note that there should be at least one answer set that covers every example (rather than at least one

answer set for each example).

57

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

Definition 3.6. A brave induction (ILPb) task Tb is a tuple hB,SM , hE+, E�
ii, where B is an ASP

program, SM is a set of ASP rules and E+ and E� are sets of ground atoms. A hypothesis H ✓ SM

is an inductive solution of Tb if and only if 9A 2 AS(B [H) such that E+
✓ A and E�

\A = ;.

Example 3.8. Consider the ILPb task T = hB,SM , hE+, E�
ii, where:

B =

8
>>>><

>>>>:

bird(X) : - penguin(X).

bird(X) : - sparrow(X).

penguin(b1).

sparrow(b2).

9
>>>>=

>>>>;

E+ = {flies(b2)}

E� = {flies(b1)}

SM =

8
>>>>>>>>><

>>>>>>>>>:

h1 :

h2 :

h3 :

h4 :

flies(X) : - bird(X).

flies(X) : - bird(X),

not penguin(X).

0{flies(X)}1 : - bird(X).

0{flies(X)}1 : - bird(X),

not penguin(X).

9
>>>>>>>>>=

>>>>>>>>>;

• ; 62 ILPb(T) as B has exactly one answer set, and it does not contain flies(b2).

• {h1} 62 ILPb(T) as B [{h1} has exactly one answer set, and it contains flies(b1).

• {h2}, {h3}, {h4} 2 ILPb(T) as each of B [{h2}, B [{h3} and B [{h4} has the answer set

{penguin(b1), sparrow(b2), bird(b1), bird(b2), flies(b2)}, which contains flies(b2) but

does not contain flies(b1).

Brave induction can only reason about what should be true in at least one answer set of a program.

It cannot reason about what should be true in all answer sets of a program. For this reason, brave

induction is incapable of learning constraints. Any hypothesis that contains a constraint and is a

solution of an ILPb task T is still a solution of T if the constraint is removed.

Example 3.9. Consider the background knowledge B = {0{p}1.} and a hypothesis space SM , con-

taining only the constraint : - p. There is no ILPb task T , with background knowledge B and hypothesis

space SM such that {: - p.} is a solution of T and ; is not. This can be seen as follows. There is only

one atom (p) in the Herbrand base of B[SM . There is therefore one atom which would be meaningful

as an example. It must be given as a negative example (as B [{: - p.} has only one answer set, and

it does not contain p). But B [; also covers this negative example (as it also has the answer set ;,

which does not contain p). Therefore for any ILPb task such that {: - p.} is a solution, ; is also a

solution, meaning that in practice brave induction systems (searching for the shortest hypothesis) will

not return the constraint.

Furthermore, brave induction cannot specify other brave learning tasks such as enforcing that two

atoms are both bravely entailed, but not necessarily in the same answer set (as brave induction

requires all examples to be covered in the same answer set).

58

3.2. APPROACHES TO ILP UNDER THE ANSWER SET SEMANTICS

Induction of Stable Models

Induction of stable models [Ote01] (ILPsm), generalises ILPb, in order to allow conditions to be set

over multiple answer sets. Its examples are partial interpretations.

Definition 3.7. A partial interpretation e is a pair of sets of atoms heinc, eexci, we refer to einc and

eexc as the inclusions and exclusions respectively. An interpretation I is said to extend e if and only

if einc ✓ I and eexc \ I = ;.

Example 3.10. Consider the partial interpretation e = h{p, q}, {r, s}i.

• {p} does not extend e, as it does not contain q.

• {p, q, r} does not extend e, as it contains r.

• {p, q} extends e, as it contains all of e’s inclusions, and none of e’s exclusions.

• {p, q, t} extends e, as it contains all of e’s inclusions, and none of e’s exclusions.

Induction of stable models is formalised in Definition 3.8.

Definition 3.8. An induction of stable models (ILPsm) task Tsm is a tuple hB,SM , hEii, where B

is an ASP program, SM is the hypothesis space and E is a set of example partial interpretations. A

hypothesis H is an inductive solution of Tsm if and only if H ✓ SM and 8e 2 E, 9A 2 AS(B [H)

such that A extends e.

Note that a brave induction task can be thought of as a special case of induction of stable models

(with |E| = 1 and the inclusions and exclusions of the only partial interpretation example being the

positive and negative examples of the brave task, respectively).

Example 3.11. Consider the ILPsm task T = hB,SM , hE+, E�
ii, where:

B = ;

SM =

(
h1 :

h2 :

p : - not q.

q : - not p.

) E =

(
h{p}, {q}i,

h{q}, {p}i

)

{h1, h2} is the only subset of the hypothesis space that is an inductive solution of T , as it is the only

hypothesis that has answer sets that extend both of the examples.

Induction from Answer Sets

Before brave and cautious induction, Sakama put forward a di↵erent setting: Induction from Answer

Sets [Sak05]. Most of [Sak05] focuses on algorithms for induction from single examples. For a positive

59

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

example the setting aims to find a rule R such that B [R |=c e+, and for a negative example it

aims to find a rule R such that B [R 6|=c e�. In [Sak05], it is shown that although in some cases

the proposed algorithms can solve tasks with multiple examples, they do not work in general for

tasks that contain both positive and negative examples. We therefore consider these cases as two

separate settings: ILPIAS+ (for positive examples) and ILPIAS� (for negative examples). ILPIAS+

is essentially cautious induction (although it is restricted to learn a single rule from each example);

whereas ILPIAS� is very similar to brave induction, but with the condition negated. An ILPIAS� task

hB,SM , h{e1, . . ., en}ii could be represented as an ILPsm task hB,SM , h{h;, {e1}i, . . . , h;, {en}i}ii.

Note, this is di↵erent to the brave task hB,SM , h;, Eii as the latter requires that there is a single

answer set that does not contain any of the examples, whereas the former only requires that there is

an answer set for each example that does not contain the example. As the tasks of both frameworks

can be easily translated into tasks of other frameworks, we do not consider them any further.

3.2.2 Learning Algorithms

In this section, we present the existing systems for learning ASP programs. Early algorithms [IK97,

SBP00, Sak00] for learning ASP programs did so under a cautious induction style task5. In [Sak05],

together with the two Induction from Answer Sets frameworks, two learning algorithms were presented.

The IASpos algorithm solves the ILPIAS+; whereas the IASneg algorithm solves an ILPIAS� task.

Both algorithms, however, are only proven to be sound for tasks with multiple examples when programs

are categorical (B [H must have exactly one answer set). This is a severe restriction when learning

ASP programs, as in general programs can have many answer sets. The state of the art ILP systems

that operate under the answer set semantics, summarised in Table 3.2, aim to solve brave induction

tasks. We now review these systems.

Algorithm Learning Framework Language of B [H Category

ASPAL [CRL12] ILPb Normal ASP programs Meta-level
ILED [KAP15] ILPb Normal ASP programs Bottom-up

RASPAL [ACBR13] ILPb Normal ASP programs Meta-level
XHAIL [BR15b] ILPb Normal ASP programs Bottom-up

Table 3.2: The main systems for ASP-based ILP

XHAIL

eXtended Hybrid Abductive Inductive Learning (XHAIL) [Ray09] generalises the HAIL algorithm in

order to solve ILPb tasks.

Similarly to HAIL, XHAIL computes solutions in 3 phases: an abductive phase; a deductive phase;

and an inductive phase. In the abductive phase, XHAIL finds a set of atoms � such that B [� |=b

5
Many of these papers predate the term cautious induction, which first appeared in [SI09].

60

3.2. APPROACHES TO ILP UNDER THE ANSWER SET SEMANTICS

(
V
E+) ^ (

V
{ not e | e 2 E�

}). The atoms in � that are ground instances of at least one atom that

conforms with some modeh declaration become the heads of (ground instances of) rules in the final

hypothesis.

Next, in the deductive phase, XHAIL finds the set of all ground literals that could go in the body

of rules in the hypothesis. Each of these body atoms b is such that B [� |=b b and b is a ground

instance of an atom that conforms to at least one modeb declaration. The sets of ground rules with

the heads from � with bodies consisting of literals computed in the deductive phase is referred to as

the Kernel Set K.

Example 3.12. (from [Ray09])

Consider the ILPb task T = hB,SM , hE+, E�
ii, where B, M , E+ and E� are as follows:

B =

8
>>>>>><

>>>>>>:

bird(X) : - penguin(X).

bird(a).

bird(b).

bird(c).

penguin(d).

9
>>>>>>=

>>>>>>;

E+ =

8
><

>:

flies(a),

flies(b),

flies(c)

9
>=

>;

M =

8
><

>:

#modeh(flies(+bird))

#modeb(penguin(+bird))

#modeb(not penguin(+bird))

9
>=

>;

E� =
n

flies(d)
o

The mode declarations in the task express which predicates can be used in the head and body of the

rules in the hypothesis space (the #modeh’s and #modeb’s, respectively). The arguments of each of

these particular mode declarations are all of the form +type, meaning that the arguments of the

corresponding atoms in the rules must all be input variables. There are no placeholders for output

variables (which would be denoted �type) or constants (which would be denoted #type). The restriction

on variables is that every input variable in a rule must either occur in the head of the rule, or as an

output variable, earlier in the rule.

One abductive explanation of the examples is � = {flies(a), flies(b), flies(c)}.

This leads to the Kernel:

K =

8
><

>:

flies(a) : - not penguin(a).

flies(b) : - not penguin(b).

flies(c) : - not penguin(c).

9
>=

>;

Note that although there are other potential body literals that are entailed by B[� and that do conform

to the mode declarations, they are not added to the Kernel as they could not form part of a ground

instance of a rule that conforms to the mode delcarations. For example, penguin(d) is not added to

any of the three rules, as penguin(X) can only occur in the body of a rule with X as an input variable,

meaning that X must occur elsewhere in the rule. In the case of the ground Kernel, this means that

61

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

for penguin(d) to occur in the body of the rule, d must occur elsewhere in the rule, which is not the

case for any of the three rules.

The final step of the XHAIL algorithm – the inductive step – is to compute a hypothesis that conforms

to the mode declarations, subsumes the Kernel and bravely entails the examples. The Kernel is mapped

into an abductive task, which is represented as an ASP program. The answer sets of this ASP program

can then be mapped to inductive solutions of the task.

Example 3.13. The first rule in the Kernel produced in Example 3.12 is transformed into the ASP

rules:
8
><

>:

flies(X) : - use(1, 0), try(1, 1, X).

try(1, 1, X) : - bird(X), not use(1, 1).

try(1, 1, X) : - bird(X), not penguin(X).

9
>=

>;

The first and second arguments of each of the meta-level atoms use and try indicate a unique identifier

for the object-level rule and literal (respectively). So, use(1, 0) means that the head atom flies(X)

is being used (i.e. it is in the hypothesis). The try atoms are for testing whether the rule body is

satisfied. If the head is being used, then flies(X) is true in two cases: (1), the literal not penguin(X)

is not in the hypothesis (indicated by the first try rule); or (2), not penguin(X) is true (represented

by the second try rule).

By using a choice rule, containing the various possible try and use atoms, together with the trans-

formation of each of the rules in the Kernel, XHAIL uses an ASP solver to compute the minimal

hypothesis that subsumes the Kernel, conforms to the mode declarations and bravely entails the exam-

ples.

One major di↵erence between HAIL and XHAIL is that HAIL uses a cover loop approach, whereas

XHAIL does not. This is due to the nonmonotonicity of negation as failure: in a cover loop approach,

examples that were covered in previous iterations of the cover loop may not be covered in future

iterations.

As in general there are many possible abductive solutions�, and not all�’s lead to inductive solutions,

XHAIL employs an iterative deepening approach, ordering the �’s by size and terminating after

processing the shortest � that leads to a solution. In general, this may not lead to the optimal

solution being found, as there may be a large � that leads to a shorter hypothesis (e.g. with more

individual rules, but fewer overall literals).

ILED ILED [KAP15] is an incremental algorithm, based on XHAIL. It is targeted at learning Event

Calculus [KS86] theories, and therefore, its examples are slightly di↵erent in that they are grouped

into time windows. The examples are processed one at a time and at each timepoint the hypothesis

is revised so that it covers all examples in all windows that have been processed so far.

62

3.2. APPROACHES TO ILP UNDER THE ANSWER SET SEMANTICS

ILED has been shown to be much more scalable than XHAIL when processing large numbers of

examples divided into time windows [KAP15]. On the other hand, like XHAIL, ILED is not guaranteed

to find the optimal solution of a task. In fact, this incompleteness with respect to optimal solutions

is more severe in ILED than in XHAIL, as it can also occur because of the incremental nature of the

algorithm. Although at each step the revision may be optimal, the combination of every revision may

result in a longer hypothesis than could have been found if all examples had been processed together.

ASPAL

The ASPAL [CRL12] algorithm is based on the TAL approach of converting an ILP task to a meta-

level logic program, but the key di↵erence of ASPAL (compared to TAL) is that ASPAL’s meta-level

program is an ASP program.

Given an ILPb task Tb = hB,SM , hE+, E�
ii, where SM is defined by a given set of mode declarations

M , the first step is to compute a set of skeleton rules Sk. These are the set of rules R, such that there

is an R0
2 SM , where each constant in R0 is replaced by a variable in R.

Example 3.14. Consider the mode declarations M .

M =

(
#modeh(penguin(+bird))

#modeb(2, not can(+bird,#ability))

)

The first argument of the mode body declaration is called the recall and it expresses a constraint that

this mode declaration can be used at most twice per rule in the hypothesis space. There are three

skeleton rules:

Sk =

8
><

>:

penguin(X) : - bird(X)

penguin(X) : - bird(X), not can(X, C1)

penguin(X) : - bird(X), not can(X, C1), not can(X, C2)

9
>=

>;

SM consists of the rules in Sk where C1 and C2 have been replaced with constants of type ability.

Each skeleton rule R is then associated with a unique meta-level atom rule(Rid, C1, . . . , Cn), where

C1, . . . , Cn are the “constant placeholder” variables in R. For each rule R 2 Sk, Rmeta denotes the

meta-level atom that represents R. For each rule R0
2 SM , we similarly write R0

meta to denote the

ground atom representing R0 (where each “constant placeholder” variable has been replaced with a

constant of the correct type).

Definition 3.9. Let T be the ILPb task hB,SM , h{e+1 , . . ., e
+
n }, {e

�
1 , . . ., e

�
m }ii, where SM is charac-

terised by the set of mode declarations M . Let Sk be the set of skeleton rules derivable from M . The

ASPAL meta-representation is the program consisting of the following components:

• B

• h : - b1, . . . brl, Rmeta, for each rule R 2 Sk, where R is the rule h : - b1, . . . , brl.

63

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

• A choice rule 0{ab1, . . . , abk}n., where {ab1, . . ., abk} = {Rmeta | R 2 SM}
6

• The rule goal : - e+1 , . . . , e
+
n , not e�1 , . . . , not e�m .

• The constraint : - not goal.

We refer to the answer sets of this meta representation as meta-level answer sets, and the answer sets

of B [H as object-level answer sets. Each meta-level answer set A represents a single hypothesis H

(defined by the rule atoms in A). Each meta-level answer set also contains exactly one object level

answer set of B [H that contains all of the positive examples and none of the negative examples

(enforced by the goal constraint).

Example 3.15. Consider the ILPb task T = hB,SM , E+, E�
i, where SM is characterised by the

mode declarations in Example 3.14.

B =

8
>>>>>>>>><

>>>>>>>>>:

bird(a).

bird(b).

can(a, fly).

can(b, swim).

ability(fly).

ability(swim).

9
>>>>>>>>>=

>>>>>>>>>;

E+ = {penguin(b)}

E� = {penguin(a)}

The ASPAL meta-level representation is the program:

Meta =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

bird(a).

bird(b).

can(a, fly).

can(b, swim).

ability(fly).

ability(swim).

penguin(X) : - bird(X), rule(1).

penguin(X) : - bird(X), not can(X, C1), rule(2, C1).

penguin(X) : - bird(X), not can(X, C1), not can(X, C2), rule(3, C1, C2).

0{rule(1), rule(2, fly), rule(2, swim), rule(3, fly, swim)}4.

goal : - penguin(b), not penguin(a).

: - not goal.

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

6
This is a slight simplification. In the ASPAL algorithm, this is a choice rule using conditional literals, in order

to delegate the grounding of the possible constants to the ASP solver. The ground version of ASPAL’s choice rule is

identical to the one presented in this definition.

64

3.2. APPROACHES TO ILP UNDER THE ANSWER SET SEMANTICS

Note that each skeleton rule R has been appended with the atom Rmeta, where each of the arguments

other than the identifier Rid is a variable representing a placeholder for a constant. The choice rule on

the other hand contains the atoms R0
meta such that R0 is an instance of a skeleton rule R (instantiating

the constant placeholders with the list of constants in R0
meta).

The answer sets of this program can be mapped to the inductive solutions of T . For example, the

answer set {bird(a), bird(b), can(a, fly), can(b, swim), ability(fly), ability(swim), penguin(b),

rule(2, fly), goal} shows that the hypothesis {penguin(X) : - bird(X), not can(X, fly).} is an induc-

tive solution of T .

In the ASPAL algorithm, this meta representation is combined with an optimisation statement (similar

to weak constraints in ASP), which orders the meta-level answer sets by the length of the hypothesis

that they represent. ASPAL has been proven to be sound and complete with respect to the optimal

inductive solutions of any brave induction task [CR11].

RASPAL ASPAL scales poorly with respect to the size of ground(B [SM) [ACBR13]. One of the

main factors in the size of this ground program is the number of body literals that are allowed to

appear in a rule in the hypothesis space. RASPAL [ACBR13] iteratively refines a hypothesis until all

of the examples in an ILPb task are covered. At each step, the number of literals that are allowed to

be added to the hypothesis is restricted, meaning that the grounding is often significantly smaller than

the meta-level program in ASPAL. In [Ath15] it was shown that RASPAL significantly outperforms

ASPAL on some learning tasks with large problem domains and large hypothesis spaces.

Summary

In this chapter, we have reviewed the learning frameworks and algorithms for both traditional and

ASP-based ILP. In the next chapter, we introduce our own new frameworks for learning ASP.

65

Part I

Learning Answer Set Programs from

Non-Noisy Examples

66

Chapter 4

Learning from Answer Sets

In the previous chapter, we presented the main frameworks for learning ASP programs, which fall into

two categories: either the examples must be covered in at least one answer set of the learned program

(brave induction [SI09] and induction of stable models [Ote01]), or the examples must be covered in

every answer set of the learned program (cautious induction [SI09]). Work on using brave induction

(such as [Ray09] and [CRL12]) has often only considered learning stratified programs1. In general,

however, ASP programs can have one, many or even no answer sets. Example 4.1 presents a program

H describing the rules of Sudoku, and shows that no brave induction, induction of stable models or

cautious induction task could possibly have H as an optimal solution.

Example 4.1. Consider a background knowledge B that contains definitions of the structure of a 4x4

Sudoku grid; i.e. definitions of cell, same row, same col and same block (where same row, same col

and same block are true only for two di↵erent cells in the same row, column or block).

B =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

cell((1, 1)). cell((1, 2)). . . . cell((4, 4)).

same row((X1, Y), (X2, Y)) : - cell((X1, Y)), cell((X2, Y)), X1 6= X2.

same col((X, Y1), (X, Y2)) : - cell((X, Y1)), cell((X, Y2)), Y1 6= Y2.

block((1, 1), 1). block((1, 2), 1). block((2, 1), 1). block((2, 2), 1).

block((3, 1), 2). block((3, 2), 2). block((4, 1), 2). block((4, 2), 2).

block((1, 3), 3). block((1, 4), 3). block((2, 3), 3). block((2, 4), 3).

block((3, 3), 4). block((3, 4), 4). block((4, 3), 4). block((4, 4), 4).

same block(C1, C2) : - block(C1, B), block(C2, B), C1 6= C2.

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

1
Both XHAIL [Ray09] and ASPAL [CRL12] support learning non-stratified programs, but the background knowledge

and hypothesis space of each of the example tasks in [Ray09] and [CRL12] is stratified.

67

CHAPTER 4. LEARNING FROM ANSWER SETS

One hypothesis H that describes the correct rules of Sudoku is as follows:

H =

8
>>>><

>>>>:

1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).

: - same row(C1, C2), value(C1, V), value(C2, V).

: - same col(C1, C2), value(C1, V), value(C2, V).

: - same block(C1, C2), value(C1, V), value(C2, V).

9
>>>>=

>>>>;

Let SM be a set of rules which contains the rules in H (for the purposes of this example, it does

not matter which other rules it contains). There is no ILPb, ILPsm or ILPc task such that H is a

solution, and no subset of H is a solution. In practice, as ILP systems tend to search for a solution

that is as short as possible (called an optimal solution), this means that no system for ILPb, ILPsm or

ILPc will return H as the solution. We now show that no task exists, for any of the three frameworks,

for which H is an optimal solution.

• Assume that there is an ILPb task Tb with background knowledge B such that H is a solution of

Tb. Then there must be at least one answer set of B[H that contains all of the positive examples

of Tb and none of the negative examples of Tb. But this answer set must also be an answer set

of B[{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as the constraints in H

only rule out answer sets (by Lemma 2.12). Hence, H 0 = {1{value(C, 1), value(C, 2), value(C, 3),

value(C, 4)}1 : - cell(C).} must also be an inductive solution of Tb. As H 0 is shorter than H,

this means that H cannot possibly be an optimal solution of Tb.

• The argument for ILPsm is similar to ILPb. Assume there is an ILPsm task Tsm with background

knowledge B such that H is a solution of Tsm. Then for each example e, there must be at least one

answer set Ae of B [H, such that Ae extends e. In each case, Ae must also be an answer set of

B [{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as the constraints in H

only rule out answer sets (by Lemma 2.12). Hence, the hypothesis H 0 = {1{value(C, 1),

value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).} must also be an inductive solution of Tsm.

As H 0 is shorter than H, this means that H cannot possibly be an optimal solution of Tsm.

• If we use ILPc to learn H, we have to give examples which are either true in every answer set

of B [H, or false in every answer set. Therefore, we could not give any meaningful examples

about the value predicate – for each atom value(x, y) (where x and y range from 1 to 4), there

is at least one answer set of B [H that contains value(x, y) and at least one that does not;

this means that if value(x, y) is given as either a positive or negative example, H will not be a

solution of the task. This means that for any ILPc task Tc = hB,SM , E+, E�
i such that H is a

solution, E+
✓ {a | 8A 2 AS(B), a 2 A} and E�

✓ {a | 8A 2 AS(B), a 62 A}. Hence, for any

such task, ; must be a solution of Tc, meaning that H cannot be an optimal solution.

The problem with using either brave or cautious induction to learn general ASP programs is that brave

induction can only reason about what should be true in at least one answer set of the learned program,

68

4.1. LANGUAGE BIASES AND HYPOTHESIS SPACES

which can be far too weak a condition, and cautious induction can only express what should be true in

all answer sets of a program, which can be far too strong a condition. Furthermore, examples in both

frameworks are atoms. In ASP it is common [EIK09] to represent a problem such that the answer

sets are solutions (see Figure 4.1 (a)). In order to learn ASP programs, examples should therefore

be of what should (or should not) be an answer set of the program (Figure 4.1 (b)). In the context

of learning the rules of Sudoku using the representation in Example 4.1, this corresponds to giving

examples of Sudoku grids rather than the values of individual cells.

In practice, there may be some atoms whose values are unknown before learning. It is therefore more

practical to consider learning from partial interpretations rather than full interpretations. This setting,

under the answer set semantics is the basis of our first framework, Learning from Answer Sets.

Real world
problem

Answer Set
Program Answer Set

Real world
solution

(a)

Real world
hypothesis

Learned
Answer Set
Program

Examples
of answer

sets

Real world
examples

(b)

Figure 4.1: (a) shows the general paradigm of answer set programming; (b) shows the general idea
of Learning from Answer Sets.

4.1 Language Biases and Hypothesis Spaces

In general ILP systems search for inductive solutions within a hypothesis space. One way of defining

a hypothesis space is to explicitly give the full set of rules that are allowed to appear in a hypothesis.

For the remainder of this thesis, we assume that all hypothesis spaces are finite subsets of ASP
R.

Given a hypothesis space SM containing the rules h1, . . . , hn, such that for each hi, idi = id(hi), we

will often write SM using the following notation:

8
><

>:

id1 : h1

. . .

idn : hn

9
>=

>;

In general, it is impractical to explicitly state the set of rules in a hypothesis space, so ILP systems tend

to use mode declarations [Mug95]. In the examples in this thesis, for simplicity, we define hypothesis

spaces in full. The mode declarations used by the ILASP systems are formalised Appendix A.

69

CHAPTER 4. LEARNING FROM ANSWER SETS

4.1.1 Hypothesis Length and Optimality

It is common practice in ILP to search for most compressed or optimal hypotheses [Mug95, Ray09,

Sri01]. This is often defined in terms of the number of literals in the hypothesis. This does not

apply well to hypotheses that include aggregates: the length of 1{p, q}1 (exactly one of p and q is

true) would be the same as the length of 0{p, q}2 (none, either or both of p and q is true), but

clearly they do not represent similar concepts. To calculate the length of an aggregate we con-

vert it to disjunctive normal form, as this takes into account both the number of answer sets that

the aggregate generates and the number of literals it uses. For example, 0{p, q}2 is considered as

(p ^ q) _ (p ^ not q) _ (not p ^ q) _ (not p ^ not q), which has length 8, whereas 1{p, q}1 is con-

sidered as (p ^ not q) _ (not p ^ q), which has length 4.

Definition 4.1. Given a hypothesis H, the length of the hypothesis, |H|, is the number of literals

that appear in HD, where HD is constructed from H by converting all aggregates in H to disjunctive

normal form.

Notation (⇤ILPX(T) and nILPX(T)). For any learning framework ILPX and any ILPX

learning task T = hB,SM , hE+, E�
ii, we denote with ⇤ILPX(T) the set of all optimal inductive

solutions of T , where optimality is defined in terms of the length of the hypotheses. We will also

denote with nILPX(T) the set of all inductive solutions of T which have length n.

4.2 Learning from Answer Sets

We now present the first of our three learning frameworks, called Learning from Answer Sets (ILPLAS).

A learning from answer sets task consists of an ASP background knowledge B, a hypothesis space

and sets of positive and negative partial interpretation examples. The goal is to find a hypothesis H

that has at least one answer set (when combined with B) that extends each positive example, and no

answer set that extends any negative examples. Note that each positive example could be extended

by a di↵erent answer set of the learned program.

Definition 4.2. A Learning from Answer Sets task is a tuple T = hB,SM , hE+, E�
ii where B is an

ASP program, SM a set of ASP rules and E+ and E� are finite sets of partial interpretations. A

hypothesis H ✓ SM is an inductive solution of T if and only if:

1. 8e+ 2 E+
9A 2 AS(B [H) such that A extends e+

2. 8e� 2 E� @A 2 AS(B [H) such that A extends e�

Note that this definition combines properties of both brave and cautious frameworks: positive examples

must each be extended by at least one answer set, and so they can represent brave induction; whereas

70

4.2. LEARNING FROM ANSWER SETS

negative examples express what should be true in no answer set (and hence what should be true in

every answer set), representing cautious induction.

Example 4.2. Reconsider the Sudoku background knowledge B and hypothesis H from Example 4.1.

We showed in Example 4.1 that no ILPb, ILPsm or ILPc task has H as an optimal solution, meaning

that in practice, systems that use these frameworks cannot learn H. We will now demonstrate that

ILPLAS can learn H. First, consider an extremely restrictive hypothesis space SM that consists of

only the rules in H. H is an optimal solution of the ILPLAS task T = hB,SM , hE+, E�
ii, where E+

and E� are as follows:

E+ =
n

h{value((1, 1), 1)}, ;i
o

E� =

8
><

>:

h{value((1, 1), 1), value((1, 3), 1)}, ;i

h{value((1, 1), 1), value((3, 1), 1)}, ;i

h{value((1, 1), 1), value((2, 2), 1)}, ;i

9
>=

>;

We can demonstrate that H is an optimal solution of T by showing that H is a solution, and no

hypothesis H 0
⇢ H is also a solution of T .

• We can show that H is a solution of T by checking that it covers all of the examples. The single

positive example means that at least one answer set of B[H must contain value((1, 1), 1). This

is clearly the case as the answer sets of B [H correspond to the valid Sudoku grids, and there is

at least one valid grid where 1 appears in the first cell. The first negative example means that no

answer set of B [H should contain both value((1, 1), 1) and value((1, 3), 1). The cells (1, 1)

and (1, 3) are in the same column, so B [H cannot have such an answer set as H contains the

constraint “: - same col(C1, C2), value(C1, V), value(C2, V)”, and hence H covers the example.

The other two negative examples are similarly covered due to the other constraints in H.

• We now show that no strict subset H 0 of H can be an inductive solution of T . Any strict subset

H 0 must either be missing the choice rule in H, or one of the three constraints in H.

If H 0 is missing the choice rule, then B [H 0 has no rule with the value predicate in the head,

meaning that no answer set of B[H 0 can contain value((1, 1), 1), so H cannot cover the positive

example and is therefore not a solution of T .

On the other hand, if H 0 contains the choice rule, but is missing one of the three constraints in

H, then B[H 0 will have at least one answer set that extends one of the three negative examples,

meaning that H 0 does not cover all of the negative examples, and so is not a solution of T .

For example, if H 0 is missing the constraint, “: - same col(C1, C2), value(C1, V), value(C2, V)”,

then one of the answer sets of B [H 0 (projected over the predicate value/2) is {value((1, 1), 1),

value((2, 1), 2), value((3, 1), 3), value((4, 1), 4), value((1, 2), 3), value((2, 2), 4), value((3, 2), 1),

value((4, 2), 2), value((1, 3), 1), value((2, 3), 2), value((3, 3), 3), value((4, 3), 4), value((1, 4), 3),

value((2, 4), 4), value((3, 4), 1), value((4, 4), 2)}. This answer set extends the first negative ex-

ample, meaning that H 0 is not a solution of T .

71

CHAPTER 4. LEARNING FROM ANSWER SETS

The hypothesis space SM in this example is extremely restrictive. If we consider a wider hypothesis

space, then we may need more examples to ensure that H is still an optimal inductive solution of T .

However, no matter how many rules are added to SM , we can always add further examples to T such

that for each optimal inductive solution H 0 of T , AS(B [H 0) = AS(B [H). We demonstrate this by

showing that for any hypothesis H 0 such that AS(B [H 0) 6= AS(B [H), we can construct an example

such that H covers e, but H 0 does not.

Case 1: There is an answer set A 2 AS(B [H) such that A 62 AS(B [H 0)

Consider the partial interpretation e = hA,HBB[SM
\Ai. B [H has an answer set that extends e,

but B [H 0 does not. Hence, if e is given as a positive example, H will cover e, but H 0 will not.

Case 2: There is an answer set A 2 AS(B [H 0) such that A 62 AS(B [H)

Consider the partial interpretation e = hA,HBB[SM
\Ai. B [H 0 has an answer set that extends e,

but B [H does not. Hence, if e is given as a negative example, H will cover e, but H 0 will not.

Thus, for any hypothesis space SM that contains H, there is an ILPLAS task with background knowledge

B and hypothesis space SM such that H, or some hypothesis with exactly the same answer sets when

combined with B, is an optimal inductive solution of the task.

Another example of a learning from answer sets task, which we revisit throughout the thesis, is of

learning the definition of a Hamiltonian graph.

Example 4.3. Consider the problem of learning the definition of what it means for a graph to be

Hamiltonian. The background knowledge B defines what it means to be a graph, up to size 4.

B =

8
><

>:

1{size(1), size(2), size(3), size(4)}1.

node(1..S) : - size(S).

0{edge(N1, N2)}1 : - node(N1), node(N2).

9
>=

>;

The answer sets of B exactly represent the graphs of size 1 to 4. For example, the answer set

{size(4), node(1), node(2), node(3), node(4), edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 1)} rep-

resents the graph G:

1 2

3 4

The program H can be used to determine whether a graph is Hamiltonian or not. The answer sets of

B [H correspond exactly with the Hamiltonian graphs of size 1 to 4.

H =

8
>>>>>><

>>>>>>:

0{in(V0, V1)}1 : - edge(V0, V1).

reach(V0) : - in(1, V0).

reach(V1) : - in(V0, V1), reach(V0).

: - node(V0), not reach(V0).

: - in(V0, V1), in(V0, V2), V1! = V2.

9
>>>>>>=

>>>>>>;

72

4.3. LEARNING FROM ORDERED ANSWER SETS

The graph G can be represented as a partial interpretation h{size(4), edge(1, 2), edge(2, 3), edge(3, 4),

edge(4, 1)}, {edge(1, 1) , edge(1, 3), edge(1, 4), edge(2, 1), edge(2, 2), edge(2, 4), edge(3, 1),

edge(3, 2), edge(3, 3), edge(4, 2), edge(4, 3), edge(4, 4)}i. Note that as the example is a partial

interpretation, the reach and in predicates do not need to be specified. In ILP, learning a concept

which does not feature in the language of the problem (i.e. the background knowledge and examples) is

known as predicate invention [Sta93].

4.3 Learning from Ordered Answer Sets

Preference Learning has received much attention over the last decade from within the machine learning

community. A popular approach to preference learning is learning to rank [FH03, GHH01], where the

goal is to learn to rank any two objects given some examples of pairwise preferences (indicating that

one object is preferred to another). While in previous work ILP systems such as TILDE [BDR98] and

Aleph [Sri01] have been applied to preference learning [DJJT01, Hor12], this has addressed learning

ratings, such as good, poor and bad, rather than rankings over the examples. Ratings are not expres-

sive enough if we want to find an optimal solution as we may rate many objects as good when some

are better than others. ASP, on the other hand, allows the expression of preferences through weak

constraints.

Weak constraints do not a↵ect what is, or is not, an answer set of a program. Instead, they create

a preference ordering over the answer sets of a program; i.e. they allow us to specify which answer

sets are preferred to other answer sets. Example 4.4 shows how a set of preferences can be encoded

as weak constraints.

Example 4.4. Consider the problem of using a user’s preferences over alternative journeys, in order

to select the optimal journey. Let A, B, C and D be the journeys represented by the following sets of

attributes. Each journey is split into a number of legs, in which a single mode of transport is used.

8
>>>>>>>>><

>>>>>>>>>:

leg mode(1, walk),

leg crime rating(1, 2),

leg distance(1, 500),

leg mode(2, bus),

leg crime rating(2, 4),

leg distance(2, 3000)

9
>>>>>>>>>=

>>>>>>>>>;

(A)

8
>>>>>>>>><

>>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 2),

leg distance(1, 4000),

leg mode(2, walk),

leg crime rating(2, 5),

leg distance(2, 1000)

9
>>>>>>>>>=

>>>>>>>>>;

(B)

73

CHAPTER 4. LEARNING FROM ANSWER SETS

8
>>>>>>>>><

>>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 2),

leg distance(1, 400),

leg mode(2, bus),

leg crime rating(2, 4),

leg distance(2, 3000)

9
>>>>>>>>>=

>>>>>>>>>;

(C)

8
>>>>>>>>><

>>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 5),

leg distance(1, 2000),

leg mode(2, walk),

leg crime rating(2, 1),

leg distance(2, 2000)

9
>>>>>>>>>=

>>>>>>>>>;

(D)

The following weak constraints H give a preference ordering to the journeys A to D.

H =

8
><

>:

:⇠ leg mode(L, walk), leg crime rating(L, C), C > 4.[1@3, L, C]

:⇠ leg mode(L, bus).[1@2, L]

:⇠ leg mode(L, walk), leg distance(L, D).[D@1, L, D]

9
>=

>;

The first weak constraint in H means that the user would like to avoid walking through an area with a

crime rating higher than 4. A journey pays a penalty of 1 at priority level 3 for each leg of the journey

that involves walking though such an area. As there is no weak constraint in H with a priority level

higher than 3, this preference is the most important. The second weak constraint (at priority level 2)

means that the user would like to take as few buses as possible. The third weak constraint (at priority

level 1) means that the user would like to minimise the distance that they have to walk. Note that as a

penalty of the distance is paid for each leg where the user has to walk, the total penalty is equal to the

total walking distance of the journey. Given these preferences, journey A is the best journey, followed

by D, then C and then journey B.

The hypothesis in Example 4.4 could be learned by giving examples of which journeys are preferred

to which other journeys. For the preferences to be learned as weak constraints, this would require

examples of pairs of answer sets, such that the first is preferred to the second. In fact, each of our

ordering examples contains two partial interpretations, rather than two complete answer sets. We

also allow examples to be given with any of the operators <, , =, 6=, > or �. The < operator,

for example, indicates that the first partial interpretation is preferred to the second; whereas the =

operator specifies that the two partial interpretations are equal.

Definition 4.3. An ordering example is a tuple o = he1, e2, opi where e1 and e2 are partial interpre-

tations and op is a binary comparison operator (<, >, =, , � or 6=).

As our orderings contain two partial interpretations, rather than two full interpretations, there are

two possible semantics to give to the examples. The brave semantics indicates that there should be at

least one pair of answer sets extending the pair of partial interpretations, which are ordered according

to the operator. The cautious semantics, on the other hand, indicates that every pair of answer sets

that extend the pair of partial interpretations should be ordered according to the operator.

Definition 4.4. Let o = he1, e2, opi be an ordering example. An ASP program P bravely respects o

i↵ 9A1, A2 2 AS(P) such that all of the following conditions hold: (i) A1 extends e1; (ii) A2 extends

74

4.3. LEARNING FROM ORDERED ANSWER SETS

e2; and (iii) hA1, A2, opi 2 ord(P). P cautiously respects o i↵ @A1, A2 2 AS(P) such that all of the

following conditions hold: (i) A1 extends e1; (ii) A2 extends e2; and (iii) hA1, A2, opi 62 ord(P).

We now define the notion of Learning from Ordered Answer Sets (ILPLOAS).

Definition 4.5. A Learning from Ordered Answer Sets task is a tuple T = hB,SM , hE+, E�, Ob, Oc
ii

where B is an ASP program, SM is a set of ASP rules, E+ and E� are finite sets of partial interpreta-

tions and Ob and Oc are finite sets of ordering examples over E+ called brave and cautious orderings.

A hypothesis H ✓ SM is an inductive solution of T if and only if:

1. H 2 ILPLAS(hB,SM , hE+, E�
ii)

2. 8o 2 Ob B [H bravely respects o

3. 8o 2 Oc B [H cautiously respects o

Note that the orderings are only over positive examples. We chose to make this restriction as there

does not appear to be any scenario where a hypothesis would need to respect an ordering of a pair of

partial interpretations that are not extended by any pair of answer sets of B [H.

Example 4.5. Recall the journey preferences in Example 4.4. Consider the background knowedge B,

which defines a set of possible journeys.

B =

8
>>>><

>>>>:

1{leg(1), . . . , leg(5)}5.

1{leg mode(L, walk), leg mode(L, bus)}1 : - leg(L).

1{leg crime rating(L, 1), . . . , leg crime rating(L, 4000)}1 : - leg(L).

1{leg distance(L, 0), leg distance(L, 500), . . . , leg distance(L, 4000)}1 : - leg(L).

9
>>>>=

>>>>;

Journeys A to D of Example 4.4 can be represented by the four positive examples eA to eD.

*

8
>>>>>>>><

>>>>>>>>:

leg mode(1, walk),

leg crime rating(1, 2),

leg distance(1, 500),

leg mode(2, bus),

leg crime rating(2, 4),

leg distance(2, 3000)

9
>>>>>>>>=

>>>>>>>>;

,

8
><

>:

leg(3),

leg(4),

leg(5)

9
>=

>;

+

(eA)

*

8
>>>>>>>><

>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 2),

leg distance(1, 400),

leg mode(2, bus),

leg crime rating(2, 4),

leg distance(2, 3000)

9
>>>>>>>>=

>>>>>>>>;

,

8
><

>:

leg(3),

leg(4),

leg(5)

9
>=

>;

+

(eC)

*

8
>>>>>>>><

>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 2),

leg distance(1, 4000),

leg mode(2, walk),

leg crime rating(2, 5),

leg distance(2, 1000)

9
>>>>>>>>=

>>>>>>>>;

,

8
><

>:

leg(3),

leg(4),

leg(5)

9
>=

>;

+

(eB)

*

8
>>>>>>>><

>>>>>>>>:

leg mode(1, bus),

leg crime rating(1, 5),

leg distance(1, 2000),

leg mode(2, walk),

leg crime rating(2, 1),

leg distance(2, 2000)

9
>>>>>>>>=

>>>>>>>>;

,

8
><

>:

leg(3),

leg(4),

leg(5)

9
>=

>;

+

(eD)

75

CHAPTER 4. LEARNING FROM ANSWER SETS

As these positive examples completely represent each journey, there is exactly one answer set of B

that extends each example. Therefore there is no distinction between brave and cautious orderings in

this case. Recall from Example 4.4 that journey A was preferred to journey D, which was preferred

to journey C, which was preferred to journey B. This means that to learn the preferences in Exam-

ple 4.4, we could give the orderings heA, eD, <i, heD, eC , <i and heC , eB, <i as either brave or cautious

orderings.

4.4 Context-Dependent Learning from Ordered Answer Sets

Common to previous ILP frameworks is the underlying assumption that hypotheses should cover the

examples with respect to one fixed given background knowledge. But, in practice, some examples

may be context-dependent – di↵erent examples may need to be covered using di↵erent background

knowledges. The journey preferences in Example 4.4 can be extended, for example, with contextual

information (e.g. the weather).

Example 4.6. Reconsider the background knowledge and examples from Example 4.5. It may be

that certain attributes of a journey are context-dependent; for instance, weather conditions may be

important. Any of the ordering examples o in Example 4.5 could be extended with a context such as

C = {raining.}. This would mean that for a brave ordering o, there should be a pair of answer sets

of B [H [C that extends the partial interpretations in o and that respect the ordering (wrt the weak

constraints in B [H [C).

In fact, the context dependent ordering examples we present are slightly more general than in Exam-

ple 4.6, as we allow each partial interpretation in the CDOE to have its own context. We will see that

in addition to representing genuinely contextual information, in some cases, contexts can be used in

order to partition the background knowledge into pieces that are relevant to particular examples.

In this section, we present a generalisation of ILPLOAS , called context-dependent learning from ordered

answer sets (ILP context
LOAS). We now formalise the notion of its context-dependent examples. Similarly

to our previous examples, these are of two types: partial interpretations and ordering examples.

Definition 4.6. A context-dependent partial interpretation (CDPI) is a pair e = hepi, ectxi, where epi

is a partial interpretation and ectx is an ASP
ch program, called a context. Given a program P , an

interpretation I is said to be an accepting answer set of e wrt P if and only if I 2 AS(P [ectx) and

I extends epi. P is said to accept e if there is at least one accepting answer set of e wrt P .

Notation (inverse). Given a CDOE o = he1, e2, opi, inverse(o) = he1, e2, op�1
i, where <�1 is

�, �1 is >, =�1 is 6=, 6=�1 is =, >�1 is  and �
�1 is >.

Definition 4.7. A context-dependent ordering example (CDOE) o is a tuple hhe1pi, e
1
ctxi, he

2
pi, e

2
ctxi, opi,

where the first two elements are CDPIs and op is a binary comparison operator (<, >, =, , � or 6=).

76

4.4. CONTEXT-DEPENDENT LEARNING FROM ORDERED ANSWER SETS

A pair of interpretations hI1, I2i is said to be an accepting pair of answer sets of o wrt a program P if

all of the following conditions hold: (i) I1 is an accepting answer set of he1pi, e
1
ctxi; (ii) I2 is an accepting

answer set of he2pi, e
2
ctxi; and (iii) hI1, I2, opi 2 ord(P,AS(P [e1ctx)[AS(P [e2ctx)). A program P is said

to bravely respect o if there is at least one accepting pair of answer sets of o. P is said to cautiously

respect o if there is no accepting pair of answer sets of inverse(o).

Given an ordering example o, we write oeg1, oeg2 to refer to the two CDPIs in o and oop to refer to

the binary comparison operator of o.

Definition 4.8. A Context-dependent Learning from Ordered Answer Sets (ILP context
LOAS) task is a tuple

T = hB,SM , hE+, E�, Ob, Oc
ii where B is an ASP program, SM is a set of ASP rules, E+ and E�

are finite sets of CDPIs, and Ob and Oc are finite sets of CDOEs over E+ called, respectively, brave

and cautious orderings. A hypothesis H ✓ SM is an inductive solution of T if and only if:

1. 8e 2 E+, B [H accepts e

2. 8e 2 E�, B [H does not accept e

3. 8o 2 Ob, B [H bravely respects o

4. 8o 2 Oc, B [H cautiously respects o

Example 4.7. Reconsider the journey preference learning task of Example 4.5. The contextual infor-

mation in Example 4.6 can be added to the examples e1 and e2, to show the preference “in the case that

it is raining e1 is preferred to e2, but otherwise it is the other way around” with the context dependent

ordering examples o1 and o2:

o1 =
DD

e1,
n

raining.
oE

,
D
e2,
n

raining.
oEE

o2 = hhe2, ;i , he1, ;ii

4.4.1 Translation to Non-Context-Dependent Tasks

In this section, we show that any ILP context
LOAS task can be translated into an ILPLOAS task. Example 4.8

shows that a näıve translation, achieved by moving every context into the background knowledge, does

not work in general.

Example 4.8. In general, it is not the case that an ILP context
LOAS task can be translated into an

ILPLOAS task simply by moving all the contexts into the background knowledge (B [C1 [. . . [Cn

where C1, . . . , Cn are the contexts of the examples). Consider, for instance, the ILP context
LOAS task

hB,SM , hE+, E�, Ob, Oc
ii defined as follows:

• B = ;. E� = ;. Ob = ;. Oc = ;

• SM = {go out : - raining. go out : - not raining.}

77

CHAPTER 4. LEARNING FROM ANSWER SETS

• E+ =

(
hh{go out}, ;i, ;i,

hh;, {go out}i, {raining.}i

)

This task has one solution: go out : - not raining. But, if we were to add all the contexts to the

background knowledge, we would get a background knowledge containing the single fact raining. So,

there would be no way of explaining both examples, as every hypothesis would, in this case, lead to

a single answer set (either {raining, go out} or {raining}), and therefore cover only one of the

examples.

To capture the meaning of the context-dependent examples accurately, we could augment the back-

ground knowledge with the choice rule 0{raining}1 and define the ILPLOAS examples as the pairs

h{go out}, {raining}i and h{raining}, {go out}i. In this way, answer sets of the inductive solution

would exclude go out when raining (i.e., in the context of raining), and include go out otherwise,

which is the correct meaning of the given context-dependent examples.

The following definition gives a general translation of ILP context
LOAS to ILPLOAS . The translation assumes

that for any CDPI e = hheincpi , eexcpi i, ectxi, c(e) is the partial interpretation heincpi [{ctx(eid)}, eexcpi i,

where ctx is a new predicate (that does not occur in the original task). Also, for any program P and

any atom a, append(P, a) is the program constructed by appending a to the body of every rule in P .

Definition 4.9. For any ILP context
LOAS task T = hB1, SM , hE+

1 , E
�
1 , O

b
1, O

c
1ii, TLOAS(T) = hB2, SM , hE+

2 ,

E�
2 , O

b
2, O

c
2ii, where the components of TLOAS(T) are as follows:

• B2 = B1 [{append(ectx, ctx(eid)) | e = hepi, ectxi 2 E+
1 [E�

1 }

[
�
1{ctx(e1id), . . . , ctx(e

n
id)}1.

��{e1, . . . , en} = E+
1 [E�

1

• E+
2 = {c(e) | e 2 E+

1 }

• E�
2 = {c(e) | e 2 E�

1 }

• Ob
2 = {hc(e1), c(e2), opi | he1, e2, opi 2 Ob

1}

• Oc
2 = {hc(e1), c(e2), opi | he1, e2, opi 2 Oc

1}

The intuition of this translation is that the contexts of the examples are in the (new) background

knowledge, but each rule in them has been appended with an extra atom (unique to each example).

There is a choice rule in the new background knowledge that says that only one context can be “used”

at a time, and each example of the translated task contains an extra atom (added by the c(.) function)

to ensure that the correct context is used for each example.

Theorem 4.9. (proof on page 266)

For any ILP context
LOAS learning task T , ILPLOAS(TLOAS(T)) = ILP context

LOAS (T).

78

4.5. COMPLEXITY

This translation is important for two reasons. Firstly, when we investigate the complexity of each of

the frameworks in Section 4.5, the translation enables us to show that the complexity of ILP context
LOAS

is the same as ILPLOAS . Secondly, it highlights some of the advantages of using context-dependent

examples. Specifically, if we do not use context dependent examples then the contextual information

of every example must be encoded in the background knowledge in some way. Contexts, on the

other hand, can allow for what would have otherwise been background knowledge to be partitioned

into the pieces that are relevant for particular examples. Example 4.10 shows how the background

knowledge of the non-context dependent task of learning the definition of what it means for a graph

to be Hamiltonian (Example 4.3) can be partitioned in this way.

Example 4.10. Reconsider the background knowledge of the task in Example 4.3. This background

knowledge has choice rules which generate all graphs up to size 4. In fact, as each example completely

describes a single graph, most of the answer sets of this background knowledge are completely irrel-

evant to most examples. A context-dependent representation would be to have an empty background

knowledge and to have the context of each example be a set of facts describing exactly one graph G.

For instance, the context dependent example eG represents the graph G.

*
h;, ;i,

8
>>>>>><

>>>>>>:

node(1..4).

edge(1, 2).

edge(2, 3).

edge(3, 4).

edge(4, 1).

9
>>>>>>=

>>>>>>;

+

(eG)

1 2

3 4

(the graph G)

As there is no background knowledge, and the partial interpretation of each example is empty, the

goal of this task now becomes to find a hypothesis H such that H [ectx is satisfiable for each positive

example e and unsatisfiable for each negative example e.

4.5 Complexity

We now discuss the complexity of the three learning frameworks presented in this chapter, with respect

to three decision problems: verification, deciding whether a given hypothesis H is an inductive solution

of a task T ; satisfiability, deciding whether a learning task T has any inductive solutions; and optimum

verification, deciding whether a given hypothesis H is an optimal inductive solution of a task T . We

also present the same complexity results for brave induction (ILPb), induction from stable models

(ILPsm) and cautious induction (ILPc). A summary of the results is shown in Table 4.1. The tasks

we consider in this section are propositional (i.e. their background knowledges, hypothesis spaces and

the contexts of all examples are ground).

79

CHAPTER 4. LEARNING FROM ANSWER SETS

Framework Verification Satisfiablity Optimum Verification

ILPb NP -complete NP -complete DP -complete
ILPsm NP -complete NP -complete DP -complete
ILPc DP -complete ⌃P

2 -complete ⇧P
2 -complete

ILPLAS DP -complete ⌃P
2 -complete ⇧P

2 -complete
ILPLOAS DP -complete ⌃P

2 -complete ⇧P
2 -complete

ILP context
LOAS DP -complete ⌃P

2 -complete ⇧P
2 -complete

Table 4.1: A summary of the complexity of the various learning frameworks.

4.5.1 Learning from Answer Sets with Stratified Summing Aggregates

As there are existing results on the complexity of solving aggregate stratified programs, it is useful to

introduce a generalisation of ILPLAS . Learning from Answer Sets with Stratified Aggregates (ILP s
LAS)

is the same as Learning from Answer Sets, except for allowing summing aggregates in the bodies of

the rules in B and SM , so long as B [SM is aggregate stratified. Note that the condition of B [SM

being aggregate stratified implies that for any hypothesis H ✓ SM , B [H is aggregate stratified. The

existing results on the complexity of these programs allow us to prove the complexity of ILP s
LAS ;

hence, as we can show that ILPLOAS reduces to ILP s
LAS , this is helpful in proving the complexity of

ILPLOAS .

4.5.2 Relationships Between the Learning Tasks

In this section we show that for each of the three decision problems there is a chain of polynomial

reductions from ILPc to ILPLAS to ILP context
LOAS to ILPLOAS to ILP s

LAS . This chain of reductions is

then used in proving that all four tasks share the same complexity for each decision problem. By

proving that ILPc is O-hard and ILP s
LAS is in O for some complexity class O, we prove that all four

tasks are O-complete. Similarly, as we show that ILPb and ILPsm both reduce polynomially to each

other for each of the three decision problems, if for one of the problems ILPb is O-complete for some

class O then so is ILPsm. The chains of reductions are shown in Figure 4.2.

ILPbILPsm

ILPc ILPLAS ILP context
LOAS ILPLOAS ILP s

LAS

Figure 4.2: Chains of polynomial reductions that hold for the three decision problems considered
in this section (each arrow represents that there is a polynomial reduction from one framework to
another).

Proposition 4.11 shows that the complexity of ILPb and of ILPsm coincide for the three decision

80

4.5. COMPLEXITY

problems.

Proposition 4.11. (proof on page 267)

1. Deciding verification, satisfiability and optimum verification for ILPb each reduce polynomially

to the corresponding ILPsm decision problem.

2. Deciding verification, satisfiability and optimum verification for ILPsm each reduce polynomially

to the corresponding ILPb decision problem.

Proposition 4.12 shows that there is a chain of polynomial reductions from ILPc to ILPLAS to

ILPLOAS to ILP context
LOAS to ILP s

LAS for the three decision problems.

Proposition 4.12. (proof on page 268)

1. Deciding verification, satisfiability and optimum verification for ILPc each reduce polynomially

to the corresponding ILPLAS decision problem.

2. Deciding verification, satisfiability and optimum verification for ILPLAS each reduce polynomi-

ally to the corresponding ILP context
LOAS decision problem.

3. Deciding verification, satisfiability and optimum verification for ILP context
LOAS each reduce polyno-

mially to the corresponding ILPLOAS decision problem.

4. Deciding verification, satisfiability and optimum verification for ILPLOAS each reduce polyno-

mially to the corresponding ILP s
LAS decision problem.

4.5.3 Complexity of Deciding Verification, Satisfiability and Optimum Verification

for each Framework

In this section we prove the complexity of deciding verification, satisfiability and optimum verification,

for each of the learning frameworks. We start with the ILPb and ILPsm frameworks, for which

verification and satisfiability are both NP -complete, and optimum verification is DP -complete.

Proposition 4.13. (proof on page 271) Verifying whether a given H is an inductive solution of a

general ILPb task is NP -complete.

Corollary 4.14. Verifying whether a given H is an inductive solution of a general ILPsm task is

NP -complete.

Proposition 4.15. (proof on page 271) Deciding the satisfiability of a general ILPb task is NP -

complete.

Corollary 4.16. Deciding the satisfiability of a general ILPsm task is NP -complete.

81

CHAPTER 4. LEARNING FROM ANSWER SETS

Proposition 4.17. (proof on page 272) Verifying whether a given H is an optimal inductive solution

of a general ILPb task is DP -complete.

Corollary 4.18. Deciding whether a hypothesis is an optimal solution of a general ILPsm task is

DP -complete.

We have now proved the complexity of deciding verification, satisfiability and optimum verification for

ILPb and ILPsm, proving the corresponding entries in Table 4.1. It remains to show the complexities

for ILPc, ILPLAS , ILPLOAS and ILP context
LOAS .

As we have shown that ILPc reduces (polynomially) to ILPLAS which, in turn, reduces to ILPLOAS ,

which reduces to ILP context
LOAS and that ILP context

LOAS reduces to ILP s
LAS , to prove the complexity of

verifying a hypothesis for each framework, it su�ces to show that ILPc is DP -hard (thus also proving

the hardness for each of the other frameworks) and that ILP s
LAS is a member of DP (thus proving

membership for the other frameworks). This shows that each framework is both a member of DP and

also DP -hard, and therefore must be DP -complete.

Proposition 4.19. (proof on page 273) Deciding verification for ILP s
LAS is a member of DP .

Proposition 4.20. (proof on page 274) Deciding verification for ILPc is DP -hard.

We can now prove the complexity of deciding verification for ILPc, ILPLAS , ILPLOAS and ILP context
LOAS .

This proves the corresponding entries in Table 4.1.

Theorem 4.21. Deciding whether a given H is a solution of any ILPc, ILPLAS, ILPLOAS or

ILP context
LOAS task is DP -complete in each case.

Proof. By Proposition 4.20, deciding the verification for ILPc is DP -hard. By Proposition 4.12,

deciding the verification for ILPc reduces to deciding verification for ILPLAS which, in turn, reduces

to deciding verification for ILP context
LOAS , which reduces to deciding verification for ILPLOAS , which again

reduces to deciding verification for ILP s
LAS and by Proposition 4.19, deciding verification for ILP s

LAS

is a member of DP . Deciding verification for each of these learning frameworks must therefore be

both a member of DP and must be DP -hard. Hence, deciding verification for each framework is

DP -complete.

Similarly, to show that deciding satisfiability is ⌃P
2 -complete for each framework, we only need to show

that ILP s
LAS is a member of ⌃P

2 and ILPc is ⌃P
2 -hard.

Proposition 4.22. (proof on page 274) Deciding satisfiability for ILP s
LAS is in ⌃P

2 .

Proposition 4.23. (proof on page 275) Deciding satisfiability for ILPc is ⌃P
2 -hard.

We can now prove the complexity of deciding satisfiability for ILPc, ILPLAS , ILPLOAS and ILP context
LOAS .

This proves the corresponding entries in Table 4.1.

82

4.6. RELATED WORK

Theorem 4.24. Deciding the satisfiability of any ILPc, ILPLAS, ILPLOAS or ILP context
LOAS task is

⌃P
2 -complete in each case.

Proof. (similar to the proof of Theorem 4.21) By Proposition 4.23, deciding satisfiability for ILPc is

⌃P
2 -hard. By Proposition 4.12, deciding satisfiability for ILPc reduces to deciding satisfiability for

ILPLAS which, in turn, reduces to deciding satisfiability for ILP context
LOAS , which reduces to deciding

satisfiability for ILPLOAS , which again reduces to deciding satisfiability of ILP s
LAS . By Proposi-

tion 4.22, deciding satisfiability for ILP s
LAS is in ⌃P

2 . Deciding satisfiability for each of these learning

frameworks is therefore both a member of ⌃P
2 and is ⌃P

2 -hard. Hence, deciding satisfiability for each

framework is ⌃P
2 -complete.

Finally, to show that deciding that optimum verification is ⇧P
2 -complete for each framework, we only

need to show that ILP s
LAS is a member of ⇧P

2 and ILPc is ⇧P
2 -hard.

Proposition 4.25. (proof on page 276) Deciding optimum verification for ILP s
LAS is in ⇧P

2 .

Proposition 4.26. (proof on page 276) Deciding whether an arbitrary hypothesis H is an optimal

inductive solution of a given ILPc task is ⇧P
2 -hard.

We can now prove the complexity of deciding optimum verification for ILPc, ILPLAS , ILPLOAS and

ILP context
LOAS . This proves the remaining entries in Table 4.1.

Theorem 4.27. Deciding whether an arbitrary hypothesis H is an optimal solution for any ILPc,

ILPLAS, ILPLOAS or ILP context
LOAS task is ⇧P

2 -complete in each case.

Proof. (similar to the proof of Theorem 4.21) By Proposition 4.26, deciding optimum verification for

ILPc is ⇧P
2 -hard. By Proposition 4.12, deciding optimum verification for ILPc reduces to deciding op-

timum verification for ILPLAS which, in turn, reduces to deciding optimum verification for ILP context
LOAS ,

which reduces to deciding optimum verification for ILPLOAS , which again reduces to deciding opti-

mum verification of ILP s
LAS . By Proposition 4.25, deciding optimum verification for ILP s

LAS is in

⌃P
2 . Deciding optimum verification for each of these learning frameworks is therefore both a member

of ⇧P
2 and is ⇧P

2 -hard. Hence, deciding optimum verification for each framework is ⇧P
2 -complete.

4.6 Related Work

4.6.1 Comparison with Traditional ILP

The three most common settings for ILP are learning from entailment, learning from interpretations

and learning from satisfiability [DR97]. In this section, we discuss how our learning frameworks

compare to each of these settings. Due to the di↵erences in the languages of ASP and Prolog, in

83

CHAPTER 4. LEARNING FROM ANSWER SETS

this section when comparing to traditional frameworks, we assume that all programs considered are

normal logic programs such that HBrel
P is finite (with no lists, constraints or choice rules).

We also demonstrate that our three frameworks can simulate ILPb, ILPc and ILPsm – the three

previous frameworks for learning under the answer set semantics. In Chapter 5 we give a much more

detailed analysis of each of the six frameworks and their generality. We show that ILP context
LOAS is the

most general of the six learning frameworks.

Learning from Entailment

As discussed in Chapter 3, there are two versions of Learning from Entailment under the answer

set semantics. These are brave and cautious induction. We now show that ILPLAS is capable of

simulating both. First, Theorem 4.28 shows that ILPb can be simulated by ILPLAS . The positive

and negative examples of an ILPb task become the inclusions and exclusions of a single positive

(partial interpretation) example in an ILPLAS task.

Theorem 4.28. Let Tb = hB,SM , hE+, E�
ii be an arbitrary ILPb task. ILPb(Tb) = ILPLAS(hB,SM ,

h{hE+, E�
i}, ;ii).

Proof. For any H ✓ SM :

H 2 ILPb(Tb)

, 9A 2 AS(B [H) such that E+
✓ A and E�

\A = ;

, 9A 2 AS(B [H) such that A extends hE+, E�
i

, H 2 ILPLAS(hB,SM , h{hE+, E�
i}, ;ii)

Theorem 4.29 shows that ILPc can be simulated by ILPLAS . The translation from cautious induction

is slightly more complicated, in that each positive and negative ILPc example becomes a distinct

negative example in ILPLAS . A positive example a becomes a negative partial interpretation example

h;, {a}i, where the ILPc example says that all answer sets should contain a and the latter (equivalently)

says that no answer set should not contain a (negative examples are translated similarly). An “empty”

partial interpretation is needed as a positive example to enforce the condition of ILPc that B [H

must be satisfiable.

Theorem 4.29. Let Tc = hB,SM , hE+, E�
ii be an arbitrary ILPc task. ILPc(Tc) =

ILPLAS(hB,SM , h{h;, ;i}, {h;, {e+}i | e+ 2 E+
} [{h{e�}, ;i | e� 2 E�

}ii).

Proof. For any H ✓ SM :

H 2 ILPc(Tc)

84

4.6. RELATED WORK

, B [H is satisfiable and 8A 2 AS(B [H): E+
✓ A and E�

\A = ;

, B [H is satisfiable and

8e+ 2 E+: 8A 2 AS(B [H) e+ 2 A and

8e� 2 E�: 8A 2 AS(B [H) e� 62 A

, B [H is satisfiable and

8e+ 2 E+: 8A 2 AS(B [H) A does not extend h;, {e+}i and

8e� 2 E+: 8A 2 AS(B [H) A does not extend h{e�}, ;i

, B [H has an answer set that extends h;, ;i and

8e+ 2 E+: @A 2 AS(B [H) such that A extends h;, {e+}i and

8e� 2 E�: @A 2 AS(B [H) such that A extends h{e�}, ;i

, H 2 ILPLAS(hB,SM , h{h;, ;i}, {h;, {e+}i | e+ 2 E+
} [{h{e�}, ;i | e� 2 E�

}ii)

Learning from Interpretations

Recall from Chapter 3 that the task of ILPLFI is to find a hypothesis H such that for each example

set of facts e 2 E+, M(B [e) is a model of H and for each set of facts e 2 E�, M(B [e) is not a

model of H. ILP context
LOAS can be used to simulate the standard learning from interpretations setting by

encoding each example set of facts as the context of an example (with no inclusions or exclusions) and

converting the clauses in the hypothesis space into constraints. A set of constraints H 0 is an inductive

solution of such a task if for each positive (resp. negative) example e, with context C, B [H 0
[C

is satisfiable (resp. unsatisfiable). As B is a definite program, C is a set of facts and H 0 is a set of

constraints, B [H 0
[C is satisfiable if and only if M(B [C) is a model of H 0.

Theorem 4.30. Let TLFI = hB,SM , hE+, E�
ii be an ILPLFI task. Consider the ILP context

LOAS task

T 0 = hB, f(SM), {hh;, ;i, ei | e 2 E+
}, {hh;, ;i, ei | e 2 E�

}, ;, ;i, where f maps any set of clauses

into a set of constraints, such that each clause ¬b1 _ . . . _ ¬bm _ c1 _ . . . _ cn becomes the constraint

: - b1, . . . , bm not c1, . . . , not cn. Then ILPLFI(TLFI) = {f�1(H) | H 2 ILP context
LOAS (T 0)} (where f�1

is the inverse mapping of f).

Proof. Assume that H 2 ILPLFI(TLFI)

, H ✓ SM ,

8e 2 E+, M(B [e) is a model of H and

8e 2 E�, M(B [e) is not a model of H

, H ✓ SM ,

8e 2 E+, M(B [e) is a model of f(H) and

8e 2 E�, M(B [e) is not a model of f(H)

(for any clause h, the models of h are equal to the models of f(h))

85

CHAPTER 4. LEARNING FROM ANSWER SETS

, H ✓ SM ,

8e 2 E+, B [e [f(H) has at least one answer set and

8e 2 E�, B [e [f(H) has no answer sets

, H ✓ SM ,

8e0 2 {hh;, ;i, ei | e 2 E+
}, B [e0ctx [f(H) has at least one answer set that extends e0pi and

8e0 2 {hh;, ;i, ei | e 2 E�
}, B [e0ctx [f(H) has no answer sets that extend e0pi

, f(H) ✓ f(SM),

8e0 2 {hh;, ;i, ei | e 2 E+
}, B [f(H) accepts e0 and

8e0 2 {hh;, ;i, ei | e 2 E�
}, B [f(H) does not accept e0

, f(H) 2 ILP context
LOAS (T 0)

, H 2 {f�1(H 0) | H 0
2 ILP context

LOAS (T 0)}

Learning from Satisfiability

The task of ILPLFS is to find a hypothesis such that for each example program e+ 2 E+, B[H[e+ has

at least one model and for each program e� 2 E�, B[H [e� has no models. ILP context
LOAS can simulate

ILPLFS by using context-dependent examples. In standard ILPLFS , the background knowledge,

hypothesis space and examples are each sets of clauses. In our translation we transform all clauses in

the background knowledge, hypothesis space and examples of the original task into constraints (using

the same mapping f as in Theorem 4.30). We also add a choice rule to the background knowledge for

each atom in the language of the task (saying that each atom can either be true or false). The e↵ect

is that for any hypothesis H, the models of B [H [e are equal to the answer sets of B0
[f(H)[f(e),

where B0 is the background knowledge of the translated task. More specifically, B[H [e is satisfiable

if and only of B0
[f(H) [f(e) is satisifable. Hence, a hypothesis H covers an example if and only if

f(H) covers the translated example. Theorem 4.31 formalises our translation from an ILPLFS task

to an ILP context
LOAS task.

Theorem 4.31. Let TLFS = hB,SM , hE+, E�
ii be an ILPLFS task. Let HBT be the relevant

Herbrand base of the union of all clauses in TLFS. Consider the ILP context
LOAS task T 0 = hf(B) [

�
0{a}1. | a 2 HBrel

T

, f(SM), {hh;, ;i, f(e)i | e 2 E+

}, {hh;, ;i, f(e)i | e 2 E�
}, ;, ;i, where f maps

any set of clauses into a set of constraints, such that each clause ¬b1 _ . . . _ ¬bm _ c1 _ . . . _ cn

becomes the constraint : - b1, . . . , bm not c1, . . . , not cn. Then ILPLFS(TLFS) = {f�1(H) | H 2

ILP context
LOAS (T 0)} (where f�1 is the inverse mapping of f).

Proof.

Note that for any program P , 8I ✓ HBrel
T , I is a model of P if and only if I 2 AS(f(P) [

�
0{a}1. | a 2 HBrel

T

).

86

4.6. RELATED WORK

Assume that H 2 ILPLFS(TLFS)

, H ✓ SM , 8e 2 E+, B [H [e has at least one model and 8e 2 E�, B [H [e has no models

, H ✓ SM , 8e 2 E+, 9I ✓ HBrel
T such that I is a model of B [H [e and 8e 2 E�, 8I ✓ HBrel

T ,

I is not a model of B [H [e

, H ✓ SM , 8e 2 E+, f(B [H [e) [
�
0{a}1. | a 2 HBrel

T

is satisfiable and 8e 2 E�, f(B [H [

e) [
�
0{a}1. | a 2 HBrel

T

is unsatisfiable

, H ✓ SM , 8e 2 E+, f(B) [
�
0{a}1. | a 2 HBrel

T

[f(H) [f(e) is satisfiable and 8e 2 E�,

f(B) [
�
0{a}1. | a 2 HBrel

T

[f(H) [f(e) is unsatisfiable

, f(H) ✓ f(SM), 8e0 2 {hh;, ;i, f(e)i | e 2 E+
}, f(B) [

�
0{a}1. | a 2 HBrel

T

[f(H) accepts e0

and 8e0 2 {hh;, ;i, f(e)i | e 2 E�
}, f(B) [

�
0{a}1. | a 2 HBrel

T

[f(H) does not accept e0

, f(H) 2 ILP context
LOAS (T 0)

, H 2 {f�1(H 0) | H 0
2 ILP context

LOAS (T 0)}

Induction of Stable Models

Induction of stable models is a generalisation of ILPb, with multiple partial interpretation examples.

An ILPsm task is essentially an ILPLAS task with no negative examples. Theorem 4.32 shows that

ILPsm can be (trivially) simulated by ILPLAS .

Theorem 4.32. Let Tsm = hB,SM , hEii be an arbitrary ILPsm task. ILPsm(Tsm) =

ILPLAS(hB,SM , h{E, ;ii)

Proof. For any H ✓ SM :

H 2 ILPsm(Tsm)

, 8e 2 E: 9A 2 AS(B [H) such that e extends A

, H 2 ILPLAS(hB,SM , hE, ;ii)

87

CHAPTER 4. LEARNING FROM ANSWER SETS

4.6.2 Preference Learning

Another field that is related to our work is that of preference learning [FH10]. Specifically, our

ordering examples could be thought of as a kind of learning to rank [FH03, GHH01], where the

task is to learn to rank a set of objects given a set of pairwise preference examples over the objects

(this task is often referred to as object ranking). Approaches for object ranking often use non logic-

based machine learning techniques (e.g. support vector machines [Joa02, KHM05] or artificial neural

networks [GHH01, RPMB08, RPMS11]). Compared to these, ILP context
LOAS shares the same advantages

as any ILP approach versus a non logic-based machine learning technique: learned hypotheses are

structured, human readable and can express relational concepts such as minimising the instances of

particular combinations of predicates. Existing background knowledge can be taken into account to

capture predefined concepts and the search can be steered towards particular types of hypotheses

using a language bias. In this section we focus on attempts at preference learning that learn human

readable representations of preferences.

Conditional Preference Networks

One approach for preference learning that does aim to be human readable is to learn a conditional

preference network (CP-net) [BBD+04]. Definition 4.10 is the formal definition of a CP-net (first

presented in [BBD+04]). Given a set of object instances O with attributes2 X1, . . . , Xn, a CP-net

induces a partial ordering of the instances in O.

Definition 4.10. A CP-net over the attributes X1, . . . , Xn is a directed graph G with the nodes

X1, . . . , Xn. The parent nodes of each node Xi are denoted as par(Xi). Each node Xi is annotated

with a CP table, which maps each instantiation of the nodes in par(Xi) to a total ordering of the

elements in the domain of Xi.

The semantics of CP-nets is that each row in a CP-table specifies which of two objects are preferred if

“all other attributes are equal”. Informally, a preference ranking over all objects in the domain is said

to satisfy a CP-net if every row of every CP table is respected. We illustrate this with an example.

Example 4.33. Reconsider the task of learning a user’s journey preferences, as discussed in Exam-

ple 4.4. The nodes in the graph below represent the attributes “time of day” (denoted T , with values

day and night), “crime rating” (denoted CR, with values low and high) and “mode of transport”

(denoted M , with values car and walk). The CP-tables for each node are also shown below. Note that

the CP-table for M depends on T and CR, and so it has 4 rows, one for each possible combination of

the values for T and CR.

2
In the CP-net literature, these are usually referred to as variables, but we avoid this term as it has another meaning

in this thesis.

88

4.6. RELATED WORK

Tday � Tnight CRlow � CRhigh

CRT

M

Tday ^ CRlow Mwalk � Mcar

Tnight ^ CRlow Mcar � Mwalk

Tday ^ CRhigh Mcar � Mwalk

Tnight ^ CRhigh Mcar � Mwalk

This particular CP-net induces the partial ordering shown below. In the diagram, a path from node A

to node B illustrates that A is preferred to B.

Tday, CRlow, Mwalk

Tday, CRlow, Mcar

Tday, CRhigh, Mcar

Tday, CRhigh, MwalkTnight, CRlow, Mwalk

Tnight, CRlow, Mcar

Tnight, CRhigh, Mcar

Tnight, CRhigh, Mwalk

There have been some attempts at learning CP-nets from examples. In [GAG13], a two-phase method

is proposed for eliciting CP-nets in an iterative process, by querying a user about their preferences. In

the first phase, a user is asked about their preferences over single attributes, and then in the second

phase, they are asked about their preferences over full objects. The first phase is used to build an initial

CP-net with no edges (all attibutes are assumed to be “unconditional”), whereas the second phase

is used to find the conditions and edges. In [LXW+14], CP-nets are learned from a set of pairwise

89

CHAPTER 4. LEARNING FROM ANSWER SETS

preference examples. Interestingly, this set of examples can be inconsistent (i.e. the examples can

imply that, given a pair of objects o1 and o2, o1 � o2 and o2 � o1). The first step of the algorithm

is to find a maximal consistent subset of the examples, together with a partial ordering of the objects

in the domain (which implies this maximal subset of the examples). The partial ordering of objects

is then transformed into a CP-net.

One drawback to CP-nets is that they are propositional. For example, to represent that an attribute

should be minimised, the CP table for that attribute would need to list every value in order. While

this is possible, in order to learn such a CP table, examples of every instance would need to be seen.

Example 4.34. Consider a simplified scenario, with distance (denoted D, with values 1, . . . , 4) as the

only attribute. A CP-net which expresses a wish to minimise the distance is:

D D1 � D2 � D3 � D4

In order to incentivise learning the CP table for D, there would need to be at least 3 examples, to show

that D1 � D2, D2 � D3 and D3 � D4. In fact, the number of examples required would grow linearly

with the size of the domain of D. In contrast, ILP context
LOAS could learn the first order weak constraint

“:⇠ distance(D).[D@1]” from few examples, and does not need more examples as the domain of D

grows. This is the case in general for ILP approaches, which generalise from few examples to learn first

order theories (rather than learning propositional theories for each example, which tends to result in a

longer hypothesis). In [Yd07], more-or-less CP-nets were introduced, which allowed some attributes to

be labeled as monotonic, meaning that their preference ordering was decided by a predetermined total

ordering over the domain, either from lowest to highest, or from highest to lowest. In this example,

such a framework would be able to represent that there are only two options: either the distance should

be maximised, or it should be minimised. At the time of writing, we are not aware of any work on

learning more-or-less CP-nets.

Another drawback of CP-nets is that they only reason directly on the attributes, and cannot combine

attributes; for instance, in Example 4.4, we were interested in minimising the total walking distance,

rather than the distance in each leg. The penalties in weak constraints allow us to easily express that

the distances of all walking legs should be summed, but a CP-net would require the total walking

distance to be given as an attribute.

Relational CP-nets [Kor12] allow the use of aggregators such as taking the mode or median of the set of

values for an attribute. Although this does allow sets of values to be combined using the aggregators,

this does not overcome the issues above in general, as it does not allow di↵erent attributes to be

combined.

90

4.6. RELATED WORK

Answer Set Optimisation

Weak constraints are one way of expressing preferences over answer sets. Other constructs include

the more complex preferences used by the asprin solver [BDRS15], which can express, for example,

that the optimal answer sets are those that are subset-minimal. In [BNT03], the notion of preference

programs was first introduced as part of the ASO framework. Preference programs are sets of rules of

the form C1 > . . . > Cn : - body., where body is a normal ASP rule body, and C1, . . . , Cn are boolean

formulas such as (a _ b) ^ not c. The meaning of such a preference rule is that if body is satisfied

then C1 is preferred to C2, and so on. Preference programs are solved together with an ASP program,

and the goal is to find the optimal answer set(s) given the preferences in the preference program. We

decided in our frameworks to use weak constraints rather than these alternative representations of

preferences, as they are part of the ASP-Core-2 standard [CFG+13], and are implemented in standard

solvers such as clingo [GKK+11] and DLV [LPF+06]. In principle any representation that creates

a preference ordering over answer sets could be learned using the ILP context
LOAS framework, but the

algorithms in this thesis are specifically targeted at learning weak constraints.

4.6.3 Comparison with Probabilistic ILP

One of the advantages to learning ASP programs rather than Prolog programs is that ASP allows

the modeling of non-determinism, either through unstratified negation or through choice rules. For

example our ILPLAS framework can learn that a coin can be either heads or tails, but not both (the

hypothesis would be {1{heads, tails}1.}.

Another method for achieving non-determinism in ILP is by adding probabilities. Probabilistic Induc-

tive Logic Programming [DRK04] is a combination of ILP and with probabilistic reasoning. Its aim is

to learn a logic program that is annotated with probabilities. The task of PILP is often divided into

structure learning, where the underlying logic program is learned, and parameter estimation or weight

learning, where the probabilities are learned. A key di↵erence between ILPLAS and PILP is that

while both aim to learn programs which are non-deterministic, ILPLAS aims to learn programs whose

answer sets capture the set of possibilities, whereas PILP aims to learn a probability distribution over

these possibilities.

Although there has been significant progress in the field of PILP [DRKT07, DRT10, BR15a, RBZ+16,

RBZ14] for learning annotated Prolog programs, PILP under the answer set semantics is still relatively

young, and thus, there are few approaches. PrASP [NM14, NM15, Nic16] considers the problem of

weight learning, and in fact uses a similar example of learning about coins. This example illustrates the

di↵erence between weight learning and standard ILP. In ILP our task is to learn that there are exactly

two possibilities (heads and tails); whereas in weight learning, the goal is to estimate probabilities

of each possibility. PROBXHAIL [DRB+16] combines structure learning and weight learning, but it

can only learn definite logic programs.

91

CHAPTER 4. LEARNING FROM ANSWER SETS

4.6.4 Related Complexity Results

The complexity of ILPb and ILPc for verification and satisfiability were investigated in [SI09]. How-

ever, in that work, the results on satisfiability are for deciding whether or not a task has any solutions

with no restrictions on the hypothesis space. This means that for both ILPb and ILPc deciding

whether a task is satisfiable is equivalent to checking whether there is a model of B in which the

examples are covered (a simpler decision problem). For this reason, the complexity of satisfiability

for propositional ILPc in [SI09] was NP -complete, rather than ⌃P
2 -complete. The complexities for

the verification of a hypothesis given in [SI09] are also di↵erent from the ones in this chapter, as

they consider a di↵erent language for B [H. [SI09] considers disjunctive logic programs, whereas

we investigated the complexity of learning programs without disjuction. The reason we chose not to

consider disjunctive logic programs is that the systems available for ILP under the answer set seman-

tics (including our own ILASP systems) are not targeted at learning with disjunction. For example,

ASPAL [CRL12] does not allow any disjunction, and although XHAIL [BR15b] allows disjunction in

the background knowledge, it does not support learning disjunctive rules.

4.6.5 Summary

In this chapter, we introduced our three frameworks for learning ASP programs. We motivated the

need for such frameworks, by showing that the existing frameworks for ILP under the answer set

semantics are not capable of learning some ASP programs (or at least, no task of these frameworks

could have the programs as optimal solutions). In the next chapter, we explore in much more detail

what it means for a framework to be capable of learning a class of ASP programs and introduce three

new measures of the generality of a learning framework. We present the generality results for our own

frameworks and the main three existing frameworks under the answer set semantics.

92

Chapter 5

Generality

In this chapter, we present a new notion of the generality of a learning framework. The aim is to

characterise the class of ASP programs that a framework is capable of learning, if given su�cient

examples. Language biases tend, in general, to impose their own restrictions on the classes of program

that can be learned. They are primarily used to aid the performance of the computation, rather than

to capture intrinsic properties of a learning framework. In this chapter we will therefore consider

learning tasks with unrestricted hypothesis spaces: hypotheses can be constructed from any set of

normal rules, choice rules and hard and weak constraints. We assume each learning framework F to

have a task consisting of a pair hB,EF i, where B is the (ASP) background knowledge and EF is a

tuple consisting of the examples for this framework; for example ELAS
1 = hE+, E�

i where E+ and

E� are sets of partial interpretations.

Allowing an unrestricted hypothesis space means that we can now focus on analysing whether a

learning framework is general enough to define learning tasks that has a particular set of hypotheses

as the inductive solutions. In the first instance, we could define that a framework F is general enough

to learn a hypothesis H if there is at least one task TF in this framework such that H is an inductive

solution of TF . However, such a “loose” notion of generality may lead to the trivial learning framework,

whose learning tasks have no examples, as the most general framework possible. This is shown in the

following example.

Example 5.1. Consider the trivial learning framework ILP> whose learning tasks are pairs hB,E>i,

where E> is the empty tuple and B is an ASP program. ILP>(hB,E>i) is then the set of all ASP

programs, i.e. every ASP program is a solution of every ILP> task. For every background knowledge B

and hypothesis H there is clearly a task hB,E>i such that H 2 ILP>(hB,E>i). However, every other

possible hypothesis H 0 is also a solution of this same task, which makes it impossible to distinguish

one hypothesis from another.

It is clearly not su�cient to say that a framework is general enough to learn some target hypothesis

1
Note that to avoid cumbersome notation, we denote this ELAS rather than EILPLAS .

93

CHAPTER 5. GENERALITY

(denoted from now on as HT) if we can find at least one learning task with HT as a solution. What this

definition lacks is a way to express that HT is a solution of a task T , but that some other (unwanted)

hypothesis is not a solution of T . To capture this property of a learning framework we should be able

to say that a task T can distinguish a target hypothesis HT from an unwanted hypothesis. Pairs of

target and unwanted hypotheses that can be distinguished from each other, are an interesting starting

point when considering the generality of a learning framework. But this again might not be the only

property of generality. Frameworks, such as brave induction, may be able to distinguish a target

hypothesis HT from two (or more) unwanted hypotheses, e.g., H 0
1 and H 0

2, in two separate learning

tasks, but they may not have a single learning task capable of accepting HT as inductive solution but

neither H 0
1 nor H 0

2. Consider for instance the following example.

Example 5.2. Imagine the scenario where we are observing a coin being tossed several times. Obvi-

ously there are two outcomes, and we would like to learn an ASP program whose answer sets correspond

to these two di↵erent outcomes. Consider the background knowledge B to be empty, and the atoms

heads and tails to be true when the coin lands on heads or tails respectively. Our target hypothe-

sis HT is an ASP program such that AS(B [H) = {{heads}, {tails}}. One such hypothesis could

be the program HT = {1{heads, tails}1.}. Consider now the two hypotheses H 0
1 = {heads.} and

H 0
2 = {tails.}, which correspond to the coin always landing on heads or tails respectively. Neither of

these hypothesis correctly represent the behaviour of the coin, so they are unwanted hypotheses. There

is one answer set, {heads}, of B [H 0
1 and one answer set, {tails}, of B [H 0

2. ILPb can distinguish

HT from H 0
1 and from H 0

2 separately with the tasks hB, h{tails}, ;ii and hB, h{heads}, ;ii, respec-

tively. But there is, however, no learning task for ILPb for which HT is an inductive solution and

neither H 0
1 nor H 0

2 is.

A more general notion of generality of a learning framework can be considered, which looks at distin-

guishing a target hypothesis HT from a set of unwanted hypotheses S. In Section 5.2 we introduce

the notion of the one-to-many-distinguishability class of a learning framework. This corresponds to

the class of pairs consisting of a single hypothesis HT and a set S of hypotheses for which a learning

framework has at least one task that distinguishes HT from each hypothesis in S. Informally, this

notion expresses the generality of a framework in finding a single target hypothesis in the presence of

many unwanted hypotheses. In Section 5.3, we also extend the one-to-many-distinguishability class of

a learning framework to many-to-many-distinguishability, which captures the notion of distinguishing

a set of target hypotheses S1 from another set of unwanted hypotheses S2, with a single task.

In the remainder of this chapter we explore these three new measures of generality, expressed as

three di↵erent learning problems. One-to-one-distinguishability determines the hypotheses that a

framework is general enough to learn, while ruling out another unwanted hypothesis; one-to-many-

distinguishability determines the hypotheses that can be learned from within a space of unwanted

hypotheses; and finally, many-to-many-distinguishability determines exactly which sets of hypotheses

can be learned. We will prove properties of our three classes of generalities making use of a definition

of strong reduction from one framework to another. Strong reduction is di↵erent from the concept of

94

reduction presented in [DR97]. Definitions 5.1 and 5.2 present, respectively, a reformulation of the

notion of reduction introduced in [DR97] and of our new concept of strong reduction.

Definition 5.1. A framework F1 reduces to F2 (written F1 !r F2) if for every F1 task TF1 there is

an F2 task TF2 such that ILPF1(TF1) = ILPF2(TF2). A framework F1 is at least as r-general as F2

if F2 !r F1; and F1 is more r-general than F2 if F2 !r F1 and F1 6!r F2.

Example 5.3. Consider the ILPb and ILPc learning frameworks. ILPb !r ILPc, as any ILPb task

hB, hE+, E�
ii maps to the ILPc task hB [{: - not e. | e 2 E+

} [{: - e. | e 2 E�
}, h;, ;ii. ILPc

does not, however, reduce to ILPb. Consider, for instance, the ILPc task Tc = h;, h{p}, ;ii and

assume that there is a task Tb = hB, hE+, E�
ii such that ILPb(Tb) = ILPc(Tc). The hypothesis H1 =

{p.} 2 ILPc(Tc), and, given the assumption, H1 is also in ILPb(Tb). But consider now the hypothesis

H2 = {0{p}1.}. Since AS(B [H1) ✓ AS(B [H2), if B [H1 has an answer set extending hE+, E�
i,

then so does B [H2. Thus, if H1 2 ILPb(Tb) then H2 2 ILPb(Tb). But, although H2 2 ILPb(Tb), it

is easy to see that H2 62 ILPc(Tc), so ILPb(Tb) is not equal to ILPc(Tc). Hence, ILPc does not reduce

to ILPb, and ILPc is therefore more r-general than ILPb.

We discuss the relationship between reductions and our own measures of generality in Section 5.5.

Our notion of strong reduction di↵ers from the above notion of reduction, in the fact that the reduced

task must have the same background knowledge as the original task.

Definition 5.2. A framework F1 strongly reduces to F2 (written F1 !sr F2) if for every F1 task

TF1 = hB,EF1i there is an F2 task TF2 = hB,EF2i such that ILPF1(TF1) = ILPF2(TF2). A framework

F1 is at least as sr-general as F2 if F2 !sr F1; and F1 is more sr-general than F2 if F2 !sr F1 and

F1 6!sr F2.

Proposition 5.4 shows the strong reduction relations between the frameworks considered in this chapter.

Note that although ILPc is more r-general than ILPb (as shown in Example 5.3), it is not more

sr-general than ILPb. This is because without changing the background knowledge, ILPc cannot

represent the same ILPb tasks.

Proposition 5.4.

1. ILPb !sr ILPsm !sr ILPLAS !sr ILPLOAS !sr ILP context
LOAS

2. ILPc !sr ILPLAS

Proof.

1. For any ILPb task Tb = hB, hE+, E�
ii, ILPb(Tb) = ILPsm(hB, h{hE+, E�

i}ii)

For any ILPsm task Tsm = hB, h{e1, . . . , en}ii, ILPsm(Tsm) = ILPLAS(hB, h{e1, . . . , en}, ;ii)

For any ILPLAS task TLAS = hB, hE+, E�
ii, ILPLAS(TLAS) = ILPLOAS(hB, hE+, E�, ;, ;ii)

95

CHAPTER 5. GENERALITY

For any partial interpretation e, let c(e) be the CDPI he, ;i. For any ILPLOAS task TLOAS =

hB, hE+, E�, Ob, Oc
ii, ILPLOAS(TLOAS) = ILP context

LOAS (hB, h{c(e) | e 2 E+
}, {c(e) | e 2 E�

},

{hc(e1), c(e2)i | he1, e2i 2 Ob
}, {hc(e1), c(e2)i | he1, e2i 2 Oc

}ii)

2. For any ILPc task Tc = hB, h{e+1 , . . . , e
+
m}, {e�1 , . . . , e

�
n }ii, ILPc(Tc) = ILPLAS(hB, h{h;, ;i},

{h;, {e+1 }i, . . . , h;, {e
+
m}i, h{e�1 }, ;i, . . . , h{e

�
n }, ;i}ii). Note that the empty ILPLAS positive ex-

ample enforces that there is at least one answer set, and both the ILPc positive and negative

examples are mapped to ILPLAS negative examples which enforce in the case of positive (resp.

negative) examples that they are not false (resp. not true) in any answer set, and hence true

(resp. false) in every answer set.

5.1 Distinguishability

A one-to-one-distinguishability class captures those pairs of hypotheses H1 and H2 that can be dis-

tinguished from each other with respect to a given possible background knowledge.

Definition 5.3. The one-to-one-distinguishability class of a learning framework F (denoted D
1
1(F))

is the set of tuples hB,H1, H2i of ASP programs for which there is at least one task TF = hB,EF i such

that H1 2 ILPF (TF) and H2 62 ILPF (TF). For each hB,H1, H2i 2 D
1
1(F), TF is said to distinguish

H1 from H2 with respect to B. Given two frameworks F1 and F2, we say that F1 is at least as (resp.

more) D1
1-general as (resp. than) F2 if D1

1(F2) ✓ D
1
1(F1) (resp. D1

1(F2) ⇢ D
1
1(F1)).

Note that the one-to-one-distinguishability relationship is not symmetric; i.e there are pairs of hy-

potheses H1 and H2 such that, given a background knowledge B, H1 can be distinguished from H2,

but H2 can not be distinguished from H1. This is illustrated by Example 5.5.

Example 5.5. Consider a background knowledge B that defines the concepts of cell, same block,

same row and same column for a 4x4 Sudoku grid.

Let H1 be the incomplete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

Also let H2 be the complete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

:- value(C1, V), value(C2, V), same_block(C1, C2).

96

5.1. DISTINGUISHABILITY

ILPb can distinguish H1 from H2 with respect to B. This can be seen using the task hB,

h{value((1, 1), 1), value((2, 2), 1)}, ;ii. On the other hand, ILPb cannot distinguish H2 from H1.

Whatever examples are given in a learning task to learn H2, it must be the case that E+
✓ A and

E�
\A = ;, where A is an answer set of B [H2. But answer sets of B [H2 are also answer sets of

B [H1. So A is also an answer set of B [H1, which implies that H1 satisfies the same examples and

is a solution of the same learning task.

In fact, Proposition 5.6 generalises Example 5.5 showing that ILPb cannot distinguish any program

containing a constraint from the same program without the constraint.

Proposition 5.6. ILPb cannot distinguish any hypothesis H which contains a constraint C from

H\{C}, with respect to any background knowledge.

Proof. Assume for contradiction that there is a hypothesis H = H 0
[C where C is a constraint and

an ILPb task Tb = hB, hE+, E�
ii such that H 2 ILPb(Tb) and H 0

62 ILPb(Tb).

) 9A 2 AS(B [H) such that E+
✓ A and E�

\ A = ;. But as C is a constraint AS(B [H) ✓

AS(B [H 0) and so A 2 AS(B [H 0).

) 9A 2 AS(B [H 0) such that E+
✓ A and E�

\A = ;.

) H 0
2 ILPb(Tb). Contradiction!

One useful property is that if there is a strong reduction from one framework F1 to another framework

F2 then D
1
1(F1) ✓ D

1
1(F2). Note that F2 is not guaranteed to be more D

1
1-general than F1, even in

the case when there is no reduction from F2 to F1.

Proposition 5.7. For any two frameworks F1 and F2: F1 !sr F2) D
1
1(F1) ✓ D

1
1(F2).

Proof. Assume that F1 !sr F2. Take any hB,H1, H2i 2 D
1
1(F1). There must be some task TF1 , with

background knowledge B, such that H1 2 ILPF1(TF1) and H2 62 ILPF1(TF1). Hence, as F1 !sr F2,

there must be some task TF2 , with background knowledge B, such that H1 2 ILPF2(TF2) and H2 62

ILPF2(TF2). So hB,H1, H2i 2 D
1
1(F2). Hence, D1

1(F1) ✓ D
1
1(F2).

As there are clear strong reductions (shown by Proposition 5.4), an ordering of the one-to-one-

distinguishability classes of the frameworks emerges (shown in Corollary 5.8).

Corollary 5.8.

1. D
1
1(ILPb) ✓ D

1
1(ILPsm) ✓ D

1
1(ILPLAS) ✓ D

1
1(ILPLOAS) ✓ D

1
1(ILP

context
LOAS)

2. D
1
1(ILPc) ✓ D

1
1(ILPLAS)

97

CHAPTER 5. GENERALITY

Framework F Su�cient/necessary condition for hB,H1, H2i to be in D
1
1(F)

ILP> ?

ILPb AS(B [H1) 6✓ AS(B [H2)
ILPsm AS(B [H1) 6✓ AS(B [H2)
ILPc AS(B [H1) 6= ; ^ (AS(B [H2) = ; _ (Ec(B [H1) 6✓ Ec(B [H2)))

ILPLAS AS(B [H1) 6= AS(B [H2)
ILPLOAS (AS(B [H1) 6= AS(B [H2)) _ (ord(B [H1) 6= ord(B [H2))
ILP context

LOAS (B [H1 6⌘
s B [H2) _ (9C 2 ASP

ch st ord(B [H1 [C) 6= ord(B [H2 [C))

Table 5.1: A summary of the su�cient and necessary conditions in each learning framework for
a hypothesis H1 to be distinguishable from another hypothesis H2 with respect to a background
knowledge B.

While this does give us information about the ordering of the power of the frameworks to distin-

guish between hypotheses, it does not tell us, for example, what the relationship is between the

distinguishability classes of ILPb and ILPc. It does not tell us which of the ✓’s are strict (in fact,

D
1
1(ILPb) = D

1
1(ILPsm), but the rest are strict subset relations). For each framework, Table 5.1 shows

the necessary and su�cient condition needed to be able to distinguish hypotheses. In the case of the

cautious induction framework, the condition makes use of a new notation.

Notation (Eb and Ec). Given a program P , Eb(P) = {i1 ^ . . . ^ im,^ not e1 ^ . . . ^ not en |

9A 2 AS(P) st i1, . . . , im 2 A and e1, . . . , en 62 A}, i.e. Eb(P) denotes the set of conjunctions of

literals that are true in at least one answer set of P . Similarly, we use Ec(P) to denote the set of

conjunctions of literals that are true in every answer set of P .

Proposition 5.9. (proof on page 278)

For any programs P1 and P2, Eb(P1) ✓ Eb(P2) if and only if AS(P1) ✓ AS(P2).

Propositions 5.10 to 5.17 prove the one-to-one-distinguishability classes of ILPb, ILPsm, ILPc, ILPLAS ,

ILPLOAS and ILP context
LOAS , showing also the su�cient and necessary conditions for distinguishability

presented in Table 5.1.

Proposition 5.10. (proof on page 278)

D
1
1(ILPb) = {hB,H1, H2i| AS(B [H1) 6✓ AS(B [H2)}

Interestingly, although ILPsm 6!sr ILPb, D1
1(ILPb) = D

1
1(ILPsm). This is shown by Proposition 5.11.

The reason for this is that if ILPsm can distinguish one hypothesis H1 from another hypothesis H2

then there must be some task Tsm such that H1 is a solution of Tsm and H2 is not. This means that H1

must cover all of the examples of Tsm and there must be at least one (partial interpretation) example

of Tsm which is not covered by H2. This partial interpretation example can be given as the set of

positive and negative examples in an ILPb task. This ILPb task will then distinguish H1 from H2.

98

5.1. DISTINGUISHABILITY

Proposition 5.11. (proof on page 278) D
1
1(ILPb) = D

1
1(ILPsm).

To better compare the conditions for ILPb and ILPc, we can express the necessary and su�cient

condition of ILPb in terms of the notion Eb(P). Specifically, in ILPb for one hypothesis H1 to be

distinguishable from another hypothesis H2 (with respect to a background knowledge B) it is both

necessary and su�cient for Eb(B [H1) to contain at least one conjunction that is not in Eb(B [H2).

This is because the extra conjunction can be used to generate a set of examples that are covered by

H1 but not H2. This is demonstrated by Example 5.12.

Example 5.12. Consider again the programs B = ;, H1 = {1{heads, tails}1.} and H2 = {heads.}.

Eb(B[H1) contains the conjunction not heads^tails, whereas Eb(B[H2) does not. This conjunction

can be mapped into the positive example tails and the negative example heads, which B [H1 covers,

but B [H2 does not – i.e. the task hB, h{tails}, {heads}ii distinguishes H1 from H2.

So, as the one-to-one-distinguishability condition for ILPb could also be expressed as Eb(B [H1) 6✓

Eb(B [H2), it might be expected that the one-to-one-distinguishability condition for ILPc would be

that Ec(B [H1) 6✓ Ec(B [H2). Indeed this would be the case, if it were not for the extra condition

that ILPc imposes on any inductive solution: that is, any inductive solution H must be such that

B[H is satisfiable. Although this extra condition may seem unnecessary at first sight, its importance

becomes clear when considering distinguishability. Without this extra condition, no hypothesis would

be distinguishable from the hypothesis given by the empty constraint “: - .” – i.e. there would be no

hypothesis H such that hB,H, {: - .}i 2 D
1
1(ILPc) (for any B). This is because there cannot be any

answer set of B [{: - .} that does not cover the examples (as there are no answer sets). As ILPc has

the extra condition that B [H must be satisfiable, its distinguishability condition is slightly more

complicated than Ec(B [H1) 6✓ Ec(B [H2), as shown in Proposition 5.13.

Proposition 5.13. (proof on page 279)

D
1
1(ILPc) =

(
hB,H1, H2i

�����
AS(B [H1) 6= ;^

(AS(B [H2) = ; _ Ec(B [H2) 6✓ Ec(B [H1))

)

We now prove the one-to-one-distinguishability classes of our own frameworks, ILPLAS and ILPLOAS .

D
1
1(ILPLAS) contains both D

1
1(ILPb) and D

1
1(ILPc) as ILPLAS can distinguish any two hypotheses

which, combined with the background knowledge, have di↵erent answer sets.

Proposition 5.14. (proof on page 279) D
1
1(ILPLAS) = {hB,H1, H2i|AS(B [H1) 6= AS(B [H2)}

As shown in Theorem 5.18, ILPLOAS is more D
1
1-general than ILPLAS . This is because ILPLOAS is

able to use its ordering examples to distinguish any two hypotheses that, when combined with the

background knowledge, order their answer sets di↵erently, even if the two programs have the same

answer sets.

99

CHAPTER 5. GENERALITY

Proposition 5.15. (proof on page 280)

D
1
1(ILPLOAS) =

(
hB,H1, H2i

�����
AS(B [H1) 6= AS(B [H2) or

ord(B [H1) 6= ord(B [H2)

)

Note that we assume ILPLOAS to be able to give ordering examples with any of the binary ordering

operators. The slightly more restrictive version of ILPLOAS , presented in [LRB15a] where the operator

is always <, has a smaller one-to-one-distinguishability class. This is shown in Example 5.16.

Example 5.16. Consider the heads and tails problem again, where B =
n

1{heads, tails}1.
o
, and

two potential hypotheses:

• H1 = ;

• H2 = {:⇠ heads.[1@1]}

AS(B [H1) = AS(B [H2) = {{heads}, {tails}}. If we consider the restricted ILPLOAS where only

the operator < is used to express ordering over the examples, H2 can be distinguished from H1, but

H1 cannot be distinguished from H2. This is because all answer sets of B [H1 are equally optimal –

neither h{tails}, {heads}, <i nor h{heads}, {tails}, <i is in ord(B [H1). In contrast, if we allow

the use of any of the binary ordering operators, we can consider a task with the ordering example

hh{tails}, ;i, h{heads}, ;i,=i and be able to distinguish H1 from H2. The learned hypothesis H1 has

no weak constraints, so the two answer sets are equally optimal and the ordering example is respected

by H1, whereas H2 prefers {tails} to {heads}.

ILPLOAS can distinguish any two hypotheses that, when combined with a fixed background knowledge,

behave di↵erently. It cannot distinguish hypotheses that are di↵erent but behave the same with respect

to the background knowledge. This means that there are some hypotheses that are not strongly

equivalent (when combined with the background knowledge), but ILPLOAS cannot distinguish one

from the other. We now show that ILP context
LOAS can distinguish between any two hypotheses, H1 andH2,

that, when combined with the background knowledge, are not strongly equivalent, or for which there

is at least one program C 2 ASP
ch (consisting of normal rules, choice rules and hard constraints),

such that ord(B [H1 [C) 6= ord(B,[H2 [C).

Proposition 5.17. (proof on page 281)

D
1
1(ILP

context
LOAS) =

(
hB,H1, H2i

�����
B [H1 6⌘

s B [H2 or

9C 2 ASP
ch such that ord(B [H1 [C) 6= ord(B [H2 [C)

)

Now that we have proven the distinguishability classes for each learning framework, we can strengthen

the statement of Corollary 5.8 and more precisely state the relationship between the distinguishability

classes of the frameworks. Apart from the case of ILPb and ILPsm, each of the subset relations in

Corollary 5.8 are in fact strict subsets.

100

5.2. THE ONE-TO-MANY-DISTINGUISHABILITY CLASS OF A LEARNING . . .

Theorem 5.18. Consider the learning frameworks ILPb, ILPc, ILPsm, ILPLAS, ILPLOAS and

ILP context
LOAS .

1. D
1
1(ILPb) = D

1
1(ILPsm) ⇢ D

1
1(ILPLAS) ⇢ D

1
1(ILPLOAS) ⇢ D

1
1(ILP

context
LOAS)

2. D
1
1(ILPc) ⇢ D

1
1(ILPLAS)

Proof.

1. The fact that D
1
1(ILPb) = D

1
1(ILPsm) was shown in Proposition 5.11. By Corollary 5.8,

D
1
1(ILPsm) ✓ D

1
1(ILPLAS) ✓ D

1
1(ILPLOAS) ✓ D

1
1(ILP

context
LOAS); hence, it remains to show that

D
1
1(ILPsm) 6= D

1
1(ILPLAS) 6= D

1
1(ILPLOAS) 6= D

1
1(ILP

context
LOAS)

• Consider the tuple hB,H1, H2i, where B = ;, H1 = {p.} and H2 = {1{p, q}1}. AS(B [

H1) ⇢ AS(B [H2), hence hB,H1, H2i does not satisfy the condition, given in Table 5.1,

necessary for it to be in D
1
1(ILPsm). It does, however, satisfy the condition for it to be in

D
1
1(ILPLAS). Hence, D1

1(ILPsm) 6= D
1
1(ILPLAS).

• Consider the tuple hB,H1, H2i, where B = {1{p, q}1}, H1 = ; and H2 = {:⇠ p.[1@1]}.

AS(B [H1) = AS(B [H2) and ord(B [H1) 6= ord(B [H2). Hence, by the condi-

tions in Table 5.1, hB,H1, H2i is in D
1
1(ILPLOAS) but is not in D

1
1(ILPLAS). Therefore,

D
1
1(ILPLAS) 6= D

1
1(ILPLOAS).

• Consider the tuple hB,H1, H2i, where B = ;, H1 = ; and H2 = {p : - q.}. Also consider

the program P = {q.}. AS(B [H1) = AS(B [H2) and ord(B [H1) = ord(B [H2),

but AS(B [H1 [P) 6= AS(B [H2 [P); this shows that B [H1 6⌘s B [H2. Hence, by

the conditions in Table 5.1, hB,H1, H2i is in D
1
1(ILP

context
LOAS) but is not in D

1
1(ILPLOAS).

Therefore, D1
1(ILPLOAS) 6= D

1
1(ILP

context
LOAS).

2. By Corollary 5.8, D
1
1(ILPc) ✓ D

1
1(ILPLAS). Hence, it remains to show that D

1
1(ILPc) 6=

D
1
1(ILPLAS). Consider the tuple hB,H1, H2i, where B = {p : - not p}, H1 = ; and H2 = {p.}.

AS(B [H1) = ; and AS(B [H1) 6= AS(B [H2). By the conditions in Table 5.1, hB,H1, H2i

is in D
1
1(ILPLAS) but is not in D

1
1(ILPc). Hence, D1

1(ILPc) 6= D
1
1(ILPLAS).

5.2 The One-To-Many-Distinguishability Class of a Learning Frame-

work

In practice, an ILP task has a search space of possible hypotheses, and it is important to know the

cases in which one particular hypothesis can be distinguished from the rest. In what follows, we

101

CHAPTER 5. GENERALITY

analyse the conditions under which a learning framework can distinguish a hypothesis from a set of

other hypotheses. As mentioned at the beginning of the chapter, this corresponds to the new notion

called the one-to-many-distinguishability class of a learning framework, which is a generalisation of

the notion of the one-to-one-distinguishability class described in the previous section.

Definition 5.4. The one-to-many-distinguishability class of a learning framework F (denoted D
1
m(F))

is the set of all tuples hB,H, {H1, . . . , Hn}i such that there is a task TF that distinguishes H from

each Hi with respect to B. Given two frameworks F1 and F2, we say that F1 is at least as (resp.

more) D1
m-general as (resp. than) F2 if D1

m(F2) ✓ D
1
m(F1) (resp. D1

m(F2) ⇢ D
1
m(F1)).

The one-to-many-distinguishability class tells us the circumstances in which a framework is general

enough to distinguish some target hypothesis from a set of unwanted hypotheses. Note that, although

the tuples in a one-to-many-distinguishability class that have a singleton set as third argument cor-

respond to the tuples in a one-to-one-distinguishability class of that framework, it is not always the

case that if F1 is more D
1
m-general than F2 then F1 is also more D

1
1-general than F2. For example,

we will see that ILPsm is more D1
m-general than ILPb, but we have already shown in Proposition 5.11

that the ILPb and ILPsm are equally D
1
1-general. Proposition 5.19 shows, however, that if F1 is at

least as D1
m-general as F2 then F1 is at least as D1

1-general as F2.

Proposition 5.19. For any two frameworks F1 and F2 such that F1 is at least as D1
m-general as F2,

F1 is at least as D1
1-general as F2 (i.e. D1

m(F2) ✓ D
1
m(F1)) D

1
1(F2) ✓ D

1
1(F1)).

Proof. Assume that F1 is at least as D
1
m-general as F2 and let hB,H1, H2i 2 D

1
1(F2). To show that

F1 is at least as D1
1-general as F2, we must show that hB,H1, H2i 2 D

1
1(F1).

As hB,H1, H2i 2 D
1
1(F2), hB,H1, {H2}i 2 D

1
m(F2); hence, as F1 is at least as D

1
m-general as F2,

hB,H1, {H2}i 2 D
1
m(F1); and hence, hB,H1, H2i 2 D

1
1(F1).

We have already seen that if there is a strong reduction from F1 to F2 then F2 is at least as D1
1-general

as F1. Proposition 5.20 shows that a similar result holds for D1
m-generality. Similarly to D

1
1-generality,

however, a strong reduction from F1 to F2 does not imply that F2 is more D
1
m-general than F1, even

in the case that there is no strong reduction from F2 to F1.

Proposition 5.20. For any two frameworks F1 and F2: F1 !sr F2) D
1
m(F1) ✓ D

1
m(F2).

Proof. Assume that F1 !sr F2. Take any hB,H, Si 2 D
1
m(F1). There must be some task TF1 , with

background knowledge B, such that H 2 ILPF1(TF1) and S \ ILPF1(TF1) = ;. Hence, as F1 !sr F2,

there must be some F2 task TF2 , with background knowledge B, such that H 2 ILPF2(TF2) and

S \ ILPF2(TF2) = ;. So hB,H, Si 2 D
1
m(F2). Hence, D1

m(F1) ✓ D
1
m(F2).

102

5.2. THE ONE-TO-MANY-DISTINGUISHABILITY CLASS OF A LEARNING . . .

Due to the strong reductions shown in Proposition 5.4, an ordering of the one-to-many-distinguishability

classes of the frameworks emerges (shown in Corollary 5.21).

Corollary 5.21.

1. D
1
m(ILPb) ✓ D

1
m(ILPsm) ✓ D

1
m(ILPLAS) ✓ D

1
m(ILPLOAS) ✓ D

1
m(ILP context

LOAS)

2. D
1
m(ILPc) ✓ D

1
m(ILPLAS)

This time, we will see that each of the ✓’s in Corollary 5.21 can be upgraded to a strict ⇢. Rather

than proving the one-to-many-distinguishability classes from scratch, we now present a useful result.

For some frameworks, the one-to-one-distinguishability class of a learning framework can be used to

construct the one-to-many-distinguishability class. This is the case when the framework has closed

one-to-many-distinguishability (formalised by Definition 5.5). Proposition 5.22 and Corollary 5.23

show how the one-to-many-distinguishability class of a framework can be constructed using its one-

to-one-distinguishability class if it has closed one-to-many-distinguishability.

Definition 5.5. Given any learning framework F , the closure of the one-to-many-distinguishability

class, written D1
m(F) is the set

�
hB,H, S1 [. . . [Sni

��hB,H, S1i, . . . , hB,H, Sni 2 D
1
m(F)

. We say

that F has closed one-to-many-distinguishability if and only if D1
m(F) = D

1
m(F).

Proposition 5.22. (proof on page 283) For any framework F :

D1
m(F) =

8
><

>:
hB,H, {H1, . . . , Hn}i

�������

hB,H,H1i 2 D
1
1(F),

. . . ,

hB,H,Hni 2 D
1
1(F)

9
>=

>;

Corollary 5.23. For any framework F :

D
1
m(F) ✓

8
><

>:
hB,H, {H1, . . . , Hn}i

�������

hB,H,H1i 2 D
1
1(F),

. . . ,

hB,H,Hni 2 D
1
1(F)

9
>=

>;

The equality holds if and only if F has closed one-to-many-distinguishability.

Note that not all learning frameworks have closed one-to-many-distinguishability; for instance, Exam-

ple 5.24 shows that brave induction does not. We will show that induction of stable models, on the

other hand, does have closed one-to-many-distinguishability.

Example 5.24. ILPb does not have closed one-to-many-distinguishability. We can see this by re-

considering the programs B = ;, H = {1{heads, tails}1.}, H1 = {heads.} and H2 = {tails.}.

hB,H, {H1}i 2 D
1
m(ILPb) (hB, h{tails}, ;ii distinguishes H from H1 wrt the background knowledge

103

CHAPTER 5. GENERALITY

B). Similarly hB,H, {H2}i 2 D
1
m(ILPb) (hB, h{heads}, ;ii distinguishes H from H2 wrt the back-

ground knowledge B). If ILPb had closed one-to-many-distinguishability then hB,H, {H1, H2}i would

be in D
1
m(ILPb); hence, to show that ILPb does not have closed one-to-many-distinguishability it is

su�cient to show that hB,H, {H1, H2}i 62 D
1
m(ILPb). Hence it remains to show that there is no task

Tb = hB, hE+, E�
ii such that H 2 ILPb(Tb) and {H1, H2} \ ILPb(Tb) = ;.

Assume for contradiction that there is such a task Tb. As H 2 ILPb(Tb) and AS(B [H) =

{{heads}, {tails}}, E+
⇢ {heads, tails} and E�

⇢ {heads, tails} (neither can be equal to

{heads, tails} or H would not be a solution).

Case 1: E+ = ;

Case a: E� = ;

Then H1 and H2 would be inductive solutions. This is a contradiction as {H1, H2}\ILPb(Tb) =

;.

Case b: E� = {heads}

Then H2 would be an inductive solution of Tb. Contradiction.

Case c: E� = {tails}

Then H1 would be an inductive solution of Tb. Contradiction.

Case 2: E+ = {heads}

heads 62 E� as otherwise the task would have no solutions (and we know that H is a solution).

In this case H1 would be an inductive solution (regardless of what else is in E�). Contradiction.

Case 3: E+ = {tails}

Similarly to above case, tails 62 E� as otherwise the task would have no solutions. In this case

H2 would be an inductive solution (regardless of what else is in E�). Contradiction.

Hence, there is no such task Tb = hB, hE+, E�
ii such that H 2 ILPb(Tb) and {H1, H2}\ILPb(Tb) = ;.

ILPb does not have closed one-to-many-distinguishability.

In contrast to ILPb, ILPsm (which we will see does have closed one-to-many-distinguishability), can

distinguish H from H1 and H2 with the task hB, h{h{heads}, ;i, h{tails}, ;i}ii. Note that this is a

combination of the two brave tasks which distinguish H from H1 and from H2. We will show that

the ability to combine tasks in this way is a su�cient condition for a framework to have closed one-

to-many-distinguishability. Proposition 5.25 shows the one-to-many-distinguishability class of ILPb.

Proposition 5.25. D1
m(ILPb)={hB,H, {h1, . . . , hm}i | AS(B[H) 6✓ AS(B[h1)[. . .[AS(B[hm)}

Proof.

104

5.2. THE ONE-TO-MANY-DISTINGUISHABILITY CLASS OF A LEARNING . . .

1. Let B,H, h1, . . . , hm be ASP programs such that AS(B [H) 6✓ AS(B [h1)[. . .[AS(B [hm).

This implies that there is an interpretation A that is an answer set of B [H but not an answer

set of any of the programs B [h1, . . . , B [hm. Let L be the set of atoms which occur in at least

one answer set of at least one of the programs B [H,B [h1, . . . B [hm; then B [H has an

answer set that extends hA,L\Ai, but none of B [h1, . . . B [hm do. So the task hB, hA,L\Aii

distinguishes H from h1 to hm. Hence, hB,H, {h1, . . . , hm}i 2 D
1
m(ILPb).

2. Assume hB,H, {h1, . . . , hm}i 2 D
1
m(ILPb). Then there is an ILPb task Tb = hB, hE+, E�

ii

such that B [H has an answer set extending hE+, E�
i and none of B [h1, . . . , B [hm do.

Hence, there must be at least one answer set of B [H, which is not an answer set of any of

B [h1, . . . , B [hm. Therefore AS(B [H) 6✓ AS(B [h1) [. . . [AS(B [hm).

For a framework F to have closed one-to-many-distinguishability it is su�cient (but not necessary)

that for every two F tasks, there is a third F task whose solutions are exactly those hypotheses which

are solutions to both of the original two tasks. This is formalised and proved in Lemma 5.26. This

condition is not necessary in general, but it holds for the frameworks considered in this chapter that

have closed one-to-many-distinguishability.

Lemma 5.26. For any learning framework F to have closed one-to-many-distinguishability, it is

su�cient that for every pair of learning tasks T 1
F = hB,E1

F i and T 2
F = hB,E2

F i it is possible to

construct a new learning task T 3
F = hB,E3

F i such that ILPF (T 3
F) = ILPF (T 1

F) \ ILPF (T 2
F).

Proof. Assume that for every pair of learning tasks T 1
F = hB,E1

F i and T 2
F = hB,E2

F i it is possible

to construct a new learning task T 3
F = hB,E3

F i such that ILPF (T 3
F) = ILPF (T 1

F) \ ILPF (T 2
F). Let

hB,H, S1i, . . . , hB,H, Sni 2 D
1
m(F). To prove that F has closed one-to-many-distinguishability, we

must show that hB,H, S1[. . .[Sni 2 D
1
m(F). We prove this by showing (by mathematical induction)

that for each k 2 [1..n], hB,H, S1 [. . . [Ski 2 D
1
m(F).

Base Case: k = 1. hB,H, S1i 2 D
1
m(F) by the initial assumptions.

Inductive Hypothesis: Assume that for some 1  k < n, hB,H, S1 [. . . [Ski 2 D
1
m(F)

Inductive Step: We must show that hB,H, S1 [. . . [Sk+1i 2 D
1
m(F).

As hB,H, S1[. . .[Ski 2 D
1
m(F) (by the inductive hypothesis), there must be a learning task T 1

F
such that H 2 ILPF (T 1

F) and (S1 [. . .[Sk)\ ILPF (T 1
F) = ;. As hB,H, Sk+1i 2 D

1
m(F), there

must also be a learning task T 2
F such that H 2 ILPF (T 2

F) and Sk+1 \ ILPF (T 2
F) = ;. By our

initial assumption, there is a learning task T 3
F = hB,E3

F i such that ILPF (T 3
F) = ILPF (T 1

F) \

ILPF (T 2
F). So, H 2 ILPF (T 3

F), (S1 [. . . [Sk) \ ILPF (T 3
F) = ; and Sk+1 \ ILPF (T 3

F) = ;.

Therefore, H 2 ILPF (T 3
F) and (S1[. . .[Sk+1)\ILPF (T 3

F) = ;. Hence, hB,H, S1[. . .[Sk+1i 2

D
1
m(F).

105

CHAPTER 5. GENERALITY

Proposition 5.27. (proof on page 283) ILPc, ILPsm, ILPLAS , ILPLOAS and ILP context
LOAS all have

closed one-to-many-distinguishability.

Theorem 5.28. Given two frameworks F1 and F2, D1
m(F1) ✓ D1

m(F2) if and only if D
1
1(F1) ✓

D
1
1(F2).

Proof.

D1
m(F1) ✓ D1

m(F2)

,

8
><

>:
hB,H, {H1, . . . , Hn}i

�������

hB,H,H1i 2 D
1
1(F1)

. . .

hB,H,Hni 2 D
1
1(F1)

9
>=

>;

✓

8
><

>:
hB,H, {H1, . . . , Hn}i

�������

hB,H,H1i 2 D
1
1(F2)

. . .

hB,H,Hni 2 D
1
1(F2)

9
>=

>;
(by Prop. 5.22)

, D
1
1(F1) ✓ D

1
1(F2).

Corollary 5.29. Given two frameworks F1 and F2 with closed one-to-many-distinguishability:

D
1
m(F1) ⇢ D

1
m(F2) if and only if D1

1(F1) ⇢ D
1
1(F2).

Theorem 5.30. Consider the learning frameworks ILPb, ILPc, ILPsm, ILPLAS, ILPLOAS and

ILP context
LOAS .

1. D
1
m(ILPb) ⇢ D

1
m(ILPsm) ⇢ D

1
m(ILPLAS) ⇢ D

1
m(ILPLOAS) ⇢ D

1
m(ILP context

LOAS)

2. D
1
m(ILPc) ⇢ D

1
m(ILPLAS)

Proof. Firstly, as shown in Example 5.24, D1
m(ILPb) is a strict subset of D1

m(ILPb). Hence, by The-

orem 5.28, D1
m(ILPb) ⇢ D1

m(ILPsm); and hence as ILPsm has closed one-to-many-distinguishability,

D
1
m(ILPb) ⇢ D

1
m(ILPsm). The other results all follow from Corollary 5.29 and Proposition 5.27.

Even if two frameworks F1 and F2 both have closed one-to-many-distinguishability, it might not

be the case that their combination has closed one-to-many-distinguishability. Example 5.31 shows,

for example, that this is not the case for ILPsm and ILPc. We first define what we mean by the

combination framework constructed from two given frameworks.

Definition 5.6. Given two frameworks F1 and F2, a task of the combination framework comb(F1,F2)

is either of the form hB, h1, E1ii, where hB,E1i is an F1 task, or of the form hB, h2, E2ii, where hB,E2i

is an F2 task.

Given any comb(F1,F2) task T = hB, hx,Eii: ILPcomb(F1,F2)(T) =

(
ILPF1(hB,Ei) if x = 1

ILPF2(hB,Ei) if x = 2

106

5.3. THE MANY-TO-MANY-DISTINGUISHABILITY CLASS OF A LEARNING . . .

Example 5.31. Consider the frameworks ILPsm and ILPc (both of which have closed one-to-many-

distinguishability). Also consider the programs B = ;, H = {0{p}1.} , H1 = ;, H2 = {0{p, q}1.}.

hB,H,H1i 2 D
1
1(ILPsm) (using the task hB, h{h{p}, ;i}ii), and hB,H,H2i 2 D

1
1(ILPc) (using the

task hB, h;, {q}ii). This shows that both hB,H,H1i and hB,H,H2i are in D
1
1(ILPsm) [D

1
1(ILPc).

Hence by Definition 5.6 they must be in D
1
1(comb(ILPsm, ILPc)). But using the distinguishability

conditions proven in the previous section, it can be seen that neither framework can distinguish H

from both H1 and H2. Therefore, hB,H, {H1, H2}i 62 D
1
m(comb(ILPsm, ILPc)). This also means that

D
1
m(ILPsm) [D

1
m(ILPc) is a strict subset of D1

m(ILPLAS). This is because D
1
m(ILPLAS) contains

both hB,H, {H1}i and hB,H, {H2}i (as it contains both D
1
m(ILPsm) and D

1
m(ILPc)) and has closed

one-to-many-distinguishability, so must also contain hB,H, {H1, H2}i.

5.3 The Many-To-Many-Distinguishability Class of a Learning Frame-

work

So far, we have considered two main classes to define how general a learning framework is. Firstly,

we discussed the one-to-one-distinguishability class, which is made up of tuples hB,H,H 0
i such that

the framework can distinguish H from H 0 with respect to B. We showed that this has limitations and

cannot separate ILPb and ILPsm even though ILPb is clearly a special case of ILPsm. This motivated

upgrading the notion of a one-to-one-distinguishability class, changing the third element of each tuple

from a single hypothesis to a set of hypotheses to give the notion of a one-to-many-distinguishability

class.

This naturally leads to the question of whether it is possible to upgrade generality classes by allowing

the second element of the tuple to also be a set of hypotheses. Each tuple would then be of the form

hB,S1, S2i, where B is a background knowledge, and S1 and S2 are sets of hypotheses. For each tuple

in this new class, a framework would be required to have at least one task T with the background

knowledge B such that every hypothesis in S1 is an inductive solution of T , and no hypothesis in S2

is an inductive solution of T . Definition 5.7 formalises this many-to-many-distinguishability class.

Definition 5.7. The many-to-many-distinguishability class of a learning framework F (denoted

D
m
m(F)) is the set of all tuples hB,S1, S2i, where B is a program and S1 and S2 are sets of hy-

potheses for which there is a task TF , with background knowledge B, such that S1 ✓ ILPF (TF) and

S2 \ ILPF (TF) = ;. Given two frameworks, F1 and F2, we say that F1 is at least as (resp. more)

D
m
m-general than F2 if and only if Dm

m(F2) ✓ D
m
m(F1) (resp. Dm

m(F2) ⇢ D
m
m(F1)).

We have already seen that for any two frameworks, F1 and F2, F1 !sr F2) D
1
m(F1) ✓ D

1
m(F2))

D
1
1(F1) ✓ D

1
1(F2). We have also seen that for D

1
1-generality and D

1
m-generality, even if there is

no corresponding strong reduction from F2 to F1 these subset relations are not necessarily strict.

Proposition 5.32 and Corollary 5.33 show that Dm
m-generality is equivalent to strong reductions.

107

CHAPTER 5. GENERALITY

Proposition 5.32. For any two learning frameworks F1 and F2, F1 !sr F2 , D
m
m(F1) ✓ D

m
m(F2)

Proof.

1. Assume that F1 !sr F2. Let hB,S1, S2i be an arbitrary element of Dm
m(F1). By definition of

D
m
m(F1), there is a task TF1 with background knowledge B such that S1 ✓ ILPF1(TF1) and

S2\ ILPF1(TF1) = ;. Hence, as F1 !sr F2, there is an F2 task TF2 with background knowledge

B such that S1 ✓ ILPF2(TF2) and S2 \ ILPF2(TF2) = ;. Hence hB,S1, S2i 2 D
m
m(F2).

2. Assume that D
m
m(F1) ✓ D

m
m(F2). Let TF1 be an arbitrary F1 task. We must show that there

is a F2 task with the same background knowledge and the same inductive solutions. Let B

be the background knowledge of TF1 , S1 = ILPF1(TF1) and S2 be the (possibly infinite) set of

ASP programs which are not in S1. hB,S1, S2i 2 D
m
m(F1); and hence, hB,S1, S2i 2 D

m
m(F2).

Therefore, there must be at least one task TF2 with the background knowledge B such that

ILPF2(TF2) = S1. Hence, F1 !sr F2.

Corollary 5.33. For any two learning frameworks F1 and F2, F1 is more D
m
m-general than F2 if and

only if F2 !sr F1 and F1 6!sr F2.

Proposition 5.34. For any two frameworks F1 and F2: Dm
m(F1) ✓ D

m
m(F2)) D

1
m(F1) ✓ D

1
m(F2)

Proof. Assume that D
m
m(F1) ✓ D

m
m(F2) and let hB,H, Si 2 D

1
m(F1). Then hB, {H}, Si 2 D

m
m(F1),

and so hB, {H}, Si 2 D
m
m(F2). Hence, hB,H, Si 2 D

1
m(F2).

Theorem 5.35 shows that one framework being more D
1
m-general than another implies that it is also

more D
m
m-general if there is a strong reduction from the second framework to the first.

Theorem 5.35. For any two frameworks F1 and F2, if F1 is more D1
m-general than F2 and F2 !sr F1

then F1 is more D
m
m-general than F2.

Proof. Assume that F1 is more D
1
m-general than F2 and that F2 !sr F1. By Proposition 5.32, F1 is

at least as Dm
m-general as F2. It remains to show that F2 is not at least as Dm

m-general as F1. Assume

for contradiction that F2 is at least as Dm
m-general as F1. Then by Proposition 5.34, F2 is at least as

D
1
m-general as F1, contradicting the fact that F1 is more D

1
m-general than F2.

Corollary 5.36. Consider the learning frameworks ILPb, ILPc, ILPsm, ILPLAS , ILPLOAS and

ILP context
LOAS .

1. D
m
m(ILPb) ⇢ D

m
m(ILPsm) ⇢ D

m
m(ILPLAS) ⇢ D

m
m(ILPLOAS) ⇢ D

m
m(ILP context

LOAS)

2. D
m
m(ILPc) ⇢ D

m
m(ILPLAS)

108

5.3. THE MANY-TO-MANY-DISTINGUISHABILITY CLASS OF A LEARNING . . .

Proof. Each result follows directly from Theorem 5.30, Theorem 5.35 and Proposition 5.4.

Note that although for each pair of frameworks discussed in this chapter, one being more D
1
m-general

than another implies that it is also more Dm
m-general, this result does not hold in general. Example 5.37

shows such a pair of frameworks.

Example 5.37. Consider a new learning framework ILPd that takes as examples a pair of sets

of atoms E+ and E� such that a hypothesis H is an inductive solution of a task if B [H has

exactly one answer set and this answer set contains all of the E+’s and none of the E�’s. The

one-to-one-distinguishability class D
1
1(ILPd) ✓ D

1
1(ILPc). This can be seen as follows: assume that

hB,H,H 0
i 2 D

1
1(ILPd). Then there is a task Td = hB, hE+, E�

ii such that H 2 ILPd(Td) but

H 0
62 ILPd(Td).

Case 1: AS(B [H 0) = ;

Let Tc = hB, hE+, E�
ii. As B [H has exactly one answer set, and this answer set covers the

examples, H 2 ILPc(Tc). As AS(B [H 0) = ;, H 0
62 ILPc(Tc). Hence, hB,H,H 0

i 2 D
1
1(ILPc).

Case 2: B [H 0 has exactly one answer set, and this answer set does not cover the examples.

Let Tc = hB, hE+, E�
ii. As B [H has exactly one answer set, and this answer set covers

the examples, H 2 ILPc(Tc). As B [H 0 has an answer set that does not cover the examples,

H 0
62 ILPc(Tc). Hence, hB,H,H 0

i 2 D
1
1(ILPc).

Case 3: B [H 0 has multiple answer sets.

There must be at least one answer set A⇤ of B[H 0 that is not an answer set of B[H (as B[H

only has one answer set). There must either be an atom a 2 A⇤ that is not in the unique answer

set of B [H, or an atom a that is not in A⇤, but is in the unique answer set of B [H. In the

first case, let E+
c = ; and E�

c = {a}. In the second case, let E+
c = {a} and E�

c = ;. Then

let Tc = hB, hE+
c , E

�
c ii. H 2 ILPc(Tc) as the only answer set of B [H covers the examples,

whereas H 0
62 ILPc(Tc) as B [H 0 has at least one answer set that does not cover the examples.

Hence, hB,H,H 0
i 2 D

1
1(ILPc).

In fact, D
1
1(ILPd) is a strict subset of D

1
1(ILPc) as D

1
1(ILPd) has no elements hB,H,H 0

i where

B [H has multiple answer sets. As ILPc is closed under one-to-many-distinguishability, and all

one-to-many-distinguishability classes are subsets of their own closure, this means that ILPc is more

D
1
m-general than ILPd (by Theorem 5.28).

ILPc is not, however, more D
m
m-general than ILPd. Take, for instance, the tuple t = h;, {{heads.},

{tails.}}, {{1{heads, tails}1.}}i. The empty set of examples are su�cient for ILPd to distinguish

both hypotheses containing facts from the choice rule (as the choice rule has multiple answer sets).

However, there is no ILPc task such that both facts are solutions, but the choice rule is not. Hence,

t 2 D
m
m(ILPd) but t 62 D

m
m(ILPc); and so, ILPc is not at least as D

m
m-general as ILPd. In fact, as

ILPd is not as D
m
m-general as ILPc either, the two have incomparable D

m
m-generalities.

109

CHAPTER 5. GENERALITY

Example 5.37 shows that D
m
m-generality may not be able to compare two frameworks even when

there is a clear D1
m-generality relation between the two. In the next section, we discuss relationships

between, and the relative merits of using, each measure of generality.

5.4 Discussion

Property Consequences of property

F1 and F2 have equal D1
m-generality F1 and F2 have equal D1

1-generality
F1 and F2 have equal Dm

m-generality 1) F1 and F2 have equal D1
1-generality

2) F1 and F2 have equal D1
m-generality

F1 is more D
1
1-general than F2 Either F1 is more D

1
m-general than F2 or F1 and F2

have incomparable D
1
m-generality

F1 is more D
1
m-general than F2 1) Either F1 is more D

m
m-general than F2 or F1 and

F2 have incomparable D
m
m-generality

2) F1 is at least as D1
1-general as F2

F1 is more D
m
m-general than F2 1) F1 is at least as D1

1-general as F2

2) F1 is at least as D1
m-general as F2

F1 is at least as D1
m-general as F2 F1 is at least as D1

1-general as F2

F1 is at least as Dm
m-general as F2 1) F1 is at least as D1

1-general as F2

2) F1 is at least as D1
m-general as F2

F1 and F2 have di↵erent D1
1-generality 1) F1 and F2 have di↵erent D1

m-generality
2) F1 and F2 have di↵erent Dm

m-generality
F1 and F2 have di↵erent D1

m-generality F1 and F2 have di↵erent Dm
m-generality

F1 and F2 have incomparable D
1
1-generality 1) F1 and F2 have incomparable D

1
m-generality

2) F1 and F2 have incomparable D
m
m-generality

F1 and F2 have incomparable D
1
m-generality F1 and F2 have incomparable D

m
m-generality

Table 5.2: A summary of the relationships between the di↵erent measures of generality.

Table 5.2 summarises the relationships between the di↵erent measures of generality. It shows that

equal distinguishability is weaker than equal one-to-many-distinguishability, which is weaker than

equal many-to-many-distinguishability. This can be seen from the first section of the table, as equal

many-to-many-distinguishability implies equal one-to-many-distinguishability, which implies equal dis-

tinguishability, but the converse implications do not hold in general. On the other hand di↵erent distin-

guishability is stronger than di↵erent one-to-many-distinguishability, which is stronger than di↵erent

many-to-many-distinguishability. This means that many-to-many-distinguishability (resp. one-to-

many-distinguishability) will be able to “separate” frameworks that one-to-many-distinguishability

(resp. distinguishability) can not; but, there are more frameworks that are incomparable under many-

to-many-distinguishability (resp. one-to-many-distinguishability) than one-to-many-distinguishability

(resp. distinguishability).

The di↵erent notions of generalities will never be inconsistent, in the sense that one will never say

110

5.4. DISCUSSION

that F1 is more general than F2, while the other says that F2 is more general than F1. It is useful,

however, to explain the tasks that the di↵erent measures of generality correspond to.

1. One-to-one-distinguishability describes how general a framework is at distinguishing one hypoth-

esis from another.

2. One-to-many-distinguishability describes how general a framework is at the task of identifying

one target hypothesis within a space of unwanted hypotheses.

3. Many-to-many-distinguishability describes how general a framework is for the task of identifying

a set of target hypotheses – for any background knowledge B and set of hypotheses S, there is a

task TF with background knowledge B such that ILPF (TF) = S if and only if hB,S, S̄i 2 D
m
m(F),

where S̄ is the (possibly infinite) set of hypotheses which are not in S.

In practice, as ILP usually addresses the task of finding a single target hypothesis from a space of

other hypotheses, one-to-many-distinguishability is likely to be the most useful measure; however, dis-

tinguishability classes are useful for finding the one-to-many-distinguishability classes of frameworks,

and many-to-many-distinguishability is interesting as a theoretical property.

More General Learning Frameworks

We have shown in this section that ILP context
LOAS is more general (under every measure) than any of the

other tasks presented for learning under the answer set semantics. The obvious question is whether it

is possible to go further and define more general learning tasks.

The most D
1
1-general learning task possible would be able to distinguish between any two di↵erent

ASP programs H1 and H2 with respect to any background knowledge B. This would require the

learning task to distinguish between programs which are strongly equivalent, such as {p. q : - p.}

and {p : - q. q.}. We would argue that this level of one-to-one-distinguishability is unnecessary as

in ILP we aim to learn programs whose output explains the examples. As two strongly equivalent

programs will always have the same output, even when combined with additional programs providing

“context”, we can not see any reason for going further under D1
1-generality. As ILP context

LOAS has closed

one-to-many-distinguishability, the same argument can be made for D1
m-generality.

One outstanding question is whether it is worth going any further under Dm
m-generality. Note that it is

possible to define the notion of the closure of many-to-many-distinguishability classes; however, none

of the frameworks considered in this chapter have closed many-to-many-distinguishability. It is un-

clear whether having closed many-to-many-distinguishability is a desirable property for a framework.

Closed one-to-many-distinguishability means that a framework can distinguish a target hypothesis H

from any set of hypotheses S such that it can distinguishH from each element of S: this means that the

sets of examples that distinguish H from each element of S can be combined to form a single set of ex-

amples, ruling out each element of S. For a framework to have closed many-to-many-distinguishability,

111

CHAPTER 5. GENERALITY

however, given two (or more) target hypotheses H1, H2 that can be distinguished from an undesirable

hypothesis H3, it would need to be able to find a task which distinguishes both H1 and H2 from H3.

For example, as both h;, {heads}, {1{heads, tails}1.}i and h;, {tails}, {1{heads, tails}1.}i are in

D
1
1(ILPLAS), for ILPLAS to have closed many-to-many-distinguishability it would need to be able

to find a task with an empty background knowledge that distinguishes both {heads.} and {tails.}

from {1{heads, tails}1.}. It is di�cult to imagine a scenario, however, where we should learn either

the hypothesis that a coin is always heads or always tails, when the choice rule is not a desirable

hypothesis.

5.5 Related Work

As discussed at the beginning of this chapter, the generality of a learning framework has been inves-

tigated before. In [DR97], generality was defined in terms of reductions – one framework F1 was said

to be more general than another framework F2 if and only if F2 !r F1 and F1 6!r F2. We showed

in Section 5.3 that our notion of many-to-many-distinguishability coincides with a similar notion of

strong reductions. The di↵erence with strong reductions, as compared to the reductions in [DR97], is

that strong reductions do not allow the background knowledge to be modified as part of the reduc-

tion. We showed in Example 5.3 that ILPb reduces to ILPc, but ILPb does not strongly reduce to

ILPc. This is because any reduction from ILPb to ILPc must encode the examples in the background

knowledge, which we would argue abuses the purpose of the background knowledge.

Aside from the di↵erences between strong reductions and reductions, we have discussed that one-to-

many-distinguishability is more relevant when comparing the generalities of frameworks with respect

to the task of finding a single hypothesis within a space of hypotheses. The reductions of [DR97] are

closer to the notion of many-to-many-distinguishability, because they compare the set of solutions.

One key advantage to using our three notions of generality, rather than strong reductions or reductions,

is for comparing the relative generalities of frameworks that do not strongly reduce to one another.

For instance, we have seen that ILPb and ILPc are incomparable under D
1
1-generality, but we can

still reason that ILPb is never D1
1-general enough to distinguish a hypothesis containing a constraint

from the same hypothesis without the constraint. On the other hand, ILPc may be D1
1-general enough

to do so (for example, ILPc can distinguish {: - p.} from ; with respect to {0{p}1.}, with the task

h{0{p}1.}, h;, {p}ii).

We have already discussed the main frameworks for ILP which work under the answer set semantics and

shown generality of these frameworks compare to our own frameworks. In particular, we have shown

that although the complexities of our three learning frameworks (ILPLAS , ILPLOAS and ILP context
LOAS)

are the same as cautious induction, there are some learning problems which can be represented in

learning from answer sets that cannot be represented in either brave or cautious induction. One

example of this is the learning of the rules of Sudoku. This is because brave induction cannot incentivise

learning the constraints in the rules of Sudoku, and there are no useful examples that can be given

112

5.5. RELATED WORK

to a cautious learner about the values of cells, since no cell has the same value in every valid Sudoku

grid.

Another early work on learning frameworks under the answer set semantics is Induction from Answer

Sets [Sak05]. In [Sak05], two learning algorithms IASpos and IASneg are presented. The task of

IASpos is to learn a hypothesis that cautiously entails a set of examples. This corresponds to the task

of cautious induction. IASneg on the other hand aims to find a hypothesis that does not cautiously

entail each of a set of examples (i.e. there should be at least one answer set that does not contain each

example). This is (in some sense reversed) brave induction. As shown [Sak05], in general the IASpos

and IASneg procedures cannot be combined in general to compute a correct hypothesis.

Another framework, under the supported model semantics rather than the answer set semantics,

is Learning from Interpretation Transitions (LFIT) [IRS14]. In LFIT, the examples are pairs of

interpretations hI, Ji where J is the set of immediate consequences of I given B [H. In [LRB16],

we presented a mapping from any LFIT task to an ILP context
LOAS task. This shows that the complexity

of deciding both satisfiability and verification for LFIT is at most ⌃P
2 -complete. The generality,

on the other hand would be di↵erent to the tasks we have considered, since there are programs

that are strongly equivalent under the answer sets semantics that have di↵erent supported models.

Example 5.38 demonstrates a pair of such programs, and an example that learning from interpretation

transitions could use to distinguish between them.

Example 5.38. Consider the programs P1 and P2.

P1 = {p : - p.}

P2 = ;

P1 and P2 are strongly equivalent under the answer set semantics. However, P1 has the supported

model {p}, whereas P2 does not. LFIT can distinguish P1 from P2 (with respect to an empty background

knowledge) with the example h{p}, {p}i.

Example 5.38 shows that ILP context
LOAS has a distinguishability class which does not contain LFIT’s distin-

guishability class. Conversely, LFIT cannot have a distinguishability class which containsD1
1(ILP

context
LOAS),

as it cannot distinguish hypotheses containing weak constraints from the same hypotheses without

the weak constraints. In fact, it does not even contain D
1
1(ILPLAS), as shown in Example 5.39.

Example 5.39. Consider the programs P1 and P2.

P1 =
n

p.
o

P2 =

(
p : - p.

p : - not p.

)

For both programs P1 and P2, the immediate consequences of any interpretation I is the set {p}. This

means that no example could possibly distinguish P1 from P2 with respect to an empty background

knowledge. Under the answer set semantics, however, P1 has one answer set {p}, but P2 has no

113

CHAPTER 5. GENERALITY

answer sets. ILPLAS can therefore distinguish P1 from P2 (with respect to the empty background

knowledge), with the positive example h{p}, ;i.

ILPLAS , ILPLOAS and ILP context
LOAS have di↵erent distinguishability classes to LFIT, but none is either

more or less D
1
1-general than LFIT. This is an interesting observation, as it demonstrates that even

when two frameworks are incomparable under our measures of generality, we can still reason about

their individual distinguishability classes and discuss hypotheses which one framework is powerful

enough to distinguish between and another is not. For instance, ILPLAS cannot distinguish between

any two hypotheses that are strongly equivalent under the answer set semantics, but Example 5.38

shows that there are some cases where ILPLFIT can.

5.5.1 Summary

In this chapter we have presented three measures of the generality of a learning framework. We have

shown that under each measure, all three of our learning frameworks are more general than any of the

existing frameworks, and that ILP context
LOAS is the most general of all the frameworks considered. In the

rest of Part I, we present our work on algorithms for solving ILP context
LOAS tasks concluding in Chapter 8

with an evaluation of our algorithms.

114

Chapter 6

Using ASP for Inductive Learning of

Answer Set Programs

In Chapter 4 we introduced three frameworks for learning answer set programs, the most general of

which is ILP context
LOAS . In this chapter we describe the first algorithm for solving ILP context

LOAS tasks, called

ILASP1 (Inductive Learning of Answer Set Programs) and prove its soundness and completeness

results. Several previous ILP systems [Ray09, CRL12, ACBR13] have used ASP as a computation

mechanism for computing inductive solutions. The ASPAL [CRL12] algorithm, for example, translates

a brave induction task into an ASP program whose answer sets correspond to the inductive solutions

of the original ILP task. We refer to these kinds of ASP encodings and their answer sets as meta-level

programs and meta-level answer sets. We will also refer to answer sets of B [H [ectx (for some

hypothesis H and some context ectx) as object-level answer sets.

The ILASP algorithms also use a meta-level ASP program in their computation, but as these algo-

rithms are designed to compute solutions to ILP context
LOAS tasks, the meta-level ASP programs are more

complicated than ASPAL’s meta-level program. ASPAL was designed to solve brave induction tasks,

in which all examples must be covered in one answer set of the (object-level) program B [H. For

this reason, ASPAL only needs to reason about one object level answer set at a time, and so one

answer set of ASPAL’s meta-level program encodes a single answer set of the object level program. In

ILP context
LOAS (and in ILPLAS and ILPLOAS) di↵erent examples can be covered by di↵erent object-level

answer sets, and as a result the meta-level programs used by the ILASP algorithms consider multiple

object-level answer sets in a single meta-level answer set. This is achieved through reification.

Example 6.1. Consider the ILPLAS task T = hB,SM , E+, E�
i, where:

B =
n

p : - not q.
o

E+ =

(
e1 : h{p}, {q}i

e2 : h{q}, {p}i

) SM =

(
1 : q.

2 : q : - not p.

)

115

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

This task can be represented by the following meta-level ASP program P . As there are two positive

examples, which can be extended by two di↵erent object-level answer sets, each answer set of our

meta-level program considers two object-level answer sets, which are given the identifiers 1 and 2.

P =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

%B

1 :

2 :

%SM

3 :

4 :

5 :

%Examples

6 :

7 :

8 :

9 :

as(1). as(2).

in as(p, AS ID) : - not in as(q, AS ID), as(AS ID).

0{in h(1), in h(2)}2.

in as(q, AS ID) : - as(AS ID), in h(1).

in as(q, AS ID) : - as(AS ID), not in as(p, AS ID), in h(2).

cov(1) : - in as(p, 1), not in as(q, 1).

cov(2) : - in as(q, 2), not in as(p, 2).

: - not cov(1).

: - not cov(2).

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

The program P uses a similar technique to the meta-level program used in the ASPAL algorithm

(see Section 3.2.2). Each rule h in the hypothesis space is appended with an atom in h(hid), which

represents whether or not h is in the hypothesis represented by a meta-level answer set. The key

di↵erence between this program and the one used by ASPAL is that in this case both the background

knowledge and the hypothesis space have been reified. The e↵ect of this is that each answer set of

the meta-level program P contains the representation of two (reified) answer sets of the object-level

program. The as facts in lines 1 and 2 introduce two object-level answer sets, with identifiers 1 and

2, respectively.

For example, consider the meta-level answer set A = {as(1), as(2), in h(2), in as(p, 1), in as(q, 2),

cov(1), cov(2)} of P . It shows that there are two object level answer sets A1 = {p} (represented by the

in as atoms with the identifier 1) and A2 = {q} (represented by the in as atoms with the identifier

2). A1 extends the first example, and A2 extends the second example (which is ensured by lines 6-9 of

P). Note that sometimes a single object level answer set will extend two di↵erent examples. In this

case a meta-level answer set may contain the same object level answer set more than once (reified with

di↵erent identifiers).

The program in Example 6.1 uses several techniques which are used extensively in the ILASP meta-

level programs. For this reason, we introduce some notation which will considerably simplify the

definitions of these meta-level programs.

116

6.1. META REPRESENTATION

Notation (A). Let P be an ASP program and lit be a literal. A(P, lit) is the program

constructed by adding lit to the body of each rule in P .

Notation (M�1
in h). Let A be a meta-level answer set. M

�1
in h(A) is the hypothesis {h |

in h(hid) 2 A}

We use the following general notation to refer to the reification of a given ASP program.

Notation (R). Let P be an ASP program, pred be a predicate symbol and {t1, . . . , tn} be

a (possibly empty) set of terms. R(P, pred, t1, . . . , tn) is the program constructed by replacing

every atom a in P with the reified atom pred(a, t1, . . . , tn).

In the ILASP encodings, most of the reification uses the same predicate and arguments, and will also

append every rule with the same atom. We therefore introduce a shorthand notation for applying

these operations. We also introduce a notation for extracting object level answer sets from meta-level

answer sets.

Notation (Rin as). Given a program P , Rin as(P) = A(R(P, in as, AS ID), as(AS ID)).

Notation (M�1
as). Given an answer set A of a meta-level program and a constant id, we

write M
�1
as (A, id) to denote the set {a | in as(a, id) 2 A}.

Throughout the rest of this thesis, we also assume that every rule, example, interpretation, and other

kind of object O has a unique identifier, denoted Oid. Furthermore, given a set S of such objects, we

use the notation ids(S) to denote the set of identifiers, {Oid | O 2 S}.

6.1 Meta Representation

In this section, we introduce the main components of the meta-level programs used by ILASP1 to

compute inductive solutions of ILP context
LOAS tasks1.

1
An initial version of ILASP1, targeted at solving ILPLAS tasks, was presented in [LRB14].

117

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

Meta-program 6.1 (M1(T)). Given a learning task T , M1(T) is the program consisting of

the following components:

• Rin as(r) for each rule r 2 non weak(B)

• A(Rin as(r), in h(rid)) for each rule r 2 non weak(SM)

• A(Rin as(ectx), ctx(eid, AS ID)) for each e 2 E+
[E�

• The choice rule 1{ctx(e1id, AS ID), . . . , ctx(enid, AS ID)}1 : - as(AS ID).

(where {e1, . . . , en} = E+
[E�)

M1(T) consists of the reification of the background knowledge and hypothesis space (where each rule

in the hypothesis space has been appended with an in h atom as in Example 6.1). As di↵erent object-

level answer sets may use di↵erent contexts, M1(T) contains a choice rule to indicate that exactly

one context is used by each object level answer set, and the rules in each context are added with an

extra atom appended. Example 6.2 shows how M1 can be used to reason about multiple object-level

answer sets, within a single meta-level answer set.

Example 6.2. Consider the ILP context
LOAS task T = hB,SM , hE+, E�

ii, where:

B =
n

p : - not q, r.
o

E+ =

(
e1 : hh{p}, {q}i, {r.}i

e2 : hh{q}, {p}i, ;i

)

E� = ;

SM =

(
1 : q.

2 : q : - not p.

)

Ob = ;

Oc = ;

Consider the program P = M1(T)[{as(1). as(2).}[{in h(2).}. The set of facts {in h(2).} represents

the hypothesis H = {q : - not p.}. In full, P is the program:

in_as(p, AS_ID) :- not in_as(q, AS_ID), in_as(r, AS_ID), as(AS_ID).

in_as(q, AS_ID) :- as(AS_ID), in_h(1).

in_as(q, AS_ID) :- not in_as(p, AS_ID), as(AS_ID), in_h(2).

in_as(r, AS_ID) :- as(AS_ID), ctx(1, AS_ID).

1 { ctx(1, AS_ID), ctx(2, AS_ID) } 1 :- as(AS_ID).

as(1). as(2). in_h(2).

Each answer set of P represents a pair of object-level answer sets of B [H [ctx, where ctx is the

context of one of the two examples. For instance, consider the answer set A = {as(1), as(2), in h(2),

ctx(2, 1), ctx(1, 2), in as(q, 1), in as(p, 2), in as(r, 2)}. A represents two object level answer sets:

firstly {q}, which is an answer set of B [H [e2ctx; and secondly {p, r}, which is an answer set of

B [H [e1ctx. As there are 3 possible object level answer sets (B [H [e1ctx also has the answer set {q,

118

6.1. META REPRESENTATION

r}), and each meta-level answer set represents two object-level answer sets, there are 32 = 9 answer

sets of P . Let Facts be the set {as(1), as(2), in h(2)}. The other 8 answer sets of P , together with

each pair of object level answer sets that they represent are shown in the following table:

A M
�1
as (A, 1) M

�1
as (A, 2)

Facts [{ctx(1, 1), ctx(1, 2), in as(p, 1), in as(r, 1), in as(p, 2), in as(r, 2)} {p, r} {p, r}

Facts [{ctx(1, 1), ctx(1, 2), in as(p, 1), in as(r, 1), in as(q, 2), in as(r, 2)} {p, r} {q, r}

Facts [{ctx(1, 1), ctx(1, 2), in as(q, 1), in as(r, 1), in as(p, 2), in as(r, 2)} {q, r} {p, r}

Facts [{ctx(1, 1), ctx(1, 2), in as(q, 1), in as(r, 1), in as(q, 2), in as(r, 2)} {q, r} {q, r}

Facts [{ctx(1, 1), ctx(2, 2), in as(p, 1), in as(r, 1), in as(q, 2)} {p, r} {q}

Facts [{ctx(1, 1), ctx(2, 2), in as(q, 1), in as(r, 1), in as(q, 2)} {q, r} {q}

Facts [{ctx(2, 1), ctx(1, 2), in as(q, 1), in as(q, 2), in as(r, 2)} {q} {q, r}

Facts [{ctx(2, 1), ctx(2, 2), in as(q, 1), in as(q, 2)} {q} {q}

Theorem 6.3 generalises Example 6.2 to show how M1(T) can be used to reason about a set of

object-level answer sets.

Theorem 6.3. (proof on page 284) Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii, ASids =

{t1, . . . , tn} be a set of terms and let H ✓ SM . Consider the program P = M1(T) [{as(t). | t 2

ASids} [{in h(hid). | h 2 H}. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|), where each

Ii is an interpretation and each ei is selected from E+
[E�, 9A 2 AS(P) such that 8i 2 [1, n],

ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

The meta-level programs we have considered so far are useful for generating many object-level answer

sets within a single meta-level answer set. We now show how to constrain these answer sets to check

whether certain examples are accepted.

The check program, which is formalised in Meta-program 6.2, contains a single rule, whose body is

satisfied if a particular object-level answer set of B [H [ectx (with identifier as id) extends epi and

the meta-level answer set contains ctx(eid, as id).

Meta-program 6.2 (check(e, as id)). Given any CDPI e, and constant as id, check(e, as id)

is the program:(
cov(eid, as id) : - ctx(eid, as id),in as(e1inc, as id), . . . , in as(eminc, as id)

not in as(e1exc, as id), . . . , not in as(enexc, as id)

)

Theorem 6.4 shows that we can use the check program in conjunction with M1 in order to determine

which object-level answer sets are accepting answer sets of which examples.

Theorem 6.4. (proof on page 285) Let T be an ILP context
LOAS task with background knowledge B and

hypothesis space SM , and let H ✓ SM . Let ASids = {t1, . . ., tn} be a set of terms. For each t 2 ASids

let Et be a set of CDPIs.

119

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

Consider the program P = M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 Et}

.

1. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|) such that each ei is selected from E+
[E�

and each Ii is an interpretation: 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and

M
�1
as (A, ti) = Ii if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

2. For any answer set A 2 AS(P), 8i 2 [1, n], 8e 2 E+
[E�, cov(eid, ti) 2 A if and only if

ctx(eid, ti) 2 A, e 2 Eti and M
�1
as (A, ti) is an accepting answer set of e wrt B [H.

We now introduce a similar program, which can be used to check whether or not an ordering example

is accepted. We first define a meta-level representation of the weak constraints in B [SM . This

is given in Definition 6.1. Intuitively, this meta representation expresses that if the body of a weak

constraint in a program P is satisfied by an interpretation I, then (w, lev, t1, . . . , tn) 2 weak(P, I)

(where [w@lev, t1, . . . , tn] is the tail of the weak constraint). The w predicate represents the tuples in

weak(P, I)2.

Definition 6.1. Let as id be a term. Given a weak constraint, R of the form :⇠ b1, . . . , bk, not c1, . . . ,

not cm.[wt@lev, t1, . . . , tn], Rweak(R, as id) is the rule:

w(wt, lev, args(t1, . . . , tn), as id) : -

as(as id), in as(b1, as id), . . . , in as(bk, as id),

not in as(c1, as id), . . . , not in as(cm, as id).

For a set of weak constraints W , Rweak(W, as id) = {Rweak(R, as id) | R 2 W}.

Example 6.5. Consider the program W containing one weak constraint :⇠ p(X, Y).[1@1, X] and the

interpretation I = {p(1, 1), p(2, 2), p(1, 2), p(2, 1)}.

We can calculate weak(W, I) using the program P .

P =

8
>>>>>>>>><

>>>>>>>>>:

as(1).

in as(p(1, 1), 1).

in as(p(1, 2), 1).

in as(p(2, 1), 1).

in as(p(2, 2), 1).

w(1, 1, args(X), 1) : - as(1), in as(p(X, Y), 1)

9
>>>>>>>>>=

>>>>>>>>>;

P has one answer set {as(1), in as(p(1, 1), 1), in as(p(1, 2), 1), in as(p(1, 1), 1), in as(p(2, 2), 1),

w(1, 1, args(1), 1), w(1, 1, args(2), 1)}. This indicates that weak(W, I) = {(1, 1, 1), (1, 1, 2)}.

2
Recall from Chapter 2 that given a program P and an interpretation I, a tuple (w, l, t1, . . . , tn) 2 weak(P, I) if and

only if there is a weak constraint :⇠ body.[w@l, t1, . . . , tn] in ground(P) such that I satisfies body.

120

6.1. META REPRESENTATION

In order to check whether or not an ordering example o is respected, we require two object-level answer

sets. The check ord program can be used to check that an ordering example is respected by using

two answer set identifiers. The program, given in Meta-program 6.3, is split into 6 parts. Part 1 uses

the check program from Meta-program 6.2 to check whether the two answer sets are accepted by the

two examples in o. The next two parts use Rweak to represent the weak constraints in B [SM (where

the weak constraints in SM have been appended with in h atoms, as usual. Part 4 checks at each

priority level whether one answer set dominates the other. The obvious rule that could be used to

check whether one answer set dominates another at priority level lev, is:

dom at lv(a1, a2, lev) : - S1 = #sum{w(W, lev, A, a1) = W}, S2 = #sum{w(W, lev, A, a2) = W}, S1 < S2.

This naive encoding has many ground instances, however, as there is one ground instance for each pair

of values s1 and s2 that the variables S1 and S2 could possibly take. The check ord program therefore

instead uses the equivalent rule:

dom at lv(a1, a2, lev) : -#sum{w(W, lev, A, a1) = W, w(W, lev, A, a2) = �W} < 0.

Part 5 of the check ord program expresses that one answer set A1 dominates another answer set A2

if there is a priority level lev such that A1 dominates A2 at lev, and A2 does not dominate A1 at

any level which is higher than lev. Finally, part 6 expresses that o is accepted if the two answer sets

extend the two examples referred to in o and the domination relation between the two answer sets is

the same as specified by the operator in o.

Meta-program 6.3 (check ord(T, o, a1, a2)). Let T be the task hB,SM , hE+, E�, Ob, Oc
ii.

Given an ordering example o 2 Ob
[Oc, such that oeg1 = e1 and oeg2 = e2 and any two

terms a1 and a2, check ord(T, o, a1, a2) is the program comprised of the following components:

1. check(e1, a1) [check(e2, a2)

2. Rweak(B, a1) [Rweak(B, a2)

3. For each W 2 weak(SM), the rules A(Rweak(W, a1), in h(Wid)) and

A(Rweak(W, a2), in h(Wid)).

4. For each priority level lev that occurs in at least one weak constraint in B[SM , the rules:
(

dom at lv(a1, a2, lev) : -#sum{w(W, lev, A, a1) = W, w(W, lev, A, a2) = �W} < 0.

dom at lv(a2, a1, lev) : -#sum{w(W, lev, A, a1) = W, w(W, lev, A, a2) = �W} > 0.

)

5. For each priority level lev that occurs in at least one weak constraint in B[SM , the rules:
8
>>>><

>>>>:

dom(a1, a2) : - dom at lv(a1, a2, lev),

not dom at lv(a2, a1, l1), . . . , not dom at lv(a2, a1, ln).

dom(a2, a1) : - dom at lv(a2, a1, lev),

not dom at lv(a1, a2, l1), . . . , not dom at lv(a1, a2, ln).

9
>>>>=

>>>>;

(where {l1, . . . , ln} are the levels that occur in B [SM that are higher than lev)

121

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

6. If oop is <, the rule:

ord respected(oid, a1, a2) : - dom(a1, a2), cov(e1id, a1), cov(e
2
id, a2).

If oop is > the rule:

ord respected(oid, a1, a2) : - dom(a2, a1), cov(e1id, a1), cov(e
2
id, a2).

If oop is 6=, the rules:

ord respected(oid, a1, a2) : - dom(a1, a2), cov(e1id, a1), cov(e
2
id, a2).

ord respected(oid, a1, a2) : - dom(a2, a1), cov(e1id, a1), cov(e
2
id, a2).

If oop is =, the rule:

ord respected(oid, a1, a2) : - not dom(a1, a2), not dom(a2, a1), cov(e1id, a1), cov(e
2
id, a2).

If oop is , the rule:

ord respected(oid, a1, a2) : - not dom(a2, a1), cov(e1id, a1), cov(e
2
id, a2).

If oop is �, the rule:

ord respected(oid, a1, a2) : - not dom(a1, a2), cov(e1id, a1), cov(e
2
id, a2).

We now demonstrate that we can combine M1 with instances of the check and check ord programs

in order to determine which examples and ordering examples are accepted by a hypothesis H. The

program presented in Theorem 6.6 generates a set of object-level answer sets and checks which answer

sets are accepting answer sets of which examples, and which pairs of object-level answer sets are

accepting pairs of answer sets of o. In this and subsequent chapters we use programs of this form, but

for e�ciency we often do not need to check whether the object level answer set (resp. pair of object

level answer sets) for every term (resp. pair of terms) is an accepting answer set (resp. accepting pair

of answer sets) of every CDPI (resp. CDOE) in the task. We therefore specify a set of CDPIs (resp.

CDOEs) for each term (resp. pair of terms) that should be checked. The first point of the theorem

shows that the meta-level answer sets correspond to the set of all combinations of object-level answer

sets. Point (2) shows that given a meta-level answer set A of the program, for each CDPI e such that

cov(eid, t) 2 A, the object level answer set represented by t in A is guaranteed to be an accepting

answer set of e. Similarly, for each CDOE o such that ord respected(o, t1, t2) 2 A, the pair of

object-level answer sets hA1, A2i represented by the terms t1 and t2 (respectively) is guaranteed to

be a pair of accepting answer sets of o.

Theorem 6.6. (proof on page 286) Let T be an ILP context
LOAS task with background knowledge B and

hypothesis space SM , and let H ✓ SM . Let ASids = {t1, . . ., tn} be a set of terms and Pairids be a

set of pairs hti, tji, where ti and tj are terms in ASids such that no term occurs more than once in

Pairids.

For each t 2 ASids let Et be a set of CDPIs and for each tuple p 2 Pairids let Op be a set of CDOEs.

122

6.2. SEARCHING FOR POSITIVE AND VIOLATING HYPOTHESES

Let P = M1(T) [{in h(hid) | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | ht, ei 2 Et, t 2 ASids}

[{check ord(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op}

For each term t 2 ASids, let E(t) = Et [{e | p = ht, i 2 Pairids, he, , i 2 Op} [{e | p = h , ti 2

Pairids, h , e, i 2 Op}.

1. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|) such that each ei is selected from E+
[E�

and each Ii is an interpretation: 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and

M
�1
as (A, ti) = Ii if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

2. For any answer set A 2 AS(P), 8i 2 [1, n], 8e 2 E+
[E�, cov(eid, ti) 2 A if and only if

ctx(eid, ti) 2 A, e 2 E(ti) and M
�1
as (A, ti) is an accepting answer set of e wrt B [H.

3. For any A 2 AS(P), for any ordering example o = hoe1, oe2, opi and for any i, j 2 [1, n],

ord respected(oid, ti, tj) 2 A if and only if p = hti, tji 2 Pairids, o 2 Op, cov(oe1id, ti) 2 A,

cov(oe2id, tj) 2 A and hM
�1
as (A, ti),M�1

as (A, tj)i is an accepting pair of answer sets of o wrt

B [H.

6.2 Searching for Positive and Violating Hypotheses

The programs presented in the previous section provide a way to check whether a hypothesis accepts

a set of CDPIs and CDOEs. A hypothesis can be represented as a set of in h facts added to the

meta-level program and a set of examples are accepted if there is an answer set that contains cov and

ord respected atoms for each of the examples. In order to use this program to search for hypotheses

that accept all of these examples, we must make two changes to the program. First, rather than adding

a set of facts describing the hypothesis, we must add a choice rule which expresses that any rule in

the hypothesis space can either be in, or not in the hypothesis. Second, we must add constraints

expressing that each of the required cov and ord respected atoms must occur in any answer set of

the program. For the case with only CDPIs, this program would be similar to the program P in

Example 6.1.

The programs presented so far only generate accepting answer sets of CDPIs and accepting pairs

of answer sets of CDOEs. This allows us to easily generate the hypotheses which cover all of the

positive examples and brave orderings; however, enforcing the coverage of negative examples and

cautious orderings is more complicated. Example 6.7 illustrates why a naive approach, using meta-

level constraints to enforce that negative examples are covered, does not work.

Example 6.7. Consider the ILP context
LOAS task T = hB,SM , hE+, E�, Ob, Oc

ii, where:

123

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

B =
n

p : - not q.
o

E+ =
n

e1 : hh{p}, {q}i, ;i
o

Ob = ;

SM =

(
q.

q : - not p.

)

E� =
n

e2 : hh{q}, {p}i, ;i
o

Oc = ;

It might be thought that this task could be represented by the meta-level ASP program P .

P = M1(T) [

8
>>>><

>>>>:

as(1).

as(2).

: - not cov(1, 1).

: - cov(2, 2).

9
>>>>=

>>>>;

[check(e1, 1) [check(e2, 2).

P is shown in full below.

P =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

%B

1 :

2 :

%SM

3 :

4 :

5 :

%Examples

6 :

7 :

8 :

9 :

as(1). as(2).

in as(p, AS ID) : - not in as(q, AS ID).

0{in h(1), in h(2)}2.

in as(q, AS ID) : - as(AS ID), in h(1).

in as(q, AS ID) : - as(AS ID), not in as(p, AS ID), in h(2).

cov(1, 1) : - in as(p, 1), not in as(q, 1).

cov(2, 2) : - in as(q, 2), not in as(p, 2).

: - not cov(1, 1).

: - cov(2, 2).

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

P has one answer set {as(1), as(2), in h(2), in as(p, 1), in as(p, 2), cov(1, 1)}. This would indicate

that q : - not p is an inductive solution of the task, but this is not the case (as the hypothesis has

the answer set {q}, when combined with the background knowledge). The problem arises because the

negative example e2 is covered only if there are no accepting answer sets of e2 with respect to B [H,

whereas the program P ensures only that there is at least one object level answer set of B [H that is

not an accepting answer set of e2.

In fact, as shown in Section 4.5, deciding the satisfiability of propositional ILP context
LOAS tasks is ⌃P

2 -

complete. This means that unless the polynomial hierarchy collapses, in general we cannot write

an ASP program using only normal rules, choice rules and constraints whose answer sets can be

mapped to the inductive solutions an ILP context
LOAS task (as deciding satisfiability of these programs

is only ⌃P
1 -complete). In ASP there are two ways of solving ⌃P

2 -complete problems. ASP solvers

such as clingo (starting with clasp-D [GKS13]) permit the use of disjunction in ASP. Deciding the

124

6.2. SEARCHING FOR POSITIVE AND VIOLATING HYPOTHESES

satisfiability of disjunctive logic programs and programs containing unstratified aggregates is ⌃P
2 -

complete. In practice, however, encoding ⌃P
2 -complete problems in ASP requires advanced techniques

such as saturation [EG95]. Such encodings can be unintuitive, and are often only understandable by

experts in ASP [GKS11]. Another method for accessing higher levels of the polynomial hierarchy in

ASP is to solve an ASP program iteratively (i.e. solving the program many times, each time amending

the program, based on the previous iteration).

The algorithms in this thesis explore the second direction. By using an iterative approach, we have

been able to develop algorithms that are specifically targeted at solving ILP context
LOAS tasks, rather than

delegating the entire ⌃P
2 problem to a general-purpose ASP solver.

In each iteration, ILASP1 searches for hypotheses which cover all of the positive examples and brave

orderings – we call these the positive hypotheses. It may find some hypotheses which do not cover

some negative examples or cautious orderings. These are still positive hypotheses, but they are not

inductive solutions – we call these the violating hypotheses. The idea of the ILASP1 algorithm is to

rule these hypotheses out by adding constraints to the meta-level program, before solving it again.

Once there are no violating hypotheses left, the remaining positive hypotheses are in fact the inductive

solutions. Definition 6.2 formalises the notions of positive and violating hypotheses.

Definition 6.2. Let T = hB,SM , hE+, E�, Ob, Oc
ii be an ILP context

LOAS task. A hypothesis H ✓ SM

is said to be positive if 8e 2 E+, H accepts e and 8o 2 Ob, H accepts o. A positive hypothesis H is

said to be violating if there is at least one e 2 E� such that H accepts e or at least one o 2 Oc such

that H does not cautiously respect o. We write P(T) and V(T) to denote the positive and violating

hypotheses of T . We also write P
n(T) and V

n(T) to denote the positive and violating hypotheses of

length n (for any n 2 N).

Example 6.8. Consider the learning task T = hB,SM , hE+, E�, Ob, Oc
ii, where:

B =

(
0{p}1.

q : - not r.

)

SM =

8
>>>><

>>>>:

h1 :

h2 :

h3 :

h4 :

r : - not q.

: - p, q.

:⇠ p.[1@1]

:⇠ r.[1@1]

9
>>>>=

>>>>;

E+ =

(
e1 : hh{q}, ;i, ;i

e2 : hh{r}, ;i, ;i

)

E� =
n

e3 : hh{p}, {r}i, ;i
o

Ob =
n

o1 : he1, e2, <i

o

Oc =
n

o2 : he1, e2, <i

o

Note that in practice, we would not usually have identical CDOEs in Ob and Oc (if an ordering is

cautiously respected then it is also bravely respected).

; is not a positive hypothesis, as it does not cover the positive example e2. In fact, to be a positive hy-

pothesis (given the hypothesis space SM), a hypothesis must contain h1, because otherwise the example

e2 cannot be covered (no rule in B, e2ctx or SM\{h1} has r in the head). The hypothesis {h1} is still

not a positive hypothesis, as it does not cover the brave ordering o1 (there are no weak constraints in

125

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

B [H, so all answer sets are equally preferred). The hypothesis {h1, h3} is a positive hypothesis, as

it prefers the answer set {q} to the answer set {p, r}. {h1, h3} is not an inductive solution, however;

instead it is violating, as it does not cover the negative example e3. The hypothesis {h1, h2, h3} covers

this negative example, as the extra constraint eliminates the answer set {p, q}, but it is still violating

as it does not cautiously respect the cautious ordering o2 (it does not prefer the answer set {q} to the

answer set {r} – as neither pays any penalty). The hypothesis {h1, h2, h4} does cautiously respect o2,

and is not a violating hypothesis. Hence, as it is a positive hypothesis that is not violating, it is an

inductive solution of T .

We now prove that the inductive solutions of any task are indeed those positive hypotheses which

are not violating hypotheses. The proof follows from the definitions of an inductive solution, and a

positive and violating hypothesis.

Theorem 6.9. Let T be an ILP context
LOAS task. Then ILP context

LOAS (T) = P(T)\V(T).

Proof. Let H 2 ILP context
LOAS (T)

, H ✓ SM , 8e 2 E+, B [H accepts e, 8e 2 E�, B [H does not accept e, 8o 2 Ob, B [H bravely

respects o and 8o 2 Oc, B [H cautiously respects o.

, H 2

(
H ✓ SM

�����
8e 2 E+, B [H accepts e and

8o 2 Ob, B [H bravely respects o

)

and H 62

8
><

>:
H ✓ SM

�������

9e 2 E�, B [H accepts e or

9o 2 Oc, B [H does not

cautiously respect o

9
>=

>;

, H 2 P(T) and H 62

(
H ✓ SM

�����
9e 2 E�, B [H accepts e or

9o 2 Oc, B [H does not cautiously respect o

)

, H 2 P(T) and H 62

(
H 2 P(T)

�����
9e 2 E�, B [H accepts e or

9o 2 Oc, B [H does not cautiously respect o

)

, H 2 P(T) and H 62 V(T)

, H 2 P(T)\V(T)

We can now present the main meta-level program, M(T), of the ILASP1 algorithm, which builds on

the partial meta-level programs we have presented so far. M(T) introduces one object-level answer

set per positive example and two object-level answer sets per brave ordering. We use M(T) in two

di↵erent ways: searching for positive solutions, and searching for violating solutions – in the second

case, we add the fact “check violating.” to the program. In the case that we are searching for

violating solutions it is su�cient to find a negative example or cautious ordering that is not covered.

We therefore only need to introduce two extra object-level answer sets (v1 and v2) in this case. If these

126

6.2. SEARCHING FOR POSITIVE AND VIOLATING HYPOTHESES

two answer sets are an accepting pair of answer sets for any cautious ordering, or if v1 is an accepting

answer set of any negative example, then the hypothesis represented by the meta-level answer set is

guaranteed to be a violating hypothesis.

There is also a constraint expressing that if the fact check violating is present, then violating

must be present in any answer set A of M(T), where violating is true if and only if at least one of

the following conditions hold:

1. There is a negative example e such that M
�1
as (A, v1) is an accepting answer set of e. In this

case, we call M�1
as (A, v1) a violating interpretation of e. A will contain the atom v i(eid).

2. There is a cautious ordering o such that hM
�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of

answer sets of inverse(o). In this case, we call hM�1
as (A, v1),M�1

as (A, v2)i a violating pair of

interpretations of o. A will contain the atom v p(oid).

Note that each brave ordering example requires a unique pair of object-level answer sets to be repre-

sented in each meta-level answer set. If there are two ordering examples o1 and o2 that “share” the

same positive examples, a pair of answer sets proving that o1 is respected may not prove that o2 is

respected. We introduce an extra pair of unique identifiers oid1 and oid2 for each ordering example o.

Note that these are not equal to (oeg1)id and (oeg2)id.

Meta-program 6.4 (M(T)). Let T be the ILP context
LOAS task, hB,SM , hE+, E�, Ob, Oc

ii. M(T)

is the program comprised of the following components:

• The choice rule 0{in h(hid)}1 for each h 2 SM .

• M1(T)

•

(
as(eid).

: - not cov(eid, eid).

)
[check(e, eid), for each e 2 E+.

•

8
><

>:

as(oid1).

as(oid2).

: - not ord respected(oid, oid1, oid2).

9
>=

>;
[check ord(o, oid1, oid2), for each o 2 Ob.

•

8
>>>>>><

>>>>>>:

as(v1) : - check violating.

as(v2) : - check violating.

: - check violating, not violating.

violating : - v i(), check violating.

violating : - v p(), check violating.

9
>>>>>>=

>>>>>>;

•

n
v i(eid) : - cov(eid, v1).

o
[check(e, v1), for each e 2 E�.

127

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

•

(
v p(oid) : -

ord respected(oid, v1, v2).

)
[check ord(inverse(o), v1, v2), for each o 2 Oc.

M(T) has several key properties that we show in Theorem 6.10. For ILASP1, the most important of

these properties are (1) that the answer sets of M(T) correspond to the positive hypotheses of T , and

(4), that if M(T) is combined with an extra fact (check violating), then the answer sets correspond

to the violating hypotheses of T . Properties (2) and (3) will be used in later chapters.

Theorem 6.10. (proof on page 290) Let T be an ILP context
LOAS task, and H be a hypothesis.

1. 9A 2 AS(M(T)) such that H = M
�1
in h(A) if and only if H 2 P(T).

2. 8e 2 E�, for any A 2 AS(M(T) [{check violating.}) such that v i(eid) 2 A and H =

M
�1
in h(A), M�1

as (A, v1) is an accepting answer set of e wrt B [H.

3. 8o 2 Oc, for any A 2 AS(M(T) [{check violating.}) such that v p(oid) 2 A and H =

M
�1
in h(A), hM

�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of answer sets of inverse(o) wrt

B [H.

4. 9A 2 AS(M(T) [{check violating.}) such that H = M
�1
in h(A) if and only if H 2 V(T).

6.3 The ILASP1 Algorithm

Algorithm 6.1 shows the ILASP1 algorithm. The main idea of the approach is to iteratively compute

the set of inductive solutions of length n, starting at n = 0. The first time this set is non-empty, it must

be the set of optimal inductive solutions, and so it is returned. In each iteration, there are two steps:

firstly, we compute the set of violating hypotheses at the current length, using Meta-program 6.4; these

violating hypotheses are then converted into meta-level constraints, which are added to our meta-level

program before solving it again. The answer sets of the second meta-level program correspond to the

positive hypotheses which are not violating. By Theorem 6.9, these are the inductive solutions. The

meta-level programs are solved using the clingo [GKK+11] ASP solver.

In order to restrict the answer sets of our meta-level program to hypotheses of a given length n, we

add a constraint with a summing aggregate in the body. The augmented program is formalised in

Meta-program 6.5.

Meta-program 6.5 (Mn(T)). Let T be the ILP context
LOAS task hB,SM , Ei and let n 2 N, where

SM = {R1, . . . , Rm
}.

M
n(T) = M(T) [

�
: -#sum{in h(R1id) = |R1|, . . . , in h(Rmid) = |Rm|} 6= n.

We now show that for any n the answer sets of Mn(T) are the answer sets A of M(T) such that the

hypothesis represented by A has length n.

128

6.3. THE ILASP1 ALGORITHM

Algorithm 6.1 ILASP1

1: procedure ILASP1(T,max)
2: solutions = ;;
3: for n = 0; solutions == ; && n  max; n++
4: AS1 = AS(Mn(T) [{check violating.});
5: vs = {M

�1
in h(A) | A 2 AS1};

6: AS2 = AS(Mn(T) [{constraint(V) | V 2 vs});
7: solutions = {M

�1
in h(A) | A 2 AS2};

8: end for
9: return solutions;

10: end procedure

Proposition 6.11. (proof on page 295) Let T be any ILP context
LOAS task and n 2 N. AS(Mn(T)) =

{A 2 M(T) | |M�1
in h(A)| = n}.

Similarly to M(T), Mn(T)[{check violating.} allows us to compute violating hypotheses – specif-

ically, it allows us to compute the violating hypotheses of a given length n. Once we have computed

these violating hypotheses, we use the meta-level constraints formalised in Meta-program 6.6 in order

to rule them out.

Meta-program 6.6 (constraint(H)). Let H be the hypothesis {h1, . . . , hn}. constraint(H) =
�
: - in h(h1id), . . . , in h(hnid).

In Proposition 6.12, we show that given a set of hypotheses V , we can use the constraint representation

in Meta-program 6.6 combined with the Mn(T) program to find the positive solutions that are not in

V .

Proposition 6.12. (proof on page 295) Let T be an ILP context
LOAS task, n 2 N and V be a set of

hypotheses of length n. Consider the program P = M
n(T) [{constraint(v) | v 2 V }. Then

P
n(T)\V =

�
M

�1
in h(A)

��A 2 AS(P)

.

We have now proved the intermediate results necessary to show the soundness and completeness of

ILASP1. To ensure termination, ILASP1 is called with an upper bound (max) on the length of

a hypothesis. Without this upper bound, ILASP would only terminate for satisfiable tasks – for

unsatisfiable tasks, solutions would be empty at the end of every iteration.

In each iteration, ILASP1 first computes the violating hypotheses vs of length n, and then computes

the positive hypotheses ps of length n, which are not in vs (i.e. the inductive solutions of length n). If

this set is non-empty then the algorithm terminates and returns the set of optimal inductive solutions

of the task. Theorem 6.14 shows that ILASP1 is guaranteed to terminate and is both sound and

complete with respect to the optimal solutions (with length less than or equal to the given upper

bound) of any well-defined ILP context
LOAS task.

129

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

In order to prove the termination of the ILASP1 algorithm, we must first show that each call to

the ASP solver terminates. In theory, this should be the case, provided the relevant groundings of

the programs being solved are finite. Proposition 6.13, shows that this is the case for the meta-level

programs used by ILASP1 to solve any task T , so long as all of the object-level programs that can be

constructed from the components of T have a finite grounding. We say that a task T is well-defined

if every program consisting of rules in the background knowledge, hypothesis space and contexts of T

has a finite relevant grounding.

Proposition 6.13. (proof on page 296) Let T be any well-defined ILP context
LOAS task, n 2 N, and HS

be any finite set of hypotheses.

1. groundrel(Mn(T) [{check violating.}) is finite.

2. groundrel(Mn(T) [{constraint(H) | H 2 HS}) is finite.

We are now ready to prove the termination, soundness and completeness results for the ILASP1

algorithm. Theorem 6.14 shows that given any well-defined ILP context
LOAS task T and any upper bound

max, ILASP1(T,max) terminates in a finite time and returns the set of optimal inductive solutions

H of T such that |H|  max; i.e. if there is an inductive solution H of T such that |H|  max then

ILASP1(T,max) returns the set of optimal inductive solutions of T ; otherwise, ILASP1(T,max)

returns ;.

Theorem 6.14. Let max 2 N and let T be an ILP context
LOAS task.

1. ILASP1(T,max) terminates for any well-defined task.

2. ILASP1(T,max) = {H 2
⇤ILP context

LOAS (T) | |H|  max}

Proof.

1. As there are clearly a finite number of iterations, it remains to show that any arbitrary iteration

of the for loop terminates. Let n 2 N. Since by Proposition 6.13 (1), groundrel(Mn(T) [

{check violating.}) is finite, the first call to the ASP solver terminates. In the next line vs

must be finite, as vs must be a subset of the powerset of SM . Hence by Proposition 6.13 (2),

the second call to the ASP solver must also terminate. Hence, the iteration must terminate.

2. We first show that at the end of each iteration, solutions is equal to the inductive solutions of

length n.

In each iteration, after line 5, vs = {M
�1
in h(A) | A 2 AS(Mn(T)[{check violating.})}. Hence,

by Proposition 6.11, vs = {M
�1
in h(A) | A 2 AS(M(T)[{check violating.}), |M�1

in h(A)| = n}.

By Theorem 6.10 (part 4), this means that vs = {H 2 V(T) | |H| = n} (i.e. vs = V
n(T)).

130

6.3. THE ILASP1 ALGORITHM

Hence, at the end of each iteration, solutions = {M
�1
in h(A) | A 2 AS(Mn(T)[{constraint(V) |

V 2 V
n(T)})}. By Proposition 6.12, this means that solutions = P

n(T)\Vn(T).

Hence, at the end of each iteration, solutions is equal to the set of inductive solutions of length

n. We can now show that ILASP1(T,max) = {H 2
⇤ILP context

LOAS (T) | |H|  max}.

Case 1: 9H 2 ILP context
LOAS such that |H|  max

In this case, the set of optimal solutions must all have length m for some integer m  max.

In all iterations where n < m, solutions must have been empty at the end of the iteration

(otherwise there would be an inductive solution with length smaller than m). Hence, as

ILASP1 is guaranteed to terminate (by part (1)), iteration m must be reached. At the end

of iteration m, solutions must therefore be the (non-empty) set of optimal inductive solutions

of the task.

Hence, in this case, ILASP1(T,max) returns {H 2
⇤ILP context

LOAS (T) | |H|  max} (as all

optimal inductive solutions have length m which is less than or equal to max).

Case 2: @H 2 ILP context
LOAS such that |H|  max

In this case, as there are no inductive solutionsH such that |H|  max, {H 2
⇤ILP context

LOAS (T) |

|H|  max} is empty. Hence, it remains to show that ILASP1(T,max) returns ;.

At the end of each iteration solutions must be empty, as otherwise there would be a solution

with length less than or equal to max. Hence, ILASP1(T,max) returns ;.

6.3.1 Scalability Issues with the ILASP1 Approach

There are two main scalability issues with the ILASP1 algorithm. The first is that, in principle, there

may be an extremely large number of violating hypotheses that need to be found before the optimal

inductive solutions are found. We address this in the ILASP2 algorithm (Section 7.1), by introducing

the notion of violating reasons, which enable us to rule out many violating hypotheses which are all

violating for the same “reason”.

The second issue for scalability is the time it takes to solve the meta-level programs. Generally

speaking, ASP programs with larger relevant groundings take longer to solve. The size of the relevant

grounding of M(T) is roughly proportional to as⇥ |groundrel(B[SM [CS)| (where as is the number

of object level answer sets considered and CS is the union of the all of the contexts of examples). This

is because the relevant grounding of M(T) essentially contains as copies of the relevant grounding of

B [SM [CS. Note that when the meta-level program is ground, the contexts “mix” – the relevant

grounding does not consider whether two atoms can appear in the same answer set, but only whether

each of them can occur in at least one answer set. Due to the size of the grounding, the performance

is a↵ected by each of the following factors:

131

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

1. The size of the problem domain (i.e. the Herbrand domain), as this a↵ects the size of the relevant

grounding of B [SM [CS.

2. The number of positive examples. This is because as = |E+
|+2⇥|Ob

|+2 (there is one meta-level

answer set for each positive example, two for each brave ordering and two extra – represented

by v1 and v2).

3. The size of B, SM and CS. It should be noted that the sizes of SM and CS usually have a

greater e↵ect than the size of B. This is because in the meta-level programs, B does not have

an extra condition (an in h or ctx atom), and so the ASP solver can use the rules in B to make

simplifications. For example, if a fact “a.” occurs in B, then clingo will remove any positive

occurrence of a from the bodies of ground instances of other rules.

In Section 7.2, we show how we can dramatically reduce the number of examples and contexts used in

the meta encoding, so that the grounding becomes significantly smaller. In Chapter 10, we go further,

and show how we can consider examples independently from all other examples, meaning that that

version of M(T) considers at most two object-level answer sets, and therefore its grounding is not

proportional in size to any number of examples.

6.4 Related Work

We now discuss how two of the other ILP systems which use ASP solvers, ASPAL and XHAIL, relate

to the ILASP approach. As both ASPAL and XHAIL are systems for brave induction, the results in

Chapter 5 mean that there are some programs which can be learned using ILASP that are out of reach

for these two systems; for instance, neither will ever learn a hypothesis that contains a constraint.

6.4.1 ASPAL

For brave induction tasks, the closest ILP system to ILASP is the ASPAL system, which works by

encoding an ILPb task as a meta-level ASP program, whose optimal answer sets correspond exactly

to the optimal inductive solutions of the task. We now reconsider the learning task in Example 3.15.

132

6.4. RELATED WORK

Example 6.15. Consider the following (equivalent) tasks for the ASPAL and ILASP systems. The

first is a brave induction task T1 with traditional mode declarations, and the second is an ILPLAS

task T2 with a fully specified hypothesis space. Note that the positive and negative examples in T1 are

combined into a single positive partial interpretation example in T2.

B1 =

8
>>>>>>>><

>>>>>>>>:

bird(a).

bird(b).

can(a, fly).

can(b, swim).

ability(fly).

ability(swim).

9
>>>>>>>>=

>>>>>>>>;

M =

(
#modeh(penguin(+bird))

#modeb(2, not can(+bird,#ability))

)

E+
2 = {penguin(b)}

E�
2 = {penguin(a)}

B2 =

8
>>>>>>>><

>>>>>>>>:

bird(a).

bird(b).

can(a, fly).

can(b, swim).

ability(fly).

ability(swim).

9
>>>>>>>>=

>>>>>>>>;

SM =

8
>>>>>><

>>>>>>:

penguin(X) : - bird(X).

penguin(X) : - bird(X), not can(X, fly).

penguin(X) : - bird(X), not can(X, swim).

penguin(X) : - bird(X), not can(X, fly),

not can(X, swim).

9
>>>>>>=

>>>>>>;

E+
2 = {h{penguin(b)}, {penguin(a)}i}

E� = ;

The two meta-level programs produced by the two algorithms for solving this task are shown below;

first, the meta-level program of ASPAL, and then of ILASP. In the case of ASPAL, we have replaced

its choice rule with an equivalent one that conforms to the subset of ASP considered in this thesis.

ASPAL Meta =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

bird(a).

bird(b).

can(a, fly).

can(b, swim).

ability(fly).

ability(swim).

penguin(X) : - bird(X), rule(1).

penguin(X) : - bird(X), not can(X, C1), rule(2, C1).

penguin(X) : - bird(X), not can(X, C1), not can(X, C2), rule(3, C1, C2).

0{rule(1), rule(2, fly), rule(2, swim), rule(3, fly, swim)}4.

goal : - penguin(b), not penguin(a).

: - not goal.

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

133

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

ILASP Meta =

8
>>><

>>>:

0{in h(1), in h(2), in h(3), in h(4)}4.

in as(bird(a), AS ID) : - as(AS ID).

in as(bird(b), AS ID) : - as(AS ID).

in as(can(a, fly)) : - as(AS ID).

in as(can(b, swim), AS ID) : - as(AS ID).

in as(ability(fly), AS ID) : - as(AS ID).

in as(ability(swim), AS ID) : - as(AS ID).

in as(penguin(X), AS ID) : - as(AS ID), in as(bird(X), AS ID), in h(1).

in as(penguin(X), AS ID) : - as(AS ID), in as(bird(X), AS ID),

not in as(can(fly, C1), AS ID), in h(2).

in as(penguin(X), AS ID) : - as(AS ID), in as(bird(X), AS ID),

not in as(can(swim, C1), AS ID), in h(3).

in as(penguin(X), AS ID) : - as(AS ID), in as(bird(X), AS ID),

not in as(can(fly, C1), AS ID), not in as(can(swim, C2), AS ID), in h(4).

as(1).

cov(1, AS ID) : - in as(penguin(b), AS ID), not in as(penguin(a), AS ID), ctx(1, 1).

: - not cov(1, 1).

1{ctx(1, AS ID)}1 : - as(AS ID).

as(v1) : - check violating.

as(v2) : - check violating.

: - check violating, not violating.

violating : - v i(), check violating.

violating : - v p(), check violating.

9
>>>=

>>>;

Other than the last set of rules in the ILASP Meta program, the two programs have very similar

structures (although ILASP Meta has been reified and uses the cov predicate rather than a single

goal atom). The additional rules in the ILASP program are there because the ILASP system is more

general and these extra rules are needed for solving tasks that have other kinds of examples (such

as context-dependent examples, negative (partial interpretation) examples and ordering examples).

Similarly, the reification is needed for ILASP to be able to solve tasks with multiple positive examples.

Another di↵erence between the two meta-level programs is that ASPAL “delegates” the filling in of

constants in the hypothesis space to the ASP grounder. ILASP, on the other hand, enumerates the

hypothesis space in full. The two ground programs both contain the full hypothesis space, so there

is little di↵erence between the two approaches for tasks with only one positive example. In general,

when ILASP has negative (partial interpretation) examples, this program could be solved many times,

meaning that it is more e�cient to compute the hypothesis space once, rather than having the ASP

grounder compute it multiple times.

In general, these di↵erences in representation have a negligible impact on the performance of the two

algorithms, as the size of the ground programs is almost exactly the same. One large di↵erence between

134

6.4. RELATED WORK

the two is that the ILASP1 algorithm presented in this chapter solves this program twice; once with

the check violating fact, and once without, which means that it is likely to take twice as long as

ASPAL. For this reason, the implementation of ILASP1 first checks whether the task contains any

negative examples or cautious orderings, and if there are none it skips the first step of solving the

program with the check violating fact.

6.4.2 XHAIL

XHAIL is another algorithm for brave induction, and so, similarly to ASPAL, is unable to learn some

of the hypotheses that can be learned by ILASP. For the tasks that can be expressed by XHAIL,

XHAIL can be more scalable than ILASP (and ASPAL) as it does not enumerate the hypothesis

space in full, but first abduces the (ground instances of) heads of the rules in the hypothesis, then

deduces the atoms that can appear in the bodies of (ground instances of) the rules. Finally, it uses

its inductive phase to find the final hypothesis.

Both the abductive and inductive phases of the XHAIL algorithm are performed using meta-level

ASP programs. In problems with large hypothesis spaces these programs have considerably smaller

groundings than the ILASP meta-level programs, as the XHAIL programs do not contain the full

hypothesis space. For problems with large (groundings of) background knowledges, however, XHAIL

has similar scalability issues to ILASP, as its meta-level program in the abductive phase still contains

the grounding of the background knowledge over the entire problem domain.

Unlike ILASP (and ASPAL), XHAIL is not guaranteed to return the optimal inductive solution of

any task. This is caused by XHAIL choosing the “wrong” abductive solution in the abductive phase.

Example 6.16 shows a task where this occurs.

Example 6.16. Consider the following XHAIL task.

#example p(a).

#example not p(b).

#example not p(c).

#example not p(d).

% Atoms defining types used in the

% mode bias.

qt(a). qt(b).

rt(a). rt(c).

pt(a). pt(b). pt(c). pt(d).

int(1..3).

cond(1, a). cond(1, b). cond(1, c).

cond(2, a). cond(2, b). cond(2, d).

cond(3, a). cond(3, c). cond(3, d).

p(X) :- q(X), r(X).

#modeh p(+pt).

#modeh q(+qt).

#modeh r(+rt).

#modeb cond($int,+pt).

Unlike ILASP, XHAIL adds “types” for each variable that occurs in a hypothesis. The optimal in-

ductive solution of this task would be the two rules “q(V1) : - qt(V1).” and “r(V1) : - rt(V1).”. XHAIL

135

CHAPTER 6. USING ASP FOR INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

returns the longer hypothesis: “p(V1) : - pt(V1), cond(1, V1), cond(2, V1), cond(3, V1).”. This is because

XHAIL picks the smallest abductive solution in the first phase, which is {p(a)}. The smallest induc-

tive solution that can be constructed from this solution is the one that is returned by XHAIL. If it

had instead picked the larger abductive solution {q(a), r(a)} then it could have found the true optimal

inductive solution.

Summary

In this chapter we have presented the first of our ILASP algorithms for solving ILP context
LOAS tasks. As

discussed in Section 6.3.1, there are several scalability issues with the ILASP1 approach. The next

chapter introduces the ILASP2 and ILASP2i algorithms, which are specifically targeted at solving

some of these scalability issues.

136

Chapter 7

Scalable Learning of Answer Set

Programs

In the previous chapter, we highlighted some potential e�ciency and scalability issues of the ILASP1

algorithm. The main cause of these issues is that the size of the grounding of the meta-level pro-

grams being solved can become very large. In this chapter, we present two improved versions of the

ILASP algorithm that address these issues. ILASP2 replaces ILASP1’s ine�cient notion of violating

hypotheses with a more general notion of violating reason, which can lead to more compact meta-level

programs when solving tasks with negative examples. ILASP2i is an iterative algorithm that consid-

ers a subset of the examples, called the relevant examples. This can have a dramatic e↵ect on the

size of the grounding of meta-level programs, as this grounding size is proportional to the number of

examples being considered. The e↵ect is that ILASP2i is not only much more scalable than ILASP1

and ILASP2 with respect to the number of examples, but also with respect to the size of the problem

domain and hypothesis space, which both have an additional impact on the size of the grounding of

the meta-programs.

7.1 ILASP2

One of the major scalability issues of the ILASP1 algorithm is that there may be many violating

hypotheses that need to be found and converted to constraints, before the first inductive solution is

found.

Example 7.1. Consider the ILPLAS task T = hB,SM , hE+, E�
ii, where SM is defined by the mode

declarations M and:

B =

8
><

>:

0{p}1.

0{q}1.

0{r}1.

9
>=

>;
E+ =

8
><

>:

e1 :

e2 :

e3 :

h{p}, ;i

h{q}, ;i

h{r}, ;i

9
>=

>;

137

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

M =

8
>>>><

>>>>:

#modeh(1, p). #modeb(1, p).

#modeh(1, q). #modeb(1, q).

#modeh(1, r). #modeb(1, r).

#modeh(1, s). #modeb(1, s).

9
>>>>=

>>>>;

E� =

8
><

>:

e4 :

e5 :

e6 :

h{p, q}, ;i

h{p, r}, ;i

h{q, r}, ;i

9
>=

>;

One optimal inductive solution of this task is the set of constraints C:

C =

8
><

>:

: - p, q.

: - q, r.

: - p, r.

9
>=

>;

C has length 6, and so before ILASP1 finds C, it must rule out every positive hypothesis of length 5

or lower (as they are all violating). There are 97352 such positive hypotheses, and each of them must

be converted to a constraint. ILASP1 takes 41.3s to solve the task.

This simple example illustrates a scalability issue of the ILASP1 algorithm, related to the number of

violating hypotheses that need to be ruled out before the first inductive solution is found. In practice,

with larger hypothesis spaces and larger optimal solutions, there can be many more violating hypotheses,

and so ILASP1 would require more computation time. The root cause of the problem is that ILASP1

rules out each of the violating hypotheses as an individual constraint, meaning that its meta-level

program becomes very large. However, it is possible that many hypotheses could be violating for the

same “reason”. In this chapter, we introduce the notion of violating reasons and present an improved

algorithm, ILASP2, which is able to make use of this notion, leading to much more compact meta-level

programs. In the task above, for instance, ILASP2 only requires 8 violating reasons to rule out all of

the 97352 violating hypotheses computed by ILASP1, thus reducing the computational time from 41.3s

to just 0.16s.

Algorithm 7.1 shows the ILASP2 algorithm. The notation solve(P) means that Clingo is used to find

a single optimal answer set of P (if P is unsatisfiable then nil is returned). In ILASP1, each iteration

includes two main steps: firstly, we search for the violating hypotheses of a particular length, and

secondly we search for the remaining positive hypotheses, once the violating hypotheses found in the

first step have been ruled out. In ILASP2, we accumulate a set of violating reasons, V R (initialised

to ; in line 2 of Algorithm 7.1, and expanded in each iteration in line 5). In each iteration, we solve

the meta-level program, MILASP2, searching for the shortest positive hypothesis that does not violate

any of the violating reasons in V R. If the meta-level answer set A that we find contains the atom

violating, then we can extract a new violating reason that rules out the hypothesis represented by

A, and any other hypotheses that share this violating reason. In this way, ILASP2 can rule out many

violating hypotheses of di↵erent lengths in a single iteration, whereas in each iteration of ILASP1, the

violating hypotheses of a particular length are converted to constraints. Furthermore, the grounding

of the representation of violating reasons can be much more compact than the grounding of ILASP1’s

meta-level program, which contains an individual constraint for each violating hypothesis that has

been computed.

138

7.1. ILASP2

Algorithm 7.1 ILASP2

1: procedure ILASP2(T)
2: V R = ;;
3: A = solve(MILASP2(T, V R));
4: while A 6= nil && violating 2 A
5: V R.insert(extractV R(A));
6: A = solve(MILASP2(T, V R))
7: end while
8: return {M

�1
in h(A) | A 2 AS⇤(MILASP2(T, V R))}

9: end procedure

In the rest of this section we formalise the notion of violating reasons and show how we can both find

and eliminate these violating reasons using meta-level ASP programs.

7.1.1 Violating Reasons

We now formalise the notion of a violating reason. In general, there can be two reasons why a

hypothesis H is violating: it could accept a negative example, or it could not respect a cautious

ordering. More specifically, there could be an interpretation I that is an accepting answer set of

some negative example with respect to H – in this case, we call I a violating interpretation; or there

could be a pair of interpretations hI1, I2i that is an accepting pair of answer sets of inverse(o) for

some cautious ordering o – in this case, we call hI1, I2i a violating pair of interpretations. The set of

all violating interpretations and violating pairs of a task are collectively called the violating reasons.

Definition 7.1 formalises the notion of violating interpretations.

Definition 7.1. Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Let e 2 E� and H ✓

SM . An interpretation I is said to be a violating interpretation of H wrt e if I extends epi and

I 2 AS(B [H [ectx).

An interpretation I is said to be a violating interpretation of T if there is at least one H ✓ SM and

at least one e 2 E� such that I is a violating interpretation of H wrt e.

Example 7.2 revisits the task from Example 6.8, and exemplifies the concept of violating interpreta-

tions.

Example 7.2. Consider the learning task T = hB,SM , hE+, E�, Ob, Oc
ii, where:

B =

(
0{p}1.

q : - not r.

)

SM =

8
>>>><

>>>>:

h1 :

h2 :

h3 :

h4 :

r : - not q.

: - p, q.

:⇠ p.[1@1]

:⇠ r.[1@1]

9
>>>>=

>>>>;

139

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

E+ =

(
e1 :

e2 :

hh{q}, ;i, ;i

hh{r}, ;i, ;i

)

E� =
n

e3 : hh{p}, {r}i, ;i
o

Ob =
n

o1 : he1, e2, <i

o

Oc =
n

o2 : he1, e2, <i

o

The hypothesis {h1, h3} is a positive hypothesis, as it covers the positive examples and it prefers the

answer set {q} to the answer set {p, r}. As stated in Example 6.8, {h1, h3} is not an inductive solution,

as it does not cover the negative example e3. More specifically, {p, q} is a violating interpretation of

{h1, h3} with respect to e3.

Definition 7.2 formalises the notion of violating pairs of interpretations.

Definition 7.2. Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Let o 2 Oc and H ✓ SM .

A pair of interpretations hI1, I2i is said to be a violating pair of interpretations of H wrt o if each of

the following conditions hold:

1. I1 extends (oeg1)pi and I1 2 AS(B [H [(oeg1)ctx)

2. I2 extends (oeg2)pi and I2 2 AS(B [H [(oeg2)ctx)

3. hI1, I2, oopi 62 ord(B [H, {I1, I2})

A pair of interpretations hI1, I2i is said to be a violating pair of T if there is at least one H ✓ SM and

at least one o 2 Oc such that hI1, I2i is a violating pair of H wrt o.

Example 7.3 revisits the task from Example 6.8, and exemplifies the concept of violating pairs.

Example 7.3. Reconsider the task T from Example 7.2. The hypothesis {h1, h2, h3} is a positive

hypothesis, with no violating interpretations. It is not an inductive solution, as it does not cover the

cautious ordering o2. More specifically, h{p, q}, {r}i is a violating pair of {h1, h2, h3} wrt o2.

Definition 7.3 formalises the notion of violating reasons. A violating reason is a pair hR, ei, where e is

an example and R is either a violating interpretation or violating pair of at least one hypothesis with

respect to e.

Definition 7.3. Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. A violating reason of T is

a tuple hR, ei, such that one of the following holds:

1. e 2 E� and 9H ✓ SM such that R is a violating interpretation of H with respect to e.

2. e 2 Oc and 9H ✓ SM such that R is a violating pair of H with respect to e.

140

7.1. ILASP2

Searching for Violating Reasons

The meta-level program M(T) can be used to find violating reasons. We now introduce two pieces of

notation which are useful when extracting violating interpretations and violating pairs from meta-level

answer sets. Recall that v1 and v2 are identifiers for object-level answer sets in the program M(T),

which are used to identify violating hypotheses.

Notation (M�1
vi). Let A be a meta-level answer set. M�1

vi (A) = M
�1
as (A, v1)

Notation (M�1
vp). Let A be a meta-level answer set. M�1

vp (A) = hM
�1
as (A, v1),M�1

as (A, v2)i

In iterations of the ILASP2 algorithm M(T) is solved once per iteration with the choice rule

0{check violating}1, instead of solving it twice with and without the fact check violating. The-

orem 7.4 shows that this program can be used both to find positive hypotheses, and to find violating

reasons.

Theorem 7.4. (proof on page 297) Let T be an ILP context
LOAS task, and H be a hypothesis. Consider

the program P = {0{check violating}1.} [M(T).

1. 9A 2 AS(P) such that H = M
�1
in h(A) if and only if H 2 P(T).

2. For any A 2 AS(P) and any e 2 E�, if v i(eid) 2 A and H = M
�1
in h(A) then M

�1
vi (A) is a

violating interpretation of H with respect to e.

3. For any A 2 AS(P) and any o 2 Oc, if v p(oid) 2 A and H = M
�1
in h(A) then M

�1
vp (A) is a

violating pair of interpretations of H with respect to o.

4. 9A 2 AS(P) such that H = M
�1
in h(A) and violating 2 A if and only if H 2 V(T).

Algorithm 7.2 uses the result of Theorem 7.4 to extract violating reasons from meta-level answer sets.

If the meta-level answer set contains v i(eid) for some e 2 E�, then a violating interpretation is

extracted for e; otherwise, if there is an o 2 Oc such that the meta-level answer set contains v p(oid),

then a violating pair is extracted.

7.1.2 Representing Violating Reasons in ASP

In the previous section, we showed that the meta-level M(T) program can be used to find violating

reasons. In this section, we show that given a set of violating reasons V R, we can augment M(T)

141

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

Algorithm 7.2 extractVR

1: procedure extractVR(A)
2: if 9e st v i(eid) 2 A
3: return hM

�1
vi (A), ei;

4: else if 9o such that v p(oid) 2 A
5: return hM

�1
vp (A), oi;

6: end if
7: end procedure

to constrain away any meta-level answer set which represents a hypothesis that is violating for any

of the reasons in V R. This augmented version of M(T) is the program MILASP2(T, V R), used by

Algorithm 7.1.

Representing Violating Interpretations

Consider a hypothesis H and a pair hI, ei, where e is a negative example, and I is an interpretation

that was found to be a violating interpretation of a di↵erent hypothesis H 0 wrt e, but is not necessarily

a violating interpretation of H wrt e. We now describe a meta-level ASP program that enables us

to check whether I is a violating interpretation of H wrt e. We do this by checking whether I is

an answer set of B [H [ectx, which can be done by computing the minimal model of the reduct of

B [H [ectx with respect to I. Example 7.5 exemplifies the way in which we compute the minimal

model of a reduct within our meta-level program.

Example 7.5. Consider the normal logic program P .

P =

8
><

>:

p : - r, not q.

q : - r, not p.

r.

9
>=

>;

Given an interpretation I, the reduct P I consists of the rules head(R): -body+(R) such that R 2 P

and body�(R)\ I = ;. Given an interpretation I, we can represent this in a meta-level ASP program,

by adding the interpretation as a (reified) set of facts, and reifying the negative literals in the body of

P . The program P 0 demonstrates this with the interpretation {p, r}.

P 0 =

8
>>>>>><

>>>>>>:

in int(p).

in int(r).

p : - r, not in int(q).

q : - r, not in int(p).

r.

9
>>>>>>=

>>>>>>;

Using the splitting set theorem, it can be shown that the answer sets of this program are of the form

A1 [A2, where A1 = R(I, in int) and A2 is an answer set of the reduct of P I . As the reduct is a

definite logic program, this means that the program has a single answer set R(I, in int)[M(P I). In

142

7.1. ILASP2

this case, P 0 has the single answer set {in int(p), in int(r), p, r}, indicating that the minimal model

of P I is {p, r}.

When using this idea in the ILASP2 algorithm, we will need to reason about multiple interpretations,

and so we use a slightly more complicated reification, introducing an identifier for each interpretation

that we are testing, and reifing the positive body literals and heads of rules with the predicate mmr

(standing for the Minimal Model of the Reduct).

The program P 00 demonstrates how we can compute the minimal models of the reduct of P with respect

to the interpretations {p, r} and {q, r}.

P 00 =

8
>>>>>>>>><

>>>>>>>>>:

int(1). int(2).

in int(p, 1). in int(q, 1).

in int(q, 2). in int(r, 2).

mmr(p, INT ID) : - int(INT ID), mmr(p, INT ID), not in int(q, INT ID).

mmr(q, INT ID) : - int(INT ID), mmr(q, INT ID), not in int(p, INT ID).

mmr(r, INT ID) : - int(INT ID).

9
>>>>>>>>>=

>>>>>>>>>;

P 00 has a single answer set { int(1), int(2), in int(p, 1), in int(r, 1), in int(q, 2), in int(r, 2),

mmr(p, 1), mmr(r, 1), mmr(q, 2), mmr(r, 2) }, which indicates that the minimal model of the reduct of P

with respect to {p, r} is {p, r} and the minimal model of the reduct of P with respect to {q, r} is {q, r}.

This means that both interpretations are answer sets of P .

Meta-program 7.1 formalises the general notion of the meta-level reduct representation. As our pro-

grams in general contain choice rules and constraints (in addition to the normal rules considered in

Example 7.5), the definition must also consider the transformation of these rules in a reduct. Before

presenting the meta-level program, we introduce a notation to represent reifying a conjunction of

atoms, while also negating each atom.

Notation (NR). Let {a1, . . ., an} be a set of atoms, pred be a predicate symbol and

{t1, . . . , tm} be a (possibly empty) set of terms. NR({a1, . . ., an}, pred, t1, . . . , tm) is the con-

junction not pred(a1, t1, . . . , tm), . . . , not pred(an, t1, . . . , tm).

Meta-program 7.1 (Mreduct(P, int id)). Let P be an ASP program containing normal rules,

choice rules and hard constraints, and let int id be a term. Mreduct(P, int id) is the program

consisting of the following rules:

1. For each normal rule R 2 P , the rule:

mmr(head(R), int id) : - int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id).

2. For each hard constraint R 2 P , the rule:

143

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

mmr(?, int id) : - int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id).

3. For each choice rule R 2 P , where head(R) = lb{h1, . . . , hn}ub, the rules:

mmr(?, int id) : - RB, ub+ 1{in int(h1, int id), . . . , in int(hn, int id)}.

mmr(?, int id) : - RB, {in int(h1, int id), . . . , in int(hn, int id)}lb� 1.

mmr(h1, int id) : - RB, in int(h1, int id), lb{in int(h1, int id), . . . , in int(hn, int id)}ub.

. . .

mmr(hn, int id) : - RB, in int(hn, int id), lb{in int(h1, int id), . . . , in int(hn, int id)}ub.

where RB = int(int id),R(body+, mmr, int id),NR(body�, in int, int id)

Example 7.6. Consider the program P .

P =

8
><

>:

1{p, q}1 : - r.

: - r, not p.

r.

9
>=

>;

Mreduct(P, 1) =

8
>>>>>>>>><

>>>>>>>>>:

mmr(?, 1) : - int(1), mmr(r, 1), 2{in int(p, 1), in int(q, 1)}.

mmr(?, 1) : - int(1), mmr(r, 1), {in int(p, 1), in int(q, 1)}0.

mmr(p, 1) : - int(1), mmr(r, 1), in int(p, 1), 1{in int(p), in int(q)}1.

mmr(q, 1) : - int(1), mmr(r, 1), in int(q, 1), 1{in int(p), in int(q)}1.

mmr(?, 1) : - int(1), mmr(r, 1), not in int(p, 1).

mmr(r, 1) : - int(1).

9
>>>>>>>>>=

>>>>>>>>>;

This program can be combined with a (reified) interpretation in order to compute the minimal model

of the reduct of the interpretation with respect to P . Consider the interpretation I = {p, q, r}. The

program Mreduct(P, 1) [{int(1)} [R(I, in int, 1) has a single answer set {int(1), in int(p, 1),

in int(q, 1), in int(r, 1), mmr(r, 1), mmr(?, 1)}. This demonstrates that the minimal model of P I =

{r, ?}, and so I is not an answer set of P .

We now introduce a program Mvio, which enables us to take a set of interpretations, a set of examples

and a hypothesis H and check whether each interpretation is an answer set of B [H [ectx (for the

example e). We consider a set S of tuples of the form hI, e, int idi, where we wish to check whether I

is an accepting answer set of e with respect to some hypothesis (the int id’s are unique terms in each

tuple, and are used in the meta representation). Meta-program 7.2 formalises the meta-level program

Mvio, which consists of 4 components. The first three components ensure that, for each interpretation,

Mvio contains Mreduct(B[SM [ectx, int id), where each rule in SM is appended with the usual in h

atom, and hI, e, int idi 2 S. Given a hypothesis H, the final component ensures that for each tuple

hI, e, int idi 2 S, not as(int id) is in the unique meta-level answer set ofMvio[{in h(hid). | h 2 H}

if and only if I 62 AS(B [H [ectx).

144

7.1. ILASP2

Meta-program 7.2 (Mvio(T, S)). Let T be the ILP context
LOAS task hB,SM , Ei and let S be a set

of tuples hI, e, int idi, where I is an interpretation, e is a CDPI and int id is a ground term.

Mvio(T, S) is the program consisting of the following rules:

1. For each hI, e, int idi 2 S, the facts:

int(int id).

{in int(atom, int id). | atom 2 I}

and the rules: Mreduct(ectx, int id)

2. Mreduct(B, INT ID)

3. For each rule R 2 SM :

A(Mreduct(R, INT ID), in h(Rid))

4. not as(INT ID) : - int(INT ID), in int(ATOM, INT ID), not mmr(ATOM, INT ID).

not as(INT ID) : - int(INT ID), not in int(ATOM, INT ID), mmr(ATOM, INT ID).

Theorem 7.7 demonstrates that given a set of tuples of the form hI, e, int idi as described in Meta-

program 7.2, Mvio can be used to compute the minimal model of the reduct of each I wrt B[H [ectx

(for the corresponding e), and that the unique meta-level answer set will contain not as(int id) if

and only if I 62 AS(B [H [ectx). For a negative example e, this can be used to check whether I is a

violating interpretation of H wrt e.

Theorem 7.7. (proof on page 299)

Let T be an ILP context
LOAS task with hypothesis space SM and let H ✓ SM . Let S be a set of tuples of the

form hI, e, int idi, where I is an interpretation, e is a CDPI and int id is a unique ground term.

Mvio(T, S) [{in h(hid) | h 2 H} has exactly one answer set, which consists of:

• The atom in h(hid) for each h 2 H

• For each hI, e, int idi 2 S, the atoms:

– int(int id)

– in int(a, int id) for each a 2 I

– mmr(a, int id) for each a 2 M(groundrel(B [H [ectx)I)

– If I 62 AS(B [H [ectx), the atom not as(int id)

Representing Violating Pairs

Given a set of pairs of the form hV P, oi, where V P is a violating pair of some hypothesis with respect

to o, Meta-program 7.3 formalises a meta-level program which can be used, in conjunction with the

145

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

Mvio program in order to determine whether or not each V P is a violating pair of another hypothesis

wrt o. Meta-program 7.3 relies on a meta-level encoding of a weak constraint, similar to the Rweak

representation used in ILASP1. Definition 7.4 formalises the R
vio
weak representation.

Definition 7.4. Let int id be a term. Given a weak constraint, R of the form :⇠ b1, . . . , bk, not c1, . . . ,

not cm.[wt@lev, t1, . . . , tn], Rvio
weak(R, int id) is the rule:

vio w(wt, lev, args(t1, . . . , tn), int id) : -

int(int id), in int(b1, int id), . . . , in int(bk, int id),

not in int(c1, int id), . . . , not in int(cm, int id).

For a set of weak constraints W , Rvio
weak(W, int id) = {R

vio
weak(R, int id) | R 2 W}.

Meta-program 7.3 (Mvp(T, S)). Let T be the task hB,SM , Ei, and let S be a set of tuples

of the form hpid, a1, a2, opi, where pid, a1 and a2 are ground terms and op 2 {<, , >, �, =,

6=}. Mvp(T, S) is the program:

1. R
vio
weak(weak(B), a1) [R

vio
weak(weak(B), a2)

2. For each W 2 weak(SM): A(Rvio
weak(W, a1), in h(Wid)) [A(Rvio

weak(W, a2), in h(Wid)).

3. For each priority level lev that occurs in at least one weak constraint in B[SM , the rules:
(

v dom lv(a1, a2, lev) : -#sum{vio w(W, lev, A, a1) = W, vio w(W, lev, A, a2) = �W} < 0.

v dom lv(a2, a1, lev) : -#sum{vio w(W, lev, A, a1) = W, vio w(W, lev, A, a2) = �W} > 0.

)

4. For each priority level lev that occurs in at least one weak constraint in B[SM , the rules:
8
>>>><

>>>>:

v dom(a1, a2) : - v dom lv(a1, a2, lev),

not v dom lv(a2, a1, l1),. . . , not v dom lv(a2, a1, ln).

v dom(a2, a1) : - v dom lv(a2, a1, lev),

not v dom lv(a1, a2, l1),. . . , not v dom lv(a1, a2, ln).

9
>>>>=

>>>>;

(where {l1, . . . , ln} are the levels that occur in B [SM that are higher than lev)

5. If op is <, the rule:

vp not resp(pid) : - not v dom(a1, a2), not not as(a1), not not as(a2).

If op is > the rule:

vp not resp(pid) : - not v dom(a2, a1), not not as(a1), not not as(a2).

If op is 6=, the rule:

vp not resp(pid) : - not v dom(a1, a2), not v dom(a2, a1),

not not as(a1), not not as(a2).

If op is =, the rules:

vp not resp(pid) : - v dom(a1, a2), not not as(a1), not not as(a2).

vp not resp(pid) : - v dom(a2, a1), not not as(a1), not not as(a2).

146

7.1. ILASP2

If op is , the rule:

vp not resp(pid) : - v dom(a2, a1), not not as(a1), not not as(a2).

If op is �, the rule:

vp not resp(pid) : - v dom(a1, a2), not not as(a1), not not as(a2).

Theorem 7.8 shows that given a hypothesis H and a set of violating reasons V R (which were computed

with other hypotheses and are not necessarily violating reasons for H), we can determine whether

each vr 2 V R is indeed a violating reason of H by using the Mvio and Mvp programs. Violating

interpretations can be checked using the Mvio program, as shown in Theorem 7.7, and violating pairs

can be checked using a combination of both Mvio and Mvp. Theorem 7.8 shows that vp not resp(pid)

is in the unique answer set of the combined meta-level program if and only if the pair of interpretations

represented by pid is a violating pair of interpretations of H.

Theorem 7.8. (proof on page 302)

Let T be the task hB,SM , Ei, let S1 be a list of tuples [hI1, e1, int id1i, . . . , hIn, en, int idni], where

each Ii is an interpretation, each ei is a CDPI st Ii extends ei and each int idi is a unique ground

term, and let S2 be a set of tuples of the form hpid, int idi, int idj, opi, where pid is a unique ground

term, i, j 2 [1, n] and op 2 {<, , >, �, =, 6=}. Let H ✓ SM .

The program {in h(hid). | h 2 H} [Mvio(T, S1) [Mvp(T, S2) has exactly one answer set, consisting

of:

• All atoms in the unique answer set of {in h(hid). | h 2 H} [Mvio(T, S1).

• For each hpid, int idi, int idj, opi 2 S2:

– vio w(wt, lv, args(t1, . . . , tn), int idi) (resp. vio w(wt, lv, args(t1, . . . , tn), int idj)) for

each weak constraint W 2 ground(B [H), with tail [wt@lv, t1, . . . , tn] such that body(W)

is satisfied by Ii (resp. Ij).

– v dom lv(int idi, int idj, lev) (resp. v dom lv(int idj, int idi, lev)) for each level lev

that occurs in B [SM such that (B [H)I
i

lev < (B [H)I
j

lev (resp. (B [H)I
i

lev > (B [H)I
j

lev).

– v dom(int idi, int idj) (resp. v dom(int idj, int idi)) if Ii �B[H Ij (resp. Ij �B[H

Ii).

– vp not resp(pid) if Ii is an accepting answer set of ei wrt B[H, Ij is an accepting answer

set of ej wrt B [H and hIi, Ij , opi 62 ord(B [H,AS(B [H [eictx) [AS(B [H [ejctx))

7.1.3 The ILASP2 Meta-Level Program

We have now presented ASP programs which can be added to our previous meta-level program M(T)

to check whether or not a hypothesis is violating for a reason that we have already identified.

147

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

In the case that the meta-level answer set found in any iteration does not contain a violating reason,

we need to be sure that there is no other answer set of the meta-level program corresponding to the

same hypothesis that does contain a violating reason. We can achieve this with a weak constraint,

indicating that we prefer meta-level answer sets that contain a violating reason to those that do not

contain a violating reason. This means that any meta-level answer set containing a violating reason

will be returned before any that does not, and so if an optimal meta-level answer set does not contain

a violating reason, then the hypothesis represented by this answer set must not be violating.

One possible preference ordering over the meta-level answer sets would be the one represented by

the weak constraints :⇠ in h(hid).[|h|@1, in h(hid)], for each h 2 SM and :⇠ not violating.[1@2].

Given two answer sets that either both contain violating or that both do not contain violating, the

answer set representing the shortest hypothesis is preferred. While this preference ordering is valid,

in general it leads to an ine�cient algorithm, as every violating hypothesis must be ruled out before

the inductive solution is found. If the optimal inductive solution is relatively short, then much time

could be wasted ruling out longer violating hypotheses. The preference ordering represented by the

weak constraints in Meta-program 7.4 only prefers a meta-level answer set containing violating over

one that does not if the hypotheses represented by both meta-level answer sets are the same length –

the score of any interpretation at the only priority level in the program is equal to 2 ⇥ |M
�1
in h(A)| if

violating 2 A and 2⇥ |M
�1
in h(A)|+ 1 if violating 62 A, so shorter hypotheses are always preferred

to longer ones, but an answer set that contains violating is preferred to one that does not contain

violating if both answer sets represent hypotheses of the same length.

Meta-program 7.4 (Mviolating ord(T)). Let T be the ILP context
LOAS task hB,SM , Ei.

Mviolating ord(T) is the program containing:

• For each rule r 2 SM , the weak constraint:

:⇠ in h(rid).[2⇥ |r|@1, in h(rid)]

• The weak constraint:

:⇠ not violating.[1@1, violating]

We can now present the full meta-level program used by ILASP2. Meta-program 7.5 formalises

MILASP2, which consists of 4 parts. The first is the M(T) program of ILASP1, which ensures that

any meta-level answer set corresponds to a positive hypothesis and also identifies violating reasons.

The next two components rule out violating reasons which have already been found. Finally, the

fourth component gives a prefence ordering to the meta-level answer sets. The definition assumes that

each interpretation I has its own unique identifier, written Iid, and that each violating pair V P has

its own unique identifier, written VPid.

Meta-program 7.5 (MILASP2(T, V R)). Let T be the ILP context
LOAS task

hB,SM , hE+, E�, Ob, Oc
ii and let V R be a set of violating reasons. MILASP2(T, V R) is

148

7.1. ILASP2

the program consisting of the following components:

• M(T) [{0{check violating}1.}

• Mvio(T, S1) [

(
: - not not as(Iid).

�����
hI, ei 2 V R,

e 2 E�

)
, where S1 is the set of tuples

hI, e, Iidi, where I is an interpretation such that hI, ei 2 V R, or 9hhI1, I2i, oi 2 V R

such that oeg1 = e or oeg2 = e and I 2 {I1, I2}.

• Mvp(T, S2) [

(
: - vp not resp(VPid).

�����
hV P, oi 2 V R,

o 2 Oc

)
, where S2 is the set of tuples

hVPid, I1id, I
2
id, oopi, where hV P, oi 2 V R and V P = hI1, I2i,

• Mviolating ord(T)

Theorem 7.9 shows three useful properties about the answer sets of the MILASP2(T, V R) program

(given any task T and set of violating reasons V R). The first is that the set of hypotheses that are

represented by at least one answer set of the meta program are those positive hypotheses of T that do

not violate any of the reasons in V R. Secondly, for any optimal meta-level answer set that contains

violating, extractV R(A) returns a violating reason of the hypothesis represented by A. Finally, if no

optimal meta-level answer set contains violating then the set of optimal remaining hypotheses can

be extracted from the optimal meta-level answer sets. Furthermore, as none of these is violating, they

are guaranteed to be the optimal inductive solutions. This means that if the while loop in the ILASP2

algorithm terminates then the returned hypotheses must be the set of optimal inductive solutions.

Theorem 7.9. (proof on page 304) Given an ILP context
LOAS task and a set of violating reasons V R, let

AS be the set of optimal answer sets of MILASP2(T, V R)

1. For any hypothesis H, 9A 2 AS(MILASP2(T, V R)) such that H = M
�1
in h(A) if and only if

H 2 P(T) and 8vr 2 V R, vr is not a violating reason of H.

2. For any A 2 AS such that violating 2 A, extractV R(A) is a violating reason of M�1
in h(A).

3. If no A 2 AS contains violating, then the set of optimal remaining hypotheses (none of which

is violating) is exactly equal to the set {M�1
in h(A) | A 2 AS}.

Before proving termination of the ILASP2 algorithm, we must first show that each call to the ASP

solver terminates. In theory, this should be the case, provided the relevant groundings of the programs

being solved are finite. Proposition 7.10, shows that this is the case for the meta-level programs used

by ILASP2.

Proposition 7.10. (proof on page 305) Let T be any well-defined ILP context
LOAS task, and V R be a finite

set of violating reasons. groundrel(MILASP2(T, V R)) is finite.

149

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

We can now prove the main results of the ILASP2 algorithm. Theorem 7.11 shows that for any well

defined ILP context
LOAS task, ILASP2 is guaranteed to terminate, and is also sound and complete with

respect to the optimal inductive solutions of the task.

Theorem 7.11. (proof on page 306) Let T be any well-defined ILP context
LOAS task.

1. ILASP2(T) terminates in a finite time.

2. ILASP2(T) = ⇤ILP context
LOAS (T)

7.2 ILASP2i – Incremental Mode

The ILASP2 algorithm presented in Section 7.1 addresses one of the scalability issues of ILASP1,

through the use of violating reasons, and it performs significantly better on tasks with many violating

hypotheses. However, ILASP2 still scales poorly with respect to the number of examples. This is

because the relevant grounding of the M(T) program, which is contained in MILASP2, is still roughly

proportional in size to |E+
|+ 2⇥ |Ob

|+ 2.

ILASP1 and ILASP2 are examples of batch learners, which consider all examples simultaneously.

Some older ILP systems, such as ALEPH [Sri01], Progol [Mug95] and HAIL [RBR03], incrementally

consider each positive example in turn, employing a cover loop. The idea behind a cover loop is that

the algorithm starts with an empty hypothesis H, and in each iteration adds new rules to H such that

a single positive example e is covered, and none of the negative examples are covered. Example 7.12

demonstrates why cover loops do not work in a non-monotonic setting, even for the task of brave

induction.

Example 7.12. Consider the brave induction task hB,SM , hE+, E�
ii, where:

B =

8
>>>><

>>>>:

p(1).

p(2).

q(2).

r(2).

9
>>>>=

>>>>;

E+ = {s(1), q(1)}

SM =

8
>>>><

>>>>:

h1 :

h2 :

h3 :

h4 :

q(1).

s(X) : - p(X).

s(X) : - p(X), not q(X).

s(X) : - p(X), not r(X).

9
>>>>=

>>>>;

E� = {s(2)}

If we were to employ a cover loop strategy, we would start with our hypothesis as H = ;. We would

then consider the first positive example s(1), and attempt to find a set of rules H 0 in SM such that

B [;[H 0 has at least one answer set that contains s(1) and does not contain s(2). We could choose

the rule h3.

So in the next iteration, we would start with the hypothesis {h3}. We would then search for an H 0

such that B [{h3}[H 0 has at least one answer set that contains q(1) and does not contain s(2). The

only rule that we could possibly add to cover q(1), is h1.

150

7.2. ILASP2I – INCREMENTAL MODE

So after the second iteration, our hypothesis would be {h1, h3}, but this does not cover the first example.

The problem is that due to the non-monotonicity of ASP, even though our partial hypothesis {h3} did

cover the example p(1), p(1) has become uncovered by the addition of h1 to the hypothesis.

Under the answer set semantics, most learners are batch learners due to the non-monotonicity. In

fact, it is worth noting that, in particular, although the HAIL algorithm for learning definite clauses

employs a cover loop, the later XHAIL algorithm is a batch learner as it learns non-monotonic pro-

grams [Ray09]. In this section we introduce our ILASP2i algorithm, which uses a “middle ground”

between batch learning and a cover loop.

ILASP2i iteratively computes a “relevant” subset of the examples, and in each iteration searches for

the smallest hypothesis H that covers every example in this relevant subset. ILASP2i then searches

for an example which is not covered by H. If no such example exists, then H is an optimal inductive

solution. If there is such an example, it is added to the set of relevant examples, and a new iteration

is started. Definition 7.5 formalises the notion of a relevant example.

Definition 7.5. Consider an ILP context
LOAS task T = hB,SM , hE+, E�, Ob, Oc

ii and a hypothesis H ✓

SM . An example ex is relevant to H given T if ex 2 E+
[E�

[Ob
[Oc and H does not cover ex.

In each iteration, the search for a hypothesis that covers the relevant examples is performed by the

batch learner ILASP2. It is for this reason that we consider ILASP2i to be a “middle ground” between

a cover loop and a batch learner. In each iteration ILASP2i does consider multiple examples, and

employs a batch learner to solve them; however, in practice the final set of relevant examples is often

significantly smaller than the entire set of examples.

7.2.1 Finding the Relevant Examples

We now introduce a function findRelevantExamples(hB,SM , Ei, H), which returns the set of ex-

amples in E that are not covered by H. It works by using the M1 program defined in Chapter 6

augmented with some additional components to check the coverage of each example. This meta-level

program is formalised in Meta-program 7.6. The important thing to note about Mfre is that it

only considers two object-level answer sets in each meta-level answer set, represented by as(1) and

as(2), meaning that the grounding of the program is much smaller than the main ILASP2 meta-level

program. One very useful property of Mfre is that for each e 2 E+
[E�, cov(eid, 1) is bravely

entailed by the meta program if and only if B [H accepts e, meaning that we can use Mfre to

check which examples in E+ and E� are covered; similarly, for each o 2 Ob
[{inverse(o0) | o0 2 Oc

},

ord respected(oid, 1, 2) is bravely entailed if and only if B[H accepts o. Note that we check whether

the inverse of each cautious ordering is accepted because this is exactly the negation of the coverage

condition for cautious orderings – i.e. those cautious orderings whose inverse is accepted are exactly

those cautious orderings that are not covered.

151

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

Meta-program 7.6 (Mfre(T,H)). Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii,

and H be a hypothesis. Mfre(T,H) is the program consisting of the following components:

• M1(T) [{in h(hid). | h 2 H} [{as(1). as(2).}

• {check(e, 1) [check(e, 2) | e 2 E+
[E�

}

• {check ord(T, o, 1, 2) | o 2 Ob
}

• {check ord(T, inverse(o), 1, 2) | o 2 Oc
}

Algorithm 7.3 findRelevantExamples

1: procedure findRelevantExamples(hB,SM , Ei, H)
2: S = BraveConsequences(Mfre(T,H));
3: CDPIs = {e 2 E+

[E�
| cov(eid, 1) 2 S};

4: CDOEs = {o 2 Ob
[Oc

| ord respected(oid, 1, 2) 2 S};
5: return (E+

\CDPIs) [(E�
\ CDPIs) [(Ob

\CDOEs) [(Oc
\ CDOEs);

6: end procedure

The ILASP2i algorithm uses the function findRelevantExample(hB,SM , Ei, H), which returns an

example in E that is not covered by H, or returns nil if no such example exists. The function

findRelevantExample(hB,SM , Ei, H) calls the findRelevantExamples(hB,SM , Ei, H) procedure

presented in Algorithm 7.3 and returns the first example in the set returned by findRelevantExamples

set if one exists, and nil otherwise.

Proposition 7.13. (proof on page 307) Let T be any well-defined ILP context
LOAS task with a hypothesis

space SM , and let H be any hypothesis H ✓ SM . groundrel(Mfre(T,H)) is finite.

Corollary 7.14. findRelevantExample(T,H) terminates for any well-defined task T and finite hy-

pothesis H.

Theorem 7.15. (proof on page 307) Let T be an ILP context
LOAS task, and let H be a hypothesis.

1. If H 2 ILP context
LOAS (T) then findRelevantExample(T,H) returns nil

2. If H 62 ILP context
LOAS (T) then findRelevantExample(T,H) returns an example that is relevant to

H given T .

7.2.2 The ILASP2i Algorithm

The intuition of ILASP2i (Algorithm 7.4) is that we start with an empty set of relevant examples and

an empty hypothesis. At each step of the search we look for an example which is relevant to our current

hypothesis (i.e. an example that B [H does not cover) using the findRelevantExample method. If

152

7.2. ILASP2I – INCREMENTAL MODE

Algorithm 7.4 ILASP2i

1: procedure ILASP2i(hB,SM , Ei)
2: Relevant = h;, ;, ;, ;i; H = ;;
3: re = findRelevantExample(hB,SM , Ei, H);
4: while re 6= nil

5: Relevant << re;
6: H = ILASP2(hB,SM , Relevanti);
7: if H == nil

8: return UNSATISFIABLE;
9: else

10: re = findRelevantExample(hB,SM , Ei, H);
11: end if
12: end while
13: returnH;
14: end procedure

findRelevantExample returns nil, then no such example exists, and so we return our current hy-

pothesis as it is guaranteed to be an optimal inductive solution of the task. If findRelevantExample

returns an example, then we add the example to our relevant set of examples1 and use ILASP2 to com-

pute a new hypothesis. If at any stage in the algorithm ILASP2 returns nil then hB,SM , Relevanti

has no solutions and, as ILP context
LOAS (hB,SM , Ei) is a subset of ILP context

LOAS (hB,SM , Relevanti), the task

hB,SM , Ei is unsatisfiable.

Increased Performance Over ILASP2

We will show in Chapter 8 that ILASP2i can significantly outperform ILASP2 on tasks with large

numbers of examples. The reason for this is that when tasks have many examples, there can be some

subsets of examples that are covered (and not covered) by the same hypotheses. For any of these

sets of similar examples, ILASP2i will only add one example to the set of relevant examples, as once

one of the examples is considered relevant, the whole set will be covered by the hypotheses in any

future iterations of the computation. This means that the set of relevant examples can be significantly

smaller than the entire set of examples, which in turn leads to the size of the grounding of the meta-

level program in each call to ILASP2 being significantly smaller than the meta-level program which

ILASP2 would generate for the full set of examples.

It should be noted that in the worst case the final set of relevant examples is equal to the entire set

of examples. In this case, ILASP2i is slower than ILASP2. In real settings, however, where examples

would not be carefully constructed, there is likely to be overlap between examples, so the relevant

set will be much smaller than the whole set. Theorem 7.16 shows that ILASP2i terminates for any

well-defined ILP context
LOAS task.

1
The notation <<, in line 5 of algorithm 7.4, means to add the relevant example re to the correct set in Relevant

(the first set if it is a positive example etc).

153

CHAPTER 7. SCALABLE LEARNING OF ANSWER SET PROGRAMS

Theorem 7.16. (proof on page 308) ILASP2i terminates for any well-defined ILP context
LOAS task.

Note that although ILASP2i is sound, it is complete only in the sense that it always returns an optimal

solution if one exists (rather than returning the full set).

Theorem 7.17. (proof on page 308) Let T be a well-defined ILP context
LOAS task.

1. If T is satisfiable, then ILASP2i(T) returns an optimal inductive solution of T .

2. If T is unsatisfiable, then ILASP2i(T) returns UNSATISFIABLE.

7.3 Related Work

7.3.1 Violating Reasons

The notion of a violating reason allows us to rule out an entire class of hypotheses at once. In some

ways they perform a similar function to the nogoods or learned constraints used in many SAT [LMS03]

and ASP [GKNS07, GKK+11, ADF+13] solvers.

In clasp [GKK+11], nogoods are sets of literals which are recorded during the search for an answer

set, such that for each set N , it is known that there is no answer set that satisfies every literal in N .

Thus, nogoods allow clasp to rule out any interpretation that entails the nogood. Although violating

reasons have a very di↵erent structure, they are also used to rule out solutions (hypotheses which are

violating for the same reason). Recording nogoods is also referred to as clause learning, but we avoid

this term, as it is very di↵erent to ILP, which aims at generalising examples.

7.3.2 The Relationship Between ILASP2i and Other Incremental Techniques

As discussed earlier in the chapter, the standard method for solving an ILP task incrementally is to

use a cover loop. ILASP2i’s method of using relevant examples can essentially be thought of as a

non-monotonic version of the cover loop. There are three main di↵erences:

1. In cover loop approaches, in each iteration a previous hypothesis H is extended with extra rules,

giving a new hypothesis H 0 that contains H. In ILASP2i, a completely new hypothesis is learned

in each iteration. This is necessary to guarantee that optimal hypotheses are computed. Many

cover loop approaches make no guarantee about the optimality of the final hypothesis.

2. In ILASP2i, the set of relevant examples is maintained and used in every iteration, whereas in

cover loop approaches, only one example is considered per iteration.

154

7.3. RELATED WORK

3. In cover loop approaches, once an example has been processed, even if it did not cause any

changes to the current hypothesis, it is guaranteed to be covered by any future hypothesis and

so it is not checked again. In ILASP2i, this is not the case. This is why ILASP2i calls the

findRelevantExamples method on the full set of examples, even if some were previously known

to be covered.

There are two incremental approaches to ILP under the answer set semantics. ILED [KAP15], is an

incremental version of the XHAIL algorithm, which is specifically targeted at learning Event Calculus

theories. ILED’s examples are split into windows, and ILED incrementally computes a hypothesis

through Theory Revision [Wro96] to cover the examples. In an arbitrary iteration, ILED revises the

previous hypothesis H (which is guaranteed to cover the first n examples), to ensure that it covers

the first n + 1 examples. As the final hypothesis is the outcome of the series of revisions, although

each revision may have been optimal, ILED may terminate with a sub-optimal inductive solution. In

contrast, ILASP2i will always terminate with an optimal inductive solution if one exists.

The other incremental ILP system under the answer set semantics is RASPAL [ACBR13, Ath15],

which uses an ASPAL-like approach to iteratively revise a hypothesis until it is an optimal inductive

solution of a task. RASPAL’s incremental approach is successful as it often only needs to consider

small parts of the hypothesis space, rather than the full hypothesis space. Unlike ILED and ILASP2i,

however, RASPAL considers the full set of examples in every iteration. For RASPAL, this is less of

an issue than for ILASP2i as, similarly to ASPAL, RASPAL uses a single rule to encode the full set

of examples. For ILASP2i on the other hand, the size of the full meta representation is proportional

to the number of examples.

Outside of the ILP community the L⇤ algorithm for learning deterministic finite automata (DFA) was

presented in [Ang87]. This procedure relies on a learner and a teacher. In each iteration of the L⇤

algorithm, the learner queries the teacher as to whether the DFA it has learned so far is correct. If it is,

L⇤ terminates, if not, the teacher presents a counter-example and the learner attempts to find a DFA

that is consistent with the set of counter examples it has seen so far. ILASP2i’s set of relevant examples

are very similar to L⇤’s counter examples. In the case of ILASP2i, the findRelevantExample method

could be seen as the teacher, and the call to ILASP2 could be seen as the learner.

Summary

In this chapter, we have presented two algorithms aimed at improving the scalability of the ILASP

approach. In the next chapter we investigate the performance of ILASP1, ILASP2 and ILASP2i on

various classes of learning task.

155

Chapter 8

Evaluation

In this chapter, we evaluate the three ILASP algorithms presented so far on synthetically generated

data. The reason for using synthetic data is that ILASP1, ILASP2 and ILASP2i each solve learning

tasks where all of the examples must be covered by the learned hypothesis. We address learning from

real data, where there is likely to be noise, in Part II of this thesis.

We consider four problem settings in this chapter, designed to evaluate various aspects of the ILASP

approach. The first two settings are the Hamiltonian and journey preference problems which were used

to exemplify the learning from answer sets frameworks in Chapter 4. The third setting investigates

the learning of preferences from partial examples, and compares the relative usefulness of brave and

cautious orderings. Our final setting concerns an agent navigation problem and allows us to mix rule

learning with preference learning, showing that ILASP is capable of doing both simultaneously.

The hypothesis spaces (SM) in these experiments are defined using ILASP mode declarations. For full

details of these mode declarations and their meaning, please see Appendix A. Note that a hypothesis

space containing n rules allows for many more than just n possible hypotheses. Theoretically, there

are 2n possible hypotheses, but in practice ILASP imposes an upper limit on the length of hypotheses.

Still, even with a hypothesis space of 100 rules, where the upper limit means that at most 5 rules can

be learned, this still results in over 10 billion possible hypotheses.

8.1 Hamilton Graphs

The first problem setting we consider is learning the definition of whether a graph is Hamiltonian or

not (i.e. whether it contains a Hamilton cycle). A Hamilton cycle is a cycle that visits each node of the

graph exactly once. In our experiments, we investigated two versions of this problem, one (Hamilton

A) with the set of possible graphs encoded in the background knowledge, and the other (Hamilton B)

using context dependent examples to represent the graphs. These two representations were discussed

in Chapter 4 (Example 4.3 and Example 4.10, respectively).

156

8.1. HAMILTON GRAPHS

Hamilton A is an ILPLOAS representation of the problem, where the background knowledge B consists

of two choice rules:

0 { node(1), node(2), node(3), node(4) } 4.

0 { edge(N1, N2)} 1 :- node(N1), node(N2).

These two choice rules mean that the answer sets of B correspond to all possible graphs of size 0

to 4. Each example corresponds to exactly one graph, by specifying which node and edge atoms

should be true in the inclusions and exclusions; for instance, the partial interpretation h{node(1),

edge(1, 1)}, {node(2), node(3), node(4)}i represents a graph with one node and one edge (from the

only node to itself). Positive examples correspond to Hamiltonian graphs, and negative examples cor-

respond to non-Hamiltonian graphs; for instance, the example h{node(1)}, {node(2), node(3), node(4),

edge(1, 1)}i represents a graph with a single node and no edges.

Hamilton B is the ILP context
LOAS representation of the same problem. The background knowledge is

empty, and each example has a context consisting of the node and edge atoms representing a single

graph (and no inclusions or exclusions). For instance, the Hamilton A positive example h{node(1),

edge(1, 1)}, {node(2), node(3), node(4)}i is equivalent to the Hamilton B positive example hh;, ;i,

{node(1). edge(1, 1).}i.

Preliminary Experiment

In the first experiment, we randomly generated 100 positive and 100 negative examples and used them

to create equivalent Hamilton A and Hamilton B learning tasks. Table 8.1 shows the computation

time1 and peak memory usage of the three ILASP algorithms on these two learning tasks.

Learning #examples time/s Memory/kB
task SM E+ E� Ob Oc 1 2 2i 1 2 2i
Hamilton A 104 100 100 0 0 TO 8.5 4.8 TO 9.4⇥104 1.2⇥104

Hamilton B 104 100 100 0 0 TO 31.2 3.6 TO 3.6⇥105 1.3⇥104

Table 8.1: The running times and peak memory usages of ILASP1, ILASP2 and ILASP2i on a single
instance of Hamilton A and Hamilton B. TO stands for time out (30 minutes). The two learning tasks
in this table are available to download from https://www.doc.ic.ac.uk/~ml1909/ILASP/.

ILASP1 was unable to solve either task within the time limit of 30 minutes. This was due to the many

violating solutions that ILASP1 needed to rule out. ILASP2 on the other hand, due to its improved

handling of violating solutions based on violating reasons, was able to solve both tasks in under a

minute. ILASP2i was faster still, solving both tasks in under 5 seconds.

1
All experiments in this thesis were run on an Ubuntu 14.04 desktop machine with a 3.4 GHz Intel

R�
Core

TM
i7-3770

processor and with 16GB RAM. All meta-level ASP programs were solved using clingo 4.3 [GKK
+
11], unless stated

otherwise.

157

CHAPTER 8. EVALUATION

The results of this experiment also highlight the di↵erence in performance of the latter two algorithms

on the two representations of the problem. ILASP2 performed better on Hamilton A than on Hamil-

ton B, whereas ILASP2i performed better on Hamilton B than Hamilton A. ILASP2i’s increase in

performance on Hamilton B was due to the meta-representation only needing to be ground over the

contexts of the relevant examples (the meta-representation was only ground over the problem domain

used by the relevant contexts, rather than the full problem domain). ILASP2 on the other hand

considered the contexts of the full set of examples, so there was no similar reduction in the grounding

for Hamilton B. In fact, Hamilton A resulted in a more e�cient meta-representation of the problem

for ILASP2 as the contexts of the examples in Hamilton B covered the full problem domain.

Comparison of ILASP2 and ILASP2i with Varying Graph Sizes

To test how the size of the contexts a↵ects the performance of the ILASP2 and ILASP2i algorithms,

we ran the Hamilton A and B experiments with the maximum size of the graphs varying from 4 to 10.

Each experiment was run 100 times with randomly generated sets of positive and negative examples

(100 of each in each experiment). The results (in Figure 8.1) show that ILASP2i performed best in

both cases – notably, on average, there was almost no di↵erence between Hamilton A and Hamilton

B at first for ILASP2i, but as the maximum graph size increased, the domain of the background

knowledge in Hamilton A increased and so ILASP2i performed better on Hamilton B.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 t
im

e
 (

s
)

Maximum graph size

Average time for learning Hamilton (a)

ILASP2 (Ham A)
ILASP2i (Ham A)
ILASP2 (Ham B)
ILASP2i (Ham B)

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 2x106

 0 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 m

e
m

o
ry

 (
k
B

)

Maximum graph size

Average memory for learning Hamilton (b)

ILASP2 (Ham A)
ILASP2i (Ham A)
ILASP2 (Ham B)
ILASP2i (Ham B)

Figure 8.1: (a) the average computation time and (b) the memory usage of ILASP2, ILASP2i and
ILASP2i pt for Hamilton A and B.

158

8.2. URBAN MOBILITY: USER JOURNEY PREFERENCES

8.2 Urban Mobility: User Journey Preferences

The second setting we consider is a preference learning problem, where the examples are completely

specified (i.e. they are not partial). We use these experiments to investigate how the accuracy and

computational performance of the ILASP algorithms varies with the number of examples, and also

show that giving ordering examples with both the < and = operators can lead to a higher accuracy

than giving ordering examples with only the < operator.

Recall the problem of learning a user’s preferences over alternative journeys, which was first presented

in Example 4.4. In this scenario, a user makes requests to a journey planner to get from one location

to another. The user then chooses a journey from the alternatives returned by the planner. A journey

consists of one or more legs, in each of which the user uses a single mode of transport.

We used data generated by a simulator [PBL14] to give realistic examples of journeys. In the exper-

iments, we used a set of journey requests from one simulated day. The attributes of journey legs in

these experiments were: mode, which took one of the values bus, car, walk or bicycle; distance,

which took an integer value between 1 and 20000; and crime rating. As the crime ratings were not

readily available from the simulator, we used a randomly generated value between 1 and 5 for each

journey leg.

In the experiments, we assumed that a user’s preferences could be represented by a set of weak con-

straints based on the attributes of a leg. SJ denotes the set of possible weak constraints that we used in

the experiments, each of which includes at most 3 literals (characterised by a mode bias, given in Ap-

pendix A). Most of these literals capture the leg’s attributes, e.g., mode(L, bus) or crime rating(L, R)

(if the attribute’s values range over integers this is represented by a variable, otherwise each possible

value is used as a constant). For the crime rating (crime rating(L, R)), we also allow comparisons of

the form R > c where c is an integer from 1 to 4. The weight of each weak constraint is a variable

representing the distance of the leg in the body of the weak constraint, or 1 and the priority is 1, 2 or

3. One possible set of preferences is represented by the weak constraints W ⇤.

W ⇤ =

8
><

>:

:⇠ leg mode(L, walk), leg crime rating(L, C), C > 3.[1@3, L, C]

:⇠ leg mode(L, car).[1@2, L]

:⇠ leg mode(L, walk), leg distance(L, D).[D@1, L, D]

9
>=

>;

These preferences represent that the user’s top priority is to avoid walking through areas with a high

crime rating. Second, the user would like to avoid driving, and finally, the user would like to minimise

the total walking distance of the journey.

We now describe how to represent the journey preferences scenario in ILP context
LOAS . We assume that

each journey is encoded as a set of attributes of the legs of the journey; for example the jour-

ney {distance(leg(1), 2000), distance(leg(2), 100), mode(leg(1), bus), mode(leg(2), walk)} has two

legs; in the first leg, the person must take a bus for 2000m and in the second, he/she must walk 100m.

159

CHAPTER 8. EVALUATION

Given a set of such journeys J = {j1, . . . , jn} and a partial ordering O over J , M(J,O, SJ) is the

ILP context
LOAS task h;, SJ , E+, ;, Ob, ;i, where E+ = {hh;, ;i, jii | ji 2 J} and Ob =

{hhh;, ;i, j1i, hh;, ;i, j2i, <i | hj1, j2i 2 O}. Each solution of M(J,O, SJ) is a subset of the weak

constraints in SJ , representing preferences which explain the ordering of the journeys. Note that the

positive examples are automatically satisfied as the (empty) background knowledge (combined with

the context) already covers them. Also, as the background knowledge together with each context has

exactly one answer set, the notions of brave and cautious orderings coincide; hence, we do not need

cautious ordering examples for this task. Furthermore, since only weak constraints are being learned,

the task also has no negative examples (a negative example would correspond to an invalid journey).

Preliminary Experiment

In the first experiment, we created a single learning task, using the set of weak constraints in W ⇤ as a

“target hypothesis”. We used the simulated journeys to generate a set of 200 pairs of journeys hj1, j2i

such that j1 was one of the optimal journeys, given W ⇤, and j2 was an non-optimal alternative to

j1. As some journeys occurred in more than one ordering example, there were only 386, and not 400,

positive examples in this experiment. The performance results for ILASP1, ILASP2 and ILASP2i are

shown in Table 8.2.

Learning #examples time/s Memory/kB
task SM E+ E� Ob Oc 1 2 2i 1 2 2i
Journey 117 386 0 200 0 OOM OOM 5.4 OOM OOM 2.9⇥104

Table 8.2: The running time and peak memory usage of ILASP1, ILASP2 and ILASP2i on a single
instance of the journey preference learning problem. OOM stands for out of memory. The learning
task in this table is available to download from https://www.doc.ic.ac.uk/~ml1909/ILASP/.

Both ILASP1 and ILASP2 ran out of memory before returning a solution. This is due to the size of

the grounding of their meta-level representations being proportional to |E+
|+2⇥ |Ob

|+2. This means

that each answer set of the meta-level programs of ILASP1 and ILASP2 represented 788 object-level

answer sets. On the other hand, as ILASP2i’s meta-level representation only considers the relevant

examples, even in its final iteration, ILASP2i’s meta-level answer sets only represented 26 object-level

answer sets.

Comparison of ILASP’s Accuracy with and Without Equality Ordering Examples

We next investigated how the accuracy of ILASP2i varied with the number of examples. Note that

as each ILASP algorithm returns an arbitrary optimal inductive solution, their average accuracies are

the same. We therefore only report accuracy results for ILASP2i, but refer to these results as the

accuracy of the ILASP approach.

We randomly selected 100 test hypotheses, each of which consisted of between 1 and 3 weak constraints

from SJ . For each test hypothesis HT , we then used the simulated journeys to generate a set of pairs

160

8.2. URBAN MOBILITY: USER JOURNEY PREFERENCES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 4 8 12 16 20 24 28 32 36 40

A
ve

ra
g

e
 a

cc
u

ra
cy

Number of examples

Predictive accuracy of ILASP2i

Without equality orderings
With equality orderings

Figure 8.2: Average accuracy of ILASP2i with and without equality orderings on the task of learning
journey preferences.

of journeys hj1, j2i such that j1 was one of the optimal journeys, given HT , and j2 was an non-optimal

alternative to j1. We then tested the algorithms on tasks with varying numbers of ordering examples

by taking a random sample of the complete set of ordering examples.

We measured the accuracy of each learned hypothesis by generating a further set of pairs of journeys,

and testing whether the learned hypothesis ordered these pairs correctly; i.e. if j1 was preferred (resp.

equally preferred) to j2 according to the target hypothesis, then j1 should be preferred (resp. equally

preferred) to j2 according to the learned hypothesis. The average accuracy of the hypotheses learned

by ILASP for varying numbers of examples is shown in Figure 8.2. The average accuracy converged

to around 85% after roughly 20 examples. As we only gave examples of journeys such that one was

preferred to the other, the hypotheses were often incorrect at predicting the cases where two journeys

were equally preferred. We therefore introduced brave ordering examples that used the = operator,

meaning that two journeys are equally optimal. We ran the same experiment with half of the ordering

examples as “equality” orderings. The average accuracy increased to around 93% after 40 examples.

Comparison of ILASP2 and ILASP2i on Varying Numbers of Examples

Finally, we investigated how the computational performance (running time and peak memory usage)

of ILASP2 and ILASP2i varied with the number of examples. We again randomly selected 100

test hypotheses, each of which consisted of between 1 and 3 weak constraints from SJ , and again

used the simulated journeys to generate ordered pairs of journeys. The results showed a dramatic

di↵erence between the performance of ILASP2 and ILASP2i. ILASP2i has two (related) advantages

161

CHAPTER 8. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

A
ve

ra
g

e
 t

im
e

 (
s)

Number of examples

(a)

Average computation time

ILASP2i
ILASP2i_pt

ILASP2

 0

 700000

 1.4e+06

 2.1e+06

 2.8e+06

 3.5e+06

 4.2e+06

 4.9e+06

 5.6e+06

 6.3e+06

 7e+06

 0 100 200 300 400 500
M

e
m

o
ry

 u
sa

g
e

 (
kB

)

Number of examples

(b)

Average memory usage

ILASP2i
ILASP2i_pt

ILASP2

Figure 8.3: (a) the average computation time and (b) the peak memory usage of ILASP2, ILASP2i
and ILASP2i pt for learning journey preferences.

over ILASP2, when it comes to solving context-dependent tasks with large numbers of examples.

Firstly, it only needs to consider a small subset of relevant examples, and secondly, it only needs to

consider a small subset of the contexts. To investigate how much of the speed up was caused by

the context-dependent representation we implemented a variation of the ILASP2i algorithm, which

puts the context of every example in the meta-representation (regardless of whether the example

has been selected as a relevant example). We call this variation ILASP2i pt, where the pt stands

for “pre-translate”, as this can be thought of as pre-translating the ILP context
LOAS task into a ILPLOAS

task (the resulting meta-representation is indeed very similar to the translation given in Chapter 4 –

Definition 4.9).

Figure 8.3(a) and (b) show the running times and peak memory usage (respectively) for up to 500

examples for ILASP2, ILASP2i and ILASP2i pt. For experiments with more than 200 examples,

ILASP2 ran out of memory. By 200 examples, ILASP2i is already over 2 orders of magnitude faster

and uses over 2 orders of magnitude less memory than ILASP2, showing a significant improvement

in scalability. The fact that by 500 examples ILASP2i is an order of magnitude faster without the

pre-translation shows that, in this problem domain, the context is a large factor in this improvement;

however, ILASP2i pt’s significantly improved performance over ILASP2 shows that even without

context, the relevant examples are also a large factor.

162

8.3. SCHEDULING PREFERENCES

8.3 Scheduling Preferences

The previous experiment considered a preference learning problem in which all examples were com-

pletely specified. We now investigate the ILASP algorithms’ ability to learn from partial examples.

We consider an interview timetabling problem and the task of learning weak constraints that capture

an academic’s preferences for scheduling undergraduate interviews. In this setting, we use the follow-

ing language: slot(D, T) represents slot T on day D; the type predicate represents the course type of

each slot; and the assigned predicate represents the slots that have been assigned to the interviewer.

Using this language we can express, for example, that an academic prefers interviewing for one course

to interviewing for another, or prefers not to have many interviews on the same day, or holds both of

these preferences but regards the former as more important. These preferences can be encoded using

the following two weak constraints:

:⇠ assigned(D, S), type(D, S, c2).[1@2, D, S]

:⇠ assigned(D, S1), assigned(D, S2), S1! = S2.[1@1, D, S1, S2]

The experiments test whether ILPLOAS can successfully learn these kinds of preferences, encoded as

weak constraints, from examples of brave and cautious orderings representing ordered pairs of partial

timetables. The learning task uses the following background knowledge B (in which it is assumed that

there are three interview slots per day):

B =

8
>>>>>>>>>>><

>>>>>>>>>>>:

slot(1..3, 1..3).

type(1, 1, c2). type(2, 1, c1). type(3, 1, c1).

type(1, 2, c1). type(2, 2, c1). type(3, 2, c2).

type(1, 3, c2). type(2, 3, c1). type(3, 3, c1).

0{assigned(X, Y)}1 : �slot(X, Y).

9
>>>>>>>>>>>=

>>>>>>>>>>>;

In each of the following experiments SM consisted of 180 weak constraints (characterised by a mode

bias, given in Appendix A). As SM only contained weak constraints, for any H ✓ SM , AS(B [H) =

AS(B). Each learning task described in these experiments therefore corresponds to the task of learning

to rank the answer sets of B.

The only atoms that vary in B are the assigned atoms. For three day timetables, as there are

9 di↵erent slots, there are 29 answer sets of B (and many more partial interpretations which are

extended by these answer sets). We say an example partial interpretation is full if it specifies the

truth value of all assigned atoms, otherwise we describe the fullness as the percentage of the atoms

which are specified.

In each experiment, given some target hypothesis HT , ordering examples o = he1, e2, <i were randomly

163

CHAPTER 8. EVALUATION

generated such that o was bravely respected by HT . If o was also cautiously respected by HT , then

it was given as a cautious example (otherwise it was given as a brave example). Examples in each

learning task corresponded to pairs of partial timetables; however, the weak constraints in each learned

program induced an ordering over complete timetables. Therefore, in each experiment, we tested the

accuracy of the learned weak constraints on every possible pair of complete timetables (checking

whether the learned hypothesis ordered the pair in the same way as the target hypothesis HT).

Preliminary Experiments

In the first experiment, we generated three learning tasks, with 3, 4 and 5 day timetables, each using

the 2 weak constraints in the previous section as a target hypothesis. The examples were of random

fullness, each with between half and all of the assigned atoms specified.

Learning #examples time/s Memory/kB
task SM E+ E� Ob Oc 1 2 2i 1 2 2i
Scheduling (3 day) 180 400 0 110 90 231.6 759.3 112.11 2.9⇥106 2.9⇥106 2.0⇥105

Scheduling (4 day) 180 400 0 128 72 776.8 TO 92.2 5.6⇥106 TO 3.4⇥105

Scheduling (5 day) 180 400 0 133 67 TO 1130.6 107.5 TO 9.0⇥106 4.7⇥105

Table 8.3: The running times and peak memory usages of ILASP1, ILASP2 and ILASP2i on a three
instances of the scheduling preference learning problem, with pairwise examples of 3, 4 and 5 day
timetables. TO stands for time out (30 minutes). The two learning tasks in this table are available
to download from https://www.doc.ic.ac.uk/~ml1909/ILASP/.

In each of the three learning tasks, ILASP2i was significantly faster than both ILASP1 and ILASP2.

ILASP1 was faster than ILASP2 on the first two tasks (with ILASP2 timing out on the second task),

but ILASP2 was faster than ILASP1 (which timed out) on the task with 5 day timetables. The poor

performance of both ILASP1 and ILASP2 was again caused by the number of examples, which caused

the meta-level programs used by each algorithm to have large groundings. This issue was exacerbated

by the size of the problem domain (which increases as the number of days in the example timetables

increases). This explains why both ILASP1 and ILASP2 performed best on the task with 3 day

timetables. ILASP2i on the other hand performed similarly on each of the three tasks.

Investigating ILASP’s Accuracy with Respect to the Number of Examples

We next investigated the relationship between the number of examples and the accuracy of the hy-

pothesis learned by ILASP. Similarly to the journey preference experiments, as each ILASP algorithm

returns an arbitrary optimal inductive solution (if it terminates), the average accuracy of each algo-

rithm is the same. In this section, we therefore only present the average accuracy results for ILASP2.

164

8.3. SCHEDULING PREFERENCES

A set of 100 target hypotheses were randomly selected, each with between 1 to 3 weak constraints

from SM , omitting hypotheses that ranked all answer sets equally. We performed this 20 times for

each target hypothesis HT . Each time, ILASP2 was used to learn a hypothesis HL which covered all

of a set of examples (of pairs of three day timetables). We then calculated the accuracy of HL in

predicting the pairwise ordering of the answer sets of B – for each pair of answer sets A1, A2 2 AS(B)

we tested whether HT and HL agreed on the preference ordering between A1 and A2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e
 a

cc
u

ra
cy

Number of examples

(a)

Hypothesis predictive accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 a

cc
u

ra
cy

Fullness of examples (%)

(b)

Hypothesis predictive accuracy

5 orderings
10 orderings
20 orderings

Figure 8.4: Average accuracy with varying (a) numbers of examples; (b) fullness of examples.

The examples were of random fullness, each with between 5 to 9 assigned atoms specified. Fig-

ure 8.4(a) shows the average predictive accuracy of ILASP2, with the number of ordering examples

ranging from 0 to 20. Each point on the graph corresponds to 2000 learning tasks (100 target hy-

potheses with 20 di↵erent sets of examples). The results show that ILASP2 achieved 90% accuracy for

this experiment with around 10 or more ordering examples. Note that unlike the journey preference

learning setting, we did not need to use equality orderings. The di↵erence between the two settings is

that in the journey preference setting two journeys were more likely to be equally preferred (than two

schedules in this setting) given the possible target hypotheses, which meant that there was a greater

need for equality orderings.

Investigating ILASP’s Accuracy with Respect to the Fullness of Examples

In the next experiment we again tested ILASP2 on 100 randomly generated hypotheses with 20

di↵erent sets of randomly generated examples. This time, however, the number of examples was

fixed at 5, 10 and 20 and it was the fullness of the examples that varied. The results are shown in

Figure 8.4(b). The graph shows that examples are only useful if they are more than 50% full. One

interesting point to note is that the peak performance is with examples of around 90% fullness. This

is caused by a trade o↵ between the usefulness of cautious orderings, and the likelihood of them being

generated. A partial interpretation with 8 assigned atoms specified is extended by 2 answer sets. So

165

CHAPTER 8. EVALUATION

a cautious ordering with 8
9 fullness is extended by 4 ordered pairs of answer sets, and the ordering

means that every one of those 4 pairs must be ordered correctly. Such a cautious ordering is therefore

more informative than a cautious ordering with 100% fullness, which is only extended by one pair of

ordered answer sets. In general, cautious orderings are more useful if they are less full, as they rule

out more hypotheses. This explains why ILASP2 achieved a higher accuracy with examples of 90%

fullness. However, as the fullness decreases further, ILASP2’s accuracy decreases. This is because

it is less likely that the randomly generated orderings would be cautiously respected by the target

hypothesis (as there are more pairs that need to be ordered correctly). Hence, the generated tasks

with lower fullness had fewer cautious orderings and more brave orderings. Unlike cautious orderings,

brave orderings become less powerful as the fullness of the examples decreases. This is because brave

orderings are more ambiguous when they are less full, and so they rule out fewer hypotheses.

Investigating ILASP’s Scalability with Respect to the Number of Examples

 0

 60

 120

 180

 240

 300

 360

 0 20 40 60 80 100 120

A
ve

ra
g

e
 c

o
m

p
u

ta
tio

n
 t

im
e

 (
s)

Number of examples

(a)

3 day timetables

ILASP2
ILASP2i

 0

 60

 120

 180

 240

 300

 360

 0 20 40 60 80 100 120

A
ve

ra
g

e
 c

o
m

p
u

ta
tio

n
 t

im
e

 (
s)

Number of examples

(a)

4 day timetables

ILASP2
ILASP2i

 0

 60

 120

 180

 240

 300

 360

 0 20 40 60 80 100 120

A
ve

ra
g

e
 c

o
m

p
u

ta
tio

n
 t

im
e

 (
s)

Number of examples

(b)

5 day timetables

ILASP2
ILASP2i

Figure 8.5: Average running time of ILASP2 and ILASP2i with varying numbers of examples. Each
experiment had a timeout of 600s, after which the computation was terminated (each timeout was
counted as 600s). ILASP2 timed out in 107 of the 2100 experiments and ILASP2i timed out in 3
experiments.

In the final experiment, we investigated the scalability of ILASP2 and ILASP2i by varying both the

number of days in the timetables and the number of examples. Figure 8.5 shows the average running

time of ILASP2 and ILASP2i with 3, 4 and 5 day timetables (each with 3 slots) with up to 120

ordering examples. Ordering examples were randomly generated, as in the previous experiments,

with each example having a random fullness, as in the first experiment. The results show that

ILASP2 scales poorly, not only with the number of examples, but also with the size of the problem

domain. In comparison, ILASP2i’s computation time was very similar across the three domain sizes.

Its computation time also increased much more slowly than ILASP2’s as the number of examples

increased.

166

8.4. AGENT NAVIGATION PROBLEM

8.4 Agent Navigation Problem

In this section we investigate the problem of an agent learning how to navigate a grid. The agent

starts with complete knowledge of the map, but no knowledge of which moves it will be able to make

in future time points. At each time point, the agent is informed of which moves it can make by an

oracle. The idea is that the agent must learn the rules defining the moves that are valid at each time

point. In [LRB14] we showed how ILASP could be used in conjunction with an ASP solver to perform

a cycle of planning and learning in order to reach a goal.

We consider four scenarios, which allow us to investigate ILASP’s ability to solve tasks with di↵erent

challenges. In Scenario A, the agent learns just the concept of valid move; in Scenario B, part of the

existing background knowledge is removed and the agent has to also learn a new concept that does not

appear in the examples or in the background knowledge, showing that ILASP is capable of supporting

predicate invention [Sta93]. In Scenario C, the agent must also learn a constraint; and in Scenario D,

the agent must also learn a preference ordering over the paths it can take.

In this learning setting each of our examples is of a path taken by the agent through the maze, and

the set of moves it was allowed to make at each time point. The rules which should be learned are

di↵erent in each scenario, and so for some scenarios, di↵erent types of examples are needed.

Figure 8.6 gives a graphical representation of the grid and the legend describes its main features. The

agent has complete knowledge of the grid map, but it does not know the meaning of the various cell

features. For instance, it knows which cells are locked, but not that to go through a locked cell it must

first visit the key to that cell.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

L
9,9

L
6,7

L
2,4

L
9,6

L
8,10

L
3,10

L
3,5

L
9,10

K
7,6

K
8,6

K
4,7

K
8,2

K
1,10

K
3,5

L
8,10

K
4,7

This cell starts o↵ as being locked cell

This is the key for the locked cell (4, 7)

This is a link cell which

allows the agent to move to (8, 10)

Figure 8.6: Cells with diagonal lines are locked and the agent must visit the corresponding key before
it can enter these cells. Link cells allow the agent to jump to the indicated destination cell. The thick
black lines represent walls.

We now present the four scenarios, followed by the performance results of each ILASP algorithm on

167

CHAPTER 8. EVALUATION

learning tasks from each scenario.

Scenario A

In this simplest scenario, the background knowledge contains a complete description of the map,

encoded as facts using the language {cell/1, locked/1, key/2, link/2, wall/2, time/1}, together

with the following set of rules:

unlocked(C, T) :- visited_cell(Key, T), key(Key, C).

unlocked(C, T) :- cell(C), not locked(C), time(T).

adjacent(cell(X, Y), cell(X + 1, Y)) :- cell(cell(X, Y)), cell(cell(X + 1, Y)).

adjacent(cell(X + 1, Y), cell(X, Y)) :- cell(cell(X, Y)), cell(cell(X + 1, Y)).

adjacent(cell(X, Y + 1), cell(X, Y)) :- cell(cell(X, Y)), cell(cell(X, Y + 1)).

adjacent(cell(X, Y), cell(X, Y + 1)) :- cell(cell(X, Y)), cell(cell(X, Y + 1)).

visited_cell(C,T) :- time(T), T2 <= T, agent_at(C, T2).

In this scenario, the agent is expected to learn the following definition of valid move, which means

that an agent can move to any unlocked cell that is either linked to its current cell or is adjacent to

its current cell and not blocked by a wall.

valid_move(C1, T) :- adjacent(C1, C2), agent_at(C2, T),

unlocked(C1, T), not wall(C1, C2).

valid_move(C1, T) :- link(C2, C1), agent_at(C2, T), unlocked(C1, T).

This problem can be specified in ILP context
LOAS as follows. The background knowledge contains the de-

scription of the map and the definition of unlocked. Due to the structure of the background knowledge

and the hypothesis space, every possible hypothesis is guaranteed to be stratified (when combined with

the background knowledge and examples contexts). There is therefore no need for negative examples

in this task (B [ectx [H is guaranteed to have exactly one answer set for each ectx, so it is su�cient

to give examples of what should, or should not, be in this answer set). For each trace, we constructed

a single positive CDPI example, with a context containing the agent’s history (its path through

the maze so far) and the inclusions and exclusions being a random subset of the moves which were

valid and invalid2, respectively, at each step in the trace; for instance, h{valid move(cell(9, 1), 1),

valid move(cell(10, 2), 1), . . .}, {valid move(cell(1, 3), 1), . . .}i, Ci, where C is the set of facts:

2
Each valid move was given as an inclusion with probability 0.9 and each invalid move was given as an exclusion with

probability 0.1. The probability for the exclusions was much lower, as there were many more invalid moves than valid

moves.

168

8.4. AGENT NAVIGATION PROBLEM

agent_at(cell(10,1),1). agent_at(cell(9,1),2). agent_at(cell(8,1),3).

agent_at(cell(8,2),4). agent_at(cell(8,3),5). agent_at(cell(8,4),6).

agent_at(cell(7,4),7). agent_at(cell(6,4),8). agent_at(cell(9,10),9).

agent_at(cell(8,10),10). agent_at(cell(8,9),11). agent_at(cell(8,8),12).

agent_at(cell(8,7),13).

Note that this demonstrates the advantage of ILP context
LOAS in giving di↵erent contexts to di↵erent

examples. We are able to give the set of valid moves for each example history. For the experiments

based on this scenario, the hypothesis space consisted of 531 normal rules, characterised by a set of

mode declarations given in Appendix A. In this experiment, the number of body literals permitted in

rules in the hypothesis space was restricted to 4.

Scenario B

This scenario di↵ers from the previous one in that the background knowledge does not contain

unlocked. The language bias of this learning task is augmented with a new predicate with the same

structure as unlocked, called extra added to both Mh and Mb. Note that the predicate extra/2

does not occur in either the background knowledge or the examples. In the ILP community, this is

called predicate invention [Sta93]. ILASP supports predicate invention, as long as the structure (the

predicate name and arity) of each invented predicate is specified in the hypothesis space. We call this

prescriptive predicate invention.

Other than the need for predicate invention, this scenario is identical to Scenario A. The agent is

expected to learn an equivalent definition of valid move. One might expect the solution to be the

previous hypothesis augmented with the definition of unlocked that was removed from the background

knowledge, with the only di↵erence being that the predicate unlocked would be replaced by the

predicate extra. This would be the hypothesis:

valid_move(C1, T) :- adjacent(C1, C2), agent_at(C2, T),

extra(C1, T), not wall(C1, C2).

valid_move(C1, T) :- link(C2, C1), agent_at(C2, T), extra(C1, T).

extra(C, T) :- visited_cell(Key, T), key(Key, C).

extra(C, T) :- cell(C), not locked(C), time(T).

In fact, ILASP learns the shorter hypothesis:

valid_move(V0, V1) :- extra(V0, V1), visited_cell(V2, V1), key(V2, V0).

valid_move(V0, V1) :- extra(V0, V1), not locked(V0).

169

CHAPTER 8. EVALUATION

extra(V2, V1) :- agent_at(V0, V1), link(V0, V2).

extra(V2, V1) :- agent_at(V0, V1), not wall(V0, V2), adjacent(V0, V2).

In this definition, extra essentially means “connected to the agent’s current cell”, where a cell is

“connected” to another cell if the two cells are either adjacent to one another and there is no wall

between them or if there is a link from the first cell to the second cell. The learned definition of valid

move then says that the agent can move to any cell which is connected to its current cell and that

was either not locked to begin with, or for which the agent has visited the corresponding key cell.

The task uses a hypothesis space of 146 normal rules (characterised by a set of mode declarations given

in Appendix A). In this experiment, the number of body literals permitted in rules in the hypothesis

space was restricted to 3. The examples in this task are of the same structure as those in Scenario A.

Scenario C

In this scenario, the agent must learn the same definition of valid move from Scenario A and an

additional constraint expressing that the agent cannot visit the same cell more than once. Note that

this does not change the rule definition of valid move. If the agent were to visit the same cell more

than once, the individual moves would still be valid according to the rule definition, but the trace as

a whole would be invalid. The background knowledge in this scenario is the same as in Scenario A,

but with the following additional rule for already visited cell.

already_visited_cell(C,T) :- time(T), T2 < T, agent_at(C, T2).

Note that this is di↵erent to the rule for visited cell, as it requires that the cell has been visited in

a previous time point (excluding the current time point). The full target hypothesis is as follows:

valid_move(C1, T) :- adjacent(C1, C2), agent_at(C2, T),

unlocked(C1, T), not wall(C1, C2).

valid_move(C1, T) :- link(C2, C1), agent_at(C2, T), unlocked(C1, T).

:- agent_at(C, T), already_visited_cell(C, T).

To learn this definition, ILASP needs positive examples of the same form as those in Scenarios A and

B, but as the hypothesis contains a constraint, the task must also include negative examples that rule

out agent histories where the agent has visited the same cell more than once. The negative examples

are similar to the positive examples, but contain invalid agent histories in the context. One such

example could be:

170

8.4. AGENT NAVIGATION PROBLEM

hh{valid move(cell(9, 1), 1), . . .}, {valid move(cell(3, 3), 1), . . .}i, {

agent at(cell(10, 1), 1). agent at(cell(9, 1), 2). agent at(cell(8, 1), 3).

agent at(cell(8, 2), 4). agent at(cell(8, 3), 5). agent at(cell(7, 3), 6).

agent at(cell(7, 4), 7). agent at(cell(7, 3), 8). agent at(cell(7, 4), 9).

agent at(cell(6, 4), 10). agent at(cell(9, 10), 11). agent at(cell(8, 10), 12).

agent at(cell(7, 10), 13). agent at(cell(7, 9), 14).
}i

The hypothesis rule consists of 160 normal rules and hard constraints (characterised by a set of mode

declarations given in Appendix A). In this experiment, the number of body literals permitted in rules

in the hypothesis space was restricted to 4.

Scenario D

The final scenario combines rule learning, constraint learning and preference learning. In this scenario,

the map is augmented with two new concepts. Each cell is given a danger rating of 1, 2 or 3 and some

cells are given coins with a value of between 1 and 5. The agent should collect the coins, but avoid

dangerous cells at night. The background knowledge also contains facts that state when it is daytime.

The additional predicates in the language are {danger rating/2, coin/2, daytime/1}.

The agent is expected to learn the same definition of valid move and the same constraint as in Scenario

C and, additionally, a set of weak constraints expressing a preference ordering over the possible paths

that an agent can take. The weak constraints in the target hypothesis express the following: the

agent’s top priority is to minimise the danger the agent is exposed to at night; its second priority is to

maximise the value of the coins it collects; and its final priority is to minimise the length of its path.

The full target hypothesis is as follows:

valid_move(V1, V2) :- adjacent(V0, V1), agent_at(V0, V2),

unlocked(V1, V2), not wall(V0, V1).

valid_move(V2, V1) :- agent_at(V0, V1), unlocked(V2, V1), link(V0, V2).

:- agent_at(V0, V1), already_visited_cell(V0, V1).

:~ agent_at(V0, V1), not daytime(V1), danger_rating(V0, V2).[V2@3, V0, V1, V2]

:~ agent_at(V0, V1), coin(V0, V2).[V2@2, V0, V1, V2]

:~ agent_at(V0, V1).[1@1, V0, V1]

In the experiments, the learning tasks contained similar positive and negative examples to those in

Scenario C, but also contained brave ordering examples to learn the weak constraints. The ordering

examples were over the previously described positive examples, and described agent histories which

were preferred (given the weak constraints) to other agent histories. As the agent histories were

171

CHAPTER 8. EVALUATION

complete (and the weak constraints in the hypothesis space did not depend on the partially specified

valid move predicate), the notions of brave and cautious orderings coincided, so there was no need

for any cautious orderings.

The hypothesis space in these tasks contains 244 rules and weak constraints (characterised by a set of

mode declarations in Appendix A). In this experiment, the number of body literals permitted in rules

in the hypothesis space was restricted to 4.

Results

Similarly to the other problem settings, we first ran a small preliminary experiment, testing the three

ILASP algorithms on a single learning task for each of the four scenarios.

Learning #examples time/s Memory/kB
task SM E+ E� Ob Oc 1 2 2i 1 2 2i
Scenario A 531 200 0 0 0 851.9 432.3 18.2 OOM OOM 9.0⇥104

Scenario B 146 50 0 0 0 OOM OOM 5.4 OOM OOM 1.8⇥105

Scenario C 160 80 120 0 0 283.7 226.5 16.5 2.7⇥106 2.9⇥106 9.6⇥104

Scenario D 244 172 228 390 0 OOM OOM 850.4 OOM OOM 1.2⇥106

Table 8.4: The running time and peak memory usage of ILASP1, ILASP2 and ILASP2i on single
instances of each of the four agent navigation scenarios. OOM stands for out of memory. The learning
tasks in this table are available to download from https://www.doc.ic.ac.uk/~ml1909/ILASP/.

ILASP1 and ILASP2 ran out of memory in two out of the four problems. This was due to the large

number of examples in the learning tasks. In the comparison of ILASP1 and ILASP2, the most

noteworthy task is Scenario A. It has no negative examples or cautious orderings, so ILASP1’s usual

e�ciency issue caused by violating hypotheses was not to blame for its performance. In fact, as this

task only had positive examples, the only di↵erence between the ILASP1 and ILASP2 algorithms in

solving the task was that ILASP2 only used a single call to the ASP solver, which returned an optimal

answer set, corresponding to an optimal inductive solution; ILASP1 on the other hand made 2n calls

(where n is the length of the optimal inductive solution), searching for hypotheses of each length up

to n. ILASP2i performed best on each of the four learning tasks, but took rather longer to solve

Scenario D than any of the other scenarios, as in this task the optimal inductive solution was much

longer, which meant that more relevant examples (and hence, more iterations) were required to learn

it. In general, the higher the length of the optimal solution of a task, the more iterations of ILASP2i

are needed to learn it.

Figure 8.7 shows the performance of ILASP2i on each of the four scenarios. Each point in the graph

is an average over 20 randomly generated learning tasks for this scenario (the background knowledge

is fixed in each case and the examples are randomly generated). In Scenarios A and B, the number

of CDPIs corresponds to the number of positive examples (as these are the only kind of examples in

the task). In Scenarios C and D, it corresponds to the number of positive and negative examples. In

Scenario D there is also an equal number of brave orderings.

172

8.4. AGENT NAVIGATION PROBLEM

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200

A
ve

ra
g
e
 c

o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Number of examples

(a)

Agent A time

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 200000

 0 40 80 120 160 200

A
ve

ra
g
e
 m

e
m

o
ry

 u
sa

g
e
 (

kB
)

Number of examples

(b)

Agent A memory usage

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200

A
ve

ra
g
e
 c

o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Number of examples

(c)

Agent B time

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 200000

 0 40 80 120 160 200

A
ve

ra
g
e
 m

e
m

o
ry

 u
sa

g
e
 (

kB
)

Number of examples

(d)

Agent B memory usage

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200

A
ve

ra
g
e
 c

o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Number of examples

(e)

Agent C time

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 200000

 0 40 80 120 160 200

A
ve

ra
g
e
 m

e
m

o
ry

 u
sa

g
e
 (

kB
)

Number of examples

(f)

Agent C memory usage

 0

 60

 120

 180

 240

 300

 360

 0 40 80 120 160 200

A
ve

ra
g
e
 c

o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Number of examples

(g)

Agent D time

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 40 80 120 160 200

A
ve

ra
g
e
 m

e
m

o
ry

 u
sa

g
e
 (

kB
)

Number of examples

(h)

Agent D memory

Figure 8.7: Average computation time and peak memory usage used by ILASP2i with varying numbers
of examples on each of the four scenarios.

For the first three scenarios, ILASP2i terminated in under 30s on average, even with 200 examples. For

the final scenario, however, ILASP2i took over 3 minutes with 100 CDPIs (so 200 examples overall).

173

CHAPTER 8. EVALUATION

This is expected, as the target hypothesis is considerably longer than in the other scenarios.

Summary

This chapter concludes our work on learning ASP programs from non-noisy examples. In this part of

the thesis we have presented new frameworks and algorithms for learning from perfectly labeled data.

We have also conducted a thorough study of the notion of the generality of learning frameworks under

the answer set semantics. From this point on, we devote our attention to learning from noisy examples.

The next chapter presents extensions of our learning frameworks in order to handle examples that

may or may not be covered and investigates what this means for the generality and complexity results

of the frameworks.

174

Part II

Learning Answer Set Programs from

Noisy Examples

175

Chapter 9

Learning from Noisy Answer Sets

In the first part of this thesis, we addressed the problem of learning ASP programs under the assump-

tion that all examples were perfectly labeled – i.e. we assumed that there was no noise in the data.

In practice, this assumption can be unrealistic, as data can come from unreliable sources. In Part

II, we now address the more general case of learning ASP programs from examples that may not be

perfectly labeled.

This chapter introduces the ILPnoise
LOAS framework, which extends the ILP context

LOAS framework to enable

learning from noisy examples. We show that the complexity and generality results presented in

Chapters 4 and 5 are una↵ected by this extension. Section 9.4 shows how the ILASP2 and ILASP2i

algorithms can be upgraded to solve noisy tasks, but illustrates with an example why neither algorithm

is particularly well suited to solving this type of learning problem. Motivated by this, Chapter 10

introduces the ILASP3 algorithm, which is specifically targeted at solving ILPnoise
LOAS tasks. Finally, in

Chapter 11 we evaluate the performance of these algorithms.

9.1 Context-Dependent Noisy Learning from Ordered Answer Sets

In this section, we present our noisy framework, ILPnoise
LOAS , for learning from noisy ordered answer

sets. It extends the most general of our previous non-noisy learning frameworks, ILP context
LOAS , by allow-

ing examples to be weighted context-dependent partial interpretations and weighted context-dependent

ordering examples. These are essentially the same as context-dependent partial interpretations and

context-dependent ordering examples, but now additionally weighted with a notion of penalty. If a

hypothesis does not cover an example, then we say that it pays the penalty of that example. Informally,

penalties are used to calculate the cost associated with a hypothesis for not covering examples. The

cost function of a hypothesis H is the sum over the penalties of all the examples that are not covered

by H, augmented with the length of the hypothesis. The goal of ILPnoise
LOAS is to find a hypothesis that

minimises the cost function over a given hypothesis space with respect to a given set of examples.

176

9.1. CONTEXT-DEPENDENT NOISY LEARNING FROM ORDERED ANSWER SETS

Definition 9.1. A weighted context-dependent partial interpretation e is a tuple heid, epen, hepi, ectxii,

where eid is a constant, called the identifier of e (unique to each example), epen is the penalty of e,

epi is a partial interpretation and ectx is an ASP program called the context of e. The penalty epen is

either a positive integer, or 1. A program P accepts e i↵ it accepts hectx, epii.

Definition 9.2. A weighted context-dependent ordering example o is a tuple hoid, open, oordi, where

oid is a constant, called the identifier of o, open is the penalty of o and oord is a CDOE. The penalty

open is either a positive integer, or 1. A program P bravely (resp. cautiously) respects o i↵ it bravely

(resp. cautiously) respects oord.

In a learning task without noise, each example must be covered by any inductive solution. However,

when examples are noisy (i.e. they have a weight), solutions may not necessarily cover every example,

but will incur penalties instead. Notice that multiple occurrences of the same context-dependent

partial interpretation will have di↵erent identifiers and so hypotheses that do not cover the example

will pay the penalty multiple times (for instance, if a context-dependent partial interpretation occurs

twice then a hypothesis will have to pay twice the penalty for not covering it).

In most of the learning tasks in our evaluation in Chapter 11, we assign the same penalty to each

example. In some cases, however, the penalties can be used to simulate oversampling ; for example,

if we have far more positive examples than negative examples, we may choose to give the negative

examples a higher weight – this makes it less likely that we will learn a hypothesis that treats all

negative examples as noisy, just because they are under represented in the data. Another potential use

of penalties would be to use them to represent some sort of confidence in each example1. Definition 9.3

formalises our ILPnoise
LOAS framework.

Definition 9.3. An ILPnoise
LOAS task T is a tuple of the form hB,SM , hE+, E�, Ob, Oc

ii, where B is an

ASP program, SM is a hypothesis space, E+ and E� are sets of weighted context-dependent partial

interpretations and Ob and Oc are sets of weighted context-dependent ordering examples. Given a

hypothesis H ✓ SM ,

1. uncov(H,T) is the set consisting of:

(a) all positive examples e 2 E+ such that B [H does not accept e.

(b) all negative examples e 2 E� such that B [H accepts e.

(c) all brave ordering examples o 2 Ob such that B [H does not bravely respect o.

(d) all cautious ordering examples o 2 Oc such that B [H does not cautiously respect o.

2. the penalty of H, denoted as pen(H,T), is the sum
P

e2uncov(H,T) epen.

3. the score of H, denoted as S(H,T), is the sum |H|+ pen(H,T).

1
We do not explore this use of penalties. Any such use would first require a formalisation of what is meant by the

confidence in an example.

177

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

4. H is an inductive solution of T (written H 2 ILPnoise
LOAS(T)) if and only if S(H,T) is finite.

5. H is an optimal inductive solution of T (written H 2
⇤ILPnoise

LOAS(T)) if and only if S(H,T) is

finite and @H 0
✓ SM such that S(H,T) > S(H 0, T).

Note that an example with infinite penalty must be covered by any inductive solution of the task, as

any hypothesis that does not cover such an example will have an infinite score. An ILPnoise
LOAS task T

is said to be satisfiable if ILPnoise
LOAS(T) is non-empty. If ILPnoise

LOAS(T) is empty, then T is said to be

unsatisfiable.

Example 9.1. Consider a simple ILPnoise
LOAS learning task T , with background knowledge B =

{r(X) : - s(X), p. s(1..98).}, a hypothesis space consisting of the two facts “p.” and “q.” and exam-

ples as defined below:

E+ = {hi, 1, hh{r(i)}, ;i, ;ii|i 2 [1..50]} [{hi, 1, hh;, {r(i)}i, ;i|i 2 [51..98]}

E� = {h99,1, hh{q}, ;i, ;i}

Ob = ;

Oc = ;

There are four possible hypotheses in the hypothesis space: H1 = ;, H2 = {p.}, H3 = {q.} and

H4 = {p. q.}. H3 and H4 have an infinite score, as they accept the negative example. S(H2, T) = 49,

as H2 pays a penalty of 48 for not covering the examples with id greater than 50 and less than 99,

and |H2| = 1. S(H1, T) = 50 as H1 pays a penalty of 50 for not covering any of the examples

with id less than 51, and |H1| = 0. Hence, the only optimal inductive solution of T is H2; i.e.
⇤ILPnoise

LOAS(T) = {H2}. The full set of inductive solutions of T , ILPnoise
LOAS(T), is {H1, H2}.

9.2 The Complexity of Noisy Learning Tasks

In this section, we show that the complexity of ILPnoise
LOAS is the same as ILP context

LOAS for the three

decision problems of verification, satisfiability and optimum verification presented in Section 4.5.

Proposition 9.2. Deciding verification, satisfiability and optimum verification for ILP context
LOAS each

reduce polynomially to the same problem for ILPnoise
LOAS .

Proof. Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Consider the ILPnoise
LOAS task T 0 =

hB,SM , hE+
2 , E

�
2 , O

b
2, O

c
2ii, where the examples are defined as follows:

• E+
2 = {heid,1, ei|e 2 E+

}

• E�
2 = {heid,1, ei|e 2 E�

}

178

9.2. THE COMPLEXITY OF NOISY LEARNING TASKS

• Ob
2 =

�
hoid,1, oi

��o 2 Ob

• Oc
2 = {hoid,1, oi|o 2 Oc

}

First note that H 2 ILP context
LOAS (T) , S(H,T 0) is finite. Hence H 2 ILP context

LOAS (T) , H 2

ILPnoise
LOAS(T

0). So verification for ILP context
LOAS reduces to verification for ILPnoise

LOAS . As this also means

that ILP context
LOAS (T) = ; , ILPnoise

LOAS(T
0) = ;, this also shows that satisfiability for ILP context

LOAS reduces

to satisfiability for ILPnoise
LOAS .

It remains to show that optimum verification for ILP context
LOAS reduces to optimum verification for

ILPnoise
LOAS . We do this by showing that ⇤ILP context

LOAS (T) = ⇤ILPnoise
LOAS(T

0). As ILP context
LOAS (T) =

ILPnoise
LOAS(T

0), to do this, it su�ces to show that 8H,H 0
2 ILPnoise

LOAS(T
0), S(H,T) < S(H 0, T) if and

only if |H| < |H 0
|. Well, as both S(H,T) and S(H 0, T) are finite, both uncov(H,T) and uncov(H 0, T)

must be empty (as every example in T 0 has an infinite penalty). So S(H,T) = |H| and S(H 0, T) = |H 0
|.

Hence, S(H,T) < S(H 0, T) if and only if |H| < |H 0
|.

It remains to show that each of the decision problems for ILPnoise
LOAS reduces to the corresponding

decision problem for ILP context
LOAS . For verification and satisfiability this is trivial. Examples with finite

penalty can be ignored, as they do not a↵ect whether any hypothesis is an inductive solution.

Proposition 9.3. Deciding verification and satisfiability for ILPnoise
LOAS each reduce polynomially to

the same decision problem for ILP context
LOAS .

Proof. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Consider the ILP context
LOAS task T 0 =

hB,SM , hE+
2 , E

�
2 , O

b
2, O

c
2ii, where the examples are defined as follows:

• E+
2 = {hepi, ectxi|heid, epen, hepi, ectxii 2 E+, epen = 1}

• E�
2 = {hepi, ectxi|heid, epen, hepi, ectxii 2 E�, epen = 1}

• Ob
2 =

�
oord

��hoid, open, oordi 2 Ob, open = 1

• Oc
2 = {oord|hoid, open, oordi 2 Oc, open = 1}

8H ✓ SM , H 2 ILP context
LOAS (T 0) if and only if H covers all examples in T that have a finite penalty.

Hence, ILP context
LOAS (T 0) = ILPnoise

LOAS(T). This means that both verification and satisfiability for ILPnoise
LOAS

reduce to verification and satisfiability for ILP context
LOAS (as H 2 ILPnoise

LOAS(T) , H 2 ILP context
LOAS (T 0)

and ILPnoise
LOAS(T) = ; , ILP context

LOAS (T 0) = ;).

We now show that optimum verification for ILPnoise
LOAS is in ⇧P

2 (which is the same complexity class as

optimum verification for ILP context
LOAS).

Proposition 9.4. Deciding optimum verification for ILPnoise
LOAS is in ⇧P

2 .

179

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

Proof. Let T be the ILPnoise
LOAS task hB,SM , Ei and H be a subset of SM . We will show that whether

H is not an optimal solution of T can be verified by a non-deterministic Turing Machine with an

NP-oracle in polynomial time.

Firstly deciding whether H is an inductive solution of T reduces to deciding verification for ILP context
LOAS ,

so it is in DP (it can be reduced to two decision problems D1 and D2 in NP such that H is a solution

of T if and only if D1 answers yes and D2 answers no). Hence, the Turing Machine can start by making

two calls to the NP oracle, and if either D1 answers no or D2 answers yes, the Turing Machine can

return yes (as H is not an optimal solution of T). The Turing Machine then searches for a hypothesis

H 0
✓ H such that S(H,T) > S(H 0, T) (as this is the only remaining way that H can not be an

optimal solution of T).

Let |E| be the number of examples in the tuple E. The Turing Machine makes |SM | choices to decide

which rules are in H 0, then makes |E| choices to decide which examples are not covered by H and

a further |E| choices to decide which examples are covered by H 0. Each branch corresponds to a

hypothesis H 0 and two tuples of examples EH and EH0 . The branch must now verify three things:

(1) that H covers none of the examples in EH ; (2) that H 0 covers every example in EH0 ; and (3),

that |H| + SP(EH) > |H 0
| + SP(E\EH0), where SP computes the sum of the penalties in a tuple

of examples. If all of these properties hold, then S(H 0, T) < S(H,T)2, so the branch can return yes,

otherwise it will return no. It remains to show that these three properties can be verified in polynomial

time using an NP oracle.

1. To check that H covers none of a set of examples in EH , we take each example ex in turn and

consider an ILP context
LOAS task T 0 containing only that example (and the relevant positive CDPI

examples if ex is an ordering example), with its penalty and id removed. H covers ex if and only

of H is a solution of T 0. By Theorem 4.21, verifying that H is a solution of T 0 is DP-complete.

Hence, there are two NP-complete decision problems D1 and D2 such that H covers ex if and

only if D1 answers yes and D2 answers no. As we are verifying that no example in EH is covered,

if D1 returns yes and D2 returns no, then the branch returns no, otherwise it carries on to the

next example in EH until none are left. Checking all of the examples requires at most 2⇥ |EH |

calls to the oracle.

2. To check that H 0 covers every example in EH0 , we simply verify that it is a solution of the

ILP context
LOAS task hB,SM , EH0i (where all penalties and ids have again been removed from the

examples). Again, by Theorem 4.21, verifying that H 0 is a solution of this task is DP-complete.

Hence, the verification can be achieved with two calls to the NP oracle.

3. As this is a simple sum, it can be computed in polynomial time by the Turing Machine without

even needing to use the oracle.

2S(H 0
, T)  |H 0|+ SP(E\EH0) < |H|+ SP(EH)  S(H,T).

180

9.3. THE GENERALITY OF NOISY LEARNING TASKS

If there is at least one branch that returns yes then H is not an optimal solution of T . If there

is a hypothesis H 0 such that S(H,T) > S(H 0, T) then the branch where EH = uncov(T,H) and

EH0 = E\uncov(T,H 0) will return yes. Hence the non-deterministic Turing Machine returns yes if

and only if H is not an optimal solution of T . Hence the optimum verification problem for ILPnoise
LOAS

is in ⇧P
2 .

We now show that for each of the decision problems in Section 4.5 ILPnoise
LOAS has the same complexity

as the corresponding decision problem for ILP context
LOAS .

Theorem 9.5.

1. Deciding verification for an arbitrary ILPnoise
LOAS task is DP -complete

2. Deciding satisfiability for an arbitrary ILPnoise
LOAS task is ⌃P

2 -complete

3. Deciding optimum verification for an arbitrary ILPnoise
LOAS task is ⇧P

2 -complete

Proof.

1. As verification for ILP context
LOAS is DP -complete (by Theorem 4.21), and there are polynomial

reductions to and from verification for ILPnoise
LOAS (by Propositions 9.2 and 9.3), verification for

ILPnoise
LOAS must also be DP -complete.

2. Similarly, as satisfiability for ILP context
LOAS is ⌃P

2 -complete (by Theorem 4.24), and there are polyno-

mial reductions to and from satisfiability for ILPnoise
LOAS (by Propositions 9.2 and 9.3), satisfiability

for ILPnoise
LOAS must also be ⌃P

2 -complete.

3. Optimum verification for ILP context
LOAS reduces to optimum verification for ILPnoise

LOAS (by Proposi-

tion 9.2), hence as optimum verification for ILP context
LOAS is ⇧P

2 complete (by Theorem 4.27), opti-

mum verification for ILPnoise
LOAS must be ⇧P

2 -hard. Hence, as optimum verification for ILPnoise
LOAS

is a member of ⇧P
2 (by Proposition 9.4), it must be ⇧P

2 -complete.

9.3 The Generality of Noisy Learning Tasks

In this section we consider the generality of the ILPnoise
LOAS framework and compare it to the generality

of noisy versions of the frameworks that we analysed in Chapter 5. These noisy frameworks are defined

in the same way as ILPnoise
LOAS , by taking the original definition of an example e, and replacing it with

a tuple heid, epen, ei. For any task T = hB,Ei of any framework, we write pen(H,T) to denote the

181

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

sum of the penalties of all examples in E that are not covered by H. Given a framework F , we denote

the noisy equivalent of the framework as n(F). Note that n(ILP context
LOAS) = ILPnoise

LOAS .

Noise is not captured in the definition of inductive solution, but is instead captured by the penalty

paid by a hypothesis. We therefore slightly alter the notion of distinguishability.

Definition 9.4. The noisy one-to-one-distinguishability class of a noisy learning framework F (de-

noted ND
1
1(F)) is the set of tuples hB,H1, H2i of ASP programs for which there is at least one

task TF = hB,EF i such that pen(H1, TF) < pen(H2, TF). For each hB,H1, H2i 2 ND
1
1(F), TF is

said to distinguish H1 from H2 with respect to B. Given two noisy frameworks F1 and F2, we say

that F1 is at least as (resp. more) ND
1
1-general as (resp. than) F2 if ND

1
1(F2) ✓ ND

1
1(F1) (resp.

ND(F2) ⇢ ND
1
1(F1)).

We now show that for any framework F , the noisy one-to-one-distinguishability class of n(F) is equal

to the one-to-one-distinguishability class of F .

Theorem 9.6. For any non-noisy framework F , ND
1
1(n(F)) = D

1
1(F).

Proof.

1. We first show that ND
1
1(n(F)) ✓ D

1
1(F).

Assume that hB,H1, H2i 2 ND
1
1(n(ILPF)). Then there is an n(ILPF) task TF with background

knowledge B such that pen(H1, TF) < pen(H2, TF). There must be at least one example e⇤ in TF

thatH1 covers butH2 does not. Let T 2
F be the ILPF task with background knowledge B and only

the example e⇤. Then H1 2 ILPF (T 2
F) and H2 62 ILPF (T 2

F). Hence hB,H1, H2i 2 D
1
1(ILPF).

2. Now we show that D1
1(F) ✓ ND

1
1(n(F)).

Assume that hB,H1, H2i 2 D
1
1(F). Then there is an ILPF task TF with background knowledge

B such that H1 2 ILPF (TF) and H2 62 ILPF (TF). Let T 2
F be the n(ILPF) task constructed

from TF by adding infinite penalties (and ids) to each example. For any H, H 2 ILPF (TF)

if and only if H covers every example in T , which is true if and only if pen(H,T 2
F) is finite.

Hence pen(H1, T 2
F) < pen(H2, T 2

F) (as pen(H1, T 2
F) is finite and pen(H2, T 2

F) is infinite). So

hB,H1, H2i 2 ND
1
1(n(ILPF)).

As we have already proven the one-to-one-distinguishability classes of the six frameworks in Chapter 5,

this result leads to the following ordering of noisy one-to-one-distinguishability classes.

Corollary 9.7.

1. ND
1
1(n(ILPb)) = ND

1
1(n(ILPsm)) ⇢ ND

1
1(n(ILPLAS)) ⇢ ND

1
1(n(ILPLOAS)) ⇢ ND

1
1(ILP

noise
LOAS)

2. ND
1
1(n(ILPc)) ⇢ ND

1
1(n(ILPLAS))

Similarly, we can upgrade the definition of the one-to-many-distinguishability class.

182

9.3. THE GENERALITY OF NOISY LEARNING TASKS

Definition 9.5. The noisy one-to-many-distinguishability class of a noisy learning framework F (de-

noted ND
1
m(F)) is the set of all tuples hB,H, {H1, . . . , Hn}i such that there is a task TF which

distinguishes H from each Hi with respect to B. Given two noisy frameworks F1 and F2, we say

that F1 is at least as (resp. more) ND
1
m-general as (resp. than) F2 if ND

1
m(F2) ✓ ND

1
m(F1) (resp.

ND
1
m(F2) ⇢ ND

1
m(F1)).

Similarly to noisy one-to-one-distinguishability, the noisy one-to-many-distinguishability class of any

framework n(F) is equal to the one-to-many-distinguishability class of F .

Theorem 9.8. For any non-noisy framework F , ND
1
m(n(F)) = D

1
m(F).

Proof.

1. We first show that ND
1
m(n(F)) ✓ D

1
m(F).

Assume that hB,H, Si 2 ND
1
m(n(ILPF)). Then there is an n(ILPF) task TF with background

knowledge B such that 8H 0
2 S, pen(H,TF) < pen(H 0, TF). Hence, 8H 0

2 S, there must

be at least one example e⇤H0 in TF that H covers but H 0 does not. Let T 2
F be the ILPF

task with background knowledge B and each of the examples e⇤H0 . Then H 2 ILPF (T 2
F) and

S \ ILPF (T 2
F) = ;. Hence hB,H, Si 2 D

1
m(ILPF).

2. Now we show that D1
m(F) ✓ ND

1
m(n(F)).

Assume that hB,H, Si 2 D
1
m(F). Then there is an ILPF task TF with background knowledge B

such that H 2 ILPF (TF) and S\ILPF (TF) = ;. Let T 2
F be the n(ILPF) task constructed from

TF by adding infinite penalties (and ids) to each example. For any H⇤, H⇤
2 ILPF (TF) if and

only if H⇤ covers every example in TF , which is true if and only if pen(H⇤, T 2
F) is finite. Hence

pen(H,T 2
F) is finite, and 8H 0

2 S, pen(H 0, T 2
F) is infinite (as there is at least one example in T 2

F
that H 0 does not cover). Hence pen(H,T 2

F) < pen(S, T 2
F). So hB,H, Si 2 ND

1
m(n(ILPF)).

As we have already proven the one-to-many-distinguishability classes of the six frameworks in Chap-

ter 5, this result leads to the following ordering of noisy one-to-one-distinguishability classes.

Corollary 9.9.

1. ND
1
m(n(ILPb)) ⇢ ND

1
m(n(ILPsm)) ⇢ ND

1
m(n(ILPLAS)) ⇢ ND

1
m(n(ILPLOAS)) ⇢ ND

1
m(ILPnoise

LOAS)

2. ND
1
m(n(ILPc)) ⇢ ND

1
m(n(ILPLAS))

We can again upgrade the notion of Dm
m to the noisy setting.

Definition 9.6. The noisy many-to-many-distinguishability class of a noisy learning framework F

(denoted ND
m
m(F)) is the set of all tuples hB,S1, S2i, where B is a program and S1 and S2 are sets

183

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

of hypotheses for which there is a task TF , with background knowledge B, such that 8H1 2 S1,

8H2 2 S2, pen(H1, TF) < pen(H2, TF). Given two frameworks, F1 and F2, we say that F1 is at

least as (resp. more) ND
m
m-general as (resp. than) F2 if and only if ND

m
m(F2) ✓ ND

m
m(F1) (resp.

ND
m
m(F2) ⇢ ND

m
m(F1)).

Unlike the previous two distinguishability classes, the noisy many-to-many-distinguishability class is

not guaranteed to be equal to its non-noisy counterpart.

Example 9.10. Take for instance the tuple t = h;, {{heads.}, {tails.}}, {{1{heads, tails}1.}}i.

t 62 D
m
m(ILPLAS). However, we will now show that t 2 ND

m
m(n(ILPLAS)).

Consider the (weighted) partial interpretations E� = {hid1, 1, h{heads}, ;ii, hid2, 1, h{tails}, ;ii}.

Both hypotheses containing single facts accept exactly one of the examples in E�; whereas the choice

rule accepts both. Hence, if we consider the n(ILPLAS) task T = h;, h;, E�
ii then pen({heads.}, T) =

pen({tails.}, T) = 1 and pen({1{heads, tails}1.}, T) = 2. Thus, t is in ND
m
m(n(ILPLAS)).

The fact that noisy many-to-many-distinguishability classes are not necessarily equal to their non-

noisy counterparts raises the question of whether the noisy many-to-many-generality relation is the

same for the six frameworks considered in Chapter 5. In fact, it is the same. The proof is simple

for most of the pairs of frameworks, as the examples can be directly translated to the examples of

the next framework in the chain. The di�culty comes with mapping ILPb to ILPsm. Although the

non-noisy ILPb examples of any task can be represented as a single partial interpretation example

in ILPsm, this does not work in general for n(ILPb) and n(ILPsm). This is because the penalties

for n(ILPb) are on the single atom examples, whereas in n(ILPsm) the penalties are on each partial

interpretation. Nevertheless, we can still show that ND(n(ILPb)) ⇢ ND(n(ILPsm)).

Theorem 9.11.

1. ND
m
m(n(ILPb)) ⇢ ND

m
m(n(ILPsm)) ⇢ ND

m
m(n(ILPLAS)) ⇢ ND

m
m(n(ILPLOAS)) ⇢ ND

m
m(ILPnoise

LOAS)

2. ND
m
m(n(ILPc)) ⇢ ND

m
m(n(ILPLAS))

Proof. The fact that the classes are not equal follows from Corollary 9.9. (If any pair of classes

were equal then the corresponding ND
1
m classes would also be equal). Thus it remains to show the

✓ relation for each pair. In each case, we show this by proving that an arbitrary element of the

first framework’s many-to-many-distinguishability class is also a member of the second framework’s

many-to-many-distinguishability class.

1. • Consider any element hB,S1, S2i 2 ND
m
m(n(ILPb)). There must be some task Tb =

hB, hE+, E�
ii such that 8H1 2 S1, 8H2 2 S2 : pen(H1, Tb) < pen(H2, Tb). Hence, there

must be a positive integer n such that 8H1 2 S1 : pen(H1, Tb) < n and 8H2 2 S2 :

pen(H2, Tb) � n.

Let T = hB,Esmi, where Esm is the set of all weighted n(ILPsm) examples (all with penalty

1) with partial interpretation heinc, eexci such that:

184

9.3. THE GENERALITY OF NOISY LEARNING TASKS

(a) einc [eexc = E+
atoms [E�

atoms, where E+
atoms (resp. E�

atoms) is the set consisting of all

atoms a for which there is a tuple heid, epen, ai 2 E+ (resp. E�).

(b)

P

a2E+
atoms

\eexc
a+pen +

P

a2E�
atoms

\einc

a�pen

!
< n

(where for each atom a 2 E+
atoms[E

�
atoms, a

+
pen (resp. a

�
pen) is the sum of all penalties

for a that occur in E+ (resp. E�)).

For any hypothesis H, pen(H,Tb) < n if and only if B [H accepts at least one example

in Esm. Hence 8H1 2 S1, pen(H1, T) < |Esm| and 8H2 2 S2, pen(H2, T) = |Esm|. Thus,

8H1 2 S1, 8H2 2 S2, pen(H1, T) < pen(H2, T).

Hence hB,S1, S2i 2 ND
m
m(n(ILPsm)).

• Assume hB,S1, S2i 2 ND
m
m(n(ILPsm)). Then there is an n(ILPsm) task T1 = hB, hEii

such that 8H1 2 S1, 8H2 2 S2, pen(H1, T1) < pen(H2, T1). Let T2 be the n(ILPLAS) task

hB, hE, ;ii. Then 8H1 2 S1, 8H2 2 S2, pen(H1, T2) < pen(H2, T2) (as 8H, pen(H,T1) =

pen(H,T2)). Hence, hB,S1, S2i 2 ND
m
m(n(ILPLAS))

• Assume hB,S1, S2i 2 ND
m
m(n(ILPLAS)). Then there is an n(ILPLAS) task T1 = hB, hE+,

E�
ii such that 8H1 2 S1, 8H2 2 S2, pen(H1, T1) < pen(H2, T1). Let T2 be the n(ILPLOAS)

task hB, hE+, E�, ;, ;ii. Then 8H1 2 S1, 8H2 2 S2, pen(H1, T2) < pen(H2, T2) (as 8H,

pen(H,T1) = pen(H,T2)). Hence, hB,S1, S2i 2 ND
m
m(n(ILPLOAS))

• Similarly to above, any n(ILPLOAS) task that distinguishes a set of hypotheses S1 from a

set of hypotheses S2 (wrt some background knowledge B) can be mapped into an ILPnoise
LOAS

task that scores every hypothesis the same as the original task (by adding empty contexts

to each example). Hence any tuple in ND
m
m(n(ILPLOAS)) is also in ND

m
m(ILPnoise

LOAS)

2. Assume hB,S1, S2i 2 ND
m
m(n(ILPc)). Then there is an n(ILPc) task T1 = hB, hE+, E�

ii,

such that 8H1 2 S1, 8H2 2 S2, pen(H1, T1) < pen(H2, T1). Let extra id be an example

identifier that does not occur in T1 and consider the n(ILPLAS) task hB, h{hextra id,1, h;, ;i},

{heid, epen, h;, {a}ii | heid, epen, ai 2 E+
} [{heid, epen, h{a}, ;ii | heid, epen, ai 2 E�

}ii. For

any hypothesis H, pen(H,T1) = pen(H,T2), and hence, 8H1 2 S1, 8H2 2 S2, pen(H1, T2) <

pen(H2, T2). Hence, hB,S1, S2i 2 ND
m
m(n(ILPLAS)).

We have now shown that for each of the three measures of generality, the six noisy frameworks are

ordered in the same way as was the case for the six non-noisy frameworks in Chapter 5.

185

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

9.4 Solving ILP noise
LOAS Tasks with ILASP2 and ILASP2i

The immediate question that may come to mind is whether it is possible to use existing ILASP

algorithms to solve noisy tasks. In this section, we demonstrate that both ILASP2 and ILASP2i can

indeed be slightly modified in order to solve ILPnoise
LOAS tasks. Even so, we argue that neither would

perform particularly well on noisy tasks, as their algorithms were originally designed for tasks with

no noise.

9.4.1 ILASP2

ILASP2 can be extended to solve ILPnoise
LOAS tasks by slightly modifying the meta-level program

MILASP2. Given an ILPnoise
LOAS task T and a set of violating reasons V R, the modification consists of

the following steps:

1. For each example eg with finite penalty, a choice rule 0{noisy(egid)}1 and a weak constraint

:⇠ noisy(egid).[2⇥ epen@1] are added to MILASP2(T, V R).

2. Each constraint “: - not cov(eid, eid).” in M(T) is appended with the literal not noisy(eid)

(indicating that if the penalty of the example has been paid then it does not need to be covered).

3. Similarly each constraint “: - not ord respected(oid, oid1, oid2).” in M(T) is appended with

the literal not noisy(oid).

4. Each rule “vi(eid) : - cov(eid, v1).” in M(T) is appended with the literal not noisy(eid).

5. Each rule “vp(oid) : - ord respected(oid, v1, v2).” in M(T) is appended with the literal

not noisy(oid).

6. The sub-program
n
: - not not as(Iid).

��� hI, ei 2 V R, e 2 E�
o
is replaced with the sub-program

n
: - not not as(Iid), not noisy(eid).

��� hI, ei 2 V R, e 2 E�
o
.

7. The sub-program
n
: - vp not resp(VPid).

��� hV P, oi 2 V R, o 2 Oc
o

is replaced with the sub-

program
n
: - vp not resp(VPid), not noisy(oid).

��� hV P, oi 2 V R, o 2 Oc
o
.

The intuition behind this modification is that every example eg which is permitted not to be covered

(i.e. those with finite penalties) is assigned a new atom noisy(egid) in the meta-level program. If this

atom is true in a meta-level answer set, then anything to do with this example (including previous

violating reasons associated with this example) may be ignored. Due to the extra weak constraints any

answer set A of the meta-level program will have the optimisation score (at level 1) 2⇥S(M�1
hyp(A), T)

if A contains violating and 2⇥ S(M�1
hyp(A), T) + 1 if not. This has the e↵ect that ILASP2 will now

find the optimal inductive solutions of the ILPnoise
LOAS task T .

186

9.4. SOLVING ILPNOISE
LOAS TASKS WITH ILASP2 AND ILASP2I

Although we have demonstrated that ILASP2 can solve ILPnoise
LOAS tasks, the main issue with using

ILASP2 for solving these tasks is that when examples have noise, more examples are often necessary

in order to learn an accurate hypothesis. This is an issue because ILASP2 scales poorly with respect

to the number of examples, as discussed in Chapter 7.

9.4.2 ILASP2i

As discused in Chapter 7, ILASP2i addresses some of the scalability issues in ILASP2 as it often

allows ILASP2 to be called with a much smaller relevant set of examples. ILASP2i could be extended

to address ILPnoise
LOAS tasks in the following way. Firstly, the call to ILASP2 should be replaced

with a call to the modified ILASP2 introduced in the previous section (so that ILASP2 can handle

the noisy examples). The only other change that is needed is to the call to findRelevantExamples.

Originally findRelevantExamples was called on the full set of examples E. However, if ILASP2 returns

a hypothesis that does not cover an example that has already been added to the set of relevant

examples (as is possible now that ILASP2 is allowed to ignore examples that it considers noisy), this

will cause ILASP2i to go into an infinite loop, as it will continually add the same example to the set of

relevant examples. This can be overcome with a simple modification: the call to findRelevantExamples

should use E\Relevant (where Relevant is the set of relevant examples), rather than the full set of

examples E.

We have shown in Chapter 8 that ILASP2i can give a large performance boost to learning tasks with

large numbers of examples (with respect to ILASP2), as it is often the case that the final set of relevant

examples is much smaller than the whole set of examples. But, when considering ILPnoise
LOAS tasks, this

may not be the case, as illustrated by the following example.

Example 9.12.

Let us reconsider the ILPnoise
LOAS task T from Example 9.1. The ILASP2i algorithm would start with

the relevant examples being empty and the hypothesis H = ;. Examples 51 to 98 are covered, but

examples 1 to 50 are not, so ILASP2i would pick an uncovered example (the first) and add it to the

relevant example set. The call to ILASP2 might then find the hypothesis H 0 = {p.}, which covers the

only relevant example. As this hypothesis does not cover examples 51 to 98, one of these uncovered

examples would be added to the set of relevant examples. Now, every hypothesis is guaranteed to cover

one of the relevant examples and not cover the other. Hence, the next call to ILASP2 would then return

H = ; as the next hypothesis, which means that example with id 2 would be added to the relevant set.

This would continue until all of the examples with ids 1 to 49 and 51 to 98 had been added. At this

point the hypothesis H 0 would again be returned by the call to ILASP2, and as there are no examples

that are not covered by H 0 that are not already in the relevant example set, H 0 would be returned by

ILASP2i.

Example 9.12 demonstrates that for ILPnoise
LOAS tasks, the set of relevant examples may not be signif-

icantly smaller than the full set of examples. When this is the case, ILASP2i may even be slower

187

CHAPTER 9. LEARNING FROM NOISY ANSWER SETS

than ILASP2, as all iterations before the last iteration are essentially wasted computations. In the

next chapter, we introduce a new algorithm, ILASP3, that is able to e�ciently solve ILPnoise
LOAS tasks

with large numbers of examples. In Chapter 11 we then demonstrate that ILASP3 indeed significantly

outperforms both (the extended) ILASP2 and ILASP2i on noisy tasks with large numbers of examples.

9.5 Related Work

Most ILP systems have been designed for the task of learning from example atoms. In order to

search for best hypotheses, such systems normally use a scoring function, defined in terms of the

coverage of the examples and the length of the hypothesis (e.g. ALEPH [Sri01], Progol [Mug95],

and the implementation of XHAIL [BR15b]). When examples are noisy, this scoring function is

sometimes combined with a notion of maximum threshold, and the search is not for an optimal

solution that minimises the number of uncovered examples, but for a hypothesis that does not fail to

cover more than a defined maximum threshold number of examples (e.g. [Sri01, OB10, ACBR13]). In

this way, once an acceptable hypothesis (i.e. a hypothesis that covers a su�cient number of examples)

is computed the system does not search for a better one. As such, the computational task is simpler,

and therefore the time needed to compute a hypothesis is shorter, but the learned hypothesis is not

optimal. Furthermore, to guess the “correct” maximum threshold requires some idea of how much

noise there is in the given set of examples. For instance, one of the inputs to the HYPER/N [OB10]

system is the proportion of noise in the examples. When the proportion of noise is unknown, too

small a threshold could result in the learning task being unsatisfiable, or in learning a hypothesis that

overfits the data. On the other hand, too high a threshold could result in poor hypothesis accuracy, as

the hypothesis may not cover many of the examples. Our ILPnoise
LOAS framework addresses the problem

of computing optimal solutions and in doing so does not require any knowledge a priori of the level of

noise in the data.

Another di↵erence when compared to many ILP approaches that support noise is that our examples

are partial interpretations. We do not consider penalising individual atoms within these partial inter-

pretations. This is somewhat similar to what traditional ILP approaches do (it is only the notion of

examples that is di↵erent in the two approaches). In fact, while penalising individual atoms within

partial interpretations would certainly be an interesting avenue for future work, Example 9.13 shows

that this could be seen as analogous to penalising the arguments of atomic examples in traditional

ILP approaches.

Example 9.13. Consider the problem of learning the definition of what it means for a graph to be

Hamiltonian. We showed in Chapter 4 that there are two ways to represent example graphs. A graph

G can either be represented as partial interpretations heinc, eexci, where einc contains the set of edges

in G, and einc contains the set of edges not in G, or it can be represented as a context dependent

example hh;, ;i, Ci, where the context C is a set of facts that represent the nodes and edges in G.

188

9.5. RELATED WORK

There are also two ways of representing an example graph G in a traditional learning from entailment

setting: as a single atom with a list containing the nodes in G and a list containing all the edges in

G, and as a clause with the edges in the body.

1 2

3 4

eatom = hamiltonian([1, 2, 3, 4], [(1, 2), (2, 3), (3, 4), (4, 1)])

eclause =
hamiltonian : - node(1), . . . , node(4),

edge(1, 2), . . . , edge(4, 1).

If we compare this to the two ILPnoise
LOAS representations, we can see that the way of scoring a hypothesis

is the same in both cases. As hypotheses are scored on the number of examples that are covered, in both

frameworks a hypothesis is penalised for the number of graphs that are misclassified. Having penalties

on individual atoms in the partial interpretation examples of ILPnoise
LOAS would mean that individual

edges or nodes would be penalised. In traditional ILPLFE this would mean penalising either the

arguments of atomic examples, or the body literals of clausal examples. Although potentially interesting,

we are not aware of any ILP system that allows for this level of granularity.

Summary

In this chapter we have presented the noisy extensions of our learning frameworks and investigated

the complexities and generalities of these frameworks. We have explained why our previous ILASP

systems are not well suited to solving noisy tasks. In the next chapter we present ILASP3, which is

specifically targeted at learning from noisy examples.

189

Chapter 10

The ILASP3 Algorithm for Scalable

Learning from Noisy Examples

In the previous chapter we presented the ILPnoise
LOAS framework for learning from noisy examples. We

explained why our existing ILASP2 and ILASP2i algorithms are not well suited to solving the tasks

of this framework. In this chapter we present ILASP3, an alternative algorithm specifically targeted

at solving ILPnoise
LOAS tasks.

The main intuition of ILASP3 is to incrementally build a function for approximating the coverage of

hypotheses. This allows us to approximate the score of any hypothesis. Given any hypothesis H, the

approximation function used by ILASP3 will always contain the true coverage of H, but may also

contain examples that are not covered by H. This means that for any hypothesis H, the approximate

score of H is less than or equal to the real score of H. In each iteration, ILASP performs the following

steps:

1. Find an optimal hypothesis H⇤ with respect to the notion of approximate score. This is a

hypothesis H that minimises the sum of |H| plus the penalties for all examples that are not in

the approximation of the coverage.

2. Search for an example that is in the approximate coverage of H⇤ but that is not covered by H⇤.

• If such an example exists, then the approximate coverage of H⇤ is incorrect, so H⇤ might

not be a true optimal hypothesis. The algorithm therefore updates the approximation

function and goes back to step (1).

• If no such example exists, then H⇤ is an optimal inductive solution of the task (so ILASP3

terminates returning H⇤).

The approximation function used by ILASP3 is based on a notion of coverage constraints. A coverage

constraint is a pair consisting of a CDPI example and a set of hypothesis schemas. A hypothesis schema

190

is a set of structural conditions defining a class of hypotheses; for example a hypothesis schema may

define the class of all hypotheses that contain at least one rule from the set {h1, h2} and no rules from

the set {h3, h4}. A similar notion of coverage constraints is used for ordering examples, where the

pair consists of a CDOE and a set of schemas called ordering schemas. Any hypothesis which obeys

every condition of a schema is said to conform to that schema.

Definition 10.1. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii, H ✓ SM and hex, SCi be

a coverage constraint. H is said to satisfy hex, SCi if one of the following conditions holds:

• ex 2 E+ or ex 2 Ob and H conforms to at least one schema in SC.

• ex 2 E� or ex 2 Oc and H does not conform to any schema in SC.

If H does not satisfy hex, SCi, we say that H violates hex, SCi.

ILASP3 incrementally builds a set of coverage constraints CC such that for each constraint hex, SCi 2

CC, every hypothesis that covers ex satisfies hex, SCi. In the case that ex is a positive example and SC

is empty there is no way of satisfying the coverage constraint. Such a coverage constraint is generated

by ILASP3 when ex is impossible to cover (or at least there is no hypothesis in the hypothesis space

that covers ex). Conversely if there is a negative example ex such that hex, ;i is in CC then this

constraint is automatically satisfied. In practice, ILASP3 only generates coverage constraints for

negative examples with a non-empty set of hypothesis schemas.

The coverage constraints CC can be used to define the approximate coverage of a hypothesis. Given

a hypothesis H this approximation assumes that examples are covered unless there is evidence that

the example is not covered (i.e. a violated coverage constraint). This approximation is formalised in

Definition 10.2.

Definition 10.2. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Ob

ii, H ✓ SM and CC be a set

of coverage constraints. The approximate coverage wrt CC, denoted ApproxCoverage(H,T,CC), is

the set of examples ex 2 E+
[E�

[Ob
[Oc such that there is no coverage constraint hex, SCi 2 CC

that is violated by H.

We will demonstrate that any set of coverage constraints CC computed in the ILASP3 algorithm is such

that for anyH ✓ SM , Coverage(H,T) ✓ ApproxCoverage(H,T,CC) (where Coverage(H,T) denotes

the set of examples in T which are covered by H). The examples which are not in

ApproxCoverage(H,T,CC) must therefore not be covered by H. Note that it is not necessarily

the case that any example in ApproxCoverage(H,T,CC) is covered – it is only that given the cover-

age constraints CC, we have no evidence that the example is not covered. For instance, when ILASP3

begins CC is empty, meaning that for any hypothesis H, ApproxCoverage(H,T,CC) contains ev-

ery example in T . As the algorithm progresses, more coverage constraints are added to CC, and

ApproxCoverage(H,T,CC) gets closer to Coverage(H,T).

191

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

We can use the approximation of the coverage of a hypothesis to compute an approximation of the

score of that hypothesis. As ApproxCoverage(H,T,CC) is never an under-estimate of the coverage

of H (i.e. Coverage(H,T) ✓ ApproxCoverage(H,T,CC)), this approximate score is never an over-

estimate of the score of H. We call the approximate score of a hypothesis the lower bound score of H

wrt CC. This is formalised by the following definition.

Definition 10.3. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Ob

ii, H ✓ SM and CC be a set

of coverage constraints. Let NotCov be the set (E+
[E�

[Ob
[Oc)\ApproxCoverage(H,T,CC).

The lower bound score of H wrt CC, denoted as Slb(H,T,CC), is the sum |H| +
P

e2NotCov epen. A

hypothesis H ✓ SM is said to be optimal with respect to CC if and only if Slb(H,T,CC) is finite and

there is no H 0
✓ SM such that Slb(H 0, T, CC) < Slb(H,T,CC).

Note that for any hypothesis H and any set of coverage constraints CC computed by ILASP3,

Slb(H,T,CC)  S(H,T).

When ILASP3 starts, the set of coverage constraints CC is initialised to be empty. In each iteration,

the algorithm first finds a hypothesis H⇤ that is optimal with respect to the current CC. It then

searches for an example ex that is in ApproxCoverage(H⇤, T, CC) but that is not in Coverage(H⇤, T).

If such an example exists then Slb(H⇤, T, CC) < S(H⇤, T), so H⇤ may not be an optimal inductive

solution of T . In this case a new coverage constraint, computed for the example ex, is added to CC

and a new iteration is started. If no such example exists then Slb(H⇤, T, CC) = S(H⇤, T). Hence, as

for any other hypothesis H 0, Slb(H⇤, T, CC)  Slb(H 0, T, CC)  S(H 0, T), it must be the case that

H⇤ is an optimal solution of T . In this case ILASP3 terminates and returns H⇤.

ILASP3 is similar to ILASP2i in that it iteratively computes a hypothesis and searches for counter

examples to its current hypothesis. When compared with ILASP2i, the main scalability gain in

ILASP3 comes from the fact that the task of finding intermediate hypotheses is simpler. In ILASP2i,

the grounding of the background knowledge, hypothesis space and the context of each relevant example

must be considered. In ILASP3, only the coverage constraints are considered. The only point at which

ILASP3 considers the grounding of the background knowledge, hypothesis space, and contexts is when

it translates a detected counter example into a new coverage constraint. At this point ILASP3 only

needs to consider the specific counter example rather than the set of relevant examples considered by

ILASP2i.

In the next section, we formalise the notion of hypothesis schemas that form the main component of

our coverage constraints. We then present the methods used for translating detected counter examples

into coverage constraints and show how schemas can be represented in meta-level ASP programs. Next

we present our method for finding an optimal hypothesis with respect to a set of coverage constraints

and formalise the ILASP3 algorithm, together with its soundness and completeness results. After

defining the main ILASP3 algorithm, we discuss some extra extensions of ILASP3 that can result in

a significant boost in performance on noisy tasks. We conclude the chapter with a discussion of the

related work.

192

10.1. HYPOTHESIS SCHEMAS

10.1 Hypothesis Schemas

The intuition behind a hypothesis schema is to identify a set of constraints on the rules allowed in

a hypothesis such that a hypothesis conforms to this set of constraints only if it covers a particular

example. Recall that each rule h in the hypothesis space is associated with the unique identifier hid.

Informally, a hypothesis schema can be thought of as a set of disjunctions over the rule ids and one

negated disjunction of rule ids. Each disjunction of rule ids in the set captures the fact that for at least

one of the ids, the corresponding rule must be in a hypothesis in order for the hypothesis to conform to

the schema. The negated disjunction of rule ids expresses that for each id in this negated disjunction,

the corresponding rule should not be in a hypothesis. This is formally expressed in the following

definition, using the notion of a rule-disjunction. Given a hypothesis space SM , a rule-disjunction d

is a subset of ids(SM), and a hypothesis H ✓ SM is said to satisfy d if and only if d \ ids(H) 6= ;.

Definition 10.4. Let SM be a hypothesis space. A hypothesis schema is a pair sc = hD,V i, where D

is a set of rule-disjunctions and V is a single rule-disjunction. A hypothesis H is said to conform to sc

if and only if 8d 2 D,H satisfies d (i.e. d\ids(H) 6= ;), and H does not satisfy V (i.e. V \ids(H) = ;).

This notion of a hypothesis schema is related to the definition of an answer set based on unfounded sets

(Definition 2.4). Specifically, given an interpretation I, a background knowledge B and a hypothesis

space SM , it is possible to generate a hypothesis schema sc = hD,V i such that any H ✓ SM conforms

to sc if and only if I is an answer set of B[H. Each non-empty unfounded subset of I with respect to

B can be used to generate a rule-disjunction containing the identifiers of the rules in SM that, added

to B, would prevent I from being unfounded. These rule-disjunctions form the set D of a hypothesis

schema. The set V of a schema is the set of all rules that prevent a particular interpretation I from

being a model. Requiring that a hypothesis conforms to a schema constructed from an interpretation

I, essentially corresponds to requiring that I is a model of B [H and has no non-empty unfounded

subsets (i.e. requiring that I is an answer set of B [H). We illustrate this correspondence between

hypothesis schemas and unfounded sets in the following example.

Example 10.1. Let B=; and SM be the following hypothesis space:

8
>>>>>>>>>>><

>>>>>>>>>>>:

h1 :

h2 :

h3 :

h4 :

h5 :

h6 :

h7 :

p.

q.

p : - q.

p : - not q.

q : - p.

q : - not p.

r.

9
>>>>>>>>>>>=

>>>>>>>>>>>;

Let sc be the hypothesis schema hD,V i, where D = {{h1, h4}, {h7}} and V = {h2, h5}. To conform to

sc, a hypothesis H must contain at least one of the rules h1 or h4 and contain h7 and contain neither

193

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

h2 nor h5. A hypothesis H that conforms to sc would correspond to having I = {p, r} as an answer

set of B [H. In fact, the two rule-disjunctions in D come from the two subsets of I that could be

unfounded with respect to some hypotheses in the hypothesis space: {p} is unfounded with respect to

B [H if H does not contain either h1 or h4; and {r} is unfounded with respect to B [H if H does

not contain h7. If neither of the two rule-disjunctions are “violated” then there are no other possible

unfounded sets. Finally, for I to be an answer set of B [H, I has to be a model of B [H. It is a

model if and only if H does not contain either h2 or h5. Hence, I is an answer set of B [H if and

only if H conforms to sc.

10.1.1 Ordering Schemas

The hypothesis schemas presented so far are useful in expressing which hypotheses accept particular

answer sets, and therefore which positive or negative examples are covered. In order to express which

ordering examples are covered, we introduce a second type of schema called an ordering schema. Recall

that a (context-dependent) ordering example o = he1, e2, opi specifies the preference relation between

answer sets of the learned program. In the case of a context-dependent brave ordering, there must be a

pair of accepting answer sets hA1, A2i of o – meaning that (i) A1 is an accepting answer set of e1; (ii) A2

is an accepting answer set of e2; and (iii) hA1, A2, opi 2 ord(B[H,AS(B[H[e1ctx)[AS(B[H[e2ctx)).

The first two of these conditions can be ensured using the hypothesis schemas presented in the previous

section. Condition (iii) motivates a generalisation of these hypothesis schemas, which depends on the

new notion of hypothesis weightings.

Just as hypothesis schemas were based on the notion of unfounded sets and models, which can be

used to define what it means to be an answer set, hypothesis weightings are based on a notion of

optimisation di↵erences, which can be used to define what it means for one answer set to be preferred

to another. Definition 10.5 introduces the notion of optimisation di↵erences.

Definition 10.5. Let P be an ASP program and I1 and I2 be interpretations. For any integer l,

the optimisation di↵erence between I1 and I2 at l with respect to P (denoted �P
l (I1, I2)) is equal to

P I1
l � P I2

l .

Definition 10.5 defines optimisation di↵erences for programs. We also define optimisation di↵erences

for single weak constraints. For any weak constraint W and any interpretations I1 and I2, �W
l (I1, I2)

is defined as �{W}
l (I1, I2), where {W} is the program containing only W . The optimisation di↵erence

of a weak constraint is crucial to our notion of ordering schemas. In order to use the optimisation

di↵erences of individual weak constraints, we must slightly restrict the language of weak constraints in

our learning tasks. Definition 10.6 introduces the notion of a set of weak constraints being independent

from each other.

Definition 10.6. Let WC be a set of weak constraints. The weak constraints in WC are independent

if there are no two weak constraints W1 and W2 in WC with ground instances W g
1 and W g

2 such that

the tail of W g
1 is equal to the tail of W g

2 .

194

10.1. HYPOTHESIS SCHEMAS

In the rest of this thesis, we assume that for any learning task, the weak constraints in B [SM are

independent. In practice, this can be achieved by adding a unique constraint to each weak constraint

as the first term occurring in the tail after the weight and priority level. The benefit of this assumption

is that we can now compute the optimisation di↵erence (between two interpretations) with respect

to a program by summing the optimisation di↵erence with respect to each weak constraint in the

program. This result is formalised in Lemma 10.2.

Lemma 10.2. (proof on page 309)

Let P be any ASP program whose weak constraints are independent, l be any integer and I1 and I2

be any interpretations. Then �P
l (I1, I2) =

P
W2weak(P)

�W
l (I1, I2).

When learning, this result means that we can compute the optimisation di↵erence of B[H by summing

the optimisation di↵erences for each of the weak constraints in the learned program. Given a pair of

interpretations, we can compute the individual optimisation di↵erence for each weak constraint in the

hypothesis space once, and can compute the optimisation di↵erence for any hypothesis by summing

the optimisation di↵erences of the weak constraints in the hypothesis (and background knowledge).

The following definition introduces the notion of the deciding optimisation di↵erence, which can be

used to check the ordering between two interpretations, given a set of weak constraints.

Definition 10.7. Let P be any program and I1 and I2 be any interpretations. Let L be the set of

integers l such that �P
l (I1, I2) 6= 0. We define the deciding optimisation di↵erence between I1 and I2

with respect to P (denoted �P (I1, I2)) as follows:

• If L = ; then �P (I1, I2) = 0

• If L 6= ; then �P (I1, I2) = �P
l (I1, I2), where l is the maximum of L

Lemma 10.3. (proof on page 309)

Let S be a set of interpretations and P be an ASP program. Given any pair of interpretations I1

and I2 in S and any binary operator op 2 {<,>,,�,=, 6=}, hI1, I2, opi 2 ord(P, S) if and only if

�P (I1, I2) op 0.

Example 10.4. Consider the program P and the interpretations I1 and I2.

P =

8
><

>:

0{p(1), p(2), p(3)}3.

:⇠ p(X).[1@2, X, 1]

:⇠ p(X).[X@1, X, 2]

9
>=

>;

I1 = {p(1), p(2)}

I2 = {p(2), p(3)}

Let the two weak constraints be denoted as W1 and W2, respectively. W1 represents that the highest

priority in the program is to minimise the number of p atoms in an answer set (as a penalty of 1 is paid

for each p atom). Given this weak constraint, both interpretations I1 and I2 pay the same penalty.

195

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

As there are no other weak constraints in P at priority level 2, we should expect the optimisation

di↵erence �P
2 (I1, I2) to equal 0. We can calculate �P

2 (I1, I2) as follows:

�P
2 (I1, I2) = �W1

2 (I1, I2) +�W2
2 (I1, I2)

= ({W1}
I1
2 � {W1}

I2
2) + ({W2}

I1
2 � {W2}

I2
2)

= (2� 2) + (0� 0)

= 0

Note that for each weak constraint Wi, {Wi} represents the program containing only Wi, and recall

that {Wi}
I
lev is the sum

P
(wt, lev, t1 . . . , tn)2weak({Wi},I)

wt. I.e. {Wi}
I
lev is the sum of the first

elements of the tuples in weak({Wi}, I) whose second element is the priority level lev. For example,

as weak({W1}, I1) = {(1, 2, 1, 1), (1, 2, 2, 1)}, {W1}
I1
2 = 1 + 1 = 2. Similarly, {W1}

I1
1 = 0, as there

are no elements of weak({W1}, I) whose second element is 1.

The weak constraint W2 corresponds to preferring answer sets where the sum of the arguments of the

p’s is as small as possible. A penalty of X is paid for each p(X) in an answer set. This means that I1

pays a penalty of 3, whereas I2 pays a penalty of 5. So I2’s penalty at level 1 is 2 less than I1’s. We

would therefore expect �P
1 (I1, I2) to equal �2. We can calculate �P

1 as follows:

�P
1 (I1, I2) = �W1

1 (I1, I2) +�W2
1 (I1, I2)

= ({W1}
I1
1 � {W1}

I2
1) + ({W2}

I1
1 � {W2}

I2
1)

= (0� 0) + (3� 5)

= �2

As �P
2 (I1, I2) = 0, the deciding optimisation di↵erence (�P (I1, I2)) is �2. As �P (I1, I2) < 0, this

means that hI1, I2, <i 2 ord(P). Hence I1 is preferred to I2.

We now introduce hypothesis weightings, which are the fundamental new part of ordering schemas. A

hypothesis weighting can be thought of as a function from a hypothesis to an integer, expressing the

optimisation di↵erence between two interpretations at a given level. The idea is that we can transform

a pair of answer sets into an ordered list ws of weightings [!1, . . . ,!n], one for each priority level in

the hypothesis space, such that each weighting can be used to compute the optimisation di↵erence at

that level; thus, we can compute the deciding optimisation di↵erence of the two answer sets. Similarly

to hypothesis schemas, the structure of the weak constraints is “compiled away”, so that when we

are searching for the best hypothesis, we only need to reason about the optimisation di↵erences. A

hypothesis weighting ! consists of two components: !f , which is a mapping from ids(SM) to Z and

!k, which is a constant that is used to represent the optimisation di↵erence of weak constraints in the

196

10.1. HYPOTHESIS SCHEMAS

background knowledge.

Definition 10.8. Let SM be a hypothesis space. A hypothesis weighting ! is a pair h!f ,!k
i, where

!f is a mapping from ids(SM) onto Z and !k is an integer. Given a hypothesis H ✓ SM , we write

![H] to denote the sum !k +
P
h2H

!f (hid).

Notation ([id1 : �1, . . . , idn : �n]). Let {id1, . . ., idn} be a set of rule identifiers and {�1, . . . ,�n}

be a set of integers. [id1 : �1, . . . , idn : �n] represents a mapping f such that for each i 2 [1, n],

f(idi) = �i, and for each rule identifier id such that id 62 {id1, . . ., idn}, f(id) = 0.

Example 10.5. Consider the background knowledge B, hypothesis space SM and interpretations I1

and I2.

B =

8
>>>><

>>>>:

0{p(1), p(2), p(3)}3.

0{q(1), q(2)}2.

:⇠ p(X).[1@2, X, b1]

:⇠ p(X).[X@1, X, b2]

9
>>>>=

>>>>;

I1 = {p(1), p(2), q(1), q(3)}

SM =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

h1 :

h2 :

h3 :

h4 :

h5 :

h6 :

h7 :

h8 :

:⇠ q(X).[1@2, X, 1]

:⇠ q(X).[X@2, X, 2]

:⇠ q(X), not p(X).[1@2, X, 3]

:⇠ q(X), not p(X).[X@2, X, 4]

:⇠ q(X).[1@1, X, 5]

:⇠ q(X).[X@1, X, 6]

:⇠ q(X), not p(X).[1@1, X, 7]

:⇠ q(X), not p(X).[X@1, X, 8]

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

I2 = {p(2), p(3), q(1), q(2)}

Consider the hypothesis weightings !2 = h[h2 : 1, h4 : 2], 0i and !1 = h[h6 : 1, h8 : 2],�2i. For

i 2 {1, 2}, and each h 2 SM , !f
i (hid) = �h

i (I1, I2). Hence, as for each i 2 {1, 2}, �B
i (I1, I2) = !k

i ,

we can use !1 and !2 to compute the optimisation di↵erences of B [H for any H ✓ SM . More

specifically, for any H ✓ SM , and any i 2 {1, 2}, !i[H] = �B[H
i (I1, I2).

Hence for any operator op, the set of hypotheses H such that hI1, I2, opi 2 ord(B [H) are those such

that I1, I2 2 AS(B [H) and x op 0, where x is the first non-zero element of [!2[H],!1[H]] (or 0 if

!2[H] = !1[H] = 0).

Given a hypothesis H, we can use an ordered list of hypothesis weightings to compute the list of

optimisation di↵erences for the answer sets A1 and A2. As we are interested in computing the deciding

optimisation di↵erence, we introduce a notation for the first non-zero element of an ordered list.

Notation ("). Let L be an ordered list of integers. If L contains at least one non-zero element

then " (L) is equal to the first non-zero element in L. If every element of L is equal to zero, then

" (L) = 0.

197

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

We can now define ordering schemas. An ordering schema consists of three elements: a hypothesis

schema, which is used to ensure that a pair of interpretations are both answer sets of the learned

program; an ordered list of hypothesis weightings, which can be used to compute the optimisation

di↵erences of the pair of interpretations with respect to the weak constraints in the learned program;

and finally, a comparison operator. The last two components are used to ensure that the ordering of

the pair of interpretations respects the operator (with respect to the learned program).

Definition 10.9. Let SM be a hypothesis space. An ordering schema osc is a tuple hsc, ws, opi, where

sc is a hypothesis schema, ws is an ordered list of hypothesis weightings and op is a binary operator.

A hypothesis H conforms to osc if and only if H conforms to sc and " ([!i[H] | !i 2 ws]) op 0.

In the next section, we present a method for translating a brave ordering example into a set of ordering

schemas. The result in Lemma 10.6 means that we can use our method for translating a brave ordering

example into a set of ordering schemas for translating both brave and cautious orderings (translating

inverse(o) instead of any cautious ordering o).

Lemma 10.6. (proof on page 311)

Consider a background knowledge B, hypothesis space SM and a context-dependent ordering example

o. Then for any hypothesis H ✓ SM , B[H cautiously respects o if and only if B[H does not bravely

respect inverse(o).

10.2 Translating Examples to Schemas

In this section we show how to translate (weighted) CDPIs and CDOEs into coverage constraints. In

both cases the translation methods construct sets of schemas incrementally, at each step searching

for a hypothesis H that covers the example, but which does not conform to any of the current set of

schemas. In the case of a CDPI e, this means that B[ectx[H must have at least one answer set that

extends epi. In Section 10.2.1, we show how such an answer set A can be translated into a hypothesis

schema that is conformed to by exactly those hypotheses that (together with B and ectx) accept A

as an answer set. In Section 10.2.2, we present our method for translating a CDPI into a coverage

constraint. Similarly, in Section 10.2.3 we show that, given an ordering example o, a pair of answer

sets hA1, A2i can be translated into an ordering schema osc such that the hypotheses that conform

to osc are exactly those hypotheses H for which hA1, A2i is an accepting pair of answer sets of o wrt

of B [H. Finally, in Section 10.2.4, we show how to translate an ordering example into a coverage

constraint.

10.2.1 The Translation of an Answer Set

At each iteration step, the ILASP3 algorithm translates an example into a set of hypothesis schemas,

which is used to form a coverage constraint. The intuition is to start with an empty set of schemas and

198

10.2. TRANSLATING EXAMPLES TO SCHEMAS

in each iteration to search for a hypothesis that accepts a current example, but which does not conform

to any of the schemas computed so far. To prove that the example is accepted by such a hypothesis

H the algorithm tries to find an answer set of B [ectx [H that extends epi. If such an answer set

exists, it is then translated into a hypothesis schema sc, which is in turn added to the current set SC

of hypothesis schemas. We will show that when there are no hypotheses that accept e but do not

conform to any of the already computed schemas, the set of computed schemas is guaranteed to be

complete (e is accepted by H if and only if H conforms to at least one of the computed schemas).

This incremental computation of hypothesis schemas relies upon a method that generates, from an

interpretation I, a hypothesis schema that is conformed to by exactly those hypotheses H such that

I 2 AS(B [ectx [H). We describe first, in this section, the method of computing hypothesis schemas

from a given interpretation and in the next section we show how it can be used to iteratively compute

the translation of an example.

Definition 10.10. Given a program P , hypothesis space SM and an interpretation I, a hypothesis

schema sc is said to be a translation of I (with respect to P and SM) i↵ the set of hypotheses that

conform to sc are exactly those hypotheses H such that I 2 AS(P [H).

Example 10.7. Consider a learning task with background knowledge B and hypothesis space SM

defined as follows.

B = {q : - p.}

SM =

8
>>>><

>>>>:

h1 :

h2 :

h3 :

h4 :

p.

p : - q.

q.

r : - q.

9
>>>>=

>>>>;

Consider the interpretation I = {p, q}. One translation of I (with respect to B and SM) is sc =

h{{h1, h3}, {h1, h2}}, {h4}i. This can be seen as follows.

1. Either h1 or h3 must be present in any hypothesis H for which I 2 AS(B[H), or {p, q} would be

an unfounded subset of I. Similarly, either h1 or h2 must be present, or {p} would be unfounded.

h4 can not be in any hypothesis H such that I 2 AS(B [H), as I is not a model of h4. Hence,

any hypothesis H for which I 2 AS(B [H) must conform to sc.

2. Any hypothesis that conforms to sc must either contain h1 or both h2 and h3. Either way, there

are no unfounded subsets of I wrt B[H. As I is a model of B, h1, h2 and h3, and no hypothesis

H that conforms to sc can contain h4, I is a model of B[H for any hypothesis H that conforms

to sc. Hence, for any hypothesis H that conforms to sc, I 2 AS(B [H).

The translateAS algorithm finds a translation hD,V i of an interpretation I in two main steps. First it

computes the set V of rules in SM for which I is not a model (these rules cannot occur in any hypothesis

H where I 2 AS(P [H)). The second step is to iteratively compute the set of rule-disjunctions D.

199

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

D is initialised to be empty, and in each iteration a potential unfounded subset U is computed, and

the rules in SM which prevent U from being unfounded are added as a new rule-disjunction (for I to

be an answer set of P [H, H must contain at least one such rule). Definition 10.11 formalises the

notion of a potential unfounded set.

Definition 10.11. Given a program P , a hypothesis schema sc and an interpretation I, a set U ✓ I

is said to be a potential unfounded subset of I wrt sc and P if and only if U 6= ; and 9H ✓ SM such

that H conforms to sc and U is an unfounded subset of I wrt P [H.

Algorithm 10.1 translateAS(P, SM , I)

1: procedure translateAS(P, SM , I)
2: V = {hid | h 2 SM , I |= body(h), I 6|= head(h)};
3: D = ;

4: while 9U ✓ I such that U is a potential unfounded subset of I wrt sc and P
5: Fix U to be an arbitrary potential unfounded subset of I wrt sc and P
6: D = D [{{hid | hid 2 ids(SM)\V, I |= body(h), U \ body+(h) = ;, heads(h) \ U 6= ;}};
7: end while
8: return hD,V i;
9: end procedure

Lines 4 and 5 of the translateAS algorithm rely on the computation of an arbitrary potential un-

founded subset if one exists (and the ability to determine if at least one exists). In the ILASP3

implementation, this is done by representing the search for a potential unfounded subset in a meta-

level ASP program. This meta-program (along with a proof of its correctness) can be found in

Appendix B.1.

Theorem 10.8. (proof on page 316)

Let P be a program, SM be a hypothesis space and I be an interpretation. The procedure

translateAS(P, SM , I) terminates and returns a translation of I.

Example 10.9. Reconsider the learning task from Example 10.7.

Consider the interpretation I = {p, q}. We now show how translateAS can compute the schema

sc = h{{h1, h3}, {h1, h2}}, {h4}i, which is a translation of I.

The first step of translateAS(B, I, SM) is to compute the set V . The only rule in SM whose body is

satisfied by I and whose head is not satisfied by I is h4; hence, V = {h4}

translateAS now searches for potential unfounded subsets of I wrt the schema h;, {h4}i. {p} is such

a potential unfounded subset (H = ; conforms to the schema and {p} is an unfounded subset of I wrt

B [;). This causes translateAS to add the new rule-disjunction {h1, h2} to D.

In the next iteration, translateAS searches for a potential unfounded subset of I wrt the schema

h{{h1, h2}}, {h4}i. {p, q} is a potential unfounded subset of I wrt this schema (consider the hypothesis

H{h2}). This causes the rule-disjunction {h1, h3} to be added to D.

200

10.2. TRANSLATING EXAMPLES TO SCHEMAS

In the final iteration, there are no potential unfounded subsets of I wrt hD,V i, and hence the schema

h{{h1, h2}, {h1, h3}}, {h4}i is returned.

10.2.2 Translating an Example

We now present the method used by ILASP3 to translate examples into sets of hypothesis schemas.

This method makes use of Algorithm 10.1 to translate each computed interpretation into a hypothesis

schema.

Definition 10.12. Let T = hB,SM , Ei be an ILPnoise
LOAS task, e be an example and SC be a set of

hypothesis schemas. SC is a partial translation of e i↵ 8H ✓ SM such that H conforms to at least

one schema in SC, B [H accepts e. Furthermore, a partial translation SC of e is said to be complete

if for each H ✓ SM such that B [H accepts e, H conforms to at least one schema in SC.

Example 10.10. Consider an ILPnoise
LOAS task with background knowledge B and hypothesis space SM

as defined below.

B =

(
p : - not q.

q : - not p.

)

SM =

8
><

>:

h1 :

h2 :

h3 :

r : - t.

t : - q.

r.

9
>=

>;

Let e be an example such that epi = h{r}, ;i, and ectx = ;. The interpretations which extend epi

and are answer sets of B [H for some H ✓ SM are {{p, r}, {q, r}, {q, r, t}}. We refer to these

interpretations as A1, A2 and A3, respectively. The translation sc1 of A1 (using Algorithm 10.1) is

h{{h3}}, {h2}i. {sc1} is a partial translation of e, but it is not complete. To see this, consider the

hypothesis H = {h1, h2}. B[H has the answer set A3, but H does not conform to sc1. The translation

sc3 of A3 (using Algorithm 10.1) is h{{h2}, {h1, h3}}, ;i. {sc1, sc3} is a complete translation. Note

that every hypothesis that has the answer set A2 (when combined with the background knowledge) also

has the answer set A1, and so there is no need to translate A2.

Algorithm 10.2 formalises the procedure translateExample. The idea in this procedure is to start

from an empty set of schemas SC and, in each iteration, search for a hypothesis that does not conform

to any schema in SC, but has an answer set I that extends e. If such an answer set I is found, it is

translated, using the translateAS algorithm, into a hypothesis schema that is then added to SC. If

no such answer set is found then SC is a complete translation of e, and so the algorithm returns SC.

Theorem 10.11 proves that the algorithm is guaranteed to terminate, and always returns a complete

translation of the example.

Details of the computation of the interpretation I (or determining that no such I exists) can be found

in Appendix B.1. The computation encodes the search as a meta-level ASP program.

201

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

Algorithm 10.2 translateExample(T, e)

1: procedure translateExample(T, e)
2: SC = ;;
3: while 9I st 9H ✓ SM st 8sc 2 SC, H does not conform to sc and I is an accepting answer

set of e wrt B [H
4: Fix an arbitrary such I
5: SC = SC [{translateAS(B [ectx, SM , I)};
6: end while
7: return he, SCi;
8: end procedure

Theorem 10.11. (proof on page 319)

Let T be an ILPnoise
LOAS task and e be an example. translateExample(T, e) terminates and returns a

pair he, SCi where SC is a complete translation of e.

The pair he, SCi computed by the procedure translateExample is a coverage constraint. Its meaning

is that e is accepted by a hypothesis H if and only if H conforms to at least one schema in SC.

10.2.3 Converting a Pair of Answer Sets into an Ordering Schema

We can convert any pair of interpretations into a set of hypothesis weightings. This translation is

formalised in Definition 10.13.

Definition 10.13. Let T be an ILPnoise
LOAS task with background knowledge B and hypothesis space

SM and let A1 and A2 be a pair of interpretations. For any integer l, !(T,A1, A2, l) is the hypothesis

weighting h!f ,!k
i, where:

• For each h 2 SM , !f (hid) = �h
l (A1, A2)

• !k = �B
l (A1, A2)

Let [l1, . . . , ln] be the list of priority levels in B [SM (in descending order). Then the translation of

hA1, A2i wrt T (denoted !(T,A1, A2)) is the list [!(T,A1, A2, l1), . . . ,!(T,A1, A2, ln)].

Example 10.12. Consider the ILPnoise
LOAS task T = hB,SM , Ei, where weak(B) and weak(SM) are as

below:

weak(B) =
n

:⇠ p(X).[X@1, X, 1]
o

weak(SM) =

(
h1 :

h2 :

:⇠ q(X).[X@1, 2]

:⇠ r(X).[X@2, X, 3]

)

Also, consider the two interpretations A1 = {p(1), p(2), r(1), r(2), q(3)} and A2 = {r(2), r(3), q(2)}.

As there are two priority levels in the task, !(T,A1, A2) is the list [!(T,A1, A2, 2),!(T,A1, A2, 1)].

This is equal to the list [h[h2 : �2], 0i, h[h1 : 1], 3i].

202

10.2. TRANSLATING EXAMPLES TO SCHEMAS

Theorem 10.13 shows how we can use the translation of a pair of answer sets A1 and A2 (with respect

to some task T) to compute the deciding optimisation di↵erence of A1 and A2 with respect to any

hypothesis in the hypothesis space of T .

Theorem 10.13. (proof on page 319)

Let T be a ILPnoise
LOAS task and let A1 and A2 be interpretations. Let [!1, . . . ,!n] = !(T,A1, A2). For

any H ✓ SM , �B[H(A1, A2) = " ([!1[H], . . . ,!n[H]])

We now present the translatePairAS procedure, which given a pair of answer sets hA1, A2i, computes

an ordering schema osc such that the hypotheses H that conform to osc are exactly those for which

hA1, A2i is an accepting pair of answer sets of o wrt H. It works by computing a pair of hypothesis

schemas, which are translations of the two answer sets, and then translating the pair of answer sets

into a list of hypothesis weightings. It combines the two hypothesis schemas into one, making use of

the following notation.

Notation (sc1 [sc2). Let sc1 = hD1, V1i and sc2 = hD2, V2i be hypothesis schemas. The

combination of sc1 and sc2 (denoted sc1 [sc2) is the hypothesis schema hD1 [D2, V1 [V2i.

Algorithm 10.3 translatePairAS(T, o,A1, A2)

1: procedure translatePairAS(T, o,A1, A2)
2: sc1 = translateAS(B [(oeg1)ctx, SM , A1)
3: sc2 = translateAS(B [(oeg2)ctx, SM , A2)
4: return hsc1 [sc2,!(T,A1, A2), oopi;
5: end procedure

Theorem 10.14. (proof on page 321)

Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Also let o be a CDOE and A1 and A2 be in-

terpretations that extend (oeg1)pi and (oeg2)pi, respectively. translatePairAS(T, o,A1, A2) terminates

and returns an ordering schema osc such that 8H ✓ SM , H conforms to osc if and only if hA1, A2i is

an accepting pair of answer sets of o wrt B [H.

10.2.4 The Translation of an Ordering Example

In the ILASP3 algorithm, we translate CDOE’s into sets of ordering schemas. Definition 10.14 for-

malises the notion of the translation of a CDOE.

Definition 10.14. Let T be any ILPnoise
LOAS task with background knowledge B and hypothesis space

SM , let o be a CDOE and let OSC be a set of ordering schemas. OSC is a partial translation of o

wrt T if 8H ✓ SM such that H conforms to at least one schema in OCS, B [H bravely respects

o. Furthermore, a partial translation OSC of o is said to be complete if for each H ✓ SM such that

B [H bravely respects o, H conforms to at least one schema in OSC.

203

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

Algorithm 10.4 formalises our method for translating an ordering example o into a set of order-

ing schemas. Similarly to the translateExample algorithm, it works by incrementally computing

pairs of interpretations that are accepting pairs of answer sets of o with respect to B [H, for at

least one hypothesis H that does not conform to any schema in OSC. Theorem 10.15 shows that

translateOrderingExample(T, o) always terminates and returns a complete translation of o.

Algorithm 10.4 translateOrderingExample(T, o)

1: procedure translateOrderingExample(T, o)
2: OSC = ;;
3: while 9hI1, I2i st 9H ✓ SM st 8osc 2 OSC, H does not conform to osc and hI1, I2i is an

accepting pair of answer sets of o wrt B [H
4: Fix an arbitrary such hI1, I2i
5: OSC = OSC [{translatePairAS(T, o, I1, I2)};
6: end while
7: return ho,OSCi;
8: end procedure

Details of the computation of a pair of accepting answer sets of o wrt B [H (or determining that no

such pair exists) can be found in Appendix B.1. The computation encodes the search as a meta-level

ASP program.

Theorem 10.15. (proof on page 322)

Let T be any ILPnoise
LOAS task and o be any CDOE. translateOrderingExample(T, o) terminates and

returns a pair ho,OSCi, where OSC is a complete translation of o.

10.3 Representing Hypothesis Schemas

In this section we present the meta-level representation adopted in ILASP3 to determine, for a given

set of hypothesis schemas, which hypotheses conform to which schemas. For convenience we introduce

the following notation.

Notation (DISJ(SC)). Given a set SC of hypothesis schemas, DISJ(SC) denotes the set

of all rule-disjunctions that appear in SC (i.e. {d | hD,V i 2 SC, d 2 D [{V }})

The formal definition of the meta-level program Msc is given in Meta-program 10.1. Informally, for

each rule-disjunction d that appears in DISJ(SC), the meta-level program includes a rule that states

that if none of the rules of the hypothesis space with id’s in d are in a hypothesis, then the disjunction d

is not satisfied. This rule defines the predicate not disj(did). For each schema hD,V i, the meta-level

204

10.3. REPRESENTING HYPOTHESIS SCHEMAS

program includes a rule stating that if each d 2 D is satisfied (expressed as not not disj(did) in the

definition above), and V is not satisfied then the schema is conformed to (by the current hypothesis).

Finally, for each rule h in the hypothesis space, the meta-level program includes a choice rule to state

that h is either in the hypothesis (expressed by the predicate in h(hid)) or not.

Meta-program 10.1 (Msc(SC, SM)). Let SC be a set of hypothesis schemas and SM be a

hypothesis space. Msc(SC, SM) is a program consisting of the following rules:

• not disj(did) : - not in h(d1), . . . , not in h(dn).

for each rule-disjunction {d1, . . . , dn} 2 DISJ(SC) with identifier did

• conforms(scid) : - not not disj(D1id), . . . , not not disj(Dnid), not disj(Vid).

for each schema sc 2 SC, where sc = h{D1, . . . , Dn
}, V i

• 0{in h(hid)}1.

for each rule h 2 SM

Theorem 10.16. (proof on page 311) Let SC be a set of hypothesis schemas and SM be a hypothesis

space. For each H ✓ SM , there is exactly one answer set AH of Msc(SC, SM) such that H =

M
�1
in h(AH). Furthermore, 8sc 2 SC, conforms(scid) 2 AH if and only if H conforms to sc.

We give now an example of Meta-program 10.1.

Example 10.17. Consider a hypothesis space SM composed of 4 rules with ids h1, . . . , h4 and the

hypothesis schemas sc1 and sc2.

sc1 = h{{h1, h2}, {h1, h3}}, {h4}i sc2 = h{{h1, h2}, {h4}}, {}i

DISJ({sc1, sc2}) = {{h1, h2}, {h1, h3}, {h4}, {}}, in which rule-disjunctions have, respectively, identi-

fiers d1, . . . d4. The meta-level program Msc(SC, SM) is then given by the program:

8
>>>>>>>>>>><

>>>>>>>>>>>:

conforms(sc1) : - not not disj(d1), not not disj(d2), not disj(d3).

conforms(sc2) : - not not disj(d1), not not disj(d3), not disj(d4).

not disj(d1) : - not in h(h1), not in h(h2).

not disj(d2) : - not in h(h1), not in h(h3).

not disj(d3) : - not in h(h4).

not disj(d4).

0{in h(h1)}1. 0{in h(h2)}1. 0{in h(h3)}1. 0{in h(h4)}1.

9
>>>>>>>>>>>=

>>>>>>>>>>>;

Using Theorem 10.16, we can determine which hypotheses H ✓ SM conform to which schemas in SC

by using Msc(SC, SM). For example, consider H{1,4} (the hypothesis containing the rules with ids h1

and h4). Msc(SC, SM) has exactly one answer set A such that {hid | in h(hid) 2 A} = {h1, h4}. This

205

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

is the answer set A = {in h(h1), in h(h4), not disj(d4), conforms(sc2)}. We can therefore conclude

that H{1,4} conforms to sc2 but does not conform to sc1. This is indeed true: H{1,4} satisfies d1 and

d2 as it contains the rule with id h1, satisfies d3 as the hypothesis contains the rule with id h4, but

does not satisfy d4 as it is empty and thus is impossible to satisfy; hence the hypothesis conforms to

sc2 but does not conform to sc1.

10.3.1 Representing Ordering Schemas

Similarly to hypothesis schemas, we represent ordering schemas as an ASP program. Given a set of

ordering schemas OSC and a hypothesis schema SM , Mosc(OSC, SM) consists of two components.

The first component is used to check, for each ! that occurs in any ordering schema, whether the

hypothesis H represented by the in h atoms yields a positive or negative value for ![H]. The second

component uses this information to determine whether each ordering schema is conformed to (repre-

sented by the osc conforms predicate). Mosc is used in conjunction with the Msc(SC, SM) program,

where SC contains each hypothesis schema that occurs in the ordering schemas in OSC. Msc defines

the in h and conforms predicates.

Meta-program 10.2 (Mosc(OSC, SM)). Let OSC be a set of ordering schemas and SM be

a hypothesis space such that ids(weak(SM)) = {h1, . . . , hn}. Mosc(OSC, SM) is the program

consisting of the following components:

• The rules

(
diff(!id, 1) : -#sum{in h(h1) = !f(h1), . . . , in h(hn) = !f(hn)} > �!k.

diff(!id,�1) : -#sum{in h(h1) = !f(h1), . . . , in h(hn) = !f(hn)} < �!k.

)

for each ! such that 9hsc, ws, opi 2 OSC such that ! 2 ws

• For each osc = hsc, [!1, . . .!m], opi 2 OSC, the rules:8
><

>:

osc diff(oscid, D) : - diff(!i, D), not diff(!id
1 ,�1), not diff(!id

1 , 1),

. . . ,

not diff(!id
i�1,�1), not diff(!id

i�1, 1).

�������
i 2 [1,m]

9
>=

>;

And the rules:(
osc diff(oscid, 0) : - not osc diff(oscid, 1), not osc diff(oscid,�1).

osc conforms(oscid) : - conforms(scid), osc diff(oscid, D), D op 0.

)

Theorem 10.18 shows that Mosc can be used in conjunction with Msc in order to determine which

ordering schemas are conformed to by each hypothesis in a given hypothesis space.

206

10.3. REPRESENTING HYPOTHESIS SCHEMAS

Theorem 10.18. (proof on page 312)

Let SM be a hypothesis space, SC be a set of hypothesis schemas and OSC be a set of ordering schemas

such that {sc | hsc, ws, opi 2 OSC} ✓ SC. For each H ✓ SM , there is exactly one answer set AH of

Msc(SC, SM) [Mosc(OSC, SM) such that M�1
in h(AH) = H. Furthermore:

1. 8sc 2 SC, conforms(scid) 2 AH if and only if H conforms to sc

2. 8osc 2 OSC, osc conforms(oscid) 2 AH if and only if H conforms to osc

We now extend Example 10.17 to exemplify our representation of ordering schemas.

Example 10.19. Consider a hypothesis space SM composed of 8 rules with ids 1, . . . , 8, the hypothesis

schema sc and the hypothesis weightings !1 and !2.

sc1 = h{{h1, h2}, {h1, h3}}, {h4}i

!1 = h[h5 : 6, h7 : �10, h8 : �3], 4i

!2 = h[h5 : 6, h6 : �6, h7 : 1, h8 : �3], 0i

Let OSC = {hsc1, [!1,!2], <i} The meta-level program Mosc(OSC, SM) is then given by the program:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

diff(!1, 1) : -#sum{in h(h5) = 6, in h(h7) = �10, in h(h8) = �3} > �4.

diff(!1,�1) : -#sum{in h(h5) = 6, in h(h7) = �10, in h(h8) = �3} < �4.

diff(!2, 1) : -#sum{in h(h5) = 6, in h(h6) = �6, in h(h7) = 1, in h(h8) = �3} > 0.

diff(!2,�1) : -#sum{in h(h5) = 6, in h(h6) = �6, in h(h7) = 1, in h(h8) = �3} < 0.

osc diff(osc1, D) : - diff(!1, D).

osc diff(osc1, D) : - diff(!2, D), not diff(!1,�1), not diff(!1, 1).

osc diff(osc1, 0)) : - not osc diff(osc1, 1), not osc diff(osc1,�1).

osc conforms(osc1)) : - conforms(sc1), osc diff(osc1, D), D < 0.

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

Msc(SC, SM) is the program:

8
>>>>>><

>>>>>>:

conforms(sc1) : - not not disj(d1), not not disj(d2), not disj(d3).

not disj(d1) : - not in h(h1), not in h(h2).

not disj(d2) : - not in h(h1), not in h(h3).

not disj(d3) : - not in h(h4).

0{in h(h1)}1. . . . 0{in h(h8)}1.

9
>>>>>>=

>>>>>>;

We can use the result of Theorem 10.18 to test which hypotheses conform to the ordering schema.

For example, consider the hypothesis H{1,7}. Msc(SC, SM)[Mosc(OSC, SM) has exactly one answer

set corresponding to the hypothesis, {in h(h1), in h(h7), not disj(d3), conforms(sc1), diff(w1,�1),

diff(w2, 1), osc diff(osc1,�1), osc conforms(osc1)}, which shows that the hypothesis conforms to

both sc1 and osc1.

207

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

10.4 Solving Intermediate Tasks

In each iteration, the ILASP3 algorithm finds an optimal hypothesis with respect to the coverage

constraints computed so far in the iterative cycle. This is done by the procedure solve current task

described in Algorithm 10.5. This procedure simply solves a meta-level program Msolve, representing

the coverage constraints, and extracts the hypothesis and its approximate coverage from the answer

set. Meta-program 10.3 shows the program Msolve.

The program Msolve specifies that each rule in the hypothesis space is either in the hypothesis or not,

and determines which examples can be proved not to be covered, given the schemas and constraints

computed so far. These examples are represented by the uncov predicate. The weak constraints in

this program minimise the sum of the penalties of the examples which are known to be uncovered plus

the length of the hypothesis (i.e. the lower bound score of the hypothesis wrt the coverage constraints).

Meta-program 10.3 (Msolve(CC, SM , E)). Let hB,SM , hE+, E�, Ob, Oc
ii be an ILPnoise

LOAS

task and CC be a set of coverage constraints. Let ALL SC be the set of all hypothesis

schemas that occur in CC and let ALL OSC be the set of all ordering schemas that occur

in CC. Msolve(CC, SM , hE+, E�, Ob, Oc
i) is the program that extends Msc(ALL SC, SM) [

Mocs(ALL OSC, SM) with the following rules:

• uncov(eid) : - not conforms(sc1id), . . . , not conforms(scnid).

for each he, {sc1, . . . , scn}i 2 CC and e 2 E+

• uncov(eid) : - conforms(scid).

for each he, SCi 2 CC, e 2 E� and sc 2 SC

• uncov(oid) : - not osc conform(osc1id), . . . , not osc conform(oscnid).

for each ho, {osc1, . . . , oscn}i 2 CC and o 2 Ob

• uncov(oid) : - osc conform(oscid).

for each ho,OSCi 2 CC, inverse(o) 2 Oc and osc 2 OSC

• :⇠ uncov(eid).
⇥
epen@0, noise(eid)

⇤

for each e 2 E+
[E�

[Ob
[Oc, epen < 1

• : �uncov(eid).

for each e 2 E+
[E�

[Ob
[Oc, epen = 1

• :⇠ in h(Rid).[|R|@0, h length(Rid)]

for each R 2 SM

Theorem 10.20 shows that the procedure solve current task returns an optimal hypothesis wrt the

coverage constraints, if such a hypothesis exists. If no such hypothesis exists then solve current task

208

10.5. ILASP3

Algorithm 10.5

1: procedure solve current task(CC, hB,SM , hE+, E�, Ob, Oc
ii)

2: A = solve(Msolve(CC, SM , hE+, E�, Ob, Oc
i));

3: if A == nil

4: return hnil, nili;
5: end if
6: H = {h 2 SM | in h(hid) 2 A};
7: ApproxCov = {e 2 E+

[E�
[Ob

[Oc
| uncov(eid) 62 A};

8: return hH,ApproxCovi;
9: end procedure

returns hnil, nili. Note that in this case, there is no hypothesis that covers every example with a

finite penalty, and so the task is unsatisfiable.

Theorem 10.20. (proof on page 322)

For any set CC of coverage constraints, and any ILPnoise
LOAS task T :

1. solve current task(CC, T) terminates.

2. If there is no hypothesis H ✓ SM such that Slb(H,T,CC) is finite, then solve current task(CC, T)

returns hnil, nili.

3. If there is a hypothesis H ✓ SM such that Slb(H,T,CC) is finite, then solve current task(CC, T)

returns a pair hH⇤, ApproxCovi, where H⇤ is optimal with respect to CC and

ApproxCov = ApproxCoverage(H,T,CC).

10.5 ILASP3

Algorithm 10.6 formalises our ILASP3 algorithm, which makes use of the methods described in the

chapter so far.

Before the first iteration, there are no coverage constraints and so CC is initialised to be empty.

As there are no coverage constraints, at this point the optimal hypothesis with respect to CC is

also empty, and every example is assumed to be covered by H (hence, the variable ApproxCoverage

is initialised to be the full set of examples). The next step is to use the findRelevantExample

method of ILASP2i, to search for an example that is incorrectly assumed to be covered by H. If

such an example is found, then the approximation of the coverage for H is incorrect, and so the

example is translated into a coverage constraint, which is added to CC. The solve current task

method is then used to search for an optimal hypothesis with respect to CC. If no such hypothesis

exists then the task is unsatisfiable, and the pair hnil, nili is returned. If such a hypothesis does

exist, the solve current task method returns a pair containing the hypothesis and the corresponding

209

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

Algorithm 10.6 ILASP3(T)

1: procedure ILASP3(T)
2: let hB,SM , hE+, E�, Ob, Oc

ii = T
3: CC = ;;H = ;;ApproxCoverage = E+

[E�
[Ob

[Oc

4: eg = findRelevantExample(hB,SM , ApproxCoveragei, H)
5: while eg 6= nil

6: if eg 2 E+
[E�

7: CC.insert(translateExample(T, eg))
8: else if eg 2 Ob

9: CC.insert(translateOrderingExample(T, eg))
10: else
11: CC.insert(translateOrderingExample(T, inverse(eg)))
12: end if
13: hH,ApproxCoveragei = solve current task(CC, T)
14: if H == nil

15: return UNSATISFIABLE;
16: end if
17: eg = findRelevantExample(hB,SM , ApproxCoveragei, H)
18: end while
19: returnH;
20: end procedure

approximation of the coverage with respect to CC. ILASP3 then searches for an example that is

incorrectly assumed to be covered by the new H. This process continues until no such example can

be found. When no such example can be found, the approximation of the coverage for the current H

must be equal to the true coverage of the example. Therefore Slb(H,T,CC) must be equal to S(H,T).

Hence, as for every other hypothesis H 0
2 SM , Slb(H,T,CC)  Slb(H 0, T, CC)  S(H 0, T), there can

be no hypothesis H 0 such that S(H 0, T) < S(H,T). This means that the hypothesis returned by

ILASP3 must be an optimal inductive solution of T .

We now present some theoretical results about the ILASP3 algorithm. Theorem 10.21 shows that

ILASP3 is sound and complete with respect to the optimal inductive solutions of an ILPnoise
LOAS task

and will always terminate. Note that as ILASP3 returns a single optimal solution, rather than the

full set, the completeness is in terms of being guaranteed to find an optimal solution if one exists.

Theorem 10.21. (proof on page 324)

Let T be a well-defined ILPnoise
LOAS task.

1. ILASP3(T) terminates.

2. If T is satisfiable, then ILASP3(T) returns an optimal inductive solution of T .

3. If T is unsatisfiable, then ILASP3(T) returns UNSATISFIABLE.

210

10.6. OPTIONAL FEATURES OF ILASP3

Feature Symbol Enabled by default Notes

Propagation P Yes Can be disabled using the flag �np

Implication I Yes Can be disabled using the flag �ni

Schema generalisation SG Yes Can be disabled using the flag �ng

Maximum translation MT No
Can be enabled using

the flag �� max� translate

Single weak constraint per level SWC Yes Can be disabled using the flag �mwc

Table 10.1: The optional features of ILASP3. For any subset S of {P, I,SG,MT ,SWC}, ILASP3S

denotes ILASP3 with the features in S enabled.

10.6 Optional Features of ILASP3

So far in this chapter we have presented the fundamentals of the ILASP3 algorithm. The implementa-

tion of the system also includes some extra optional features that can be used to further improve the

scalability of ILASP3 on some tasks. Table 10.1 lists the optional features of ILASP3, and explains

how to disable (or enable them) in the implementation of ILASP3.

In the rest of this section we explain the e↵ects of each feature. Most of the features work using

meta-level ASP programs similar to those used throughout the thesis. For brevity, we omit details of

these meta-level programs.

10.6.1 Propagation

The process of translating an example into a set of hypothesis schemas may include some redundant

computation, as the same schema may be computed for di↵erent examples. This extra computational

time could be avoided. The ILASP3 algorithm includes a special feature called propagation that

essentially aims at propagating a schema computed for one example to other examples, so avoiding

re-computation of the same schema.

Once an example has been translated into a set SC of schemas, for each schema sc 2 SC we can

compute the set of other examples e that would give rise to the same schema. For a schema sc to

be computed during the translation of an example e, there must be an interpretation I extending epi

such that for every H ✓ SM conforming to sc, I 2 AS(B [ectx [H). We call such interpretations I

the relevant guaranteed answer sets of sc.

Definition 10.15. Let E be a set of examples, B be a background knowledge, SM be a hypothesis

space and sc be a hypothesis schema. An interpretation I is a relevant guaranteed answer set of sc

wrt E, B and SM i↵ 9e 2 E such that I extends epi and I 2 AS(B [ectx [H) for each H ✓ SM that

conforms to sc.

For any CDPI e such that there is a relevant guaranteed answer set of the schema sc which is also an

accepting answer set of e, we can reuse sc if we need to translate e later in the ILASP3 algorithm.

211

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

When propagation is enabled in ILASP3, it takes place between lines 12 and 13 of Algorithm 10.6. We

test each schema that was found when translating the previous example, to check whether it can be

propagated to any other examples. The result is then stored for use in future iterations; specifically,

when translating an example, we start from the set of previous schemas that guarantee it, rather

than the empty set (in line 2 of Algorithm 10.2). For negative examples, we can also use the schemas

immediately to approximate the coverage: if he, sci is in the set returned by propagate, and e is a

negative example, we know that if sc is conformed to by a hypothesis H, then H does not cover e.

Propagating schemas has two key benefits: firstly, translating later examples will require fewer schemas

to be computed. Secondly, propagation can reduce the number of iterations of the final ILASP3

algorithm (which fully translates one example per iteration), for the following reason. For negative

examples a single schema can have a big impact (as conforming to a single schema can imply that many

negative examples are not covered, and so a large penalty needs to be paid). Without propagation,

many negative examples would need to be translated in order to prove that a certain hypothesis has a

very high penalty, and so the search may not discount this hypothesis for many iterations. Note that

for positive examples, the schemas do not have an immediate e↵ect, as the set of schemas SC found

for an example e may still be partial, and so it is not necessarily the case that any hypothesis that

does not conform to any schema in SC does not cover e (so ILASP3 cannot use these schemas until

e is translated).

10.6.2 Implication

We showed in Chapter 8 that the concept of relevant examples can be used to dramatically increase

the performance of ILASP for tasks with large numbers of non-noisy examples. The main reason

for this improvement is that there may be many examples which are covered (or not covered) for

the same reasons (i.e. by the same classes of hypotheses). When the examples are known not to be

noisy, adding a single example to the set of relevant examples means that it must be covered by any

hypothesis found by the algorithm in future iterations. If other examples are covered by exactly the

same class of hypotheses, then they will not be added to the relevant example set, as they are now

guaranteed to be covered. With noisy examples, this technique of using a set of relevant examples

is not so successful. This is because even when an example is added to the relevant example set,

it does not have to be covered (hypotheses may pay a penalty in order to not cover the example).

Consequently, this may result in adding large numbers of examples to the relevant example set (and

thus wasting time translating many examples into hypothesis schemas).

The implication feature of ILASP3 allows us to “boost” the penalty of a single translated positive

example e (or brave ordering o), in order to avoid translating other positive examples (or brave

orderings) that are not covered by any hypothesis that does not cover e (or o).

Definition 10.16. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii, he, SCi be a coverage

constraint and ex be an example in E+
[Ob. ex is said to imply SC if and only if every hypothesis

212

10.6. OPTIONAL FEATURES OF ILASP3

that covers ex conforms to at least one schema in SC.

For any positive example (or brave ordering) ex that implies a coverage constraint he, SCi, we can

add the coverage constraint hex, SCi to our set of coverage constraints. We do this between lines 12

and 13 in Algorithm 10.6. The advantage of this is that our approximation of coverage considers more

of the examples earlier (we do not necessarily need to wait for a positive example or brave ordering to

be translated to know that it is not covered by a hypothesis). Thus, the ILASP3 algorithm generally

requires fewer iterations with this feature than without it.

Figure 10.1 shows the output of ILASP3 with implication and propagation enabled. ILASP3 was run

with the debug (�d) option, so that it printed the intermediate hypotheses found in each iterations,

along with their expected and actual penalties (the score of the hypothesis minus the length of the

hypothesis). This output shows the power of both advanced features. Consider Iteration 2. The iter-

ation begins with the hypothesis H = {: - edge(V0, V1).} being found. This has length 1 and expected

penalty 0, meaning that given the coverage constraints that have been computed so far, we have no

reason to believe that this hypothesis does not cover every example. However, in reality, there are 93

examples that are not covered by H (this is shown in the output as the unexpected penalty). ILASP3

picks one of these uncovered examples (p63) and translates it. The line that says “Translated p63

into 6 + 71 schemas.”, means that there were already 6 schemas for p63 (which had been propa-

gated to p63 in the first iteration), and 71 new schemas needed to be computed in order to complete

the translation. The final line shows the result of the implication step. The line says that if p63 is not

covered, then none of the examples in {p30, p35, p45, p61, p63, p71, p76, p79, p88, p89, p92, p93} are

covered. This dramatically reduces the number of iterations, as it means that every hypothesis must

either cover p63 or pay the penalty for all 12 examples. This means that in the next iteration, the

computed hypothesis has the expected score of 12 (11 higher than in the previous iteration). In later

iterations, the e↵ect of the propagation step becomes more significant; for example, in iteration 8, the

line “Translated p77 into 154 + 8 schemas.” means that before the iteration, p77 already had

154 schemas which had been propagated from other examples, meaning that only 8 further schemas

needed to be computed to complete the translation of p77. Propagation also has the e↵ect that only

one negative example is fully translated during the whole execution. This is because the schemas found

throughout the execution for the positive examples (and the one fully translated negative example)

are propagated to negative examples and are used immediately.

10.6.3 Schema Generalisation

The schemas computed by ILASP3 are often more specific than is necessary. We illustrate this in

Example 10.22.

Example 10.22. Consider a task with background knowledge B = ;, the hypothesis space SM =

{h1 : p.}. Consider an “empty” CDPI example hh;, ;i, ;i. ILASP3 will compute the translation

{h;, {h1}i, h{{h1}}, ;i} corresponding to the two possible answer sets ; and {p}. The translation means

213

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

%% Iteration 1
%% Found Hypothesis:
%% |H| = 0
%% expected penalty = 0
%% unexpected penalty = 110
%% Adding example: n50

%% Iteration 2
%% Found Hypothesis:
%% :- edge(V0, V1).
%% |H| = 1
%% expected penalty = 0
%% unexpected penalty = 93
%% Adding example: p63
%% Translated p63 into 6 + 71 schemas.
%% I = { p30, p35, p45, p61, p63, p71,

p76, p79, p88, p89, p92, p93 }

%% Iteration 3
%% Found Hypothesis:
%% :- in(V0,V1), in(1,V0).
%% :- node(V0), not reach(V0).
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), in(1,V2).
%% |H| = 10
%% expected penalty = 2
%% unexpected penalty = 50
%% Adding example: p44
%% Translated p44 into 48 + 43 schemas.
%% I = { p44 }

%% Iteration 4
%% Found Hypothesis:
%% :- in(V0,V1), in(1,V0).
%% :- node(V0), not reach(V0).
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), in(1,V2).
%% |H| = 10
%% expected penalty = 3
%% unexpected penalty = 49
%% Adding example: p43
%% Translated p43 into 74 + 11 schemas.
%% I = { p21, p43 }

%% Iteration 5
%% Found Hypothesis:
%% :- in(V0,V1), in(1,V0).
%% :- node(V0), not reach(V0).
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), in(1,V2).
%% |H| = 10
%% expected penalty = 5
%% unexpected penalty = 47
%% Adding example: p17
%% Translated p17 into 120 + 4 schemas.

%% I = { p17, p22, p28, p41, p57 }

%% Iteration 6
%% Found Hypothesis:
%% :- in(V0,V1), in(1,V0).
%% :- node(V0), not reach(V0).
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), in(1,V2).
%% |H| = 10
%% expected penalty = 10
%% unexpected penalty = 42
%% Adding example: p82
%% Translated p82 into 86 + 9 schemas.
%% I = { p18, p82 }

%% Iteration 7
%% Found Hypothesis:
%% :- in(V0,V1), in(1,V0).
%% :- node(V0), not reach(V0).
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), in(1,V2).
%% |H| = 10
%% expected penalty = 12
%% unexpected penalty = 40
%% Adding example: p45
%% Translated p45 into 80 + 13 schemas.
%% I = { p35, p45, p93 }

%% Iteration 8
%% Found Hypothesis:
%% :- edge(V0, V1).
%% |H| = 1
%% expected penalty = 22
%% unexpected penalty = 71
%% Adding example: p77
%% Translated p77 into 154 + 8 schemas.
%% I = { p34, p62, p70, p77 }

%% Iteration 9
%% Found Hypothesis:
%% :- node(V0), not reach(V0).
%% reach(V0) :- in(1,V0).
%% :- in(V0,V1), in(V0,V2), V1 != V2.
%% 0 {in(V0,V1) } 1 :- edge(V0, V1).
%% reach(V1) :- in(V0,V1), reach(V0).
%% |H| = 13
%% expected penalty = 10
%% unexpected penalty = 0

%% Final hypothesis:
:- node(V0), not reach(V0).
reach(V0) :- in(1,V0).
:- in(V0,V1), in(V0,V2), V1 != V2.
0 {in(V0,V1) } 1 :- edge(V0, V1).
reach(V1) :- in(V0,V1), reach(V0).

Figure 10.1: The output of ILASP3 with the two advanced features on an ILPnoise
LOAS task. The target

hypothesis describes what it means to be a Hamiltonian graph.

214

10.7. RELATED WORK

that every hypothesis must either contain h1 or not contain h1. This is equivalent to the translation

{h;, ;i} which accepts all hypotheses.

Overly specific schemas can lead to the translation process taking longer than necessary. If schema

generalisation is enabled then after a schema hD,V i is computed as the translation of an answer set

A, ILASP3 will attempt to remove unnecessary elements of V .

10.6.4 Maximum Translation

When ILASP3 finds that its approximation for the score of the current hypothesis is incorrect, it

translates a single example that it has incorrectly predicted as covered. Once this example has been

translated, ILASP3 searches for another hypothesis and continues. An alternative approach would be

to continue translating examples until the approximation of the score for the current hypothesis is

correct. Note that if this approach is combined with implication, this does not mean translating every

incorrectly predicted example: if two examples e1 and e2 were mispredicted e1 not being covered may

imply that e2 is not covered; hence if e1 is translated first, e2 will not need to be translated1.

10.6.5 Restricting Hypotheses to a Single Weak Constraint at each Priority Level

Unlike the other optional features, this feature changes the hypotheses that can be learned by ILASP3,

restricting hypotheses so that they cannot contain more than one weak constraint at the same level.

This can significantly improve the performance of ILASP3, as it means that checking whether an

ordering schema is conformed to no longer involves computing the optimisation di↵erences at each

level (summing the optimisation di↵erence of each individual weak constraint). Instead we only need to

check whether the optimisation di↵erence of a single weak constraint (plus the optimisation di↵erence

of the weak constraints in the background knowledge at that level) is positive or negative.

10.7 Related Work

XHAIL is a brave induction system that avoids the need to enumerate the entire hypothesis space.

XHAIL has three phases: abduction, deduction and induction. In the first phase, XHAIL uses ab-

duction to find a minimal subset of some specified ground atoms. These atoms, or a generalisation

of them, will appear in the head of some rule in the hypothesis. The deduction phase determines the

set of ground literals which could be added to the body of the rules in the hypothesis. The set of

ground rules constructed from these head and body literals is called a kernel set. The final induction

1
In the current implementation of ILASP3, we have only implemented this feature for positive examples (ILASP3 will

continue translating positive examples until the approximation of the score of the current hypothesis is correct over the

positive examples). In principle, this could be extended to negative examples, but as implication only works for positive

examples, this could lead to needing to translate many more examples.

215

CHAPTER 10. THE ILASP3 ALGORITHM FOR SCALABLE LEARNING FROM NOISY . . .

phase is used to find a hypothesis which is a generalisation of a subset of the kernel set that proves

the examples. The public implementation of XHAIL [BR15b] has been extended to handle noise by

setting penalties for the examples similarly to ILPnoise
LOAS . However, as shown in Example 10.23 XHAIL

is not guaranteed to find an optimal inductive solution of a task.

Example 10.23. Consider the following noisy task, in the XHAIL input format:

p(X) :- q(X, 1), q(X, 2).

p(X) :- r(X).

s(a). s(b). s2(b).

t(1). t(2).

#modeh r(+s).

#modeh q(+s2, +t).

#example not p(a)=50.

#example p(b)=100.

This corresponds to a hypothesis space that contains two facts F1 = r(X), F2 = q(X, Y) (in XHAIL, these

facts are implicitly “typed”, so the first fact, for example, can be thought of as the rule r(X) : - s(X)).

The two examples have penalties 50 and 100 respectively. There are four possible hypotheses: ;, F1,

F2 and F1 [F2, with scores 100, 51, 1 and 52 respectively. XHAIL terminates and returns F1, which

is a suboptimal hypothesis.

The issue is with the first step. The system finds the smallest abductive solution, {r(b)} and as there

are no body declarations in the task, the kernel set contains only one rule: r(b) : - s(b). XHAIL then

attempts to generalise to a first order hypothesis that covers the examples. There are two hypotheses

which are subsets of a generalisation of r(b) (F1 and ;); as F1 has a lower score than ;, XHAIL

terminates and returns F1. The system does not find the abductive solution {q(b, 1), q(b, 2)}, which is

larger than {r(b)} and is therefore not chosen, even though it would eventually lead to a better solution

than {r(b)}.

It should be noted that XHAIL does have an iterative deepening feature for exploring non-minimal

abductive solutions, but in this case using this option XHAIL still returns F1, even though F2 is

a more optimal hypothesis. Even when iterative deepening is enabled, XHAIL only considers non-

minimal abductive solutions if the minimal abductive solutions do not lead to any non-empty inductive

solutions.

In comparison to ILASP3, in some problem domains, XHAIL is more scalable as it does not start by

enumerating the hypothesis space in full. On the other hand, as shown by Example 10.23, XHAIL

is not guaranteed to find the optimal hypothesis, whereas ILASP3 is. ILASP3 also solves ILPnoise
LOAS

tasks, whereas XHAIL solves n(ILPb) tasks, which means that due to the generality results in the

previous chapter ILASP3 is capable of learning programs which are out of reach for XHAIL no matter

what examples are given.

Inspire [KSS17] is an ILP system based on XHAIL, but with some modifications to aid scalability.

The main modification is that some rules are “pruned” from the kernel set before XHAIL’s inductive

phase. Both XHAIL and Inspire use a meta-level ASP program to perform the inductive phase, and the

216

10.7. RELATED WORK

ground kernel set is generalised into a first order kernel set (using the mode declarations to determine

which arguments of which predicates should become variables). Inspire prunes rules which have fewer

than Pr instances in the ground kernel set (where Pr is a parameter of Inspire). The intuition is that

if a rule is necessary to cover many examples then it is likely to have many ground instances in the

kernel. Clearly this is an approximation, so Inspire is not guaranteed to find the optimal hypothesis

in the inductive phase. In fact, as XHAIL is not guaranteed to find the optimal inductive solution of

the task (as it may pick the “wrong” abductive solution), this means that Inspire may be even further

from the optimal. In Chapter 11 we evaluate ILASP3 on the same sentence chunking dataset that

Inspire was evaluated on in [KSS17], and show that ILASP3 achieves a higher F1 score than Inspire.

Summary

In this chapter we have presented the ILASP3 algorithm, which is specifically targeted at learning

ASP programs from noisy examples. In the next chapter, we evaluate the scalability of ILASP3 on a

variety of learning tasks and compare its performance to other ILP systems such as �ILP, OLED and

Inspire.

217

Chapter 11

Evaluation

In this chapter we evaluate the performance of ILASP3, comparing it with previous ILASP systems

and other ILP systems on noisy datasets. Firstly, we reinvestigate the Hamilton Graph and Journey

Preference learning settings from Chapter 8, extended with noise. The value of using these purely

synthetic datasets is that we can control the amount of noise and investigate how the performance of

ILASP3 varies with the amount of noise.

The remaining experiments in this chapter compare the accuracy of ILASP3 with the accuracy of

other algorithms. In Section 11.2, we evaluate ILASP3 on several datasets that have been used to

evaluate other ILP algorithms for learning from noisy data.

Section 11.2.1 compares ILASP3 with OLED [KAP16] on the CAVIAR dataset, which contains data

gathered from a video stream, annotated to indicate the interactions of people in the video. We show

that ILASP’s F1 score compares favourably to OLED’s. Next, in Section 11.2.2 we evaluate ILASP3

on a dataset for sentence chunking, which has been used to evaluate the Inspire algorithm. We show

that the F1 score of the hypotheses learned by ILASP3 is higher than the corresponding F1 score for

Inspire in every experiment.

In Sections 11.2.3 and 11.2.4, we evaluate the accuracy of ILASP3 on two real user preference datasets

(the car preference dataset [ASB+13] and the SUSHI dataset [KKA10]), and show that ILASP3’s

accuracy is higher than that reported in a recent paper [QK17] applying ILP to preference learning.

Finally, in Section 11.2.5, we evaluate ILASP3 on a recent set of definite clause learning problems,

which have been used to evaluate the �ILP [EG18] algorithm. We refute the claims, made in [EG18],

that ILP approaches are unable “to handle noisy, erroneous, or ambiguous data” and that “If the

positive or negative examples contain any mislabelled data, [ILP approaches] will not be able to learn

the intended rule.”

218

11.1. SYNTHETIC DATASETS

11.1 Synthetic Datasets

11.1.1 Hamilton Graphs

In this experiment, we used ILASP3 to learn the definition of what it means for a graph to be

Hamiltonian. For n = 20, 40, . . . , 200, we generated n random graphs of size 1 to 4, half of which were

Hamiltonian. We then labeled the graphs as either positive or negative, where positive indicates that

the graph is Hamiltonian. In this experiment, learning tasks were encoded using the context-dependent

representation (Hamilton B) from Chapter 8.

Comparison Between Di↵erent ILASP Versions

As the ILASP systems are the only systems capable of learning constraints and choice rules, we cannot

compare the performance of ILASP3 with the performance of other ILP systems on this problem. We

can, however, compare ILASP3 to previous ILASP systems. To test the computational time of ILASP3

against ILASP2 and ILASP2i, and to show the e↵ect of the additional features of ILASP3 presented

in Section 10.6, we first ran a small set of experiments on the Hamilton dataset. Table 11.1 shows the

results of these experements1.

Each row in Table 11.1 was generated by running ILASP2, ILASP2i, and 16 variations of the ILASP3

algorithm on a single ILPnoise
LOAS task with 5% noise. With only 20 examples, ILASP2 was the fastest of

the 18, and ILASP2i was faster than each of the ILASP3 algorithms. This demonstrates the expected

result, that for tasks with few examples, where the size of the ILASP2 meta program is not an issue,

ILASP2 returns a solution much quicker than the other algorithms, which perform computations that

are not necessary for such small tasks (e.g. computing the hypothesis schemas). On the other hand, as

the number of examples increased, both ILASP2 and ILASP2i’s computation times increased rapidly,

and in every task with more than 100 examples, both systems timed out (i.e., they did not solve the

tasks within the 30 minute time limit).

The last 16 columns of Table 11.1 show the performance of the di↵erent variations of ILASP3. Im-

plication and propagation on their own (without any other optional features) have a positive e↵ect,

particularly on large tasks; whereas schema generalisation and maximum translation on their own

have a negative e↵ect, showing that they are not well suited to this kind of task. In general, maximum

translation does not work well without implication and propagation enabled, as it can result in many

of the examples being unnecessarily translated, and many extra hypothesis schemas being generated.

In the Hamilton learning setting, after the first iteration, a common hypothesis for ILASP3 to learn is

: - node(X)., which results in all of the positive examples being covered and none of the negative exam-

ples being covered. This means that ILASP3 with maximum translation enabled needs to translate

many of the positive examples, especially if implication is not enabled. In general, schema general-

isation is useful when some atoms in the language of the task are irrelevant to particular examples,

1
The tasks in this table are available at https://www.doc.ic.ac.uk/~ml1909/ILASP/

219

CHAPTER 11. EVALUATION

#examples time/s
2 2i 3 3I 3P 3SG 3MT

20 2.4 9.0 48.0 46.9 17.7 78.5 54.0
40 60.8 156.1 92.5 52.1 28.0 137.9 125.4
60 131.6 226.2 127.5 93.3 42.6 192.2 218.6
80 974.9 1130.5 156.3 102.0 54.3 241.4 300.5
100 542.3 363.1 157.8 96.6 70.6 261.0 394.3
120 - - 212.3 163.9 71.8 335.6 450.6
140 - - 258.4 174.6 99.4 430.2 600.8
160 - - 234.2 144.6 114.0 421.5 654.9
180 - - 280.6 184.9 168.9 456.0 747.7
200 - - 270.6 162.4 120.7 441.7 741.7

#examples time/s
3I,P 3I,SG 3I,MT 3P,SG 3P,MT 3SG,MT

20 18.2 66.6 48.3 31.7 25.1 101.3
40 28.2 93.1 86.7 40.7 32.2 213.7
60 37.5 141.2 122.3 47.9 49.1 354.8
80 48.3 148.9 142.3 58.1 65.4 518.7
100 61.5 166.5 151.3 88.3 84.4 675.1
120 71.8 244.7 176.4 83.4 97.8 731.9
140 94.7 292.8 296.2 107.6 120.9 1061.2
160 78.7 232.3 227.0 112.7 141.4 1147.7
180 153.3 308.7 239.9 176.6 191.0 1330.6
200 99.0 267.9 271.7 126.8 150.8 1340.1

#examples time/s
3I,P,SG 3I,P,MT 3I,SG,MT 3P,SG,MT 3I,P,SG,MT

20 24.2 18.0 83.1 25.9 24.9
40 33.2 30.0 145.1 41.3 41.4
60 44.8 42.4 194.0 55.5 50.1
80 52.2 51.5 226.8 79.0 61.9
100 80.6 71.1 248.4 99.4 85.3
120 73.6 74.4 289.5 101.3 77.8
140 97.4 100.5 486.3 129.5 111.2
160 86.3 95.8 384.5 136.7 107.2
180 153.0 158.1 391.7 200.0 168.6
200 107.7 110.0 461.4 158.8 126.5

Table 11.1: The running times of ILASP2 (extended), ILASP2i (extended) and ILASP3 for Hamilton
problems with 5% noise and varying numbers of examples. “-” represents the case of a time out (where
the system did not return a solution in 30 minutes). Note that we do not test the e↵ect of the “single
weak constraint” feature, as this task does not use weak constraints.

and lead to multiple specific schemas, where one more general schema would be su�cient. In the

Hamilton setting, for every example e, the relevant Herbrand base of B [HT [ectx (where HT is the

220

11.1. SYNTHETIC DATASETS

target hypothesis) only contains atoms that are relevant to whether the example represents a Hamilton

graph. This may mean that not many schemas are actually being significantly generalised, and that

there is a very little positive e↵ect (or no positive e↵ect at all) of using schema generalisation in this

learning setting. The negative e↵ects of schema generalisation (i.e. the extra computation involved

in attempting to generalise the schema) therefore cost more time than is saved by computing more

general schemas.

The negative e↵ects of schema generalisation and maximum translation can also be seen for other

variations of the algorithm – in general, the di↵erent variations perform better on these tasks without

these two features. This di↵erence is much less significant when the features are combined with

propagation, which significantly reduces the number of schemas that are computed, and thus lowers

the negative impact of these two features. For example, in nine out of ten cases, there is less than

ten seconds di↵erence between ILASP3I,P and ILASP3I,P,SG . In contrast, in general the di↵erent

variations perform better with implication and propagation than without.

Both implication and propagation make a significant di↵erence to the computation time as both reduce

the number of hypothesis schemas that need to be computed by ILASP3. Interestingly, although the

ILASP3I,P algorithm performs the best on most tasks, there are some tasks where ILASP3I,P ’s

computation time is very close to ILASP3P ’s (e.g. with 120 and 140 examples). This demonstrates

that for some tasks, although implication might reduce the number of iterations needed, propagation

without implication can be su�cient, as the propagation can make these extra iterations so short that

the process of checking for implications becomes an overhead. This is not always the case however, as

there are some tasks in the table on which ILASP3I,P significantly outperforms ILASP3P (e.g. with

160 and 200 examples).

Hamilton Experiments with Varying Degrees of Noise

In this experiment, we used ILASP3I,P (the fastest variation on our “one-o↵” experiments2) with

varying degrees of noise. We ran three sets of experiments to evaluate the performance of ILASP3I,P

on the Hamilton learning problem with 5%, 10% and 20% of the examples being labeled incorrectly. In

each experiment, an equal number of Hamiltonian graphs and non-Hamiltonian graphs were randomly

generated. n% of the examples were chosen at random to be labeled incorrectly. These n% of examples

were labeled as positive (resp. negative) if the graph was not (resp. was) Hamiltonian. The remaining

examples were labeled correctly (positive if the graph was Hamiltonian; negative if the graph was

not Hamiltonian). Figure 11.1 shows the average accuracy and running time of ILASP3I,P with up

to 200 example graphs. Each experiment was repeated 50 times (with di↵erent randomly generated

examples). In each case, the accuracy was tested by generating a further 1000 graphs and using the

learned hypothesis to classify the graphs as either Hamiltonian or non-Hamiltonian (based on whether

the hypothesis was satisfiable when combined with the representation of the graph).

2
Note that on average, the di↵erent variations a↵ect only the computation time, and not the accuracy of the solution,

as they each return an optimal solution of the task if they terminate.

221

CHAPTER 11. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
g
e
 p

e
rc

e
n
ta

g
e
 a

cc
u
ra

cy

Number of examples

Average accuracy with varying noise

5% noise
10% noise
20% noise

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
g

e
 r

u
n
n

in
g

 t
im

e
 (

s)

Number of examples

Average running time with varying noise

5% noise
10% noise
20% noise

(a) (b)

Figure 11.1: (a) the average computation time and (b) average accuracy of ILASP3I,P for the
Hamilton learning task, with varying numbers of examples, and varying noise.

The experiments show that on average ILASP3I,P is able to achieve a high accuracy (of well over

90%), even with 20% of the examples labeled incorrectly. A larger percentage of noise means that

ILASP3I,P requires a larger number of examples to achieve a high accuracy. This is to be expected,

as with few examples, the hypothesis is more likely to “overfit” to the noise, or pay the penalty of

some non-noisy examples. With large numbers of examples, it is more likely that ignoring some non-

noisy examples would mean not covering others, and thus paying a larger penalty. The computation

time rises in all three graphs as the number of examples increases. This is because larger numbers of

examples are likely to require larger numbers of iterations of the ILASP3I,P algorithm. Similarly, the

more noise in the example, the longer the computation time, as more noise is also likely to mean a

larger number of iterations.

11.1.2 Noisy Journey Preferences

Recall the journey preferences setting from Chapter 8, where the goal is to learn a user’s preferences

from a set of ordered pairs of journeys. In this section, we consider a noisy version of the experiment,

testing how ILASP3I,P,SG,SWC3 performs on tasks with di↵erent percentages of noise and numbers of

examples.

3
In this experiment, ILASP used clingo 5 to solve meta-level ASP programs, with unsatisfiable core optimisation

enabled.

222

11.1. SYNTHETIC DATASETS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
g
e
 a

cc
u
ra

cy

Number of ordering examples

Average accuracy with varying noise

5% noise
10% noise
20% noise

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
g

e
 r

u
n
n

in
g

 t
im

e
 (

s)

Number of ordering examples

Average running time with varying noise

5% noise
10% noise
20% noise

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 a

cc
u

ra
cy

Number of ordering examples

Average accuracy with varying noise

5% noise
10% noise
20% noise
40% noise

(c)

Figure 11.2: (a) and (c) show the average computation time and (b) shows average accuracy of
ILASP3I,P,SG,SWC for the journey preference learning task, with varying numbers of examples, and
varying noise. Each of the point in the graphs is an average of ILASP3I,P,SG,SWC ’s performance on
50 di↵erent tasks.

In each experiment, we selected between 1 and 3 weak constraints from the same hypothesis space as

was used in Chapter 8. For each set of weak constraints, we then ran learning tasks with 0, 20, . . .,

223

CHAPTER 11. EVALUATION

200 examples and with 5%, 10% and 20% noise. The examples for these learning tasks were generated

from the weak constraints such that half of the ordering examples represented journeys J1 and J2 such

that J1 was strictly prefered to J2 given the weak constraints, and the other half represented journeys

such that J1 was equally prefered to J2. Depending on the level of noise, either 5%, 10% or 20% of

the examples were given with the wrong operator (> instead of < and 6= instead of =). In each of

these learning tasks, each ordering example was given a penalty of 1.

Our results (Figure 11.2 (a)) show that even with 20% noise, ILASP3I,P,SG,SWC was able to learn

hypotheses with an average accuracy of over 90%. We found that there was not much di↵erence

between ILASP’s accuracy with 5%, 10% and 20% noise, although the noisier tasks have a higher

computation time (this is shown in Figure 11.2 (b)), as in general ILASP3 requires more iterations

on noisier tasks because more examples need to be translated. Even with 20% noise and 200 ordering

examples, ILASP3I,P,SG,SWC terminated in just over 60 seconds on average.

As the results for 20% noise were so close to the results for 5% noise, we ran a further set of examples

to check that there was some limit to the level of noise where ILASP3 would no longer learn such

an accurate hypothesis4. In this second set of experiments, we tested ILASP with up to 40% noise,

and investigated with 0, 10, . . ., 100 examples. With 40% noise, the accuracy was lower, but we still

achieved an average accuracy of just under 80%.

11.2 Comparisons with Other Algorithms

In addition to our own synthetically generated datasets, we also experimented with using ILASP3 on

several datasets that have previously been used to evaluate other systems. Several of these consist of

“real” data (in contrast to the synthetically generated datasets that we have presented so far). In real

datasets there is no way of knowing what proportion of the examples are noisy, and we do not know

what the “target” hypothesis is. These datasets allow us to evaluate ILASP3 more realistically – in

practical settings, it is unlikely that we would know the target hypothesis (if we did, there would be

no point using a system to learn it), or the proportion of noise.

11.2.1 CAVIAR Dataset

In this experiment we tested ILASP3I on the recent CAVIAR dataset that has been used to evaluate

the ILED [KAP15] and OLED [KAP16] systems, which are extensions of the XHAIL [Ray09] algorithm

aimed at learning Event Calculus [KS86] theories. The dataset contains data gathered from a video

stream. Information such as coordinates of people has been extracted from the stream, and humans

have annotated the data to specify when any pairs of people are interacting. Note that we use ILASP3I

4
If there was no such limit, and we could achieve a high accuracy, even with very high levels of noise, then this would

indicate that our hypothesis space was too restrictive, and it was impossible to learn anything other than an accurate

hypothesis.

224

11.2. COMPARISONS WITH OTHER ALGORITHMS

in this section because all examples lead to exactly one hypothesis schema, and this is unlikely to be

the same hypothesis schema for any other example. For this reason, propagation would be an overhead

that is unlikely to give any gain in performance and schema generalisation is unnecessary.

Specifically, we consider a task from [KAP16], in which the aim is to learn rules to define initiating and

terminating conditions for two people meeting. The background knowledge (Figure 11.3 (a)) of this

task has rules determining whether a fluent (in this case two people meeting) holds at a given time.

This can hold in two cases: either the two people were meeting at the previous timepoint and their

meeting was not terminated at this previous timepoint; or their meeting could have been initiated at

the current timepoint.

In the evaluation of the OLED system, examples were generated for every pair of consecutive time-

points t and t + 1. Each example is a pair hN [At, At+1i, where N is the “narrative” at time t (a

collection of information about the people in the video stream, such as their location and direction),

and Ai is the “annotation” at time i (exactly which pairs of people in the video have been labeled

as meeting). This is very simple to express using context-dependent examples. The context of an

example is simply the narative and annotation of time t together with a set of constraints that enforce

that the meetings at time t are exactly those in the annotation (denoted by the goal predicate). One

such context-dependent example is shown in Figure 11.3 (b).

holdsAt(F,Te) :- initiatedAt(F,Ts), next_time(Ts, Te).

holdsAt(F,Te) :- holdsAt(F,Ts), not terminatedAt(F,Ts), next_time(Ts, Te).

(a)

<p_12440, 1, <<{}, {}>, {

goal(holdsAt(meeting(id0,id1),2)). goal(holdsAt(meeting(id1,id0),2)).

:- holdsAt(meeting(P1,P2),2), not goal(holdsAt(meeting(P1,P2),2)).

:- not holdsAt(meeting(P1,P2),2), goal(holdsAt(meeting(P1,P2),2)).

person(id0). person(id1).

happensAt(walking(id0),1). happensAt(active(id1),1).

holdsAt(meeting(id0,id1),1). holdsAt(meeting(id1,id0),1).

dist(id0,id1,1,36). dist(id1,id0,1,36).

}>>.

(b)

Figure 11.3: (a) An extract from the background knowledge, and (b) a CDPI example for the
CAVIAR dataset.

225

CHAPTER 11. EVALUATION

In total there are 24530 consecutive pairs in the dataset5. We performed 10 fold cross validation

by randomly partitioning the dataset. As there were only 22 timepoints where the group of people

meeting was di↵erent to the timepoint before, we gave a high penalty (of 100) to not covering each of

these examples. E↵ectively this is the same as oversampling this class of examples. If we had given

all examples a penalty of 1, then we would have most likely learned the empty hypothesis, as the 22

examples in a task comprised of many thousands of examples are likely to be treated as noise.

We compare ILASP3I to OLED on the measures of precision, recall and the F1 score6. We achieved a

precision of 0.832 and a recall of 0.853, giving an F1 score of 0.842, compared with OLED’s precision of

0.678 and recall of 0.953, with an average F1 score of 0.792. Our average running time was significantly

higher at 576.3s compared with OLED’s 107s. This is explained by the fact that the OLED system

computes hypotheses through theory revision, iteratively processing examples in sequence to contin-

uously revise its hypothesis. This means that OLED is not guaranteed to find an optimal solution of

a learning task. In contrast, ILASP3I is guaranteed to find an optimal solution of the task.

We note several key di↵erences between our experiments and those reported in [KAP16]. Firstly, to re-

duce the number of irrelevant possible answer sets (which lead to irrelevant schemas, and slow computa-

tion), we put a constraint on the hypothesis space, stating that any rule for

terminatedAt(meeting(V1, V2), T) had to contain holdsAt(meeting(V1, V2), T) in the body, which

ensures that a fluent can only be terminated if it is currently happening. Similarly, any rule for

initiatedAt(meeting(V1, V2), T) had to contain not holdsAt(meeting(V1, V2), T) in the body. OLED

does not employ this constraint, but when processing an example pair of timepoints, only considers

learning a new rule for initiatedAt, for example, if two people are meeting at time t+ 1, but not at

time t.

The second di↵erence in our experiment is that we enumerate the hypothesis space in full. As the

hypothesis space in this task is potentially very large, we placed several “common sense” constraints

on the rules in the hypothesis space; for instance, two people cannot be close to each other at the same

time as being far away from each other (we did not generate rules with both conditions in the body).

In total our hypothesis space contained 3370 rules. OLED does not enumerate the hypothesis space

in full, but uses an approach similar to XHAIL, and derives a “bottom clause” from the background

knowledge and the example. In most cases (unless there is noise in the narrative, suggesting that two

people are both close to and far away from each other) OLED will therefore only consider rules that

respect our “common sense” constraints, as other rules would not be derivable from the background

knowledge and example.

5
We used the data available from http://users.iit.demokritos.gr/~nkatz/OLED-data/caviar.json.tar.gz

6
Let tp, tn, fp, fn represent the number of true positives, true negatives, false positives and false negatives achieved

by a classifier on some test data. The precision of the classifier (on this test data) is equal to
tp

tp+fp
and the recall is

equal to
tp

tp+fn
. The F1 score is equal to

2⇥precision⇥recall

precision+recall
.

226

11.2. COMPARISONS WITH OTHER ALGORITHMS

11.2.2 Sentence Chunking

In [KSS17] the Inspire system was evaluated on a sentence chunking [TKSB00] dataset [AGALG+16].

The task in this setting is to learn to split a sentence into short phrases called chunks. For instance, ac-

cording to the dataset [AGALG+16], the sentence “Thai opposition party to boycott general election.”

should be split into the three chunks “Thai opposition party”, “to boycott” and “general election”.

[KSS17] describes how to transform each sentence into a set of facts consisting of part of speach (POS)

tags. We use each of these sets of facts as the context of a context dependent example. In Inspire

(which is a brave induction system), the facts are all put into the background knowledge. The task is

to learn a predicate split/1, which expresses where sentences should be split.

Note that the Inspire tasks in [KSS17] group the muliple split examples for a chunk into a single

example (using a goodchunk predicate); for example, the background knowledge may contain a rule

goodchunk(1) : - split(1), not split(2), not split(3), split(4) expressing that there is a chunk be-

tween words 1 and 4 of a sentence. It is noted in [KSS17] that this increased performance. This is

because there is no benefit in covering some of the split atoms that make up a chunk, as hypotheses

are tested over full chunks rather than splits. The ILASP task represents this directly with no need

for the goodchunk rules, with the individual split atoms being inclusions and exclusions in the exam-

ple and the penalty being on the full example rather than each individual inclusion and exclusion.

In the ILASP task, the example corresponding to the rule for goodchunk(1) would have the partial

interpretation h{split(1), split(4)}, {split(2), split(3)}i.

In [KSS17], 11-fold cross validation was performed on five di↵erent datasets, with 100 and 500 exam-

ples. As Inspire has a parameter which determines how aggressive the pruning should be (discussed in

Section 10.7), [KSS17] presents many F1 scores. Each entry for Inspire in Table 11.2 is for the pruning

parameter for which Inspire yielded the best F1 score.

Inspire F1 score ILASP F1 score ILASP computation time (s)

100 examples

Headlines S1 73.1 74.2 351.2
Headlines S2 70.7 73.0 388.3
Images S1 81.8 83.0 144.9
Images S2 73.9 75.2 187.2

Students S1/S2 67.0 72.5 264.5

500 examples

Headlines S1 69.7 75.3 1616.6
Headlines S2 73.4 77.2 1563.6
Images S1 75.3 80.8 929.8
Images S2 71.3 78.9 935.8

Students S1/S2 66.3 75.6 1451.3

Table 11.2: The F1 scores for Inspire and ILASP3I,MT on the various sentence chunking tasks. We
also show the average computation time for ILASP3I,MT .

Inspire aims to approximate the optimal inductive solution of the task. The hypothesis can be sub-

optimal for three reasons: firstly, the abductive phase may find an abductive solution which leads

227

CHAPTER 11. EVALUATION

to a suboptimal inductive solution; secondly, Inspire’s pruning may remove some hypotheses from

the hypothesis space; and finally, Inspire was set to interrupt the inductive phase after 1800 seconds,

returning the most optimal hypothesis found so far – in contrast, ILASP3I,MT 7 terminated in less

than 1800s on every task. ILASP3I,MT achieved a higher average F1 score than Inspire on every one

of the ten tasks. This shows that computing the optimal inductive solution of a task can lead to a

higher accuracy than approximating the optimal solution. Although there can certainly be a trade

o↵ between accuracy and computation time, ILASP3I,MT terminates in less than Inspire’s timeout

of 1800s in every case.

Note that for 4 out of the 5 datasets, Inspire performs better with 100 examples than with 500

examples. A possible explanation for this is that with more examples, Inspire does not get as close

to the optimal solution as it does with fewer examples, thus leading to a lower F1 score on the test

data. With 500 examples, ILASP3I,MT does take longer to terminate than it does for 100 examples,

but in 4 out of the 5 cases, ILASP’s average F1 score is higher. This is the expected result: more data

should tend to lead to a better hypothesis.

11.2.3 Car Preference Learning

We tested ILASP3’s ability to learn real user preferences with the car preference dataset from [ASB+13].

This dataset consists of responses from 60 di↵erent users, who were each asked to give their preferences

about 10 cars. They were asked to order each (distinct) pair of cars, leading to 45 orderings. The cars

had 4 attributes, shown in Table 11.3.

Attribute Values

Body type sedan(1), suv(2)
Transmission manual(1), automatic(2)

Engine Capacity 2.5L, 3.5L, 4.5L, 5.5L, 6.2L
Fuel Consumed hybrid(1), non hybrid(2)

Table 11.3: The attributes of the car preference dataset, along with the possible range of values for
each attribute. The integer next to each value is how that value is represented in the data.

Our initial experiment was based on an experiment in [QK17], where the ALEPH [Sri01] system was

used to learn the preferences of each user in the dataset and compared with support vector machines

(SVM) and decision trees (DT). 10-fold cross validation was performed for each of the 60 users on

the 45 orderings. In each fold, 10% of the orderings were omitted from the training data and used to

test the learned hypothesis. The flaw in this approach is that in many cases the omitted examples

will be implied by the rest of the examples (i.e. if a � b and b � c are given as examples it does

not make much sense to omit a � c). For this reason, we also experimented with leaving out all the

examples for a single car in each fold (i.e. every pair that contains that car), and using these examples

7
In this experiment, ILASP used clingo 5 to solve meta-level ASP programs, with unsatisfiable core optimisation

enabled.

228

11.2. COMPARISONS WITH OTHER ALGORITHMS

to test (again leading to 10 folds). Essentially this new task corresponds to learning preferences from

a complete ordering of 9 cars, and then testing the preferences on a new unseen car.

SVM[QK17] A DT[QK17] A ALEPH[QK17] A ILASP3SWC A ILASP3SWC B

0.832 0.747 0.729 0.880 0.863

Table 11.4: The accuracy results of ILASP3SWC compared with the method in [QK17] on the car
preference dataset.

Table 11.4 shows the accuracy of the approach in [QK17] and ILASP3SWC ’s accuracy on the two

versions of the experiment. The easier task (with a random 10% of the orderings omitted) is denoted

as experiment A in the table, and the harder task is denoted as experiment B. In fact, even on the

harder version of the task with all examples for a particular car omitted, ILASP3SWC performs better

than the approaches in [QK17] perform on the easier version of the task.

The following set of weak constraints are an example of the preferences learned by ILASP3SWC in one

of the folds for user 1 (in experiment A):

:~ fuel(2).[1@4, 2]

:~ body(1), transmission(2).[-1@3, 4]

:~ engine_cap(V0).[V0@2, 3, V0]

:~ body(1).[-1@1, 1]

Note that the first term in each weak constraint (after the priority level) is a unique identifier inserted

by ILASP3 to guarantee that all weak constraints in the hypothesis are independent. This set of

weak constraints corresponds to the following set of prioritised preferences (ordered from most to least

important):

• The user prefers hybrid cars to non-hybrid cars.

• The user likes automatic sedans.

• The user would like to minimise the engine capacity of the car.

• The user prefers sedans to SUVs.

The noise in this experiment comes from the fact that some of the answers given by participants in

the survey may contradict other answers. Some participants gave inconsistent orderings (breaking

transitivity) meaning that there is no set of weak constraints that cover all of the ordering examples.

229

CHAPTER 11. EVALUATION

11.2.4 SUSHI Preference Learning

Another dataset for preference learning is the SUSHI dataset [KKA10]. The dataset is comprised of

peoples’ preference orderings over di↵erent types of sushi. Each type of sushi has several attributes,

which are described in Table 11.5.

Attribute Values

Style maki(0), non maki(1)
Major group seafood(0), non seafood(1)
Minor group 0, . . . , 11

Oiliness [0, 4]
Frequency Eaten [0, 3]
Normalised Price [0, 5]
Frequency Sold [0, 1]

Table 11.5: The attributes of the SUSHI preference dataset, along with the possible range of values
for each attribute.

There is a mix of categorical and continuous attributes. In the language bias for our experiments

(see Appendix A), the categorical attributes are used as constants, whereas the continuous attributes

are variables that can be used as the weight of the weak constraint. This allows weak constraints to

express that the continuous attributes should be minimised or maximised. An example of a hypothesis

learned by ILASP is as follows:

:~ minor_group(8).[1@5, 2]

:~ minor_group(7).[1@4, 1]

:~ minor_group(3).[1@3, 5]

:~ value(oil,V0), minor_group(1).[V0@2, 3, V0]

:~ value(oil,V0).[-V0@1, 4, V0]

This set of weak constraints corresponds to the following set of prioritised preferences (ordered from

most to least importance):

• This person does not like sushi which is of minor group 8 (this corresponds to “other seafood”).

• This person does not like sushi which is of minor group 7 (this corresponds to “roe”).

• This person does not like sushi which is of minor group 3 (this corresponds to “tare”).

• This person prefers sushi which is of minor group 1 (this corresponds to “akami”) when it is less

oily.

• This person likes all other types of sushi to be as oily as possible.

230

11.2. COMPARISONS WITH OTHER ALGORITHMS

The dataset was constructed from a survey in which people were asked to order 10 di↵erent types

of sushi. This ordering leads to 45 ordering examples per person. Our experiment is based on a

similar experiment in [QK17]. For each of the first 60 people in the dataset we perform 10-fold cross

validation, omitting 10% of the orderings in each fold. This experiment su↵ers from the same flaw as

Experiment A on the car dataset in that some of the omitted examples may be implied by the training

examples, but we give the results for a comparison to [QK17]. As shown in Table 11.6, ILASP3I,P,SWC

achieved an average accuracy of 0.84, which compares favourably to each result from [QK17].

SVM[QK17] DT[QK17] Aleph[QK17] ILASP3

0.76 0.81 0.78 0.84

Table 11.6: The average accuracy results of ILASP3I,P,SWC compared with the methods used
in [QK17] on the sushi preference dataset.

Although in this experiment each participant gave a consistent total ordering of the 10 types of sushi,

it might be the case that there is no hypothesis in the hypothesis space that covers all of the examples.

This could be the case when we are not modelling a feature of the sushi that the participant considers

to be important. For this reason, we treated this as a noisy learning setting, and used ILASP3I,P,SWC

to maximise the coverage of the examples.

11.2.5 Comparison to �ILP

Although the work in this thesis concerns learning ASP programs from noisy examples, work has

been done in the area of extending definite clause learning to handle noisy examples (for example,

[SJ93, Sri01, OB10]).

A recent paper [EG18] claims that ILP systems can not handle noisy data. In order to learn from

noisy data, [EG18] introduces the �ILP algorithm, based on artificial neural networks. It demonstrates

that �ILP is able to achieve a high accuracy even with a large proportion of noise in the examples.

In [EG18], �ILP is evaluated on six synthetic datasets, and the noise is varied from 0% to 90%. In

these experiments, we investigated the performance of ILASP3 on five of these six datasets8. In the

original experiments, examples were atoms, and noise corresponded to swapping positive and negative

examples. In each of our tasks, we ensured that the hypothesis space was such that for each H ✓ SM ,

B [H [ectx was stratified for each example e. This allowed atomic examples to be represented as

(positive) partial interpretations – a positive example e was represented as a partial interpretation

h{e}, ;i, and a negative example e was represented as a partial interpretation h;, {e}i. Note that

each of the atomic examples must be represented as a separate partial interpretation example, as the

penalties of examples must be separate.

The language bias of �ILP is more prescriptive than ILASP’s in the overall structure of the hypothesis;

for example, it forces a maximum of two rules per learned predicate, and these two rules have to

8
The authors of [EG18] provided us with the training and test data for these five problems.

231

CHAPTER 11. EVALUATION

conform to given rule templates, which state how many existential variables are allowed in the rules,

and whether the rule is allowed to use learned predicates in the body. �ILP also puts an upper

bound of two literals in the body of any rule in the hypothesis. Technically, this does not restrict the

expressivity of what can be learned, providing the language bias allows su�cient predicate invention,

since any definite rule can be translated into a set of definite rules with at most two body literals

by using extra predicates. ILASP on the other hand can be restrictive on the structure of individual

rules in the hypothesis space (specifying the number of times a predicate can appear in the body of a

single rule, or the type of certain variables). Due to the di↵erences in language biases used by ILASP

and �ILP, the hypothesis spaces of the two systems are not equivalent. The ILASP language biases

for each of the five tasks are in Appendix A.

Due to the imbalance of positive and negative examples in many of the tasks, we weight the positive

examples at w⇥|E�
|/(|E+

|+|E�
|) and the negative examples at w⇥|E+

|/(|E+
|+|E�

|), where in this

experiment w is 100. This essentially specifies the scoring function S(H,T), which is used by ILASP3

to choose between potential hypotheses. The weight for each example class (positive or negative) is

equal to w multiplied by the proportion of the whole set of examples which are in the other class. This

“corrects” any imbalance between positive and negative examples (i.e. the penalty for not covering

a certain proportion of the positive examples is the same as the penalty for not covering the same

proportion of negative examples). The constant w can be thought of as the di↵erence in importance

between the hypothesis length and the number of examples covered. In this these experiments we

chose 100, as it is a high enough number to ensure that coverage is considered far more important

than hypothesis length.

Figure 11.4 shows the mean squared error of the two systems. The results for �ILP are taken from

[EG18]. The results in Figure 11.4 show that in most tasks ILASP3I,P,SG achieves similar results to

�ILP in the range of 0% to 40%. However, at the other end of the scale (with more than 50% noise),

there are some tasks where ILASP3I,P,SG finds hypotheses with close to 100% error, where �ILP’s

error is much lower (less than 20% in the “member” problem). We would argue that when the noisy

examples outnumber the correctly labeled examples, the learner should start learning the negation

of the target hypothesis; for instance, in the case of “less than”, ILASP3I,P,SG correctly learned the

“greater than or equal to” relation. This corresponds to the following definition of p:

p(V0, V0) :- succ(V0, V1). % succ/2 is the successor relation.

p(V1, V1) :- succ(V0, V1).

p(V1, V2) :- succ(V0, V1), p(V0, V2).

We would argue that the ideal outcome of these kinds of experiments, where the proportion of noise

is varied, is that the learner achieves close to 0% error until around 50% noise and close to 100% error

thereafter. This is roughly what seems to happen for ILASP3I,P,SG in the “predecessor”, “less than”,

“member” and “undirected edge” experiments. In “predecessor”, the graph is less symmetric, with

the “crossover” from low to high error occurring later. This is likely because the hypothesis for “not

232

11.2. COMPARISONS WITH OTHER ALGORITHMS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
g
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Noise level

Predecessor

ILASP3
dILP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
g
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Noise level

Less than

ILASP3
dILP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
g
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Noise level

Member

ILASP3
dILP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
g
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Noise level

Connected

ILASP3
dILP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
g
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Noise level

Undirected Edge

ILASP3
dILP

Figure 11.4: The average mean squared error of �ILP and ILASP3I,P,SG on five synthetic datasets
from [EG18].

233

CHAPTER 11. EVALUATION

predecessor” is longer than the hypothesis for “predecessor”. The failure of �ILP to get close to 100%

error in many of the tasks (for example in the “member” task, �ILP has an error of less than 20%

with the noise level at 90%) indicates that the negation of the target hypothesis is not representable

given the language bias used by �ILP in these experiments. In some cases (such as “member”), this

is most likely because the negation of the concept requires negation as failure (which is not supported

by �ILP), but in others such as “less than”, the negation of the target concept is expressible without

negation as failure.

Summary

In this chapter we have evaluated ILASP3 on various datasets with noisy examples. We used several

synthetic datasets to show that ILASP3 can learn even in the presence of high proportions of data

that is inconsistent with the target hypothesis. We have also tested ILASP3’s performance on several

datasets used by other ILP systems aimed at learning under the answer set semantics, one ILP system

aimed at preference learning, and one system for definite clause learning.

234

Chapter 12

Conclusion

The goal we set at the beginning of this work was to design a framework and learning algorithm

that enables the learning of general ASP programs. We have shown that pre-existing frameworks and

systems for learning under the answer set semantics are not general enough to learn ASP constructs

such as choice rules or hard and weak constraints.

The contributions in this thesis fall into two categories. Firstly, we have extended the theoretical work

on ILP under the answer set semantics, both with new learning frameworks, and with a new notion

of the generality of a learning framework. Secondly, we have designed and implemented several new

algorithms for learning ASP programs and evaluated them on a collection of synthetic and real-world

datasets to demonstrate their accuracy and computational performance. We have shown that our

algorithms are able to learn highly accurate hypotheses, from both non-noisy and noisy data, and that

our ILASP2i and ILASP3 algorithms are highly scalable with respect to the number of examples on

non-noisy and noisy learning tasks, respectively.

Theoretical Contributions

We have introduced a novel set of frameworks for learning ASP programs. They are the first frame-

works that are capable of learning any ASP program consisting of normal rules, choice rules and hard

constraints, up to strong equivalence. We are also able to learn weak constraints, and have shown

that this allows us to bring the advantages of ILP to the field of preference learning.

We have introduced three novel measures of generality, based on the notion of distinguishability. For

each of the three measures D, we have shown that the following orderings of generality hold:

• D(ILPb) ✓ D(ILPsm) ⇢ D(ILPLAS) ⇢ D(ILPLOAS) ⇢ D(ILP context
LOAS)

• D(ILPc) ⇢ D(ILPLAS)

235

CHAPTER 12. CONCLUSION

This shows that ILP context
LOAS is the most general of the six frameworks, with respect to each of the three

measures. Although each of our new frameworks (ILPLAS , ILPLOAS and ILP context
LOAS) is more general

than the previous frameworks (ILPb, ILPsm and ILPc), we have also shown that this does not come

with any additional price to pay in terms of computational complexity when compared with cautious

induction (which, among the previous frameworks, is the one with highest complexity). For each of

the three decision problems considered in Section 4.5, we have shown that the decision problem for

ILP context
LOAS is in the same complexity class as the decision problem for ILPc.

Practical Contributions

We have developed four new algorithms for learning ASP. The first new algorithm, ILASP1, showed the

feasibility of our approach to learning ASP programs, although it had several scalability issues. These

were addressed by ILASP2 and ILASP2i, which perform significantly better on tasks with negative

examples and large numbers of examples, respectively. The first three algorithms were targeted at

learning from non-noisy examples. In practice, however, examples can be noisy, and although ILASP2

and ILASP2i can be extended to solve noisy learning tasks, they are not well suited to do so. We

therefore introduced the ILASP3 algorithm, which is specifically targeted at learning from noisy data

and takes a very di↵erent approach, based on a notion of approximate coverage expressed through

hypothesis schemas. We have shown that all of these algorithms are sound and complete with respect

to the optimal inductive solutions of an ILP context
LOAS task (or ILPnoise

LOAS task in the case of ILASP3),

and are guaranteed to terminate provided the task is well-defined.

Through our evaluation, we have shown that the ILASP2i algorithm (on non-noisy tasks) and the

ILASP3 algorithm (for noisy tasks) scale well with respect to the number of examples, both on

synthetic and real datasets. As there are no other systems which can solve ILP context
LOAS tasks, a direct

comparison with related systems is di�cult. For example, many of the other systems can only solve

brave induction tasks. However, we have tested ILASP3 on five datasets that have been used for

evaluating other ILP systems. None of these datasets require the full expressive power of ILP context
LOAS ,

but nonetheless in most cases ILASP3 is still able to perform favourably compared to the other systems.

12.1 Completeness

In addition to the theoretical di↵erences in the learning framework used by the ILASP algorithms and

the simpler frameworks used by other ILP algorithms, there is a major di↵erence in ILASP’s approach

compared to other algorithms. Each of the ILASP algorithms presented in this thesis is sound and

complete with respect to the optimal inductive solutions of an ILP context
LOAS task. This means that they

are guaranteed to return an optimal inductive solution (if the task is satisfiable). In practical settings,

ILASP’s termination depends on the resources available (these are computation time and memory).

236

12.1. COMPLETENESS

Many ILP algorithms (e.g. Progol 5, Aleph, XHAIL, Inspire) are not complete, and are only sound in

the sense that they return an inductive solution (with no guarantee on the optimality of this solution).

Some of these algorithms do have a notion of hypothesis “compression”, but they are not guaranteed

to find the most compressed hypothesis. XHAIL, for instance, does compute the “locally” optimal

inductive solution with respect to its Kernel set, but this may not be the “globally” optimal solution.

Similarly, Inspire computes the optimal solution of the pruned Kernel. For this reason, we say that

these algorithms return approximations of the optimal solution.

Computing the optimal inductive solution of a task is certainly a more computationally expensive task

than finding an arbitrary inductive solution, so the obvious question is whether striving for optimality

is really worth it. We would argue that it is, as the results in Chapter 11 have proved that ILASP

can achieve a higher accuracy than the current approximate systems. The fact that ILASP’s accuracy

results are often better than those achieved by approximate systems would seem to indicate that there

is an advantage to finding the optimal inductive solution, in that this solution may be of higher quality

than sub-optimal inductive solutions.

In some larger scale applications, there is likely to be a trade-o↵ between accuracy and scalability of

the approach; however, a major problem with the current approximate systems is that they have no

way of knowing how far their approximation is from the true optimal solution of the task. It would

be possible to extend the ILASP3 approach to stop after finding the first hypothesis whose score was

known to be within some threshold of the optimal score. In each iteration the lower bound score of

the current hypothesis Slb is less than or equal to the score of the optimal inductive solution. So if

a hypothesis is found whose true score minus the lower bound score is below the threshold, it could

be returned. However, this is outside of the scope of this thesis, which has presented algorithms for

finding optimal solutions.

12.1.1 Predicate Invention

One of the challenging aspects of ILP is predicate invention, where a predicate that does not occur in

the background knowledge or examples must be learned. The ILASP algorithms support prescriptive

predicate invention, where the structure (predicate name and arity) of any invented predicates are

specified in the language bias of the learning task.

One way of supporting automatic predicate invention, where invented predicates are not specified in

the mode bias is to use iterative deepening over the number of invented predicates that are permitted.

In each iteration, further invented predicates are added to the mode bias, until the task becomes

satisfiable. Essentially, each iteration involves calling a prescriptive predicate invention algorithm. In

principle, this prescriptive predicate invention algorithm could be any one of the ILASP algorithms,

thus enabling automatic predicate invention in ILASP.

There are two main reasons why we have chosen not to implement this as part of the ILASP systems.

Firstly, it can be achieved trivially, with a wrapper outside of the ILASP systems. More fundamentally,

237

CHAPTER 12. CONCLUSION

the approach is not guaranteed to find an optimal solution to the task, as the optimal inductive solution

for the first satisfiable task is always returned (there may be shorter solutions of tasks that allow further

invented predicates). In non-noisy settings, the iterative deepening approach will eventually converge

on a correct hypothesis if it is given su�cient examples – for any incorrect hypothesis there is a counter

example, meaning that there is a set of examples that rules out any hypothesis that uses fewer invented

predicates than the target hypothesis; i.e. if 5 invented predicates are required, it should be possible

to construct examples such that no hypothesis with fewer than 5 invented predicates satisfies every

example.

The natural extension of the iterative deepening approach in a noisy setting is to continue adding

invented predicates until there is a solution that covers a certain proportion of the examples. The

issue with this is that there may be exceptional kinds of examples that only occur in rare settings,

but require extra predicate invention. If the stopping criterion of the system is that a hypothesis is

found that covers 95% of the examples, but the exceptional examples only occur 1% of the time, no

matter how many examples are given the correct hypothesis is unlikely to be learned (even though it

is within the full hypothesis space of the system).

In such noisy tasks, the trade-o↵ between using an iterative deepening approach and using ILASP

directly is similar to the trade-o↵ between complete and approximate systems discussed in the previous

section. If the correct solution is within the hypothesis space, and su�cient examples are given, each

of the ILASP algorithms will return a solution that is equivalent to the correct solution (computational

resources permitting). On the other hand, iterative deepening approaches may be more scalable, but

may also return sub-optimal solutions, no matter how many examples are given.

12.2 Future Work

In this thesis, we have made significant progress towards a scalable approach to learning ASP programs.

We have shown that our ILASP algorithms are scalable with respect to the number of examples, even

for noisy tasks. However, none of the current ILASP algorithms scales well with the size of the

hypothesis space. The main reason for this scalability issue is that each of the ILASP algorithms

begins by computing the hypothesis space in full. The next step of future work, will be to design a

new version of the ILASP algorithm that only computes the parts of the hypothesis space that are

necessary to solve the task.

Other future work may include the expansion of the subset of ASP that is considered by ILASP.

Including constructs such as (stratified) summing aggregates and conditional literals would not in

principle pose any greater challenge for the algorithms, beyond extending the meta-level programs

used by the ILASP algorithms (and dealing with the potential increase in the size of the hypothesis

spaces). However, they do introduce some interesting theoretical questions; for instance, what is the

“length” of a rule containing a summing aggregate or a conditional literal? And, how can we generalise

mode declarations to allow the expression of these wider hypothesis spaces?

238

12.2. FUTURE WORK

In our current ILASP algorithms, we have already slightly diverged from a traditional view of hy-

pothesis “length” (i.e. counting the literals), in our calculation of the length of hypotheses containing

choice rules. Before the computation of the length of a choice rule, the aggregate in the head of the

rule is first converted into disjunctive normal form. The intuition behind this is that a choice rule that

has a larger number of disjuncts leads to more possibilities, and is therefore less compressed than a

choice rule with fewer possibilities. This is linked to the number of potential answer sets of the choice

rule. It may be that other measures of a program, such as the number of even and odd loops in the

program (which is also linked to the number of answer sets of the program) give a better measure of

hypothesis compression than simply counting the number of literals. The motivation of exploring more

advanced compression metrics in future work is twofold: firstly, these metrics may allow for the defi-

nition of hypothesis length for other constructs, such as conditional literals and summing aggregates;

and secondly, they may lead to better quality hypotheses.

239

Bibliography

[ACBR13] Duangtida Athakravi, Domenico Corapi, Krysia Broda, and Alessandra Russo. Learn-

ing through hypothesis refinement using answer set programming. In International

Conference on Inductive Logic Programming, pages 31–46. Springer, 2013.

[ADF+13] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.

WASP: A native ASP solver based on constraint learning. In International Conference

on Logic Programming and Nonmonotonic Reasoning, pages 54–66. Springer, 2013.

[AGALG+16] Eneko Agirre, Aitor Gonzalez Agirre, Inigo Lopez-Gazpio, Montserrat Maritxalar, Ger-

man Rigau Claramunt, and Larraitz Uria. Semeval-2016 task 2: Interpretable semantic

textual similarity. In SemEval-2016 Task 2: Interpretable semantic textual similarity.

SemEval-2016. 10th International Workshop on Semantic Evaluation; 2016 Jun 16-

17; San Diego, CA. Stroudsburg (PA): ACL; 2016. p. 512-24. ACL (Association for

Computational Linguistics), 2016.

[AKM07] Marta Arias, Roni Khardon, and Jérôme Maloberti. Learning horn expressions with

logan-h. Journal of Machine Learning Research, 8(Mar):549–587, 2007.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Information

and computation, 75(2):87–106, 1987.

[ASB+13] Ehsan Abbasnejad, Scott Sanner, Edwin V Bonilla, Pascal Poupart, et al. Learning

community-based preferences via dirichlet process mixtures of gaussian processes. In

IJCAI, pages 1213–1219, 2013.

[Ath15] Duangtida Athakravi. Inductive logic programming using bounded hypothesis space.

PhD thesis, Imperial College London, 2015.

[BBD+04] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David Poole.

Cp-nets: A tool for representing and reasoning with conditional ceteris paribus prefer-

ence statements. J. Artif. Intell. Res.(JAIR), 21:135–191, 2004.

[BDR98] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision

trees. Artificial intelligence, 101(1):285–297, 1998.

240

BIBLIOGRAPHY

[BDRS15] Gerhard Brewka, James P Delgrande, Javier Romero, and Torsten Schaub. asprin:

Customizing answer set preferences without a headache. In AAAI, pages 1467–1474,

2015.

[BNT03] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Answer set optimization.

In IJCAI, volume 3, pages 867–872, 2003.

[BR15a] Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by

searching the clause space. Theory and Practice of Logic Programming, 15(02):169–212,

2015.

[BR15b] Stefano Bragaglia and Oliver Ray. Nonmonotonic learning in large biological networks.

In Inductive Logic Programming, pages 33–48. Springer, 2015.

[Bra99] Ivan Bratko. Refining complete hypotheses in ILP. In International Conference on

Inductive Logic Programming, pages 44–55. Springer, 1999.

[CFG+13] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland

Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub.

Asp-core-2 input language format, 2013.

[Cla77] Keith L Clark. Negation as failure. Logic and data bases, 1:293–322, 1977.

[Cor12] Domenico Corapi. Nonmonotonic inductive logic programming as abductive search. PhD

thesis, Imperial College London, 2012.

[CR11] Domenico Corapi and Alessandra Russo. ASPAL. proof of soundness and completeness.

Technical report, Technical Report DTR11-5, Department of Computing, Imperial Col-

lege, London, 2011.

[CRL10] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming as

abductive search. In ICLP (Technical Communications), pages 54–63, 2010.

[CRL12] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming in

answer set programming. In Inductive Logic Programming, pages 91–97. Springer, 2012.

[DJJT01] Mehdi Dastani, Nico Jacobs, Catholijn M Jonker, and Jan Treur. Modeling user pref-

erences and mediating agents in electronic commerce. In Agent Mediated Electronic

Commerce, pages 163–193. Springer, 2001.

[DR97] Luc De Raedt. Logical settings for concept-learning. Artificial Intelligence, 95(1):187–

201, 1997.

[DRB+16] Stanislav Dragiev, Alessandra Russo, Krysia Broda, Mark Law, and Rares Turliuc. An

abductive-inductive algorithm for probabilistic inductive logic programming. In 26th

International Conference on Inductive Logic Programming (Short papers), 2016.

241

BIBLIOGRAPHY

[DRD97a] Luc De Raedt and Luc Dehaspe. Clausal discovery. Machine Learning, 26(2):99–146,

1997.

[DRD97b] Luc De Raedt and Luc Dehaspe. Learning from satisfiability. In Ninth Dutch Conference

on Artificial Intelligence (NAIC’97), pages 303–312, 1997.

[DRK04] Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming. In

International Conference on Algorithmic Learning Theory, pages 19–36. Springer, 2004.

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog

and its application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.

[DRT10] Luc De Raedt and Ingo Thon. Probabilistic rule learning. In International Conference

on Inductive Logic Programming, pages 47–58. Springer, 2010.

[DRVL95] Luc De Raedt and Wim Van Laer. Inductive constraint logic. In Algorithmic Learning

Theory, pages 80–94. Springer, 1995.

[EG95] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic pro-

gramming: Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3-

4):289–323, 1995.

[EG18] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.

Journal of Artificial Intelligence Research, 61:1–64, 2018.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set program-

ming. AI Magazine, 37(3):53–68, 2016.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set program-

ming: A primer. In Reasoning Web. Semantic Technologies for Information Systems,

pages 40–110. Springer, 2009.

[FH03] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking.

In Machine Learning: ECML 2003, pages 145–156. Springer, 2003.

[FH10] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning: An introduction. In

Preference learning, pages 1–17. Springer, 2010.

[Fit02] Melvin Fitting. Fixpoint semantics for logic programming a survey. Theoretical com-

puter science, 278(1-2):25–51, 2002.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of re-

cursive aggregates in answer set programming. Artificial Intelligence, 175(1):278–298,

2011.

242

BIBLIOGRAPHY

[GAG13] Joshua T Guerin, Thomas E Allen, and Judy Goldsmith. Learning cp-net preferences

online from user queries. In International Conference on Algorithmic DecisionTheory,

pages 208–220. Springer, 2013.

[GHH01] Ben Geisler, Vu Ha, and Peter Haddawy. Modeling user preferences via theory refine-

ment. In Proceedings of the 6th international conference on Intelligent user interfaces,

pages 87–90. ACM, 2001.

[GK14] Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning, and the design

of intelligent agents: The answer-set programming approach. Cambridge University

Press, 2014.

[GKK+10] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten

Schaub, and Sven Thiele. A user’s guide to gringo, clasp, clingo, and iclingo. 2010.

[GKK+11] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.

Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):107–

124, 2011.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-

driven answer set solving. In IJCAI, volume 7, pages 386–392, 2007.

[GKS11] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer

set programming. Theory and Practice of Logic Programming, 11(4-5):821–839, 2011.

[GKS13] M. Gebser, B. Kaufmann, and T. Schaub. Advanced conflict-driven disjunctive answer

set solving. In F. Rossi, editor, Proceedings of the Twenty-theird International Joint

Conference on Artificial Intelligence (IJCAI’13), pages 912–918. IJCAI/AAAI, 2013.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-

ming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[Hor12] Tomáš Horváth. A model of user preference learning for content-based recommender

systems. Computing and informatics, 28(4):453–481, 2012.

[IK97] Katsumi Inoue and Yoshimitsu Kudoh. Learning extended logic programs. In IJCAI

(1), pages 176–181, 1997.

[IRS14] Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation tran-

sition. Machine Learning, 94(1):51–79, 2014.

[Joa02] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 133–142. ACM, 2002.

243

BIBLIOGRAPHY

[KAP15] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of

event definitions with inductive logic programming. Machine Learning, 100(2-3):555–

585, 2015.

[KAP16] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Online learning of event

definitions. Theory and Practice of Logic Programming, 16(5-6):817–833, 2016.

[KHM05] Hideto Kazawa, Tsutomu Hirao, and Eisaku Maeda. Order svm: a kernel method for

order learning based on generalized order statistics. Systems and Computers in Japan,

36(1):35–43, 2005.

[KKA10] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and empirical

comparison of object ranking methods. In Preference learning, pages 181–201. Springer,

2010.

[Kor12] Frédéric Koriche. Relational networks of conditional preferences. Machine learning,

89(3):233–255, 2012.

[KS86] R Kowalski and M Sergot. A logic-based calculus of events. New generation computing,

4(1):67–95, 1986.

[KSS17] Mishal Kazmi, Peter Schüller, and Yücel Saygın. Improving scalability of inductive

logic programming via pruning and best-e↵ort optimisation. Expert Systems with Ap-

plications, 87:291–303, 2017.

[Lif08] Vladimir Lifschitz. Twelve definitions of a stable model. In ICLP, volume 5366, pages

37–51. Springer, 2008.

[LMS03] Inês Lynce and Joao Marques-Silva. The e↵ect of nogood recording in dpll-cbj sat

algorithms. In Recent Advances in Constraints, pages 144–158. Springer, 2003.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona

Perri, and Francesco Scarcello. The DLV system for knowledge representation and

reasoning. ACM Transactions on Computational Logic (TOCL), 7(3):499–562, 2006.

[LRB14] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set

programs. In Logics in Artificial Intelligence - 14th European Conference, JELIA 2014,

Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, pages 311–325, 2014.

[LRB15a] Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer

set programming. Theory and Practice of Logic Programming, 15(4-5):511–525, 2015.

[LRB15b] Mark Law, Alessandra Russo, and Krysia Broda. Simplified reduct for choice rules in

ASP. Technical report, Tech. Rep. DTR2015-2, Imperial College of Science, Technology

and Medicine, Department of Computing, 2015.

244

BIBLIOGRAPHY

[LRB16] Mark Law, Alessandra Russo, and Krysia Broda. Iterative learning of answer set pro-

grams from context dependent examples. Theory and Practice of Logic Programming,

16(5-6):834–848, 2016.

[LRB18a] Mark Law, Alessandra Russo, and Krysia Broda. The complexity and generality of

learning answer set programs. Artificial Intelligence, 259:110–146, 2018.

[LRB18b] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set

programs from noisy examples. Advances in Cognitive Systems, 2018.

[LRS97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable models:

Unfounded sets, fixpoint semantics, and computation. Information and computation,

135(2):69–112, 1997.

[LT94] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In ICLP, volume 94,

pages 23–37, 1994.

[LXW+14] Juntao Liu, Yi Xiong, Caihua Wu, Zhijun Yao, and Wenyu Liu. Learning conditional

preference networks from inconsistent examples. IEEE transactions on knowledge and

data engineering, 26(2):376–390, 2014.

[MDRP+12] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi

Inoue, and Ashwin Srinivasan. ILP turns 20. Machine Learning, 86(1):3–23, 2012.

[ML13] Stephen Muggleton and Dianhuan Lin. Meta-interpretive learning of higher-order

dyadic datalog: Predicate invention revisited. In Proceedings of the Twenty-Third in-

ternational joint conference on Artificial Intelligence, pages 1551–1557. AAAI Press,

2013.

[MLPTN14] Stephen H Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad.

Meta-interpretive learning: application to grammatical inference. Machine Learning,

94(1):25–49, 2014.

[MSTN08] Stephen H Muggleton, José Carlos Almeida Santos, and Alireza Tamaddoni-Nezhad.

Toplog: ILP using a logic program declarative bias. In International Conference on

Logic Programming, pages 687–692. Springer, 2008.

[MT99] Victor W Marek and Miroslaw Truszczyński. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm, pages 375–398. Springer,

1999.

[Mue14] Erik T Mueller. Commonsense reasoning: An event calculus based approach. Morgan

Kaufmann, 2014.

245

BIBLIOGRAPHY

[Mug91] Stephen Muggleton. Inductive logic programming. New generation computing, 8(4):295–

318, 1991.

[Mug95] Stephen Muggleton. Inverse entailment and progol. New generation computing, 13(3-

4):245–286, 1995.

[MV96] Lionel Martin and Christel Vrain. A three-valued framework for the induction of general

logic programs. Advances in Inductive Logic Programming, pages 219–235, 1996.

[NBG+01] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew

Barry. An A-Prolog decision support system for the space shuttle. In Practical Aspects

of Declarative Languages, pages 169–183. Springer, 2001.

[Nic16] Matthias Nickles. PrASP report. arXiv preprint arXiv:1612.09591, 2016.

[NM14] Matthias Nickles and Alessandra Mileo. Probabilistic inductive logic programming

based on answer set programming. arXiv preprint arXiv:1405.0720, 2014.

[NM15] Matthias Nickles and Alessandra Mileo. A system for probabilistic inductive answer

set programming. In International Conference on Scalable Uncertainty Management,

pages 99–105. Springer International Publishing, 2015.

[OB10] Andrej Oblak and Ivan Bratko. Learning from noisy data using a non-covering ILP

algorithm. In International Conference on Inductive Logic Programming, pages 190–

197. Springer, 2010.

[Ote01] Ramón P Otero. Induction of stable models. In Inductive Logic Programming, pages

193–205. Springer, 2001.

[Pap03] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[PBL14] Andreas Poxrucker, Gernot Bahle, and Paul Lukowicz. Towards a real-world simulator

for collaborative distributed learning in the scenario of urban mobility. In Proceed-

ings of the Eighth IEEE International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, pages 44–48. IEEE Computer Society, 2014.

[QK17] Nunung Nurul Qomariyah and Dimitar Kazakov. Learning binary preference relations.

In 4th Joint Workshop on Interfaces and Human Decision Making for Recommender

Systems (IntRS) 2017, page 30, 2017.

[Qui90] J Ross Quinlan. Learning logical definitions from relations. Machine learning, 5(3):239–

266, 1990.

[Ray05] Oliver Ray. Hybrid abductive inductive learning. PhD thesis, Imperial College London,

2005.

246

BIBLIOGRAPHY

[Ray09] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic,

7(3):329–340, 2009.

[RBR03] Oliver Ray, Krysia Broda, and Alessandra Russo. Hybrid abductive inductive learning:

A generalisation of progol. In Inductive Logic Programming, pages 311–328. Springer,

2003.

[RBR04] Oliver Ray, Krysia Broda, and Alessandra Russo. A hybrid abductive inductive proof

procedure. Logic Journal of IGPL, 12(5):371–397, 2004.

[RBZ14] Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese. A history of probabilistic inductive

logic programming. Frontiers in Robotics and AI, 1:6, 2014.

[RBZ+16] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and Evelina Lamma.

Scaling structure learning of probabilistic logic programs by mapreduce. In European

Conference on Artificial Intelligence, 2016.

[RDG+10] Francesco Ricca, Antonella Dimasi, Giovanni Grasso, Salvatore Maria Ielpa, Salvatore

Iiritano, Marco Manna, and Nicola Leone. A logic-based system for e-tourism. Funda-

menta Informaticae, 105(1-2):35–55, 2010.

[RI07] Oliver Ray and Katsumi Inoue. Mode-directed inverse entailment for full clausal the-

ories. In International Conference on Inductive Logic Programming, pages 225–238.

Springer, 2007.

[RPMB08] Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Monica Bianchini. A neural

network approach for learning object ranking. In International Conference on Artificial

Neural Networks, pages 899–908. Springer, 2008.

[RPMS11] Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Franco Scarselli. Sortnet:

Learning to rank by a neural preference function. IEEE transactions on neural networks,

22(9):1368–1380, 2011.

[Sak00] Chiaki Sakama. Inverse entailment in nonmonotonic logic programs. In ILP, pages

209–224. Springer, 2000.

[Sak01] Chiaki Sakama. Nonmonotomic inductive logic programming. In International Con-

ference on Logic Programming and Nonmonotonic Reasoning, pages 62–80. Springer,

2001.

[Sak05] Chiaki Sakama. Induction from answer sets in nonmonotonic logic programs. ACM

Transactions on Computational Logic (TOCL), 6(2):203–231, 2005.

[SBP00] Jennifer Seitzer, James P Buckley, and Yi Pan. Inded: A distributed knowledge-based

learning system. IEEE Intelligent Systems and their Applications, 15(5):38–46, 2000.

247

BIBLIOGRAPHY

[SI09] Chiaki Sakama and Katsumi Inoue. Brave induction: a logical framework for learning

from incomplete information. Machine Learning, 76(1):3–35, 2009.

[SJ93] E Sandewall and CG Jansson. Handling imperfect data in inductive logic programming.

In Scandinavian Conference on Artificial Intelligence-93: Proceedings of the Fourth

Scandinavian Conference on Artificial Intelligence Electrum, Stockholm, Sweden, May

4-7, 1993, volume 18, page 111. IOS Press, 1993.

[SN99] Timo Soininen and Ilkka Niemelä. Developing a declarative rule language for appli-

cations in product configuration. In International Symposium on Practical Aspects of

Declarative Languages, pages 305–319. Springer, 1999.

[Sri01] Ashwin Srinivasan. The aleph manual. Machine Learning at the Computing Laboratory,

Oxford University, 2001.

[Sta93] Irene Stahl. Predicate invention in ILP – an overview. In European Conference on

Machine Learning, pages 311–322. Springer, 1993.

[Sto76] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,

3(1):1–22, 1976.

[TKSB00] Erik F Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000 shared

task: Chunking. In Proceedings of the 2nd workshop on Learning language in logic

and the 4th conference on Computational natural language learning-Volume 7, pages

127–132. Association for Computational Linguistics, 2000.

[VEK76] Maarten H Van Emden and Robert A Kowalski. The semantics of predicate logic as a

programming language. Journal of the ACM (JACM), 23(4):733–742, 1976.

[Wro96] Stefan Wrobel. First order theory refinement. Advances in inductive logic programming,

32:14–33, 1996.

[Yd07] Fusun Yaman and Marie desJardins. More-or-less cp-networks. In Proceedings of

the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages 434–441.

AUAI Press, 2007.

248

Appendix

249

Appendix A

Language Biases used in the

evaluations of ILASP

The example learning tasks used throughout this thesis have mostly used small hypothesis spaces,

presented as the full set of rules in the hypothesis space. In practice, however, hypothesis spaces are

usually defined by a mode bias. In this chapter we formalise ILASP’s particular form of mode bias

and present hypothesis spaces used in the experiments in Chapter 8 and Chapter 11 of this thesis.

A.1 The ILASP Mode Bias

Definition A.1 formalises the notion of mode bias used by our ILASP systems.

Definition A.1. An ILASP mode bias M is a set of meta-level atoms, which take the following forms:

• Mode declarations, each of which is a meta-level atom of the form class(r, a, (opt1, . . . , optn)),

such that:

– r is an integer called the recall. If r is omitted, this corresponds to an unrestricted (infinite)

recall.

– class 2 {#modeh, #modeha, #modeb, #modeo}.

– a is a term (representing a reified atom) which may contain placeholder arguments of the

form var(t) or const(t), where t is a constant called the type of the argument.

– opt1, . . . , optn is a list of constants called options. If n = 0, the list of options is omitted.

• Constant declarations, each of which is a meta-level atom of the form #constant(t, c) where t

and c are both constants (t is called a type).

250

A.1. THE ILASP MODE BIAS

• Weight declarations, each of which is a meta-level atom of the form #weight(c) where c is a

constant.

• Parameters of the form #param(i), where #param 2 {#minhl, #maxhl, #maxv, #maxp, #maxbl,

#maxrl}1 and i is an integer. There is at most one atom in M per #param predicate.

• The flag {#no constraints}.

An ILASP mode bias can be used to specify a full hypothesis space. Definition A.3 formalises the

notion of the expansion of a set of mode declarations. We first formalise the notion of an atom being

an instance of a mode declaration in Definition A.2. Each variable in a rule is assigned a constant

called its type. These types correspond to the types in the variable placeholders. No variable is allowed

to take more than one type.

Definition A.2. Given an ILASP mode biasM , let m be a mode declaration c(r, a, (opt1, . . . , optn)) 2

M . An atom a0 is an instance of m if each of the following conditions hold:

• a0 can be constructed from a by replacing each placeholder var(t) is with a variable of type t

and each placeholder const(t) with a constant c such that #constant(t, c) 2 M .

• If anti reflexive 2 {opt1, . . ., optn} and a0 has arity 2, then its two arguments are non-equal.

• If symmetric 2 {opt1, . . ., optn} and a0 has exactly two arguments arg1 and arg2, then arg1 �

arg2 (where � is a lexicographical ordering of all possible terms).

If a0 is an instance of m and positive 62 {opt1, . . ., optn}, then not a0 is also an instance of m.

Note that unlike the mode declarations in other systems, there is no need for the types to correspond

to predicates in the background knowledge.

Definition A.3. Given a mode bias M , we define the rules that conform to M as follows:

• A conjunction of naf-literals C is said to be valid over a class c 2 {#modeb, #modeo} given M

i↵ each of the following conditions hold:

1. Each literal in C is an instance of at least one mode declaration in M with class c.

2. If there is a parameter atom #maxv(i) 2 M , then the number of variables in C is at most

i.

3. If there is a parameter atom #maxbl(i) 2 M , then the number of literals in C is at most

i.
1
In the ILASP implementation, #maxbl and #maxrl are passed to the system as the command line flags

-ml=[integer] and --max-rule-length=[integer], respectively.

251

APPENDIX A. LANGUAGE BIASES USED IN THE EVALUATIONS OF ILASP

4. Every variable in C occurs in at least one positive literal in C (i.e. C is safe).

• A hard constraint R is said to conform to M i↵ #no constraints 62 M and body(R) is a valid

conjunction over #modeb given M .

• A normal rule R is said to conform to M i↵ each of the following conditions hold:

1. body(R) is a valid conjunction over #modeb given M ,

2. head(R) is an instance of at least one mode declaration in M with class #modeh.

3. each variable in head(R) occurs in body(R).

4. If there is a parameter atom #maxrl(i) 2 M , then the number of literals in R is at most

i.

• A choice rule R is said to conform to M i↵ each of the following conditions hold:

1. body(R) is a valid conjunction over #modeb given M .

2. each atom in heads(R) is an instance of at least one mode declaration in M with class

#modeha.

3. If there is a parameter atom #minhl(i) 2 M , then |heads(R)| � i.

4. If there is a parameter atom #maxhl(i) 2 M , then |heads(R)|  i.

5. If there is a parameter atom #maxrl(i) 2 M , then the number of literals in R  i.

6. The lower bound lb and upper bound ub of head(R) are such that 0  lb  ub 

|heads(R)|.

7. All variables in head(R) occur in body(R).

• A weak constraint W with the tail [wt@lev, t1, . . . , tn] is said to conform to M i↵ each of the

following conditions hold:

1. body(W) is a valid conjunction over #modeo given M .

2. wt is either an integer such that #weight(wt) 2 M or a variable V that occurs in body(W)

(or the negation �V of such a variable) such that weight(t) 2 M , where t is the type of V.

3. lev is a positive integer and if there is a parameter atom #maxp(i) 2 M , then lev  i.

4. t1 = Wid (the unique identifier of W).

5. t2, . . . , tn is the list of variables that occur in body(W).

A hypothesis space SM is called an expansion of SM if each rule in SM conforms to M , and every rule

that conforms to M is strongly equivalent to at least one rule in SM .

252

A.2. LANGUAGE BIASES USED IN THE EVALUATION CHAPTERS

We use SM to denote an arbitrary (finite) expansion of M2.

The latest versions of the ILASP system also support bias constraints, which are used to cut rules out

of the hypothesis space. Rather than fully specify the semantics of these bias constraints, we have

commented on the e↵ect of any bias constraints that we use in language biases throughout the rest of

the section.

A.2 Language Biases Used in the Evaluation Chapters

A.2.1 Hamilton Graphs

The Hamilton problem was first run before bias constraints were implemented in ILASP. We used a

mode bias to generate a hypothesis space and then cut out rules which were equivalent to other rules

in the hypothesis space (or at least were guaranteed to give exactly the same results), or which were

guaranteed not to appear in an optimal inductive solution of the task. In modern versions of ILASP,

we could achieve similar results using bias constraints. The original language bias was:

#modeha(1, in(var(node1),var(node1))).

#modeb(1, edge(var(node1), var(node1)), (positive)).

#modeb(2, in(var(node), var(node)), (positive, anti_reflexive)).

#modeb(1, var(node) != var(node), (positive, symmetric, anti_reflexive)).

#modeh(1, reach(var(node))).

#modeb(1, reach(var(node))).

#modeb(1, node(var(node)), (positive)).

#modeb(1, in(const(node),var(node)), (positive)).

#constant(node, 1).

#maxhl(1).

The final set of rules (where n ⇠ R denotes that R is in the hypothesis space, and |R| = n) were:

1 ~ :- edge(V0, V0).

1 ~ :- edge(V0, V1).

1 ~ :- in(1,V0).

2
Note that there is guaranteed to be at least one finite expansion of any finite mode bias M for which M contains

values for each of the parameters (the ILASP implementation assigns default values if these are unspecified). This is

because there must be a finite set of (non-equivalent) valid conjunctions of any length given M . This fixes the set of

possible bodies, and as the variables in the rest of a rule must all occur in the body of the rule, this means there is a

finite set of non-equivalent rules that conform to M .

253

APPENDIX A. LANGUAGE BIASES USED IN THE EVALUATIONS OF ILASP

1 ~ :- in(V0,V1).

1 ~ :- reach(V0).

2 ~ :- edge(V0, V0), in(1,V1).

2 ~ :- edge(V0, V0), in(V1,V2).

2 ~ :- edge(V0, V0), reach(V1).

2 ~ :- edge(V0, V1), in(1,V2).

2 ~ :- edge(V0, V1), reach(V2).

2 ~ :- in(1,V0), reach(V0).

2 ~ :- in(1,V0), reach(V1).

2 ~ :- in(V0,V1), V0 != V1.

2 ~ :- in(V0,V1), in(1,V0).

2 ~ :- in(V0,V1), in(1,V1).

2 ~ :- in(V0,V1), in(1,V2).

2 ~ :- in(V0,V1), in(V0,V2).

2 ~ :- in(V0,V1), in(V1,V2).

2 ~ :- in(V0,V1), reach(V0).

2 ~ :- in(V0,V1), reach(V1).

2 ~ :- in(V0,V1), reach(V2).

2 ~ :- node(V0), not reach(V0).

2 ~ reach(V0) :- in(1,V0).

2 ~ reach(V0) :- in(V0,V1).

2 ~ reach(V1) :- in(V0,V1).

3 ~ :- edge(V0, V0), in(1,V1), reach(V1).

3 ~ :- edge(V0, V0), in(1,V1), reach(V2).

3 ~ :- edge(V0, V0), in(V1,V2), V1 != V2.

3 ~ :- edge(V0, V0), in(V1,V2), in(1,V1).

3 ~ :- edge(V0, V0), in(V1,V2), in(1,V2).

3 ~ :- edge(V0, V0), in(V1,V2), reach(V1).

3 ~ :- edge(V0, V0), in(V1,V2), reach(V2).

3 ~ :- edge(V0, V0), node(V1), not reach(V1).

3 ~ :- edge(V0, V1), in(1,V2), reach(V2).

3 ~ :- edge(V0, V1), node(V2), not reach(V2).

3 ~ :- in(1,V0), node(V0), not reach(V0).

3 ~ :- in(1,V0), node(V1), not reach(V1).

3 ~ :- in(V0,V1), V0 != V1, in(1,V0).

3 ~ :- in(V0,V1), V0 != V1, in(1,V1).

3 ~ :- in(V0,V1), V0 != V1, in(1,V2).

3 ~ :- in(V0,V1), V0 != V1, reach(V0).

3 ~ :- in(V0,V1), V0 != V1, reach(V1).

3 ~ :- in(V0,V1), V0 != V1, reach(V2).

3 ~ :- in(V0,V1), in(1,V0), reach(V0).

3 ~ :- in(V0,V1), in(1,V0), reach(V1).

3 ~ :- in(V0,V1), in(1,V0), reach(V2).

3 ~ :- in(V0,V1), in(1,V1), reach(V0).

254

A.2. LANGUAGE BIASES USED IN THE EVALUATION CHAPTERS

3 ~ :- in(V0,V1), in(1,V1), reach(V1).

3 ~ :- in(V0,V1), in(1,V1), reach(V2).

3 ~ :- in(V0,V1), in(1,V2), reach(V0).

3 ~ :- in(V0,V1), in(1,V2), reach(V1).

3 ~ :- in(V0,V1), in(1,V2), reach(V2).

3 ~ :- in(V0,V1), in(V0,V2), V0 != V1.

3 ~ :- in(V0,V1), in(V0,V2), V0 != V2.

3 ~ :- in(V0,V1), in(V0,V2), V1 != V2.

3 ~ :- in(V0,V1), in(V0,V2), in(1,V0).

3 ~ :- in(V0,V1), in(V0,V2), in(1,V1).

3 ~ :- in(V0,V1), in(V0,V2), in(1,V2).

3 ~ :- in(V0,V1), in(V0,V2), reach(V0).

3 ~ :- in(V0,V1), in(V0,V2), reach(V1).

3 ~ :- in(V0,V1), in(V0,V2), reach(V2).

3 ~ :- in(V0,V1), in(V1,V2), V0 != V1.

3 ~ :- in(V0,V1), in(V1,V2), V0 != V2.

3 ~ :- in(V0,V1), in(V1,V2), V1 != V2.

3 ~ :- in(V0,V1), in(V1,V2), in(1,V0).

3 ~ :- in(V0,V1), in(V1,V2), in(1,V1).

3 ~ :- in(V0,V1), in(V1,V2), in(1,V2).

3 ~ :- in(V0,V1), in(V1,V2), reach(V0).

3 ~ :- in(V0,V1), in(V1,V2), reach(V1).

3 ~ :- in(V0,V1), in(V1,V2), reach(V2).

3 ~ :- in(V0,V1), node(V0), not reach(V0).

3 ~ :- in(V0,V1), node(V1), not reach(V1).

3 ~ :- in(V0,V1), node(V2), not reach(V2).

3 ~ :- reach(V0), node(V0), not reach(V0).

3 ~ :- reach(V0), node(V1), not reach(V1).

3 ~ 0 {in(V0,V0) } 1 :- edge(V0, V0).

3 ~ 0 {in(V0,V0) } 1 :- edge(V0, V1).

3 ~ 0 {in(V0,V1) } 1 :- edge(V0, V1).

3 ~ 0 {in(V1,V0) } 1 :- edge(V0, V1).

3 ~ 0 {in(V1,V1) } 1 :- edge(V0, V1).

3 ~ reach(V0) :- in(1,V0), reach(V1).

3 ~ reach(V0) :- in(V0,V1), V0 != V1.

3 ~ reach(V0) :- in(V0,V1), in(1,V0).

3 ~ reach(V0) :- in(V0,V1), in(1,V1).

3 ~ reach(V0) :- in(V0,V1), in(1,V2).

3 ~ reach(V0) :- in(V0,V1), in(V0,V2).

3 ~ reach(V0) :- in(V0,V1), in(V1,V2).

3 ~ reach(V0) :- in(V0,V1), reach(V1).

3 ~ reach(V0) :- in(V0,V1), reach(V2).

3 ~ reach(V1) :- edge(V0, V0), in(1,V1).

3 ~ reach(V1) :- edge(V0, V0), in(V1,V2).

255

APPENDIX A. LANGUAGE BIASES USED IN THE EVALUATIONS OF ILASP

3 ~ reach(V1) :- in(V0,V1), V0 != V1.

3 ~ reach(V1) :- in(V0,V1), in(1,V0).

3 ~ reach(V1) :- in(V0,V1), in(1,V1).

3 ~ reach(V1) :- in(V0,V1), in(1,V2).

3 ~ reach(V1) :- in(V0,V1), in(V0,V2).

3 ~ reach(V1) :- in(V0,V1), in(V1,V2).

3 ~ reach(V1) :- in(V0,V1), reach(V0).

3 ~ reach(V1) :- in(V0,V1), reach(V2).

3 ~ reach(V2) :- edge(V0, V0), in(V1,V2).

3 ~ reach(V2) :- edge(V0, V1), in(1,V2).

3 ~ reach(V2) :- in(V0,V1), in(1,V2).

3 ~ reach(V2) :- in(V0,V1), in(V0,V2).

3 ~ reach(V2) :- in(V0,V1), in(V1,V2).

A.2.2 Scheduling

#modeo(3, assigned(var(day), var(time)), (positive)).

#modeo(1, type(var(day),var(time),const(type)), (positive)).

#modeo(1, neq(var(day),var(day)), (positive, symmetric, anti_reflexive)).

#constant(type, jmc).

#weight(1).

#weight(-1).

#maxv(4).

A.2.3 Journey Preferences

#modeo(1,leg_mode(var(leg), const(mode_of_transport)), (positive)).

#modeo(1,leg_distance(var(leg), var(distance)), (positive)).

#modeo(1,leg_crime_rating(var(leg), var(crime_rate)), (positive)).

#modeo(1, var(crime_rate) > const(crime_rate)).

#weight(distance).

#weight(1).

#constant(mode_of_transport, walk).

#constant(mode_of_transport, bus).

#constant(mode_of_transport, bicycle).

#constant(mode_of_transport, car).

#constant(crime_rate, 1).

#constant(crime_rate, 2).

#constant(crime_rate, 3).

#constant(crime_rate, 4).

#maxp(3).

#maxv(2).

256

A.2. LANGUAGE BIASES USED IN THE EVALUATION CHAPTERS

A.2.4 Agent A

#modeh(valid_move(var(cell), var(time))).

#modeb(1, adjacent(var(cell), var(cell)), (symmetric, anti_reflexive)).

#modeb(1, agent_at(var(cell), var(time))).

#modeb(1, unlocked(var(cell), var(time))).

#modeb(1, wall(var(cell), var(cell)), (symmetric, anti_reflexive)).

#modeb(1, link(var(cell), var(cell)), (anti_reflexive)).

A.2.5 Agent B

#modeh(valid_move(var(cell2), var(time))).

#modeh(extra(var(cell2), var(time))).

#modeb(1, extra(var(cell2), var(time)), (positive)).

#modeb(1, visited_cell(var(cell), var(time)), (positive)).

#modeb(1, locked(var(cell2))).

#modeb(1, agent_at(var(cell), var(time)), (positive)).

#modeb(1, wall(var(cell), var(cell2))).

#modeb(1, adjacent(var(cell), var(cell2)), (positive)).

#modeb(1, link(var(cell), var(cell2)), (positive)).

#modeb(1, key(var(cell), var(cell2)), (positive)).

A.2.6 Agent C

#modeh(valid_move(var(cell2), var(time))).

#modeb(1, adjacent(var(cell), var(cell2)), (positive, symmetric, anti_reflexive)).

#modeb(1, agent_at(var(cell), var(time)), (positive)).

#modeb(1, already_visited_cell(var(cell), var(time)), (positive)).

#modeb(1, unlocked(var(cell2), var(time)), (positive)).

#modeb(1, wall(var(cell), var(cell2)), (symmetric, anti_reflexive)).

#modeb(1, link(var(cell), var(cell2)), (positive, anti_reflexive)).

257

APPENDIX A. LANGUAGE BIASES USED IN THE EVALUATIONS OF ILASP

A.2.7 Agent D

#modeo(1, agent_at(var(cell), var(time)), (positive)).

#modeo(1, daytime(var(time))).

#modeo(1, danger_rating(var(cell), var(danger)), (positive)).

#modeo(1, coin(var(cell), var(value))).

#weight(1).

#weight(danger).

#weight(value).

#maxp(3).

#modeh(valid_move(var(cell2), var(time))).

#modeb(1, adjacent(var(cell), var(cell2)), (positive, symmetric, anti_reflexive)).

#modeb(1, agent_at(var(cell), var(time)), (positive)).

#modeb(1, already_visited_cell(var(cell), var(time)), (positive)).

#modeb(1, unlocked(var(cell2), var(time)), (positive)).

#modeb(1, wall(var(cell), var(cell2)), (symmetric, anti_reflexive)).

#modeb(1, link(var(cell), var(cell2)), (positive, anti_reflexive)).

A.2.8 Predecessor

#modeh(predecessor(var(any),var(any))).

#modeb(succ(var(any),var(any))).

#modeb(number(var(any)), (positive)).

#maxv(2).

#maxbl(3).

A.2.9 Less Than

#modeh(less_than(var(any), var(any)), (positive)).

#modeb(1, succ(var(any), var(any)), (positive)).

#modeb(1, less_than(var(any), var(any)), (positive)).

#maxbl(2).

A.2.10 Member

#modeh(member(var(number), var(list))).

#modeh(p(var(number), var(list))).

#modeb(1, p(var(number), var(list))).

#modeb(1, value(var(list), var(number)), (positive)).

#modeb(1, cons(var(list), var(list)), (positive)).

#modeb(list(var(list)), (positive)).

#modeb(number(var(number)), (positive)).

258

A.2. LANGUAGE BIASES USED IN THE EVALUATION CHAPTERS

#maxbl(5).

% enforces that the list/number nodes are used as typing atoms (i.e. they occur

% if and only if a variable of that type occurs).

#bias(":- body(p(V1, V2)), not body(number(V1)).").

#bias(":- body(p(V1, V2)), not body(list(V2)).").

#bias(":- body(value(V1, V2)), not body(list(V1)).").

#bias(":- body(value(V1, V2)), not body(number(V2)).").

#bias(":- body(cons(V1, V2)), not body(list(V1)).").

#bias(":- body(cons(V1, V2)), not body(list(V2)).").

#bias(":- body(number(V1)), not body(p(V1, _)), not body(naf(p(V1, _))),

not body(naf(value(_, V1))), not body(value(_, V1)).").

#bias(":- body(list(V1)), not body(p(_, V1)), not body(naf(p(_, V1))),

not body(naf(value(V1, _))), not body(value(V1, _)),

not body(cons(V1, _)), not body(cons(_, V1)).").

#bias(":- head(p(_, _)), body(naf(p(_, _))).").

A.2.11 Connected

#modeh(connected(var(any), var(any)), (positive)).

#modeb(1, edge(var(any), var(any)), (positive)).

#modeb(1, connected(var(any), var(any)), (positive)).

#maxbl(2).

A.2.12 Undirected Edge

#modeh(undirected_edge(var(node), var(node))).

#modeb(edge(var(node), var(node))).

#modeb(node(var(node)), (positive)).

#maxbl(5).

% enforces that the node atoms are used as typing atoms (i.e. they occur if and

% only if a variable of that type occurs).

#bias(":- body(edge(V1, V2)), not body(node(V1)).").

#bias(":- body(edge(V1, V2)), not body(node(V2)).").

#bias(":- body(naf(edge(V1, V2))), not body(node(V1)).").

#bias(":- body(naf(edge(V1, V2))), not body(node(V2)).").

#bias(":- body(node(V)), not body(edge(V, _)), not body(edge(_, V)),

not body(naf(edge(V, _))), not body(naf(edge(_, V))).").

259

APPENDIX A. LANGUAGE BIASES USED IN THE EVALUATIONS OF ILASP

A.2.13 Sentence Chunking

#constant(postype, c). % for each part of speach tag that occurs in the task.

#modeh(split(var(token))).

#modeb(1, pos(const(postype),var(token)), (positive)).

#modeb(1, prevpos(const(postype),var(token)), (positive)).

#modeb(1, test_split(var(token)), (positive)).

#maxv(1).

% This constraint means that test_split(V0) must occur in the body of every

% rule. As each context contains test_split(X) for each X such that split(X)

% occurs in the inclusions or exclusions of the corresponding partial

% interpretation, this just means that the only ground instances of rules in

% the hypothesis space that are considered are those that could affect whether

% or not the example is covered.

#bias(":- not body(test_split(_)).").

A.2.14 Cars

#weight(cap).

#weight(1).

#weight(-1).

#modeo(1,body(const(bool)), (positive)).

#modeo(1,transmission(const(bool)), (positive)).

#modeo(1,fuel(const(bool)), (positive)).

#modeo(1,engine_cap(var(cap))).

#constant(bool, 1).

#constant(bool, 2).

#maxp(5).

A.2.15 SUSHI

#modeo(1, value(const(val),var(val))).

#modeo(1, minor_group(const(mg)), (positive)).

#modeo(1, seafood, (positive)).

#modeo(1, maki, (positive)).

#maxp(5).

#weight(val).

#weight(1).

#weight(-1).

#constant(val, oil).

#constant(val, price).

#constant(val, freq).

260

A.2. LANGUAGE BIASES USED IN THE EVALUATION CHAPTERS

#constant(val, freq2).

% The constants for minor groups 2, 4 and 10 were omitted as none of the

% sushi’s in this part of the dataset have any of these minor groups.

#constant(mg, 1).

#constant(mg, 3).

#constant(mg, 5).

#constant(mg, 6).

#constant(mg, 7).

#constant(mg, 8).

#constant(mg, 9).

#constant(mg, 11).

261

Appendix B

Proofs and Meta-programs Omitted

from the Main Thesis

Proofs from Chapter 2

Lemma 2.11.

Let P be an ASP
R program and I be an interpretation. I is an answer set of P if and only if I is a

model of P and there is no non-empty unfounded subset of I wrt P .

Proof. Let P be an ASP
R program and I be an interpretation.

1. Assume that I 2 AS(P). We must show that (a) I is a model of P and (b) I has no non-empty unfounded

sets.

(a) Assume for contradiction that I is not a model of P . This means that there is a rule R in P such

that I satisfies body(R) but does not satisfy head(R). In the case that R is a choice rule, P I will

contain the rule ? : - body+(R), which means that M(P I) must either contain ? (which it cannot

do, if I is an answer set), or must not satisfy body+(R). Hence I 6= M(P I). This contradicts the

assumption that I is an answer set.

(b) Assume for contradiction that I has a non-empty unfounded set U .

) There is no R 2 P st heads(R) \ U 6= ;, body+(R) ✓ I\U and body�(R) \ I = ;.

) There is no rule R in P I such that head(R) 2 U , body(R)+ ✓ I\U (as any rule in P that

satisfies these two conditions must contain a negative literal not a for some a 2 I, and will therefore

be removed when constructing the reduct).

As I is an answer set of P , I = M(P I). But consider the smaller interpretation I 0 = I\U . This

must also be a model of P I : for every rule R in P I with an element of U in the head, I 0 does not

262

satisfy body+(R) and hence I 0 satisfies the rule; and for every other rule R 2 P I (st head(R) 62 U),

if I 0 satisfies the body, then I must satisfy the body (as R is definite), and hence head(R) 2 I, so

head(R) 2 I 0 (as head(R) 62 U and I 0 = I\U). Contradiction! (as I is an answer set of P , I must

be the minimal model of P I).

2. Assume that I is a model of P and there is no non-empty unfounded subset U of I wrt P . We must show

that I = M(P I). We first show that (a) it is a model of P I and then show that (b) nothing smaller can

be a model.

(a) I is a model of P .

) @R 2 P st body+(R) ✓ I, body�(R) \ I = ; and head(R) is not satisfied by R.

Let R be in P I . From the definition of the reduct for ASP
R programs, there are four possible cases:

Case 1: There is a normal rule R0
2 P such that body�(R0) \ I = ;, body+(R0) = body+(R) and

head(R0) = head(R). Hence if the body of R is satisfied by I, then the head of R must be satisfied

by I.

Case 2: head(R) = ? and there is a constraint R0
2 P such that body�(R0) \ I = ; and

body+(R0) = body+(R). As I is a model of P , body+(R0) must contain at least one element that is

not in I. Hence the body of R is not satisfied by I, and so R is satisfied by I.

Case 3: head(R) = ? and there is a choice rule R0
2 P such that body�(R0) \ I = ;, body+(R0) =

body+(R) and head(R0) is not satisfied by I. As I is a model of P , body+(R0) must contain at least

one element that is not in I. Hence the body of R is not satisfied by I, and so R is satisfied by I.

Case 4: There is a choice rule R0
2 P such that body�(R0) \ I = ;, body+(R0) = body+(R),

head(R0) is satisfied by I, head(R) 2 heads(R0) and head(R) 2 I. As head(R) 2 I, I satisfies R.

Hence I satisfies every rule in P I , and so must be a model of P I .

(b) We now show that no subset I 0 ⇢ I can be a model of P I . We assume the converse for contradiction.

Let I 0 ⇢ I be a model of P I . Consider the set U = I\I 0. As U is non-empty, it cannot be unfounded;

and hence, there must be at least one rule R 2 P such that heads(R) \ U 6= ;, body+(R) ✓ I 0 and

body�(R) \ I = ;. As I is a model of P , I must satisfy head(R), and hence, there is a definite rule

u : - body+(R) in P I , where body+(R) ✓ I 0 and u 2 U . Hence I 0 cannot be a model of P I , as it

satisfies the body of this rule, but u 62 I 0.

263

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Lemma 2.12.

Let P be any ASP program, and C be an ASP program containing only hard constraints. A 2

AS(P [C) if and only if A 2 AS(P) and A does not satisfy the body of any instance of any constraint

in C.

Proof.

1. We first show that A 2 AS(P [C)) A does not satisfy the body of any ground instance of any constraint

in C.

Assume A 2 AS(P [C). Assume for contradiction that A satisfies the body of a ground instance g of

some constraint in C. Then ? : - body+(g) would be in the reduct ground(P [C)A. Hence, as A must be

a model of ground(P [C)A, A must contain ?. This is a contradiction, as no answer set is allowed to

contain ?. So A does not satisfy the body of any ground instance of any constraint in C.

2. We now show that A 2 AS(P [C)) A 2 AS(P)

Assume A 2 AS(P [C). First note that ground(P)A ✓ ground(P [C)A. Hence, as A is a model of

ground(P [C)A, it is also a model of ground(P)A. It remains to show that no subset of A is a model

of ground(P)A. Assume for contradiction that some A0
⇢ A is a model of ground(P)A. We know from

part (1) that A does not satisfy the body of any constraint in ground(C), so it cannot satisfy the body of

any constraint in ground(C)A. As A0
⇢ A and the constraints in ground(C)A contain only positive body

literals, this means thatA0 does not satisfy the body of any constraint in ground(C)A. Hence, A0 is a model

of ground(C)A. As A0 is also a model of ground(P)A, and ground(P [C)A = ground(P)A[ground(C)A,

A0 must be a model of ground(P [C)A. This contradicts A being an answer set of P [C.

3. Finally, we show that any answer set A of AS(P) that does not satisfy any ground instance of any

constraint in C must be an answer set of P [C.

We know that A = M(ground(P)A). As A does not satisfy the body of any constraint in ground(C), A

cannot satisfy the body of any constraint in ground(C)A. Hence, A is a model of ground(C)A. Hence,

A is a model of ground(P [C)A (as ground(P [C)A = ground(P)A [ground(C)A). It remains to show

that no subset A0 of A is a model of ground(P [C)A. But if there were such an A0 it would also be a

model of ground(P)A, which would contradict A being an answer set of P .

Theorem 2.17.

Let P be any ASP
R program such that |HBrel

P | is finite.

1. |groundrel(P)| is finite

2. AS(P) = AS(groundrel(P))

264

Proof.

1. As any ASP program P contains a finite set of rules, it remains to show that for an arbitrary rule R,

there are a finite number of ground instances Rg of R such that body+(Rg) ✓ HBrel
P .

As R must be safe, no two distinct ground instances Rg
1 and Rg

2 of R can share the same positive body

literals. Hence it remains to show that there are a finite number of ground instances of body+(R) that

are subsets of HBrel
P . In fact, there are at most |HBrel

P |
|body+(R)| such ground instances. Hence as both

|HBrel
P | and |body+(R)| are finite, there are a finite number of ground instances of R.

2. (a) We first show that AS(P) ✓ AS(groundrel(P)).

Assume that I 2 AS(P)

) I is a model of ground(P) and no non-empty subset U of I is unfounded wrt ground(P).

) I is a model of groundrel(P) and no non-empty subset U of I is unfounded wrt ground(P)

(as groundrel(P) ✓ ground(P)).

It remains to show that I does not have any non-empty unfounded subsets wrt groundrel(P).

Assume for contradiction that I 6✓ HBrel
P . As HBrel

P is a fixpoint of fP , there is no rule

R 2 ground(P) such that heads(R) 6✓ HBrel
P and body+(R) ✓ HBrel

P . Hence, there is no rule

in ground(P) such that heads(R) \ (I\HBrel
P) 6= ; and body+(R) ✓ (I\(I\HBrel

P)), meaning

that (I\HBrel
P) is a non-empty unfounded subset of I wrt ground(P) (contradicting that I is an

answer set of P). Hence, I ✓ HBrel
P .

Let U be a non-empty subset of I. As U cannot be an unfounded subset of I wrt ground(P),

9R 2 ground(P) such that heads(R) \ U 6= ;, body+(R) ✓ (I\U) and body�(R) \ I = ;. In

order to show that U is not an unfounded subset of I wrt groundrel(P), it su�ces to show that

R 2 groundrel(P). We can do this by showing that body+(R) ✓ HBrel
P . This is clearly the case

as body+(R) ✓ (I\U) ✓ I ✓ HBrel
P .

(b) It remains to show that AS(groundrel(P)) ✓ AS(ground(P).

Assume I 2 AS(groundrel(P)).

) I is a model of groundrel(P) and I has no non-empty unfounded subsets wrt groundrel(P)

) I is a model of groundrel(P) and I has no non-empty unfounded subsets wrt ground(P) (as

groundrel(P) ✓ ground(P), any rule in groundrel(P) that prevents a non-empty subset from

being unfounded must also be in ground(P)).

It remains to show that there is no rule R in ground(P) such that I is not a model of R. Assume

for contradiction that such a rule R does exist. Then there is an R 2 ground(P) such that

body(R) is satisfied by I but head(R) is not satisfied by I. This R cannot occur in groundrel(P)

(or I would not be a model of groundrel(P)), and so there must be an atom a 2 body+(R) such

that a 62 HBrel
P . As I is not a model of R, a 2 I. Hence there is an atom a 2 I such that there

is no rule R0
2 groundrel(P) for which a 2 heads(R0). Hence {a} is an unfounded subset of I

wrt groundrel(P). Contradiction (as I 2 AS(groundrel(P))).

Proofs from Chapter 4

Before proving Theorem 4.9, it is useful to introduce the following lemma.

265

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Lemma B.1. (proof on page 266)

For any program P (consisting of normal rules, choice rules and constraints) and any set of pairs

S = {hC1, a1i, . . . , hCn, ani} such that none of the atoms ai appear in P (or in any of the C’s) and

each ai atom is unique:

AS

P [{1{a1, . . . , an}1.}

[{append(Ci, ai)|hCi, aii 2 S}

!
=

(
A [{ai}

�����
A 2 AS(P [Ci),

hCi, aii 2 S

)

Proof. The answer sets of {1{a1, . . . , an}1.} are {a1}, . . . , {an}, hence by the splitting set theorem (using U =

{a1, . . . , an} as a splitting set):

AS(P [{1{a1, . . . , an}1.} [{append(Ci, ai)|hCi, aii 2 S})

=

(
A0

[{aj}

�����
aj 2 {a1, . . . , an},

A0
2 AS(eU (P [{append(Ci, ai) | hCi, aii 2 S}, {aj}))

)

= {A [{ai}|A 2 AS(P [Ci), hCi, aii 2 S}.

Theorem 4.9.

For any ILP context
LOAS learning task T , ILPLOAS(TLOAS(T)) = ILP context

LOAS (T).

Proof. Let T = hB1, SM , hE+
1 , E�

1 , Ob
1, O

c
1ii and TLOAS(T) = hB2, SM , hE+

2 , E�
2 , Ob

2, O
c
2ii.

Assume H 2 ILP context
LOAS (T)

, H ✓ SM ; 8hepi, ectxi 2 E+
1 , 9A 2 AS(B1 [ectx [H) st A extends epi; 8hepi, ectxi 2 E�

1 , @A 2

AS(B1[ectx[H) st A extends epi; 8o 2 Ob
1, B1[H bravely respects o; 8o 2 Oc

1, B1[H cautiously respects o

, H ✓ SM ; 8e 2 E+
1 , 9A 2 AS(B2 [H) st A extends c(e); 8e 2 E�

1 , @A 2 AS(B2 [H) st A extends c(e);

8he1, e2, opi 2 Ob
1, B2 [H bravely respects hc(e1), c(e2), opi; 8he1, e2, opi 2 Oc

1, B2 [H cautiously respects

hc(e1), c(e2), opi (by Lemma B.1)

, H ✓ SM ; 8e 2 E+
2 , 9A 2 AS(B2 [H) st A extends e; 8e 2 E�

2 , @A 2 AS(B2 [H) st A extends e;

8o 2 Ob
2, B2 [H bravely respects o; 8o 2 Oc

2, B2 [H cautiously respects o

, H 2 ILPLOAS(TLOAS(T))

Proposition 4.11.

1. Deciding verification, satisfiability and optimum verification for ILPb each reduce polynomially

to the corresponding ILPsm decision problem.

266

2. Deciding verification, satisfiability and optimum verification for ILPsm each reduce polynomially

to the corresponding ILPb decision problem.

Proof.

1. Let Tb = hB,SM , hE+, E�
ii be any arbitrary ILPb task.

Consider the task Tsm = hB,SM , h{hE+, E�
i}ii. 8H, H 2 ILPsm(Tsm) if and only if H 2 ILPb(Tb) and

hence deciding verification for ILPb reduces polynomially to deciding verification for ILPsm. Similarly,

as ILPsm(Tsm) = ILPb(Tb), Tsm is satisfiable if and only if Tb is satisfiable; hence, deciding satisfiability

for ILPb reduces to deciding satisfiability for ILPsm. Finally, as the two tasks give the same length to

every possible hypothesis, ⇤ILPb(Tb) = ⇤ILPsm(Tsm). Hence, any hypothesis H is an optimal solution

of Tb if and only if it is an optimal solution of Tsm; and hence, deciding optimum verification for ILPb

reduces to deciding optimum verification for ILPsm.

2. Let Tsm = hB,SM , hEii be any arbitrary ILPsm task and let E = {e1, . . . , en}.

For each integer i from 1 to n, let fi be a function which maps each atom a in B [SM to a new atom ai.

We also extend this notation to work on sets of atoms and rules (and parts of rules) by replacing each

atom a in the set or rule with fi(a).

For each rule R 2 SM , define a new atom in hR.

Consider the task Tb = hBb, Sb
M , hE+, E�

ii where the components of the task are as follows (append(R, a)

is the rule R with the atom a appended to the body).

Bb =

8
><

>:

f1(R),

. . . ,

fn(R)

�������
R 2 B

9
>=

>;
S
8
><

>:

append(f1(R), in hR),

. . . ,

append(fn(R), in hR)

�������
R 2 SM

9
>=

>;

Sb
M =

n
in hR

���R 2 SM

o
such that the length of each in hR atom is defined as |R|.

E+ =
n

fi(inc)
���ei 2 E, ei = heinci , eexci i, inc 2 einci

o

E� =
n

fi(exc)
���ei 2 E, ei = heinci , eexci i, exc 2 eexci

o

For any solution H of Tb, define g(H) to be {R | in hR 2 H}. We now show that ILPsm(Tsm) = {g(H 0) |

H 0
2 ILPb(Tb)}.

Assume H 2 ILPsm(Tsm)

, H ✓ SM and 8ei 2 E, 9A 2 AS(B [H) such that A extends ei.

, H ✓ SM and 8ei 2 E, 9A 2 AS(fi(B [H)) such that A extends h{fi(inc) | inc 2 einci }, {fi(exc) |

exc 2 eexci }i.

, H ✓ SM and 9A 2 AS({fi(B [H) | 1  i  n}) such that A extends hE+, E�
i (as the atoms in

each sub program are disjoint).

, H ✓ SM and 9A 2 AS(Bb
[{in hR | R 2 H}) such that A extends hE+, E�

i (by the splitting set

theorem, using {in hR | R 2 H} as a splitting set).

, 9H 0
✓ Sb

M such that g(H 0) = H and 9A 2 AS(Bb
[H 0) such that A extends hE+, E�

i

, 9H 0
2 ILPb(Tb) such that g(H 0) = H

, H 2 {g(H 0) | H 0
2 ILPb(Tb)}

267

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

8H, H 2 ILPsm(Tsm) if and only if {in hR | R 2 H} 2 ILPb(Tb) and hence deciding verification for

ILPsm reduces polynomially to deciding verification for ILPb. Similarly, as ILPsm(Tsm) = {g(H) | H 2

ILPb(Tb)}, Tsm is satisfiable if and only if Tb is satisfiable; hence, deciding satisfiability for ILPsm reduces

to deciding satisfiability for ILPb.

Finally, for any arbitrary H, assume that H 2
⇤ILPsm(Tsm)

, H 2 ILPsm(Tsm) and 8H 0
2 SM such that |H 0

| < |H|, H 0
62 ILPsm(Tsm)

, {in hR | R 2 H} 2 ILPb(Tb) and 8H 0
2 SM such that |H 0

| < |H|, {in hR | R 2 H 0
} 62 ILPb(Tb)

, {in hR | R 2 H} 2 ILPb(Tb) and 8H 0
2 SM such that |{in hR | R 2 H 0

}| < |{in hR | R 2 H}|,

{in hR | R 2 H 0
} 62 ILPb(Tb)

, {in hR | R 2 H} 2
⇤ILPb(Tb)

Hence, deciding optimum verification for ILPsm reduces to deciding optimum verification for ILPb.

Proposition 4.12.

1. Deciding verification, satisfiability and optimum verification for ILPc each reduce polynomially

to the corresponding ILPLAS decision problem.

2. Deciding verification, satisfiability and optimum verification for ILPLAS each reduce polynomi-

ally to the corresponding ILP context
LOAS decision problem.

3. Deciding verification, satisfiability and optimum verification for ILP context
LOAS each reduce polyno-

mially to the corresponding ILPLOAS decision problem.

4. Deciding verification, satisfiability and optimum verification for ILPLOAS each reduce polyno-

mially to the corresponding ILP s
LAS decision problem.

Proof.

First note that if we can show that there is a polynomial mapping M , such that for any ILPF1 task T , M(T)

is an ILPF2 task such that such that ILPF1(T) = ILPF2(M(T)) (and the length of all hypotheses is preserved

by M), then this su�ces to show all three polynomial reductions. For verification, we can check that H is an

inductive solution of T , by checking that it is an inductive solution of M(T); for satisfiability, we can check that

T is satisfiable by checking that M(T) is satisfiable; and finally, as the length of all hypotheses is preserved by

M , ⇤ILPF1(T) = ⇤ILPF2(M(T)), and hence, we can check that H is an optimal inductive solution of T , by

checking that it is an optimal inductive solution of M(T).

1. Let Tc be any ILPc task hB,SM , hE+, E�
ii.

Let M(Tc) = hB,SM , h{h;, ;i}, {h;, {e+}i | e+ 2 E+
} [{h{e�}, ;i | e� 2 E�

}ii.

By the definition of ILPLAS , H 2 ILPLAS(M(Tc)) if and only if H ✓ SM ; 9A 2 AS(B [H) such that

A extends h;, ;i; 8e+ 2 E+, @A 2 AS(B [H) such that A extends h;, {e+}i; and finally, 8e� 2 E�,

@A 2 AS(B [H) such that A extends h{e�}, ;i.

268

This is true if and only if H ✓ SM , B [H is satisfiable, 8e+ 2 E+
8A 2 AS(B [H), e+ 2 A and

8e� 2 E�
8A 2 AS(B [H) e� 62 A. This is the definition of H being a member of ILPc(Tc); hence,

ILPc(Tc) = ILPLAS(M(Tc)).

Hence, there is a polynomial mapping from ILPc tasks to ILPLAS tasks.

2. Let TLAS be any ILPLAS task hB,SM , hE+, E�
ii. Let M(TLAS) = hB,SM , hE+, E�, ;, ;ii. Clearly,

ILPLAS(TLAS) = ILPLOAS(M(TLAS)).

3. For any ILP context
LOAS task T context

LOAS , let M(T context
LOAS) = TLOAS(T context

LOAS).

By Theorem 4.9, ILP context
LOAS (T context

LOAS) = ILPLOAS(M(T context
LOAS)).

4. Consider the ILPLOAS task TLOAS = hB,SM , hE+, E�, Ob, Oc
ii. Before defining our translation M , we

define several new atoms used in its meta-level representation.

For i 2 {1, 2}, let fi be a function which maps each atom a in B [SM to a new atom ai. We also extend

this notation to work on sets of atoms and rules (and parts of rules) by replacing each atom a in the set

or rule with fi(a).

For each rule R 2 SM , define a new atom in hR.

For each weak constraint W 2 B [SM let id1(W) and id2(W) be two new (propositional) atoms and let

wt(W) be the weight of W and priority(W) be the priority level of W .

For any two terms t1 and t2, dominates(t1, t2) is defined as below.

dominates(t1, t2) =8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

dom lv(t1, t2, l) : -

#sum{id1(W1) = wt(W1), . . . , id1(Wn) = wt(Wn),

id2(W1) = �wt(W1), . . . , id2(Wn) = �wt(Wn)} < 0.

non dom lv(t1, t2, l) : -

#sum{id1(W1) = wt(W1), . . . , id1(Wn) = wt(Wn),

id2(W1) = �wt(W1), . . . , id2(Wn) = �wt(Wn)} > 0.

dom(t1, t2) : - dom lv(t1, t2, l),

not non bef(t1, t2, l).

�������������������

l is a priority level in B [SM ,

W1, . . . ,Wn are the weak

constraints in B [SM with level l

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

[

(

non bef(t1, t2, l1) : - non dom lv(t1, t2, l2).

�����
l1, l2 are levels in B [SM ,

l1 < l2

)

Let M(TLOAS) be the ILP s
LAS task hB0, S0

M , hE+0
, E�0

ii where the individual components are defined

below. For the positive and negative examples, it is a simple reification so that the examples relate to

the new B0 and S0
M . The brave orderings are mapped to positive examples which can only be covered by

a hypothesis H if B [H bravely respects the ordering example. For any hypothesis H 0
2 S0

M , the f1 and

f2 in a single answer set of B0
[H 0 represent two answer sets of B [H where H is the hypothesis in SM

corresponding to H 0. Similarly, cautious orderings are mapped to negative examples, such that there is

an answer set of B0
[H 0 which extends the example if there is a pair of answer sets of the corresponding

B [H which are ordered incorrectly (i.e. if B [H does not cautiously respect the ordering).

B0 = {fi(R)|R 2 B,R is not a weak constraint, i 2 {1, 2}}

[{idi(W) : - fi(body(W)).|W is a weak constraint in B, i 2 {1, 2}}

[{append(fi(R), in hR)|R 2 SM , R is not a weak constraint }

[{idi(W) : - append(fi(body(W)), in hW).|W is a weak constraint in SM}

[dominates(1, 2) [dominates(2, 1)

[{dom : - dom(1, 2). dom : - dom(2, 1).}

269

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

S0
M = {in hR|R 2 SM}

E+0
= {f1(e+)|e+ 2 E+

}

[
�
hf1(einc1) [f2(einc2) [{dom(1, 2)}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, >i 2 Ob

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom(2, 1)}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,�i 2 Ob

[
�
hf1(einc1) [f2(einc2) [{dom}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, 6=i 2 Ob

[
�
hf1(einc1) [f2(einc2) [{dom(2, 1)}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, <i 2 Ob

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom(1, 2)}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,i 2 Ob

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,=i 2 Ob

E�0
= {f1(e�)|e� 2 E�

}

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom(1, 2)}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, >i 2 Oc

[
�
hf1(einc1) [f2(einc2) [{dom(2, 1)}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,�i 2 Oc

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, 6=i 2 Oc

[
�
hf1(einc1) [f2(einc2), f1(eexc1) [f2(eexc2) [{dom(2, 1)}i

��hheinc1 , eexc1 i, heinc2 , eexc2 i, <i 2 Oc

[
�
hf1(einc1) [f2(einc2) [{dom(1, 2)}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,i 2 Oc

[
�
hf1(einc1) [f2(einc2) [{dom}, f1(eexc1) [f2(eexc2)i

��hheinc1 , eexc1 i, heinc2 , eexc2 i,=i 2 Oc

By using the splitting set theorem [LT94], it can be shown that for any H 0
2 S0

M :

AS(B0
[H 0) =

8
><

>:
A

�������
A 2 AS

0

B@
f1(A1) [f2(A2)

[dominates(1, 2) [dominates(2, 1)

[{dom : - dom(1, 2). dom : - dom(2, 1).}

1

CA , A1, A2 2 AS(B [H)

9
>=

>;

Hence, as the rules in dominates(t1, t2) describe exactly the behaviour of the weak constraints in B [H

for two answer sets (with dom(t1, t2) being true if and only if the first answer set dominates the second):

AS(B0
[H 0) = {A0

|A = f1(A1) [f2(A2), A1, A2 2 AS(B [H)}, where A0 is A augmented with dom and

dom(1, 2) when A1 dominates A2 and dom and dom(2, 1) when A2 dominates A1.

For any hypothesis H 0
2 S0

M , Let H be the corresponding hypothesis in SM . The answer sets of B0
[H 0

correspond to the pairs of answer sets of B [H.

Each positive example e+ 2 E+ is mapped to an example in E+0
ensuring that at least one of the pairs of

answer sets’ first answer set covers e+. Note that as each answer set of B [H must be the first element

of one of these pairs at least once, this is true if and only if B [H covers each positive example.

Similarly each negative example e� 2 E� is mapped to an example in E�0
ensuring that none of the pairs

of answer sets’ first answer set covers e�. This is true if and only if B [H does not cover any negative

examples.

Each brave ordering example he1, e2, opi 2 Ob is mapped to a positive example ensuring that there is a

pair of answer sets hA1, A2i of B[H such that A1 covers e1, A2 covers e2 and hA1, A2, opi 2 ord(B[H).

This is true if and only if B [H bravely respects the ordering example.

Each cautious ordering example he1, e2, opi 2 Oc is mapped to a negative example ensuring that there is

no pair of answer sets hA1, A2i of B[H such that A1 covers e1, A2 covers e2 and hA1, A2, opi 62 ord(B[H).

This is true if and only if B [H cautiously respects the ordering example.

Hence, H 0 is an inductive solution of ILP s
LAS(M(TLOAS)) if and only if H is an inductive solution of

ILPLOAS(TLOAS).

270

Proposition 4.13. Verifying whether a given H is an inductive solution of a general ILPb task is

NP -complete.

Proof. Let Tb be any ILPb task hB,SM , hE+, E�
ii. For any H ✓ SM , H 2 ILPb if and only if B [H [

{: - not e+. | e+ 2 E+
} [{: - e�. | e� 2 E�

} is satisfiable. As deciding the satisfiability of this program

is NP -complete (B [H contains only normal rules, choice rules and constraints), this means that deciding

verification for ILPb is in NP .

It remains to show that deciding verification is NP -hard. We do this by showing that deciding satisfiability

for any ASP program P containing normal rules choice rules and constraints can be reduced polynomially to

deciding verification for an ILPb task. Consider the ILPb task Tb = hP, ;, h;, ;ii. Let H = ;. H 2 ILPb(Tb) if

and only if there is an answer set of P [H, and hence, if and only if P is satisfiable.

Proposition 4.15. Deciding the satisfiability of a general ILPb task is NP -complete.

Proof. First we will show that deciding the satisfiability of a general ILPb task is in NP . We do this by mapping

an arbitrary task T = hB,SM , hE+, E�
ii to an ASP program whose answer sets can be mapped to the solutions

of T . This program will be satisfiable if and only if T is satisfiable and as the program is aggregate stratified,

checking whether the program is satisfiable is in NP . Hence, if we can construct such a program then we will

have proved that deciding satisfiability for ILPb is in NP .

For each Ri
2 SM we define a new atom in hRi . Also, let meta(Ri) be the rule Ri with the additional atom

in hRi added to the body.

We define the meta encoding Tmeta as follows:

Tmeta = B [{meta(Ri) | Ri
2 SM} [{ 0{in hR1 , . . . , in hR|SM|}|SM|. }

[{: - not e. | e 2 E+
} [{: - e. | e 2 E�

}

For any answer set A, let M�1(A) = {Ri
| Ri

2 SM , in hRi 2 A}.

A 2 AS(Tmeta) if and only if (A\{in hRi | Ri
2 SM}) 2 AS(B [M

�1(A) [{: - not e. | e 2 E+
} [{: - e. | e 2

E�
}). (This can be seen by using the splitting set theorem, with {in hRi | Ri

2 SM} as the splitting set).

Hence A 2 AS(Tmeta) if and only if 9H ✓ SM such that H = M
�1(A), (A\{in hRi | Ri

2 SM}) 2 AS(B [H)

and A extends hE+, E�
i.

Hence Tmeta is satisfiable if and only if 9H ✓ SM such that 9A 2 AS(B [H) such that A extends hE+, E�
i.

This is the case if and only if T is satisfiable.

It remains to show that deciding the satisfiability of a general ILPb task is NP -hard. Deciding the satisfiability

of a normal logic program is NP -hard, so demonstrating that deciding the satisfiability of a normal program P

can be mapped to an ILPb task is su�cient.

Let P be any normal logic program. Let T be the ILPb task hP, ;, h;, ;ii. T is satisfiable if and only if 9H ✓ ;

such that 9A 2 AS(P [H) such that ; ✓ A and A \ ; = ;. This is true if and only if P is satisfiable.

Hence, deciding the satisfiability of a general ILPb task is NP -complete.

271

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Proposition 4.17. Verifying whether a given H is an optimal inductive solution of a general ILPb

task is DP -complete.

Proof.

1. We first show that the decision problem is in DP . We do so by showing that it can be reduced to two

decision problems; one of which is in NP and the other is in co-NP .

Let T = hB,SM , hE+, E�
ii be an arbitrary brave induction task and assume that H is an optimal

inductive solution of T .

, H is a brave inductive solution of T and there is no H 0 such that |H| > |H 0
| and |H 0

| is a brave

inductive solution of T .

, H is a brave inductive solution of T and the program:

B [{append(R, in h(Rid)) 0{in h(Rid)}1. | R 2 SM}8
><

>:

cov : - e+1 , . . . , e
+
m , not e�1 , . . . , not e�n .

: - not cov.

: - |H|#sum{in h(R1id) = |R1|, . . . , in h(Rkid) = |Rk|}.

9
>=

>;

is unsatisfiable (where SM = {R1, . . . , Rk
}, E+ = {e+1 , . . ., e

+
m } and E� = {e�1 , . . ., e

�
n })

Hence, the decision problem can be reduced to two problems: verifying a hypothesis is a brave inductive

solution; and deciding that a ground aggregate stratified program is unsatisfiable. Hence, as the former is

in NP and the latter is in co-NP , verifying that a given hypothesis is an optimal brave inductive solution

of a given task is a member of DP .

2. We now show that the decision problem is DP hard. To prove that optimum verification for ILPb is

DP -hard, we must prove that any problem in DP can be reduced to this decision problem.

Let D be any arbitrary decision problem which is in DP .

By the definition of DP , this is the case if and only if there exist two decision problems D1 and D2 such

that D1 is in NP , D2 is in co-NP and D returns yes if and only if both D1 and D2 return yes.

By Lemma 2.19 and Corollary 2.20, this is the case if and only if there are two programs P1 and P2 and

two atoms a1 and a2 such that both P1 |=b a1 and P2 |=c a2 if and only if D returns yes. Without loss

of generality we can assume that the atoms in P1 (together with a1) are disjoint from the atoms in P2

(together with a2). Let a be a new atom that does not occur in P1 or P2.

Let B be the program P1 [append(P2, not a) [{: - a2}. We now show that {a.} is an optimal solution

of the ILPb task T = hB, {a.}, h{a1}, ;ii if and only if D returns yes.

Assume {a.} is an optimal solution of T

, {a.} 2 ILPb(T) and ; 62 ILPb(T).

, B [{a.} has an answer set that contains a1, but B has no such answer set.

, P1 has an answer set that contains a1, but B has no such answer set.

(by the splitting set theorem, using HBP1 [{a} as a splitting set).

, P1 has an answer set that contains a1, but P1[P2[{: - a2.} has no such answer set (by the splitting

set theorem, using {a} as a splitting set).

, P1 has an answer set that contains a1, and P2 [{: - a2} is unsatisfiable (as the atoms in P1 and P2

are disjoint).

272

, P1 has an answer set that contains a1, and P2 has no answer set that does not contain a2.

, P1 |=b a1, and P2 |=c a2.

, D returns yes.

Proposition 4.19. Deciding verification for ILP s
LAS is a member of DP .

Proof. Checking whether H is an inductive solution of an ILP s
LAS task T = hB,SM , hE+, E�

ii can be achieved

by mapping T to two aggregate stratified ASP programs P+ and P�, such that H 2 ILPLAS(T) if and only if

P+ bravely entails an atom and P� cautiously entails an atom.

1. Let n be the integer |E+
|.

For any integer i 2 [1, n], let fi be a function mapping the atoms a in B[H to new atoms ai. We extend

the notation to allow fi to act on ASP programs (substituting all atoms in the program).

Let P+ be the program:(
fi(B [H) [

(
covered(i) : - fi(einc1), . . . , fi(eincm),

not fi(eexc1), . . . , not fi(eexco).

)�����
ei 2 E+

ei = h{einc1 , . . ., eincm }, {eexc1 , . . ., eexco }i

)

P+ can be split into n sub programs P1 . . . Pn where each program Pi contains the rules containing the

atoms generated by fi.

As the atoms in each sub program are disjoint from the atoms of all other subprograms, AS(P+) =

{A1 [. . . [An | A1 2 AS(P1), . . . , An 2 AS(Pn)}. (This follows from applying the splitting set theorem

n� 1 times).

For each i 2 [1, n], Pi |=b covered(i) if and only if 9A 2 B [H such that A extends ei (where ei is the

ith positive example). Hence P+
[{covered : - covered(1), . . . , covered(n).} |=b covered if and only if

all the positive examples are covered. Therefore, checking whether all the positive examples are covered

is in NP by Corollary 2.20.

As checking that H ✓ SM can be done in polynomial time, this means that checking both that H 2 SM

and all the positive examples are covered is in NP .

2. Let P� be the program:

B [H [{covered : - not neg violated.}

S
(

neg violated : - einc1 , . . . , eincm ,

not eexc1 , . . . , not eexco .

�����h{e
inc
1 , . . ., eincm }, {eexc1 , . . ., eexco }i 2 E�

)

P�
|=c covered if and only if @A 2 AS(B [H) such that 9e� 2 E� such that A extends e�. Hence

checking that all negative examples are covered is in co-NP by Lemma 2.19.

Hence as H 2 ILP s
LAS(T) if and only if H ✓ SM , all the positive examples are covered and all the negative

examples are covered, verifying that H 2 ILP s
LAS(T) can be reduced to checking one problem in NP and

another problem in co-NP . This means that verifying a hypothesis is a solution of an ILP s
LAS task is in DP .

273

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Proposition 4.20. Deciding verification for ILPc is DP -hard.

Proof. To prove that verification for ILPc is DP -hard, we must prove that any problem in DP can be reduced

to the verification task. Let D be any arbitrary decision problem which is in DP . By the definition of DP , this

is the case if and only if there exist two decision problems D1 and D2 such that D1 is in NP , D2 is in co-NP

and D returns yes if and only if both D1 and D2 return yes.

By Lemma 2.19 and Corollary 2.20, this is the case if and only if there are two programs P1 and P2 and two

atoms a1 and a2 such that both P1 |=b a1 and P2 |=c a2 if and only if D returns yes. Without loss of generality

we can assume that the atoms in P1 (together with a1) are disjoint from the atoms in P2 (together with a2).

Take Tc to be the ILPc task hB,SM , hE+, E�
ii, where the individual components of the task are defined as

follows:

• B = P1 [A(P2, a3) [{: - not a1. 0{a3}1. a2 : - not a3.} (where we assume a3 to be a new atom and

A(P, a) to add the atom a to the body of all rules in P)

• SM = ;

• E+ = {a2}

• E� = ;

; 2 ILPc(Tc) if and only if (P1 [{: - not a1.}) is satisfiable and A(P2, a3) [{0{a3}1. a2 : - not a3.} |=c a2.

This is the case as the two subprograms P1[{: - not a1.} and A(P2, a3)[{0{a3}1. a2 : - not a3.} are disjoint,

and the latter is guaranteed to be satisfiable (it has the answer set {a2}). Hence ; 2 ILPc(Tc) if and only if

P1 |=b a1. and P2 |=c a2. But this is the case if and only if D returns yes. Hence any problem in DP can be

reduced to verifying that a hypothesis is an inductive solution of an ILPc task.

Hence verification for ILPc is DP -hard.

Proposition 4.22. Deciding satisfiability for ILP s
LAS is in ⌃P

2 .

Proof. Given an ILP s
LAS task T = hB,SM , hE+, E�

ii, we show that a non-deterministic Turing Machine with

access to an NP oracle could check satisfiability of T in polynomial time.

A non-deterministic Turing Machine can have |SM | choices to make (corresponding to selecting each rule as

part of the hypothesis). As verification for ILP s
LAS is in DP (by Proposition 4.19), this hypothesis can then be

verified in polynomial time using an NP oracle, with two queries, answering yes if and only if the first query

returned yes and the second query returned no.

Such a Turing Machine would terminate answering yes if and only if the task is satisfiable (as there is a path

through the Turing Machine which answers yes if and only if there is a hypothesis in SM which is an inductive

solution of the task).

Hence, deciding the existence of a solution for an ILP s
LAS task is in ⌃P

2 .

Proposition 4.23. Deciding satisfiability for ILPc is ⌃P
2 -hard.

274

Proof. We show this by reducing a known ⌃P
2 -complete problem (deciding the existence of an answer set for a

ground disjunctive logic program [EG95]) to an ILPc task.

Take any ground disjunctive logic program P . We will define an ILPc task T (P) which has a solution if and

only if P has an answer set.

Let P 0 be the program constructed by replacing each negative literal not a with the literal not in as(a)

(where in as is a new predicate) and replacing each head h1 _ . . . _ hm with 1{h1, . . . , hm}m (empty heads are

mapped to 1{}0 – this is equivalent to ?).

We define the learning task T (P) as follows (not minimal is a new atom):

B = P 0
[

(
: - a, not in as(a).

not minimal : - not a, in as(a).

�����a 2 HBP

)

SM = {in as(a). | a 2 HBP }

E+ = ;

E� = {not minimal}

This task has a solution if there exists an H ✓ SM such that B [H is satisfiable and no answer set of B [H

contains not minimal.

, 9H ✓ SM st 9A 2 AS

0

B@

8
><

>:
1{h1, . . . , hm}m : - b1, . . . , bn

�������

1{h1, . . . , hm}m : - b1, . . . , bn,

not in as(c1), . . . , not in as(co).
2 P 0,

{in as(c1), . . ., in as(co)} \H = ;

9
>=

>;

1

CA

such that A ✓ {a | in as(a) 2 H} and no answer set of B [H contains not minimal.

, 9H ✓ SM st 9A 2 AS

0

B@

8
><

>:
1{h1, . . . , hm}m : - b1, . . . , bn

�������

1{h1, . . . , hm}m : - b1, . . . , bn,

not in as(c1), . . . , not in as(co).
2 P 0,

{in as(c1), . . ., in as(co)} \H = ;

9
>=

>;

1

CA

such that A = {a | in as(a) 2 H} and there is no strict subset of A which is also an answer set (or there

would be an answer set of B [H which contains not minimal).

, 9H ✓ SM st {a | in as(a) 2 H} is a minimal model of
8
><

>:
h1 _ . . . _ hm : - b1, . . . , bn

�������

1{h1, . . . , hm}m : - b1, . . . , bn,

not in as(c1), . . . , not in as(co).
2 P 0,

{in as(c1), . . ., in as(co)} \H = ;

9
>=

>;

, 9H ✓ SM st {a | in as(a) 2 H} is a minimal model of
8
><

>:
h1 _ . . . _ hm : - b1, . . . , bn

�������

h1 _ . . . _ hm : - b1, . . . , bn,

not c1, . . . , not co.
2 P,

{in as(c1), . . ., in as(co)} \H = ;

9
>=

>;

, 9A ✓ HBP st A is a minimal model of
8
><

>:
h1 _ . . . _ hm : - b1, . . . , bn

�������

h1 _ . . . _ hm : - b1, . . . , bn,

not c1, . . . , not co.
2 P,

{c1, . . ., co} \A = ;

9
>=

>;

, 9A ✓ HBP such that A is a minimal model of PA

, 9A ✓ HBP such that A an answer set of P .

, P is satisfiable.

275

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Hence, deciding whether a disjunctive logic program is satisfiable can in general be mapped to the decision

problem of checking the existence of solutions of a cautious induction task.

Therefore, deciding the existence of solutions of a ground ILPc task is ⌃P
2 -hard.

Proposition 4.25. Deciding optimum verification for ILP s
LAS is in ⇧P

2 .

Proof. Given an ILP s
LAS task T = hB,SM , hE+, E�

ii, we show that a non-deterministic Turing Machine with

access to an NP oracle could check whether a hypothesis H is not an optimal solution of T in polynomial time.

H can be verified in polynomial time using an NP oracle, with two queries to the oracle (as verification for

ILP s
LAS is in DP , by Proposition 4.19). H is a solution if and only if the first query returns yes and the second

no. If the first query returns no, or if the second query returns yes, then H is not an optimal solution (as it is

not a solution), and so the Turing machine can return yes.

If the first query returns yes and the second returns no, then H is a solution, so in order to prove that H is not

an optimal solution, we must show that there is a shorter hypothesis H 0 such that H 0 is a solution of T .

A non-deterministic Turing Machine can then have |SM | choices to make (corresponding to selecting each rule

as part of the hypothesis). This hypothesis H 0 can then be verified in polynomial time using an NP oracle (by

Proposition 4.19), answering yes if and only if the first query returned yes and the second query returned no

and |H 0
| < |H| (which can be checked in polynomial time).

Such a Turing Machine would terminate answering yes if and only if H is not an optimal solution of T (as there

is a path through the Turing Machine which answers yes if and only if either H is not a solution of T or if there

is a hypothesis H 0 in SM such that |H 0
| < |H| and such that H 0 is an inductive solution of the task).

Hence, the Turing Machine terminates answering no if and only if H 0 is an optimal solution of T .

Hence, optimum verification for ILP s
LAS is in ⇧P

2 .

Proposition 4.26. Deciding whether an arbitrary hypothesis H is an optimal inductive solution of

a given ILPc task is ⇧P
2 -hard.

Proof. We show this by reducing a known ⇧P
2 -complete problem (deciding whether an atom is cautiously

entailed by a ground disjunctive logic program [EG95]) to deciding whether a hypothesis is an optimal solution

of an ILPc task.

Take any ground disjunctive logic program P and any atom a⇤. We will define an ILPc task T (P, a⇤) and a

hypothesis H such that H 2
⇤ILPc(T (P, a⇤)) if and only if P |=c a

⇤.

Let P 0 be the program constructed by replacing each negative literal not a with the literal not in as(a) (where

in as is a new predicate) and replacing each head h1 _ . . . _ hm with the counting aggregate 1{h1, . . . , hm}m

(empty heads are mapped to 1{}0 – this is equivalent to ?).

We define the learning task T (P, a⇤) as follows (not minimal and b are new atoms):

276

B = A(P 0, not b) [

8
>>>>>><

>>>>>>:

: - a, not in as(a).

: - not n in as(a), not in as(a).

: - n in as(a), in as(a).

not minimal : - not a, in as(a), not b.

: - in as(a⇤), not b.

������������

a 2 HBP

9
>>>>>>=

>>>>>>;

SM = {in as(a) | a 2 HBP } [{n in as(a) | a 2 HBP } [{b.}

E+ = ;

E� = {not minimal}

We now show that {in as(a). | a 2 HBP } [{b.} is an optimal solution of T (P, a⇤) if and only if P |=c a.

Assume that {in as(a). | a 2 HBP } [{b.} is an optimal solution of T (P, a⇤)

, {in as(a). | a 2 HBP } [{b.} 2 ILPc(T (P, a⇤)) and @H ✓ SM such that |H|  |HBP | and H 2

ILPc(T (P, a⇤))

, B [{in as(a). | a 2 HBP } [{b.} is satisfiable and has no answer set that contains not minimal and

@H ✓ SM such that |H|  |HBP | and H 2 ILPc(T (P, a⇤))

, @H ✓ SM such that |H|  |HBP | and H 2 ILPc(T (P, a⇤))

(as {in as(a) | a 2 HBP } [{b} 2 AS(B [{in as(a). | a 2 HBP } [{b.}))

, 8H ✓ SM such that |H|  |HBP |, and B [H is satisfiable, B [H |=b not minimal

, 8A ✓ HBP such that P ⇤ is satisfiable, P ⇤
|=b not minimal

where P ⇤ = P 0
[

8
><

>:

: - a, not in as(a).

not minimal : - not a, in as(a).

: - in as(a⇤).

9
>=

>;
[{in as(a). | a 2 A}

[{n in as(a). | a 2 HBP \A}

, 8A ✓ HBP such that a⇤ 62 A and P ⇤ is satisfiable, P ⇤
|=b not minimal

where P ⇤ = P 0
[

(
: - a, not in as(a).

not minimal : - not a, in as(a).

)
[{in as(a). | a 2 A}

[{n in as(a). | a 2 HBP \A}

, 8A ✓ HBP such that a⇤ 62 A and P ⇤ is satisfiable, P ⇤
|=b not minimal

where P ⇤ = PA
[{: - a. | a 62 A} [{not minimal : - not a. | a 2 A} (similar to the proof of

Proposition 4.23).

, 8A ✓ HBP such that a⇤ 62 A and 9A0
2 M(PA) such that A0

⇢ A.

, 8A ✓ HBP such that a⇤ 62 A, A 62 M(PA).

, 8A ✓ HBP such that a⇤ 62 A, A 62 AS(P).

, P |=c a
⇤

Proofs from Chapter 5

Proposition 5.9.

For any programs P1 and P2, Eb(P1) ✓ Eb(P2) if and only if AS(P1) ✓ AS(P2).

277

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Proof.

• Assume that AS(P1) ✓ AS(P2)

, 8A 2 AS(P1), A 2 AS(P2).

Assume c = i1 ^ . . . ^ im,^ not e1, . . . , not en 2 Eb(P1). Then there must be an answer set A of P1

which contains all of the i’s and none of the e’s. Hence, there is also such an answer set of P2. Hence,

c 2 Eb(P2).

• Conversely, assume that Eb(P1) ✓ Eb(P2). Let A 2 AS(P1), we must show that A 2 AS(P2).

Let L be the set HBP1 [HBP2 .

As A 2 AS(P1), c = i1 ^ . . . ^ im,^ not e1, . . . , not en 2 Eb(P1), where {i1, . . ., im} = A and {e1,

. . ., en} = L\A. As c 2 Eb(P1), c 2 Eb(P2) and hence there is an answer set A0 of P2 which contains

each i 2 A but no atom e 2 L\A, and hence as HBP2 ✓ L, A0 = A. Hence A 2 AS(P2).

Proposition 5.10.

D
1
1(ILPb) = {hB,H1, H2i| AS(B [H1) 6✓ AS(B [H2)}

Proof. We prove this by showing that D
1
1(ILPb) = {hB,H1, H2i|Eb(B [H1) 6✓ Eb(B [H2)}, which is equal to

the set {hB,H1, H2i|AS(B [H1) 6✓ AS(B [H2)} by Proposition 5.9.

• We first show that if hB,H1, H2i 2 D
1
1(ILPb) then there must be a conjunction in Eb(B [H1) that is not

in Eb(B [H2).

As hB,H1, H2i 2 D
1
1(ILPb), there is an ILPb task T = hB, h{i1, . . . , im}, {e1, . . . , en}ii such that H1 2

ILPb(T) and H2 62 ILPb(T).

Hence, there must be an answer set of B [H1 such that {i1, . . . , im} ✓ A and {e1, . . . , em} \ A = ;, but

no such answer set of B [H2.

Hence the conjunction c = i1 ^ . . . ^ im ^ not e1 ^ . . . ^ not en 2 Eb(B [H1) but c 62 Eb(B [H2).

• Next we show that if there exists a conjunction c = i1 ^ . . . ^ im ^ not e1 ^ . . . ^ not en such that

c 2 Eb(B [H1) but c 62 Eb(B [H2), then hB,H1, H2i 2 D
1
1(ILPb).

Assume that there is such a conjunction c. Then B [H1 has an answer set that extends h{i1, . . . , im},

{e1, . . . , en}i and B [H2 does not. Hence H1 2 ILPb(hB, h{i1, . . . , im}, {e1, . . . , en}ii)

but H2 62 ILPb(hB, h{i1, . . . , im}, {e1, . . . , en}ii). So hB,H1, H2i 2 D
1
1(ILPb).

Proposition 5.11. D
1
1(ILPb) = D

1
1(ILPsm).

Proof.

278

• First we show that D
1
1(ILPb) ✓ D

1
1(ILPsm). Assume hB,H1, H2i 2 D

1
1(ILPb). Then there is a task

Tb = hB, hE+, E�
ii such that H1 2 ILPb(Tb) and H2 62 ILPb(Tb). Let Tsm = hB, {hE+, E�

i}i. H1 2

ILPsm(Tsm) but H2 62 ILPsm(Tsm). Hence, hB,H1, H2i 2 D
1
1(ILPsm).

• Next we show that D
1
1(ILPb) ◆ D

1
1(ILPsm). Assume hB,H1, H2i 2 D

1
1(ILPsm). There must be a task

Tsm = hB, {hE+
1 , E�

1 i, . . . , hE+
n , E�

n i}i such that H1 2 ILPsm(Tsm) and H2 62 ILPsm(Tsm). There must

be at least one partial interpretation hE+
i , E�

i i such that there is an answer set A of B [H1 such that

E+
i ✓ A and E�

i \A = ; and there is no such answer set of B [H2. Hence, letting Tb = hB, hE+
i , E�

i ii,

H1 2 ILPb(Tb) but H2 62 ILPb(Tb). So hB,H1, H2i 2 D
1
1(ILPb).

Proposition 5.13.

D
1
1(ILPc) =

(
hB,H1, H2i

�����
AS(B [H1) 6= ;^

(AS(B [H2) = ; _ Ec(B [H2) 6✓ Ec(B [H1))

)

Proof.

• First we show that for any hB,H1, H2i 2 D
1
1(ILPc), AS(B [H1) 6= ; and either AS(B [H2) = ; or

Ec(B [H1) 6✓ Ec(B [H2).

Let hB,H1, H2i be an arbitrary element of D1
1(ILPc). As H1 2 ILPc(Tc), AS(B [H1) 6= ;. Assume

that Ec(B [H1) ✓ Ec(B [H2). We must show that AS(B [H2) = ;. As hB,H1, H2i 2 D
1
1(ILPc),

9Tc = hB, hE+, E�
ii such that H1 2 ILPc(Tc) and H2 62 ILPc(Tc).

As H1 2 ILPc(Tc), 8A 2 AS(B [H1) : E+
✓ A and E�

\A 6= ;, hence the conjunction E+
^ { not e� |

e� 2 E�
} 2 Ec(B [H1); hence by our initial assumption that Ec(B [H1) ✓ Ec(B [H2), the conjunction

is also in Ec(B [H2); hence, 8A 2 AS(B [H2), E+
✓ A and E�

\ A = ;. But as H2 62 ILPc(Tc) this

means that AS(B [H2) = ;.

• We now show that for any B, H1 and H2, if AS(B[H1) 6= ;^(AS(B[H2) = ;_Ec(B[H1) 6✓ Ec(B[H2),

then hB,H1, H2i 2 D
1
1(ILPc).

Case 1: AS(B [H1) 6= ; ^AS(B [H2) = ;.

Consider the task Tc = hB, h;, ;ii. H1 2 ILPc(Tc) as AS(B[H1) 6= ; and 8A 2 AS(B[H1), ; ✓ A

and A \ ; = ;. H2 62 ILPc(Tc) as AS(B [H2) = ;.

Case 2: AS(B [H1) 6= ; ^ 9c = (i1 ^ . . . ^ im ^ not e1 ^ . . . ^ en) 2 Ec(B [H2) such that c 62

Ec(B [H1).

Consider the task Tc = hB, h{i1, . . ., im}, {e1, . . ., en}ii. H1 2 ILPc(Tc), but H2 62 ILPc(Tc).

Proposition 5.14. D
1
1(ILPLAS) = {hB,H1, H2i|AS(B [H1) 6= AS(B [H2)}

Proof.

279

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

• We first show that D
1
1(ILPLAS) ✓ {hB,H1, H2i|AS(B [H1) 6= AS(B [H2)}. For any hB,H1, H2i 2

D
1
1(ILPLAS) there is an ILPLAS task T = hB, hE+, E�

ii such that H1 2 ILPLAS(T) and H2 62

ILPLAS(T).

Case 1: 9e 2 E+ such that 8A 2 AS(B [H2), A does not extend e.

As H1 2 ILPLAS(T), 9A0
2 AS(B [H1) such that A0 extends e. Hence as A0 cannot be in

AS(B [H2), AS(B [H1) 6= AS(B [H2).

Case 2: 9e 2 E�, 9A 2 AS(B [H2) such that A extends e.

As H1 2 ILPLAS(T), 8A0
2 AS(B [H1), A0 does not extend e. Hence A cannot be in AS(B [H1)

and so AS(B [H1) 6= AS(B [H2).

• It remains to show that D
1
1(ILPLAS) ◆ {hB,H1, H2i|AS(B [H1) 6= AS(B [H2)}. Take B, H1, H2 to

be any ASP programs such that AS(B [H1) 6= AS(B [H2)

Let L be the set of atoms which appear in answer sets of B [H1 and B [H2.

Case 1: 9A 2 AS(B [H1) such that A 62 AS(B [H2)

Let eA = hA,L\Ai. A is the only interpretation in AS(B [H1) or AS(B [H2) which extends eA
(as eA is completely defined over the atoms in L). Hence, there is an answer set of B [H1 which

extends eA, but no such answer set of B [H2.

Hence, H1 2 ILPLAS(hB, h{eA}, ;ii), but H2 62 ILPLAS(hB, h{eA}, ;ii).

Hence hB,H1, H2i 2 D
1
1(ILPLAS).

Case 2: 9A 2 AS(B [H2) such that A 62 AS(B [H1)

Let eA = hA,L\Ai. A is the only interpretation in AS(B [H1) or AS(B [H2) which extends

eA. Hence, there is no answer set of B [H1 which extends eA, but there is such an answer set of

B [H2.

Hence, H1 2 ILPLAS(hB, h;, {eA}ii), but H2 62 ILPLAS(hB, h;, {eA}ii).

Hence hB,H1, H2i 2 D
1
1(ILPLAS).

Proposition 5.15.

D
1
1(ILPLOAS) =

(
hB,H1, H2i

�����
AS(B [H1) 6= AS(B [H2) or

ord(B [H1) 6= ord(B [H2)

)

Proof.

• We first show that D1
1(ILPLOAS) ✓

(
hB,H1, H2i

�����
AS(B [H1) 6= AS(B [H2) or

ord(B [H1) 6= ord(B [H2)

)
.

For any hB,H1, H2i 2 D
1
1(ILPLOAS) there is an ILPLOAS task T = hB, hE+, E�, Ob, Oc

ii such that

H1 2 ILPLOAS(T) and H2 62 ILPLOAS(T).

Case 1: 9e 2 E+ such that 8A 2 AS(B [H2), A does not extend e.

As H1 2 ILPLOAS(T), 9A0
2 AS(B [H1) such that A0 extends e. Hence as A0 cannot be in

AS(B [H2), AS(B [H1) 6= AS(B [H2).

280

Case 2: 9e 2 E�, 9A 2 AS(B [H2) such that A extends e.

As H1 2 ILPLOAS(T), 8A0
2 AS(B[H1), A0 does not extend e. Hence, A cannot be in AS(B[H1)

and so AS(B [H1) 6= AS(B [H2).

Case 3: 9he1, e2, opi 2 Ob which is covered by H1 but not H2.

Assume AS(B [H1) = AS(B [H2). 9A1, A2 2 AS(B [H1) such that A1 extends e1, A2 extends

e2 and hA1, A2, opi 2 ord(B [H) as H1 covers the ordering example. hA1, A2, opi 62 ord(B [H2)

as H2 does not cover the ordering example; and hence, ord(B [H1) 6= ord(B [H2).

Case 4: 9he1, e2, opi 2 Oc which is covered by H1 but not H2.

Assume AS(B [H1) = AS(B [H2). 9A1, A2 2 AS(B [H2) such that A1 extends e1, A2 extends

e2 and hA1, A2, opi 62 ord(B [H2) as H2 does not cover the ordering example. hA1, A2, opi 2

ord(B [H1) as H1 does cover the ordering example; and hence, ord(B [H1) 6= ord(B [H2).

Hence, in all cases, either AS(B [H1) 6= AS(B [H2 or ord(B [H1) 6= ord(B [H2).

• It remains to show that D1
1(ILPLOAS) ◆

(
hB,H1, H2i

�����
AS(B [H1) 6= AS(B [H2) or

ord(B [H1) 6= ord(B [H2)

)
. Take B, H1,

H2 to be any ASP programs such that AS(B [H1) 6= AS(B [H2) or ord(B [H1) 6= ord(B [H2).

Let L be the set of literals which appear in answer sets of B [H1 and B [H2.

Case 1: AS(B [H1) 6= AS(B [H2)

hB,H1, H2i 2 D
1
1(ILPLAS) (by Proposition 5.14). Hence, there is an ILPLAS task TLAS =

hB, hE+, E�
ii such that H1 2 ILPLAS(TLAS) and H2 62 ILPLAS(TLAS). Let TLOAS =

hB, hE+, E�, ;, ;ii. H1 2 ILPLOAS(TLOAS) and H2 62 ILPLOAS(TLOAS).

Case 2: AS(B [H1) = AS(B [H2) but ord(B [H1) 6= ord(B [H2)

9A1, A2 2 AS(B[H1) (which is equal to AS(B[H2)) such that there is a binary operator op such

that hA1, A2, opi 2 ord(B [H1) but hA1, A2, opi 62 ord(B [H2). Let e1 = hA1, L\A1i and e2 =

hA2, L\A2i (where L is the set of atoms in the answer sets of B[H1). Consider the ILPLOAS task

TLOAS = hB, h{e1, e2}, ;, {he1, e2, opi}, ;ii. H1 2 ILPLOAS(TLOAS) and H2 62 ILPLOAS(TLOAS).

Hence, in both cases hB,H1, H2i 2 D
1
1(ILPLOAS).

Proposition 5.17.

D
1
1(ILP

context
LOAS) =

(
hB,H1, H2i

�����
B [H1 6⌘

s B [H2 or

9C 2 ASP
ch such that ord(B [H1 [C) 6= ord(B [H2 [C)

)

Proof.

• We first show D
1
1(ILP

context
LOAS) ✓

(
hB,H1, H2i

�����
B [H1 6⌘

s B [H2 or

9C 2 ASP
ch st ord(B [H1 [C) 6= ord(B [H2 [C)

)
.

For any hB,H1, H2i 2 D
1
1(ILP

context
LOAS) there is an ILP context

LOAS task T = hB, hE+, E�, Ob, Oc
ii such that

H1 2 ILP context
LOAS (T) and H2 62 ILP context

LOAS (T).

281

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Case 1: 9he, Ci 2 E+ such that 8A 2 AS(B [H2 [C), A does not extend e.

As H1 2 ILP context
LOAS (T), 9A0

2 AS(B [H1 [C) such that A0 extends e. Hence, as A0 cannot be in

AS(B [H2 [C), AS(B [H1 [C) 6= AS(B [H2 [C). Hence, B [H1 6⌘s B [H2.

Case 2: 9he, Ci 2 E�, 9A 2 AS(B [H2 [C) such that A extends e.

As H1 2 ILP context
LOAS (T), 8A0

2 AS(B [H1 [C), A0 does not extend e. Hence, A cannot be in

AS(B [H1 [C) and so AS(B [H1 [C) 6= AS(B [H2 [C). Hence, B [H1 6⌘s B [H2.

Case 3: 9hhe1, C1i, he2, C2i, opi 2 Ob which is covered by H1 but not H2.

Assume that B [H1 ⌘s B [H2.

Let S be the set AS(B [H1 [C1)[AS(B [H1 [C2) (which is equal to the set AS(B [H2 [C1)[

AS(B [H2 [C2) as B [H1 ⌘s B [H2). 9A1 2 AS(B [H1 [C1), A2 2 AS(B [H1 [C2) such

that A1 extends e1, A2 extends e2 and hA1, A2, opi 2 ord(B [H1, S) as H1 covers the ordering

example. hA1, A2, opi 62 ord(B [H2, S) as H2 does not cover the ordering example.

Let C be the ASP
ch program append(C1, a1) [append(C2, a2) [{1{a1, a2}1.} (where a1 and a2

are new atoms and append(P, a) appends the atom a to the body of each rule in P). AS(B [

H1 [C) = {A [{a1} | A 2 AS(B [H1 [C1)} [{A [{a2} | A 2 AS(B [H1 [C2)}, and hence,

t = hA1 [{a1}, A2 [{a2}, opi 2 ord(B [H1 [C), but t 62 ord(B [H2 [C).

Hence, 9C 2 ASP
ch such that ord(B [H1 [C) 6= ord(B [H2 [C).

Case 4: 9he1, e2, opi 2 Oc which is covered by H1 but not H2.

Assume that B [H1 ⌘s B [H2.

Let S be the set AS(B [H1 [C1)[AS(B [H1 [C2) (which is equal to the set AS(B [H2 [C1)[

AS(B[H2[C2) as B[H1 ⌘s B[H2). 9A1 2 AS(B[H1[C1), A2 2 AS(B[H1[C2) such that

A1 extends e1, A2 extends e2 and hA1, A2, opi 62 ord(B [H2, S) as H2 does not cover the ordering

example. hA1, A2, opi 2 ord(B [H1, S) as H1 does cover the ordering example.

Let C be the ASP
ch program append(C1, a1) [append(C2, a2) [{1{a1, a2}1.} (where a1 and a2

are new atoms and append(P, a) appends the atom a to the body of each rule in P). AS(B [

H1 [C) = {A [{a1} | A 2 AS(B [H1 [C1)} [{A [{a2} | A 2 AS(B [H1 [C2)}, and hence,

t = hA1 [{a1}, A2 [{a2}, opi 2 ord(B [H1 [C), but t 62 ord(B [H2 [C).

Hence, 9C 2 ASP
ch such that ord(B [H1 [C) 6= ord(B [H2 [C).

Hence, in all cases, either B[H1 ⌘s B[H2 or 9C 2 ASP
ch such that ord(B[H1[C) 6= ord(B[H2[C).

• It remains to show that:

D
1
1(ILP

context
LOAS) ◆

(
hB,H1, H2i

�����
B [H1 6⌘

s B [H2 or

9C 2 ASP
ch st ord(B [H1 [C) 6= ord(B [H2 [C)

)
.

Take B, H1, H2 to be any ASP programs such that B[H1 6⌘
s B[H2 or 9C 2 ASP

ch st ord(B[H1[C) 6=

ord(B [H2 [C).

Case 1: B [H1 6⌘s B [H2

There must be a program C such that AS(B [H1 [C) 6= AS(B [H2 [C).

Case i: 9A 2 AS(B [H1 [C) such that A 62 AS(B [H2 [C).

Let L be the set of atoms in the answer sets of B [H1 [C and B [H2 [C and let eA be

the partial interpretation hA,L\Ai. Then B [H1 [C has an answer set that extends eA, but

B [H2 [C does not, and hence, H1 2 ILP context
LOAS (hB,SM , h{heA, Ci}, ;, ;, ;ii) but H2 is not.

282

Case ii: 9A 2 AS(B [H2 [C) such that A 62 AS(B [H1 [C).

Let L be the set of atoms in the answer sets of B [H1 [C and B [H2 [C and let eA be

the partial interpretation hA,L\Ai. Then B [H2 [C has an answer set that extends eA, but

B [H1 [C does not, and hence, H1 2 ILP context
LOAS (hB,SM , h;, {heA, Ci}, ;, ;ii) but H2 is not.

Case 2: B [H1 ⌘s B [H2 but 9C 2 ASP
ch such that ord(B [H1 [C) 6= ord(B [H2 [C)

9A1, A2 2 AS(B [H1 [C) (which is equal to AS(B [H2 [C)) such that there is a binary

operator op such that hA1, A2, opi 2 ord(B [H1 [C) but hA1, A2, opi 62 ord(B [H2 [C). Let

e1 = hhA1, L\A1i, Ci and e2 = hhA2, L\A2i, Ci (where L is the set of atoms in the answer sets

of B [H1 [C. Consider the ILP context
LOAS task T context

LOAS = hB, h{e1, e2}, ;, {he1, e2, opi}, ;ii. H1 2

ILP context
LOAS (T context

LOAS) and H2 62 ILP context
LOAS (T context

LOAS).

Hence, in both cases hB,H1, H2i 2 D
1
1(ILP

context
LOAS).

Proposition 5.22. For any framework F :

D1
m(F) =

8
><

>:
hB,H, {H1, . . . , Hn}i

�������

hB,H,H1i 2 D
1
1(F),

. . . ,

hB,H,Hni 2 D
1
1(F)

9
>=

>;

Proof.

• We first show that D1
m(F) ✓

�
hB,H, {H1, . . . , Hn}i

��hB,H,H1i, . . . , hB,H,Hni 2 D
1
1(F)

. Take an ar-

bitrary hB,H, Si 2 D1
m(F). We must show that hB,H, Si 2 {hB,H, {H1, . . . , Hn}i|hB,H,H1i, . . . ,

hB,H,Hni 2 D
1
1(F)

. To do this, we need to show that 8H 0

2 S, hB,H,H 0
i 2 D

1
1(F).

Take an arbitrary H 0
2 S. It remains to show that hB,H,H 0

i 2 D
1
1(F). By definition of D1

m(F),

there must be some subset S0
✓ S such that H 0

2 S0 and hB,H, S0
i 2 D

1
m(F). Hence, 9TF such that

H 2 ILPF (TF) and S0
\ ILPF (TF) = ;. Hence, as H 0

2 S0, hB,H,H 0
i 2 D

1
1(F).

• We now show that D1
m(F) ◆

�
hB,H, {H1, . . . , Hn}i

��hB,H,H1i, . . . , hB,H,Hni 2 D
1
1(F)

. Take an ar-

bitrary hB,H, {H1, . . . , Hn}i 2
�
hB,H, {H1, . . . , Hn}i

��hB,H,H1i, . . . , hB,H,Hni 2 D
1
1(F)

. For each

i 2 [1..n], hB,H,Hii 2 D
1
1(F), and hence, hB,H, {Hi}i 2 D

1
m(F). Hence, by definition of D1

m(F),

hB,H, {H1, . . . , Hn}i 2 D1
m(F).

Proposition 5.27. ILPc, ILPsm, ILPLAS , ILPLOAS and ILP context
LOAS all have closed one-to-many-

distinguishability.

Proof.

283

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

1. Consider any two ILPc tasks, T 1
c = hB, hE+

1 , E�
1 ii and T 2

c = hB, hE+
2 , E�

2 ii. Let T 3
c = hB, hE+

1 [E+
2 , E�

1 [

E�
2 ii.

H 2 ILPc(T 1
c)\ILPc(T 2

c) if and only if AS(B[H) is non-empty and 8A 2 AS(B[H): E+
1 ✓ A, E+

2 ✓ A,

E�
1 \ A = ; and E�

2 \ A = ;. This is the case if and only if (E+
1 [E+

2) ✓ A, and (E�
1 [E�

2) \ A = ;

which holds if an only if H 2 ILPc(T 3
c).

Hence, by Lemma 5.26, ILPc has closed one-to-many-distinguishability.

2. For any tasks T 1
sm = hB, h{e11, . . . , e

1
n}ii and T 2

sm = hB, h{e21, . . . , e
2
m}ii, let T 3

sm = hB, h{e11, . . . , e
1
n,

e21, . . . , e
2
m}ii. ILPsm(T 3

sm) = ILPsm(T 1
sm) \ ILPsm(T 2

sm).

Hence, by Lemma 5.26, ILPsm has closed one-to-many-distinguishability.

3. For any tasks T 1
LAS = hB, hE+

1 , E�
1 ii and T 2

LAS = hB, hE+
2 , E�

2 ii, let T 3
LAS = hB, hE+

1 [E+
2 , E�

1 [E�
2 ii.

ILPLAS(T 3
LAS) = ILPLAS(T 1

LAS) \ ILPLAS(T 2
LAS).

Hence, by Lemma 5.26, ILPLAS has closed one-to-many-distinguishability.

4. For any tasks T 1
LOAS = hB, hE+

1 , E�
1 , Ob

1, O
c
1ii and T 2

LOAS = hB, hE+
2 , E�

2 , Ob
2, O

c
2ii, let T

3
LOAS = hB, hE+

1 [

E+
2 , E�

1 [E�
2 , Ob

1 [Ob
2, O

c
1 [Oc

2ii. ILPLOAS(T 3
LOAS) = ILPLOAS(T 1

LOAS) \ ILPLOAS(T 2
LOAS).

Hence, by Lemma 5.26, ILPLOAS has closed one-to-many-distinguishability.

5. For any tasks T1contextLOAS = hB, hE+
1 , E�

1 , Ob
1, O

c
1ii and T2contextLOAS = hB, hE+

2 , E�
2 , Ob

2, O
c
2ii, let T3contextLOAS =

hB, hE+
1 [E+

2 , E�
1 [E�

2 , Ob
1 [Ob

2, O
c
1 [Oc

2ii.

ILP context
LOAS (T3contextLOAS) = ILP context

LOAS (T1contextLOAS) \ ILP context
LOAS (T2contextLOAS).

Hence, by Lemma 5.26, ILP context
LOAS has closed one-to-many-distinguishability.

Proofs from Chapter 6

Theorem 6.3. Let T be the ILP context
LOAS task hB,SM , hE+, E�, Ob, Oc

ii, ASids = {t1, . . . , tn} be a set

of terms and let H ✓ SM . Consider the program P = M1(T)[{as(t). | t 2 ASids}[{in h(hid). | h 2

H}. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|), where each Ii is an interpretation and each

ei is selected from E+
[E�, 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M

�1
as (A, ti) = Ii

if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

Proof. Let [hI1, e1i, . . . , hIn, eni] be a list of pairs, where each Ii is an interpretation and each ei is an example

in E+
[E�.

Assume 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii

, there is an answer set A of the program:

A(R(non weak(B [H), in as, AS ID), as(AS ID))

[{A(A(R(ectx, in as, AS ID), as(AS ID)), ctx(eid, AS ID))|e 2 E+
[E�

}

[{1{ctx(ex1id, AS ID), . . . , ctx(exmid, AS ID)}1 : - as(AS ID).}

[{as(t). | t 2 ASids}

such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii

284

(where {ex1, . . . , exm
} = E+

[E�)

by the splitting set theorem (using the in h atoms as a splitting set).

, 8i 2 [1, n], there is an answer set A of the program:

A(R(non weak(B [H), in as, ti), as(ti))

[{A(A(R(ectx, in as, ti), as(ti)), ctx(eid, ti))|e 2 E+
[E�

}

[{1{ctx(ex1id, ti), . . . , ctx(ex
m
id, ti)}1 : - as(ti).}

[{as(ti).}

such that ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii

, 8i 2 [1, n], there is an A 2 AS(R(non weak(B [H [eictx), in as, ti)) such that M�1
as (A, ti) = Ii

by the splitting set theorem (using the ctx and as atoms as a splitting set).

, 8i 2 [1, n], Ii 2 AS(non weak(B [H [eictx))

, 8i 2 [1, n], Ii 2 AS(B [H [eictx)

Theorem 6.4. Let T be an ILP context
LOAS task with background knowledge B and hypothesis space SM ,

and let H ✓ SM . Let ASids = {t1, . . ., tn} be a set of terms. For each t 2 ASids let Et be a set of

CDPIs.

Consider the program P = M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 Et}

.

1. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|) such that each ei is selected from E+
[E�

and each Ii is an interpretation: 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and

M
�1
as (A, ti) = Ii if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

2. For any answer set A 2 AS(P), 8i 2 [1, n], 8e 2 E+
[E�, cov(eid, ti) 2 A if and only if

ctx(eid, ti) 2 A, e 2 Eti and M
�1
as (A, ti) is an accepting answer set of e wrt B [H.

Proof. Note that the set of atoms in HBP that do not have the predicate name cov form a splitting set of

P . Hence, we can use the splitting set theorem, using the answer sets of P 0 = M1(T) [{in h(hid). | h 2

H} [{as(t). | t 2 ASids} to compute the answer sets of P . Specifically, AS(P) = {A | A0
2 AS(P 0), A 2

AS({a. | a 2 A0
} [{check(e, t) | t 2 ASids, e 2 Et})}.

1. Consider a list [hI1, e1i, . . . , hIn, eni] and such that 8i 2 [1, n], ei 2 E+
[E� and each Ii is an interpre-

tation.

Assume 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii

, 9A0
2 AS(P 0) st 8i 2 [1, n], ctx(eiid, ti) 2 A and M

�1
as (A

0, ti) = Ii. This can be seen using the

Splitting Set Theorem, with all but the cov atoms in the splitting set.

, 8i 2 [1, n], Ii 2 AS(B [H [eictx) (by Theorem 6.3)

285

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

2. Let A 2 AS(P), i 2 [1, n] and e 2 E+
[E�.

Assume that cov(eid, ti) 2 A

, there is a rule in ground(P) with cov(eid, ti) in the head whose body is satisfied by A

, check(e, ti) ✓ P and the body of the only rule in check(e, ti) is satisfied by A

, e 2 Eti , ctx(eid, ti) 2 A and M
�1
as (A, ti) extends epi

, e 2 Eti , ctx(eid, ti) 2 A, M
�1
as (A, ti) 2 AS(B [H [ectx) and M

�1
as (A, ti) extends epi (by

Theorem 6.3)

, e 2 Eti , ctx(eid, ti) 2 A, M�1
as (A, ti) is an accepting answer set of e wrt B [H.

Theorem 6.6. Let T be an ILP context
LOAS task with background knowledge B and hypothesis space SM ,

and let H ✓ SM . Let ASids = {t1, . . ., tn} be a set of terms and Pairids be a set of pairs hti, tji,

where ti and tj are terms in ASids such that no term occurs more than once in Pairids.

For each t 2 ASids let Et be a set of CDPIs and for each tuple p 2 Pairids let Op be a set of CDOEs.

Let P = M1(T) [{in h(hid) | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | ht, ei 2 Et, t 2 ASids}

[{check ord(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op}

For each term t 2 ASids, let E(t) = Et [{e | p = ht, i 2 Pairids, he, , i 2 Op} [{e | p = h , ti 2

Pairids, h , e, i 2 Op}.

1. For any list [hI1, e1i, . . . , hIn, eni] (of length |ASids|) such that each ei is selected from E+
[E�

and each Ii is an interpretation: 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and

M
�1
as (A, ti) = Ii if and only if 8i 2 [1, n], Ii 2 AS(B [H [eictx).

2. For any answer set A 2 AS(P), 8i 2 [1, n], 8e 2 E+
[E�, cov(eid, ti) 2 A if and only if

ctx(eid, ti) 2 A, e 2 E(ti) and M
�1
as (A, ti) is an accepting answer set of e wrt B [H.

3. For any A 2 AS(P), for any ordering example o = hoe1, oe2, opi and for any i, j 2 [1, n],

ord respected(oid, ti, tj) 2 A if and only if p = hti, tji 2 Pairids, o 2 Op, cov(oe1id, ti) 2 A,

cov(oe2id, tj) 2 A and hM
�1
as (A, ti),M

�1
as (A, tj)i is an accepting pair of answer sets of o wrt

B [H.

Proof. In this proof, we use the notation check ord1(T, o, t1, t2), . . . , check ord6(T, o, t1, t2) to refer to the 6

components of check ord(T, o, t1, t2) (in Meta-program 6.3).

Let PTs be the set of terms that occur in Pairids and Ls be the set of priority levels in B [SM .

286

P = M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 Et}

[{check ordi(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op, i 2 [1, 6]}

= M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 Et}

[{check(e1, ti) [check(e2, tj) | p = hti, tji 2 Pairids, he1, e2, opi 2 Op}

[{check ordi(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op, i 2 [2, 6]}

= M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 Et}

[{check(e, t) | p = ht, i 2 Pairids, he, , opi 2 Op}

[{check(e, t) | p = h , ti 2 Pairids, h , e, opi 2 Op}

[{check ordi(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op, i 2 [2, 6]}

= M1(T) [{in h(hid). | h 2 H}

[{as(t). | t 2 ASids}

[{check(e, t) | t 2 ASids, e 2 E(t)}

[{check ordi(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op, i 2 [2, 6]}

.

We partition the program P as follows:

P1 = M1(T) [{in h(hid). | h 2 H} [{check(e, t) | t 2 ASids, e 2 E(t)} [{as(t). | t 2 ASids}

P2 = check ordi(T, o, ti, tj) | p = hti, tji 2 Pairids, o 2 Op, i 2 [2, 6]}

1. First note that the atoms that occur in the heads of P2 do not occur in the program P1. Hence, (by

Corollary 2.14), AS(P) = {A 2 AS({a. | a 2 A0
} [P2) | A0

2 AS(P1)}. As there is no recursion in

P2, there is a unique answer set of {a. | a 2 A0
} [P2 for each A0

2 AS(P1). Hence, {A \ HBP1 | A 2

AS(P)} = AS(P1).

Consider a list [hI1, e1i, . . . , hIn, eni] such that each ei 2 E+
[E� and each Ii is an interpretation.

Assume 9A 2 AS(P) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii.

, 9A 2 AS(P1) such that 8i 2 [1, n], ctx(eiid, ti) 2 A and M
�1
as (A, ti) = Ii.

, 8i 2 [1, n] and Ii 2 AS(B [H [eictx) (by Theorem 6.4, part (1)).

2. Recall from (1) that {A \HBP1 | A 2 AS(P)} = AS(P1).

For any answer set A 2 AS(P), for any example e and any i 2 [1, n], assume that cov(eid, ti) 2 A

, 9A0
2 AS(P1) such that A \HBP1 = A0 and cov(eid, ti) 2 A0

, 9A0
2 AS(P1) such that A \ HBP1 = A0, ctx(eid, ti) 2 A0, e 2 E(t) and M

�1
as (A

0, ti) is an

accepting answer set of e wrt B [H (by Theorem 6.4, part (2))

, ctx(eid, ti) 2 A, e 2 E(t) and M
�1
as (A, ti) is an accepting answer set of e wrt B [H

287

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

3. Recall from (1) that {A \HBP1 | A 2 AS(P)} = AS(P1).

Let A 2 AS(P), and o = hoe1, oe2, opi. Let i, j 2 [1, n].

Note that for each k 2 [1, n], 8w(wt, lev, args(a1, . . . , am), tk) 2 HBP , w(wt, lev, args(a1, . . . , am), tk) 2 A

if and only if 9W 2 weak(ground(B [H)) such that M
�1
as (A, tk) satisfies body(W) and tail(W) =

[wt@lev, a1, . . . , am]; i.e., if and only if (wt, lev, a1, . . . , am) 2 Weak(B [H,M�1
as (A, tk)).

Hence, for each priority level lev that occurs in B [SM , dom at lev(ti, tj, lev) 2 A if and only if (B [

H)
M�1

as (A,ti)
lev � (B[H)

M�1
as (A,tj)

lev < 0, which is true if and only if (B[H)
M�1

as (A,ti)
lev < (B[H)

M�1
as (A,tj)

lev .

Similarly, dom at lev(tj, ti, lev) 2 A if and only if (B [H)
M�1

as (A,ti)
lev > (B [H)

M�1
as (A,tj)

lev .

Hence, dom(ti, tj) 2 A if and only if there is a level lev in B [SM such that (B [H)
M�1

as (A,ti)
lev > (B [

H)
M�1

as (A,tj)
lev and for all levels lev0 in B[SM such that lev < lev0, (B[H)

M�1
as (A,ti)

lev0
= (B[H)

M�1
as (A,tj)

lev0
.

This is the case if and only if M�1
as (A, ti) �B[H M

�1
as (A, tj). Similarly dom(tj, ti) 2 A if and only if

M
�1
as (A, tj) �B[H M

�1
as (A, ti).

• We first show that ord respected(oid, ti, tj) 2 A) p = hti, tji 2 Pairids, o 2 Op, cov(oe1id, ti)

and cov(oe2id, tj) are both in A and hM
�1
as (A, ti),M�1

as (A, tj)i is an accepting pair of answer sets

of o wrt B [H.

Assume that ord respected(oid, ti, tj) 2 A.

Assume for contradiction that either p 62 Pairids, o 62 Op, cov(oe1id, ti) 62 A or cov(oe2id, tj) 62 A.

Then either there are no rules in P with ord respected(oid, ti, tj) in the head, or the bodies of each

such rule is not satisfied byA. This contradictsA being an answer set of P ({ord respected(oid, ti, tj)}

would be a non-empty unfounded subset of A wrt P).

It remains to show that hM�1
as (A, ti),M�1

as (A, tj)i is an accepting pair of answer sets of o wrt B[H.

Firstly, as cov(oe1id, ti) and cov(oe2id, tj) are both in A, M�1
as (A, ti) and M

�1
as (A, tj) must be ac-

cepting answer sets of oe1 and oe2 (respectively) wrt B [H (by part (2)). So it remains to show

that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B [H,AS(B [H [oe1ctx) [AS(B [H [oe2ctx).

Case 1: op is <

Assume for contradiction that dom(ti, tj) 62 A. Then there would be no rule in ground(P) with

ord respected(oid, ti, tj) in the head whose body is satisfied by A (which would contradict A

being an answer set of P). Hence, dom(ti, tj) 2 A. Hence, M�1
as (A, ti) �B[H M

�1
as (A, tj). This

means that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B[H,AS(B[H [oe1ctx)[AS(B[H [oe2ctx).

Case 2: op is >

Assume for contradiction that dom(tj, ti) 62 A. Then there would be no rule in ground(P) with

ord respected(oid, ti, tj) in the head whose body is satisfied by A (which would contradict A

being an answer set of P). Hence, dom(tj, ti) 2 A. Hence, M�1
as (A, tj) �B[H M

�1
as (A, ti). This

means that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B[H,AS(B[H [oe1ctx)[AS(B[H [oe2ctx).

288

Case 3: op is 6=

Assume for contradiction that dom(ti, tj) 62 A and dom(tj, ti) 62 A. Then there would be no rule

in ground(P) with ord respected(oid, ti, tj) in the head whose body is satisfied by A (which

would contradict A being an answer set of P). Hence, either dom(ti, tj) 2 A or dom(tj, ti) 2 A.

Hence, either M
�1
as (A, ti) �B[H M

�1
as (A, tj) or M

�1
as (A, tj) �B[H M

�1
as (A, ti). This means

that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B [H,AS(B [H [oe1ctx) [AS(B [H [oe2ctx).

Case 4: op is =

Assume for contradiction that either dom(ti, tj) 2 A or dom(tj, ti) 2 A. Then there would be

no rule in ground(P) with ord respected(oid, ti, tj) in the head whose body is satisfied by A

(which would contradict A being an answer set of P). Hence, dom(ti, tj) 62 A and dom(tj, ti) 62 A.

Hence, M�1
as (A, ti) 6�B[H M

�1
as (A, tj) and M

�1
as (A, tj) 6�B[H M

�1
as (A, ti). This means that

hM
�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B [H,AS(B [H [oe1ctx) [AS(B [H [oe2ctx).

Case 5: op is 

Assume for contradiction that dom(tj, ti) 2 A. Then there would be no rule in ground(P) with

ord respected(oid, ti, tj) in the head whose body is satisfied by A (which would contradict A

being an answer set of P). Hence, dom(tj, ti) 62 A. Hence, M�1
as (A, tj) 6�B[H M

�1
as (A, ti). This

means that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B[H,AS(B[H [oe1ctx)[AS(B[H [oe2ctx).

Case 6: op is �

Assume for contradiction that dom(ti, tj) 2 A. Then there would be no rule in ground(P) with

ord respected(oid, ti, tj) in the head whose body is satisfied by A (which would contradict A

being an answer set of P). Hence, dom(ti, tj) 62 A. Hence, M�1
as (A, ti) 6�B[H M

�1
as (A, tj). This

means that hM�1
as (A, ti),M�1

as (A, tj), opi 2 ord(B[H,AS(B[H [oe1ctx)[AS(B[H [oe2ctx).

• We now show that if p = hti, tji 2 Pairids, o 2 Op, cov(oe1id, ti) 2 A, cov(oe2id, tj) 2 A and

hM
�1
as (A, ti),M�1

as (A, tj)i is an accepting pair of answer sets of o wrt B [H then

ord respected(oid, ti, tj) 2 A

Assume p 2 Pairids, o 2 Op, cov(oe1id, ti) 2 A, cov(oe2id, tj) 2 A and hM
�1
as (A, ti),M�1

as (A, tj)i is

an accepting pair of answer sets of o wrt B [H. We need to show that there is at least one rule in

ground(P) whose head is ord respected(oid, ti, tj) and whose body is satisfied by A.

Case 1: op is <

M
�1
as (A, ti) �B[H M

�1
as (A, tj) (as the two interpretations form an accepting pair of answer sets

of hoe1, oe2, opi). Hence, dom(ti, tj) 2 A.

Hence, the body of the rule: ord respected(oid, ti, tj) : - dom(ti, tj), cov(oe1id, ti), cov(oe
2
id, tj)

is satisfied.

Case 2: op is >

M
�1
as (A, tj) �B[H M

�1
as (A, ti). Hence, dom(tj, ti) 2 A.

Hence, the body of the rule: ord respected(oid, ti, tj) : - dom(tj, ti), cov(oe1id, ti), cov(oe
2
id, tj)

is satisfied.

Case 3: op is 6=

Either M
�1
as (A, ti) �B[H M

�1
as (A, tj) or M

�1
as (A, tj) �B[H M

�1
as (A, ti). Hence, either

dom(ti, tj) 2 A or dom(tj, ti) 2 A. Hence, the body of one of: ord respected(oid, ti, tj) : -

dom(ti, tj), cov(oe1id, ti), cov(oe
2
id, tj) or ord respected(oid, ti, tj) : - dom(tj, ti), cov(oe1id, ti),

cov(oe2id, tj) is satisfied.

289

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Case 4: op is =

M
�1
as (A, ti) 6�B[H M

�1
as (A, tj) and M

�1
as (A, tj) 6�B[H M

�1
as (A, ti). Hence, dom(ti, tj) 62 A

and dom(tj, ti) 62 A. Hence, the body of the rule: ord respected(oid, ti, tj) : - not dom(ti, tj),

not dom(tj, ti), cov(oe1id, ti), cov(oe
2
id, tj) is satisfied.

Case 5: op is 

M
�1
as (A, tj) 6�B[H M

�1
as (A, ti). Hence, dom(tj, ti) 62 A. Hence, the body of the rule:

ord respected(oid, ti, tj) : - not dom(tj, ti), cov(oe1id, ti), cov(oe
2
id, tj) is satisfied.

Case 6: op is �

M
�1
as (A, ti) 6�B[H M

�1
as (A, tj). Hence, dom(ti, tj) 62 A. Hence, the body of the rule:

ord respected(oid, ti, tj) : - not dom(ti, tj), cov(oe1id, ti), cov(oe
2
id, tj) is satisfied.

Theorem 6.10. Let T be an ILP context
LOAS task, and H be a hypothesis.

1. 9A 2 AS(M(T)) such that H = M
�1
in h(A) if and only if H 2 P(T).

2. 8e 2 E�, for any A 2 AS(M(T) [{check violating.}) such that v i(eid) 2 A and H =

M
�1
in h(A), M�1

as (A, v1) is an accepting answer set of e wrt B [H.

3. 8o 2 Oc, for any A 2 AS(M(T) [{check violating.}) such that v p(oid) 2 A and H =

M
�1
in h(A), hM

�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of answer sets of inverse(o) wrt

B [H.

4. 9A 2 AS(M(T) [{check violating.}) such that H = M
�1
in h(A) if and only if H 2 V(T).

Proof.

1. Let [cdpi1, . . . , cdpim+2n] be the list [e1, . . . , em, o1eg1, o
1
eg2, . . . , o

n
eg1, o

n
eg2], where {e1, . . . , em} = E+ and

{o1, . . . , on} = Ob, and each o1eg1 and o2eg2 is assumed to be a copy of the CDPI example, with id oid1 and

oid2, respectively.

Assume H 2 P(T).

, there is a list [hI1, cdpi1i, . . . , hIm+2n, cdpim+2n
i] such that for each i 2 [1,m+2n], Ii is an accepting

answer set of cdpii wrt B [H and for each i 2 [1, n], hIm+2i, Im+2i+1
i is an accepting pair of answer

sets of oi.

, 9A 2 AS

0

BBB@

M1(T) [{in h(hid). | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[{check(ei, eiid) | i 2 [1,m]}

[{check ord(T, oi, oiid1, o
i
id2) | i 2 [1, n]}

1

CCCA

such that for each i 2 [1,m+2n], ctx(cdpiiid, cdpi
i
id) 2 A and M

�1
as (A, cdpiiid) is an accepting

answer set of cdpii wrt B [H and for each i 2 [1, n], hM�1
as (A, cdpim+2i

id),M�1
as (A, cdpim+2i+1

id)i is an

accepting pair of answer sets of oi (by Theorem 6.6 (1))

290

, 9A 2 AS

0

BBB@

M1(T) [{in h(hid). | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[{check(ei, eiid) | i 2 [1,m]}

[{check ord(T, oi, oiid1, o
i
id2) | i 2 [1, n]}

1

CCCA

such that for each i 2 [1,m], cov(cdpiiid, cdpi
i
id) 2 A and for each i 2 [1, n],

hM
�1
as (A, cdpim+2i

id),M�1
as (A, cdpim+2i+1

id)i is an accepting pair of answer sets of oi (by Theorem 6.6

(2))

, 9A 2 AS

0

BBB@

M1(T) [{in h(hid). | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[{check(ei, eiid) | i 2 [1,m]}

[{check ord(T, oi, oiid1, o
i
id2) | i 2 [1, n]}

1

CCCA

such that for each i 2 [1,m + 2n], cov(cdpiiid, cdpi
i
id) 2 A and for each i 2 [1, n],

ord respected(oiid, o
i
id1, o

i
id2) 2 A (by Theorem 6.6 (3))

,

0

BBBBBBBBB@

M1(T) [{in h(hid). | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[

(
check(ei, eiid)

: - not cov(eiid, e
i
id).

�����i 2 [1,m]

)

[

(
check ord(T, oi, oiid1, o

i
id2)

: - not ord respected(oiid, o
i
id1, o

i
id2).

�����i 2 [1, n]

)

1

CCCCCCCCCA

is satisfiable.

, 9A 2 AS

0

BBBBBBBBB@

M1(T) [{0{in h(hid)}1. | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[

(
check(ei, eiid)

: - not cov(eiid, e
i
id).

�����i 2 [1,m]

)

[

(
check ord(T, oi, oiid1, o

i
id2)

: - not ord respected(oiid, o
i
id1, o

i
id2).

�����i 2 [1, n]

)

1

CCCCCCCCCA

such that M�1
in h(A) = H

, 9A 2 AS(M(T)) such thatM�1
in h(A) = H (the other rules in the program depend on check violating

which does not occur in the head of any rule in the program).

2. Let e⇤ 2 E� and A 2 AS(M(T) [{check violating.}) such that v i(e⇤id) 2 A and H = M
�1
in h(A)

) A \HBrel
P1

2 AS(P1), where P1 is the program:

{0{in h(hid)}1.|h 2 SM} [M1(T) [{check violating.}

[

8
><

>:

as(v1) : - check violating.

v i(eid) : - cov(eid, v1).

check(e, v1)

�������
e 2 E�

9
>=

>;

(as HBrel
P1

is a splitting set of M(T) [{check violating.}).

) A \HBrel
P2

2 AS(P2), where P2 is the program:

{in h(hid).|h 2 H} [M1(T)

[

8
><

>:

as(v1).

v i(eid) : - cov(eid, v1).

check(e, v1)

�������
e 2 E�

9
>=

>;

) A \HBrel
P3

2 AS(P3), where P3 is the program:

291

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

{in h(hid).|h 2 H} [M1(T)

[

8
><

>:

as(v1).

v i(e⇤id) : - cov(e
⇤
id, v1).

check(e⇤, v1)

9
>=

>;

(as HBrel
P3

is a splitting set of P2).

) A \HBrel
P4

2 AS(P4), where P4 is the program:

{in h(hid).|h 2 H} [M1(T)

[

(
as(v1).

check(e⇤, v1)

)

and cov(e⇤id, v1) 2 A \HBrel
P4

) M
�1
as (A \HBrel

P4
, v1) is an accepting answer set of e⇤ wrt B [H (by Theorem 6.4 part (2)).

) M
�1
as (A, v1) is an accepting answer set of e⇤ wrt B [H.

3. Let o⇤ 2 Oc and A 2 AS(M(T) [{check violating.}) such that v p(o⇤id) 2 A and H = M
�1
in h(A)

) A \HBrel
P1

2 AS(P1), where P1 is the program:

{0{in h(hid)}1|h 2 SM} [M1(T) [{check violating.}

[

8
>>><

>>>:

as(v1) : - check violating.

as(v2) : - check violating.

v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

���������

o 2 Oc

9
>>>=

>>>;

(as HBrel
P1

is a splitting set of M(T) [{check violating.}).

) A \HBrel
P2

2 AS(P2), where P2 is the program:

{in h(hid).|h 2 H} [M1(T)

[

8
>>><

>>>:

as(v1).

as(v2).

v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

���������

o 2 Oc

9
>>>=

>>>;

) A \HBrel
P3

2 AS(P3), where P3 is the program:

{in h(hid)|h 2 H} [M1(T)

[

8
><

>:

as(v1).

as(v2).

check ord(inverse(o), v1, v2)

�������
o 2 Oc

9
>=

>;
and ord respected(o⇤id, v1, v2) 2 A \HBrel

P3

) A \HBrel
P4

2 AS(P4), where P4 is the program:

{in h(hid)|h 2 H} [M1(T)

[

8
>>>>>><

>>>>>>:

as(v1).

as(v2).

check(oeg1, v1)

check(oeg2, v2)

check ord(inverse(o), v1, v2)

������������

o 2 Oc

9
>>>>>>=

>>>>>>;

and ord respected(o⇤id, v1, v2) 2 A \HBrel
P4

(the extra program fragments are contained in the check ord program).

) hM
�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of answer sets of inverse(o) wrt B [H (by Theo-

rem 6.6, part (3))

4. Let [cdpi1, . . . , cdpim+2n] be the list [e1, . . . , em, o1eg1, o
1
eg2, . . . , o

n
eg1, o

n
eg2], where {e1, . . . , em} = E+ and

292

{o1, . . . , on} = Ob, and each o1eg1 and o2eg2 is assumed to be a copy of the CDPI example, with id oid1 and

oid2, respectively.

Assume that 9A 2 AS(M(T) [{check violating.}) such that H = M
�1
in h(A)

, 9A1 2 AS

0

BBBBBBBBB@

M1(T) [{0{in h(hid)}1. | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[

(
check(ei, eiid)

: - not cov(eiid, e
i
id).

�����i 2 [1,m]

)

[

(
check ord(T, oi, oiid1, o

i
id2)

: - not ord respected(oiid, o
i
id1, o

i
id2).

�����i 2 [1, n]

)

1

CCCCCCCCCA

such that M�1
in h(A1) = H and:0

BBBBBBBBBBBBBBBBBBBBB@

{a. | a 2 A} [M1(T)

[

8
>>>>>>>><

>>>>>>>>:

check violating.

as(v1) : - check violating.

as(v2) : - check violating.

: - check violating, not violating.

violating : - v i(), check violating.

violating : - v p(), check violating.

9
>>>>>>>>=

>>>>>>>>;

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCCCCCCCCCCCA

is satisfiable (by Corollary 2.14)

, 9A1 2 AS

0

BBBBBBBBB@

M1(T) [{0{in h(hid)}1. | h 2 H}

[{as(cdpiiid). | i 2 [1,m+ 2n]}

[

(
check(ei, eiid)

: - not cov(eiid, e
i
id).

�����i 2 [1,m]

)

[

(
check ord(T, oi, oiid1, o

i
id2)

: - not ord respected(oiid, o
i
id1, o

i
id2).

�����i 2 [1, n]

)

1

CCCCCCCCCA

such that M�1
in h(A1) = H and:0

BBBBBBBBBBBBBBBBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

8
>>>>>>>><

>>>>>>>>:

check violating.

as(v1) : - check violating.

as(v2) : - check violating.

: - check violating, not violating.

violating : - v i(), check violating.

violating : - v p(), check violating.

9
>>>>>>>>=

>>>>>>>>;

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCCCCCCCCCCCA

is satisfiable (the other atoms in A1 do not occur in the second program).

293

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

, H 2 P(T) and

0

BBBBBBBBBBBBBBBBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

8
>>>>>>>><

>>>>>>>>:

check violating.

as(v1) : - check violating.

as(v2) : - check violating.

: - check violating, not violating.

violating : - v i(), check violating.

violating : - v p(), check violating.

9
>>>>>>>>=

>>>>>>>>;

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCCCCCCCCCCCA

is satisfiable (by part (1))

, H 2 P(T) and

0

BBBBBBBBBBBBBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

8
>>>>>><

>>>>>>:

as(v1).

as(v2).

: - not violating.

violating : - v i().

violating : - v p().

9
>>>>>>=

>>>>>>;

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCCCCCCCCA

is satisfiable

, H 2 P(T) and:

9A 2 AS

0

BBBBBBBBBBBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

8
>>><

>>>:

as(v1).

as(v2).

violating : - v i().

violating : - v p().

9
>>>=

>>>;

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCCCCCCA

such that violating 2 A

, H 2 P(T) and:

9A 2 AS

0

BBBBBBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

(
as(v1).

as(v2).

)

[

(
v i(eid) : - cov(eid, v1).

check(e, v1)

�����e 2 E�

)

[

(
v p(oid) : - ord respected(oid, v1, v2).

check ord(inverse(o), v1, v2)

�����o 2 Oc

)

1

CCCCCCCCCCCA

such that 9e 2 E� such that v i(eid) 2 A or 9o 2 Oc such that v p(oid) 2 A

294

, H 2 P(T) and:

9A 2 AS

0

BBBBBBB@

{in h(hid). | h 2 H} [M1(T)

[

(
as(v1).

as(v2).

)

[

n
check(e, v1)

���e 2 E�
o

[

n
check ord(inverse(o), v1, v2)

���o 2 Oc
o

1

CCCCCCCA

such that 9e 2 E� such that cov(eid, v1) 2 A or 9o 2 Oc such that ord respected(oid, v2, v2) 2

A

, H 2 P(T) and either 9e 2 E� such that e has at least one accepting answer set wrt B [H or

9o 2 Oc such that there is at least one accepting pair of answer sets of inverse(o) wrt B [H (by

Theorem 6.6)

, H 2 P(T) and H 2 V(T)

, H 2 V(T)

Proposition 6.11. Let T be any ILP context
LOAS task and n 2 N. AS(Mn(T)) = {A 2 M(T) |

|M
�1
in h(A)| = n}.

Proof. Let T = hB,SM , Ei, where SM = {R1, . . . , Rm
}.

Assume that A 2 AS(Mn(T))

, A 2 AS(M(T)) and #sum{in h(R1id) = |R1|, . . . , in h(Rmid) = |Rm|} 6= n is not satisfied by A.

(By Lemma 2.12)

, A 2 AS(M(T)) and

0

@ P

h2M�1
in h(A)

|h|

1

A = n

, A 2 AS(M(T)) and |M
�1
in h(A)| = n

Proposition 6.12. Let T be an ILP context
LOAS task, n 2 N and V be a set of hypotheses of length n. Con-

sider the program P = M
n(T)[{constraint(v) | v 2 V }. Then P

n(T)\V =
�
M

�1
in h(A)

��A 2 AS(P)

.

Proof. Assume that H 2 P
n(T)\V

, H 2 P(T), |H| = n and H 62 V(T)

, 9A 2 AS(M(T)) such that M�1
in h(A) = H, |H| = n and H 62 V(T), by Theorem 6.10 part(1).

, 9A 2 AS(Mn(T)) such that H = M
�1
in h(A) and H 62 V , by Proposition 6.11

295

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

, 9A 2 AS(Mn(T)) such that H = M
�1
in h(A) and 8v 2 V , 9r 2 v such that r 62 H

(the) holds as because H is not in V , it cannot be equal to v, and it cannot be a strict subset of V as

both have the length n, and no rule in the hypothesis space can have length 0).

, 9A 2 AS(Mn(T)) such that H = M
�1
in h(A) and 8v 2 V , A does not satisfy the body of constraint(v)

, 9A 2 AS(P) such that H = M
�1
in h(A)

(by Lemma 2.12)

, H 2 AS
��

M
�1
in h(A)

��A 2 AS(P)
 �

Proposition 6.13. Let T be any well-defined ILP context
LOAS task, n 2 N, and HS be any finite set of

hypotheses.

1. groundrel(Mn(T) [{check violating.}) is finite.

2. groundrel(Mn(T) [{constraint(H) | H 2 HS}) is finite.

Proof.

1. To prove that Mn(T) [{check violating} has a finite relevant grounding, it is su�cient to prove that

|HBrel
Mn(T)[{check violating}| is finite. Note that as the task is well defined, |HBrel

B[SM[CS | is finite.

LetGHS be the set of ground atoms which occur in the head of a rule inM
n(T)[{check violating}. Let

AS IDs be the set of all terms as id for which the fact as(as id) occurs in M
n(T)[{check violating}.

We define a set HBmax = GHS [{ctx(eid, as id) | e 2 E+
[E�, as id 2 AS IDs}[{in as(a, as id) |

a 2 HBrel
B[SM[CS , as id 2 AS IDs}[{w(wt, lev, args(t1, . . . , tk), as id) | :⇠ body.[wt@lev, t1, . . . , tk] 2

groundrel(B [SM [CS), as id 2 AS IDs}.

Assume for contradiction that 9atom 2 HBrel
Mn(T)[{check violating} such that atom 62 HBmax. As

there are only three types of rules in M
n(T)[{check violating} that contain variables, there are only

three possible cases:

(a) 9R 2 non weak(B [SM [CS) such that there is a ground instance g of Rin as(R) such that

atom 2 heads(g) and body+(g) ✓ HBmax.

) 9R 2 B [SM [CS such that there is a ground instance g of R for which 9a 2 heads(g) such

that a 62 HBrel
B[SM[CS and body+(g) ✓ {a1 | in as(a1, a2) 2 HBmax

}.

) 9R 2 B [SM [CS such that there is a ground instance g of R for which 9a 2 heads(g)

such that a 62 HBrel
B[SM[CS and body+(g) ✓ HBrel

B[SM[CS . Contradiction, by the definition of

HBrel
B[SM[CS .

296

(b) atom 2 heads(1{ctx(e1id, as id), . . . , ctx(enid, as id)}1 : - as(as id).), for some term as id such that

as(as id) 2 HBmax (where {e1, . . . , en} = E+
[E�). This cannot be the case, as HBmax was

assumed to contain ctx(eid, as id) for each e 2 E+
[E� and each as id 2 AS IDs.

(c) 9W 2 weak(B[SM) such thatRweak(W, as ids) has a ground instance g such that atom 2 heads(g)

and body+(g) ✓ HBmax.

) atom = w(wt, lev, args(t1, . . . , tk), as id) and 9W 2 weak(B[SM) such thatW has a ground

instance g such that body+(g) ✓ HBrel
B[SM[CS and tail(g) = [wt@lev, t1, . . . , tk].

) atom = w(wt, lev, args(t1, . . . , tk), as id) and 9g 2 weak(groundrel(B[SM [CS)) such that

and tail(g) = [wt@lev, t1, . . . , tk]. Contradiction, as HBmax would contain such an atom.

Hence, there are no atoms in HBrel
Mn(T)[{check violating} ✓ HBmax. So as HBmax is finite, the

program M
n(T) [{check violating} must have a finite relevant grounding.

2. By part 1, |HBrel
Mn(T)[{check violating}| is finite. Hence, |HBrel

Mn(T)| is finite. Hence

|HBrel
Mn(T)[{constraint(H)|H2HS}| is also finite (the extra constraints cannot possibly add anything to

the fixpoint, as they have no head atoms).

Proofs from Chapter 7

Theorem 7.4. Let T be an ILP context
LOAS task, and H be a hypothesis. Consider the program P =

{0{check violating}1.} [M(T).

1. 9A 2 AS(P) such that H = M
�1
in h(A) if and only if H 2 P(T).

2. For any A 2 AS(P) and any e 2 E�, if v i(eid) 2 A and H = M
�1
in h(A) then M

�1
vi (A) is a

violating interpretation of H with respect to e.

3. For any A 2 AS(P) and any o 2 Oc, if v p(oid) 2 A and H = M
�1
in h(A) then M

�1
vp (A) is a

violating pair of interpretations of H with respect to o.

4. 9A 2 AS(P) such that H = M
�1
in h(A) and violating 2 A if and only if H 2 V(T).

Proof.

1. By Theorem 6.10, we know that 9A 2 AS(M(T)) such that H = M
�1
in h(A) if and only if H 2 P(T) and

that 9A 2 AS(M(T) [{check violating.}) such that H = M
�1
in h(A) if and only if H 2 V(T).

Hence, 9A 2 AS(M(T) [{0{check violating}1.}) such that H = M
�1
in h(A) if and only if H 2 P(T)

or H 2 V(T).

Hence, 9A 2 AS(M(T) [{0{check violating}1.}) such that H = M
�1
in h(A) if and only if H 2 P(T)

(as V(T) ✓ P(T)).

297

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

2. By Theorem 6.10 (part (2)), we know that 8e 2 E�, 8A 2 AS(M(T)[{check violating.}), if v i(eid) 2

A and H = M
�1
in h(A) then M

�1
as (A, v1) is an accepting answer set of e wrt B [H (i.e. it is a violating

interpretation of H wrt e).

Hence, 8e 2 E�, 8A 2 AS(M(T) [{check violating.}), if v i(eid) 2 A and H = M
�1
in h(A) then

M
�1
vi (A) is a violating interpretation of H wrt e.

As the answer sets of M(T) [{0{check violating}1.} are the answer sets of M(T) and M(T) [

{check violating.} combined, it remains to show that 8e 2 E�, 8A 2 AS(M(T)), if v i(eid) 2 A and

H = M
�1
in h(A) then M

�1
as (A, v1) is an accepting answer set of e wrt B [H. Hence, it su�ces to show

that no answer set of M(T) can contain v i(eid). This is the case, because the only rule for v i(eid) (in

ground(M(T))) contains cov(eid, v1) as a positive body literal, the only rule for cov(eid, v1) contains

ctx(eid, v1) as a positive body literal, the only rule for ctx(eid, v1) contains as(v1) as a positive body

literal, and the only rule for as(v1) contains check violating as a positive body literal. As there is

no rule for check violating in ground(M(T)), A cannot contain v i(eid) without having a non-empty

unfounded subset. Hence, no answer set of M(T) contains v i(eid).

3. By Theorem 6.10 (part 3), we know that 8o 2 Oc, 8A 2 AS(M(T)[{check violating.}), if v p(oid) 2 A

and H = M
�1
in h(A) then hM

�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of answer sets of inverse(o) wrt

B [H.

Hence, 8o 2 Oc, 8A 2 AS(M(T) [{check violating.}), if v p(oid) 2 A and H = M
�1
in h(A) then

M
�1
vp (A) is a violating pair of interpretations of H wrt o.

As the answer sets of M(T) [{0{check violating}1.} are the answer sets of M(T) and M(T) [

{check violating.} combined, it remains to show that 8o 2 Oc, 8A 2 AS(M(T)), if v p(oid) 2 A

and H = M
�1
in h(A) then hM

�1
as (A, v1),M�1

as (A, v2)i is an accepting pair of answer sets of inverse(o)

wrt B [H. Hence, it su�ces to show that no answer set of M(T) can contain v p(oid). This is the

case, because the only rule for v p(oid) (in ground(M(T))) contains ord respected(oid, v1, v2) as a

positive body literal, the only rule for ord respected(oid, v1, v2) contains an atom cov(e1id, v1) as a

positive body literal, the only rule for cov(e1id, v1) contains ctx(e1id, v1) as a positive body literal, the

only rule for ctx(e1id, v1) contains as(v1) as a positive body literal, and the only rule for as(v1) contains

check violating as a positive body literal. As there is no rule for check violating in ground(M(T)),

A cannot contain v p(oid) without having a non-empty unfounded subset. Hence, no answer set of M(T)

contains v p(oid).

4. Assume 9A 2 AS(P) such that H = M
�1
in h(A) and violating 2 A

, 9A 2 AS(P) such that H = M
�1
in h(A) and check violating 2 A (there is a constraint in M(T)

that means that if check violating is in A then violating must be in A too, and every rule for

violating depends on check violating, hence, every answer set either contains both or neither of

the two atoms).

, 9A 2 AS(M(T) [{check violating.}) such that H = M
�1
in h(A)

, H 2 V(T) (by Theorem 6.10 part(4))

298

Theorem 7.7.

Let T be an ILP context
LOAS task with hypothesis space SM and let H ✓ SM . Let S be a set of tuples of

the form hI, e, int idi, where I is an interpretation, e is a CDPI and int id is a unique ground term.

Mvio(T, S) [{in h(hid) | h 2 H} has exactly one answer set, which consists of:

• The atom in h(hid) for each h 2 H

• For each hI, e, int idi 2 S, the atoms:

– int(int id)

– in int(a, int id) for each a 2 I

– mmr(a, int id) for each a 2 M(groundrel(B [H [ectx)I)

– If I 62 AS(B [H [ectx), the atom not as(int id)

Proof. Assume that A 2 AS(Mvio(T, S) [{in h(hid) | h 2 H}).

, A = M(groundrel(Mvio(T, S) [{in h(hid) | h 2 H})A)

, A = M(groundrel(P1)A), where:

P1 = {int(int id). | hI, e, int idi 2 S}

[{in int(atom, int id). | atom 2 I, hI, e, int idi 2 S}

[{Mreduct(ectx, int id) | hI, e, int idi 2 S}

[Mreduct(B, INT ID)

[{A(Mreduct(R, INT ID), in h(Rid)) | R 2 SM}

[

(
not as(INT ID) : - int(INT ID), in int(ATOM, INT ID), not mmr(ATOM, INT ID).

not as(INT ID) : - int(INT ID), not in int(ATOM, INT ID), mmr(ATOM, INT ID).

)

[{in h(hid). | h 2 H}

, A = M(groundrel(P2)A), where:

P2 = {int(int id). | hI, e, int idi 2 S}

[{in int(atom, int id). | atom 2 I, hI, e, int idi 2 S}

[{Mreduct(ectx, int id) | hI, e, int idi 2 S}

[Mreduct(B [H, INT ID)

[

(
not as(INT ID) : - int(INT ID), in int(ATOM, INT ID), not mmr(ATOM, INT ID).

not as(INT ID) : - int(INT ID), not in int(ATOM, INT ID), mmr(ATOM, INT ID).

)

[{in h(hid). | h 2 H}

299

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

, A = M(groundrel(P3)A), where:

P3 = {int(int id). | hI, e, int idi 2 S}

[{in int(atom, int id). | atom 2 I, hI, e, int idi 2 S}

[{Mreduct(B [H [ectx, int id) | hI, e, int idi 2 S}

[

(
not as(INT ID) : - int(INT ID), in int(ATOM, INT ID), not mmr(ATOM, INT ID).

not as(INT ID) : - int(INT ID), not in int(ATOM, INT ID), mmr(ATOM, INT ID).

)

[{in h(hid). | h 2 H}

, A \HBP4 = M(groundrel(P4)(A\HBP4)), where:

P4 = {int(int id). | hI, e, int idi 2 S}

[{in int(atom, int id). | atom 2 I, hI, e, int idi 2 S}

[{Mreduct(B [H [ectx, int id) | hI, e, int idi 2 S}

[{in h(hid). | h 2 H}

and A\HBP4 =

8
>>><

>>>:
not as(int id)

���������

hI, e, int idi 2 S,

{atom | in int(atom, int id) 2 A}

6=

{atom | mmr(atom, int id) 2 A}

9
>>>=

>>>;

, A \HBP5 = M(P
(A\HBP5)
5), where:

P5 = {int(int id). | hI, e, int idi 2 S}

[{in int(atom, int id). | atom 2 I, hI, e, int idi 2 S}

[{Mreduct(groundrel(B [H [ectx), int id) | hI, e, int idi 2 S}

[{in h(hid). | h 2 H}

and A\HBP5 =

8
>>><

>>>:
not as(int id)

���������

hI, e, int idi 2 S,

{atom | in int(atom, int id) 2 A}

6=

{atom | mmr(atom, int id) 2 A}

9
>>>=

>>>;

, A = A⇤
[{a 2 Aint id | hI, e, int idi 2 S}, where:

A⇤ = {in h(hid). | h 2 H} [

8
>>><

>>>:
not as(int id)

���������

hI, e, int idi 2 S,

{atom | in int(atom, int id) 2 A}

6=

{atom | mmr(atom, int id) 2 A}

9
>>>=

>>>;

and for each hI, e, int idi 2 S:

Aint id

= M

0

B@
{int(int id).}

[{in int(atom, int id). | atom 2 I}

[Mreduct(groundrel(B [H [ectx), int id)

1

CA

300

= M

0

BB@

{int(int id).}

[{in int(atom, int id). | atom 2 I}

[

8
><

>:

mmr(head(R), int id) : -

int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id).

�������

R 2 groundrel(B [H [ectx),

R is normal

9
>=

>;

[

8
><

>:

mmr(?, int id) : -

int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id).

�������

R 2 groundrel(B [H [ectx),

R is a hard constraint

9
>=

>;

[

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

mmr(?, int id) : -

int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id),

u+ 1{in int(h1, int id), . . ., in int(hn, int id)}.

mmr(?, int id) : -

int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id),

{in int(h1, int id), . . ., in int(hn, int id)}l� 1.

�������������������

R 2 groundrel(B [H [ectx),

head(R) = l{h1, . . ., hn}u

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

[

8
>>><

>>>:

mmr(hi, int id) : -

int(int id),R(body+(R), mmr, int id),

NR(body�(R), in int, int id),

l{in int(h1, int id), . . ., in int(hn, int id)}u.

���������

R 2 groundrel(B [H [ectx),

head(R) = l{h1, . . ., hn}u,

i 2 [1, n],

hi 2 I

9
>>>=

>>>;

1

CCA

= M

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
><

>:
mmr(head(R), int id) : -

R(body+(R), mmr, int id).

�������

R 2 groundrel(B [H [ectx),

body�(R) \ I = ;,

R is normal

9
>=

>;

[

8
><

>:
mmr(?, int id) : -

R(body+(R), mmr, int id).

�������

R 2 groundrel(B [H [ectx),

body�(R) \ I = ;,

R is a hard constraint

9
>=

>;

[

8
>>><

>>>:

mmr(?, int id) : -

R(body+(R), mmr, int id).

���������

R 2 groundrel(B [H [ectx),

body�(R) \ I = ;,

head(R) = l{h1, . . ., hn}u,

|heads(R) \ I| > u or |heads(R) \ I| < l

9
>>>=

>>>;

[

8
>>>>>><

>>>>>>:

mmr(hi, int id) : -

R(body+(R), mmr, int id)

������������

R 2 groundrel(B [H [ectx),

body�(R) \ I = ;,

head(R) = l{h1, . . ., hn}u,

l < |heads(R) \ I| < u,

i 2 [1, n], hi 2 I

9
>>>>>>=

>>>>>>;

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

[{int(int id)} [{in int(atom, int id) | atom 2 I}

= M(R(groundrel(B [H [ectx)I , mmr, int id)) [{int(int id)} [{in int(atom, int id) | atom 2 I}

= {mmr(a, int id) | a 2 M(groundrel(B [H [ectx)I)} [{int(int id)} [{in int(atom, int id) | atom 2 I}

Hence, Mvio(T, S) [{in h(hid). | h 2 SM} has exactly one answer set: {in h(hid) | h 2 H}[

{not as(int id)|I 62 AS(B [H [ectx), hI, e, int idi 2 S} [{mmr(a, int id) | hI, e, int idi 2 S,

a 2 M(groundrel(B [H [ectx)I)} [{int(int id) | hI, e, int idi 2 S} [{in int(a, int id) | hI, e, int idi 2

S, a 2 I}.

301

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Theorem 7.8.

Let T be the task hB,SM , Ei, let S1 be a list of tuples [hI1, e1, int id1i, . . . , hIn, en, int idni], where

each Ii is an interpretation, each ei is a CDPI st Ii extends ei and each int idi is a unique ground

term, and let S2 be a set of tuples of the form hpid, int idi, int idj, opi, where pid is a unique ground

term, i, j 2 [1, n] and op 2 {<, , >, �, =, 6=}. Let H ✓ SM .

The program {in h(hid). | h 2 H} [Mvio(T, S1) [Mvp(T, S2) has exactly one answer set, consisting

of:

• All atoms in the unique answer set of {in h(hid). | h 2 H} [Mvio(T, S1).

• For each hpid, int idi, int idj, opi 2 S2:

– vio w(wt, lv, args(t1, . . . , tn), int idi) (resp. vio w(wt, lv, args(t1, . . . , tn), int idj)) for

each weak constraint W 2 ground(B [H), with tail [wt@lv, t1, . . . , tn] such that body(W)

is satisfied by Ii (resp. Ij).

– v dom lv(int idi, int idj, lev) (resp. v dom lv(int idj, int idi, lev)) for each level lev

that occurs in B [SM such that (B [H)I
i

lev < (B [H)I
j

lev (resp. (B [H)I
i

lev > (B [H)I
j

lev).

– v dom(int idi, int idj) (resp. v dom(int idj, int idi)) if Ii �B[H Ij (resp. Ij �B[H Ii).

– vp not resp(pid) if Ii is an accepting answer set of ei wrt B[H, Ij is an accepting answer

set of ej wrt B [H and hIi, Ij , opi 62 ord(B [H,AS(B [H [eictx) [AS(B [H [ejctx))

Proof.

Assume A 2 AS

0

B@
{in h(hid). | h 2 H}

[Mvio(T, S1)

[Mvp(T, S2)

1

CA

, 9A0 such that A 2 AS

{a. | a 2 A0

}

[Mvp(T, S2)

!
, and A0

2 AS

{in h(hid). | h 2 H}

[Mvio(T, S1)

!
(by Corol-

lary 2.14).

, A 2 AS

{a. | a 2 A1}

[Mvp(T, S2)

!
, where A1 is the unique answer set of {in h(hid). | h 2 H}[Mvio(T, S1)

(by Theorem 7.7).

, 9A0
2 AS

{a. | a 2 A1}

[{M
i
vp(T, S2) | i 2 [1, 2]}

!
,

such that A 2 AS

{a. | a 2 A0

}

[{M
i
vp(T, S2) | i 2 [3, 5]}

!
(by Corollary 2.14), where the M

i
vp’s represent

the (ordered) components of Mvp (in Meta-program 7.3)

, 9A0
2 AS

0

B@
{a. | a 2 A1}

[

(
R

vio
weak(W, int idi)

R
vio
weak(W, int idj)

�����
hpid, int idi, int idj, opi 2 S2

W 2 weak(B [H)

)
1

CA,

302

such that A 2 AS

{a. | a 2 A0

}

[{M
i
vp(T, S2) | i 2 [3, 5]}

!
(the removed rules contain an atom in h(hid) that

does not occur in the head of any rule in the program).

, A 2 AS

{a. | a 2 A1 [A2}

[{M
i
vp(T, S2) | i 2 [3, 5]}

!
,

where A2 =

8
>>><

>>>:
vio w(wt, lv, args(t1 . . . , tm), int idi)

���������

hpid, int idi, int idj, opi 2 S2,

W 2 weak(B [H),

Ii satisfies body(W),

tail(W) = [wt@lv, t1, . . . , tm]

9
>>>=

>>>;

[

8
>>><

>>>:
vio w(wt, lv, args(t1 . . . , tm), int idj)

���������

hpid, int idi, int idj, opi 2 S2,

W 2 weak(B [H),

Ij satisfies body(W),

tail(W) = [wt@lv, t1, . . . , tm]

9
>>>=

>>>;

, A 2 AS

{a. | a 2 A1 [A2 [A3}

[{M
i
vp(T, S2) | i 2 [4, 5]}

!
, where A3 is the set of atoms v dom lv(int idi, int idj, lev)

(resp. v dom lv(int idj, int idi, lev)) for each level lev that occurs in B [SM such that (B [H)I
i

lev <

(B [H)I
j

lev (resp. (B [H)I
i

lev > (B [H)I
j

lev), where hpid, int idi, int idj, opi 2 S2

, A 2 AS

{a. | a 2 A1 [A2 [A3 [A4}

[M
5
vp(T, S2)

!
,

where A4 =

8
>>><

>>>:
v dom(int idi, int idj)

���������

hpid, int idi, int idj, opi 2 S2,

v dom lv(int idi, int idj, lev) 2 A3,

8lev0 > lev, v dom lv(int idi, int idj, lev0) 62 A3,

8lev0 > lev, v dom lv(int idj, int idi, lev0) 62 A3

9
>>>=

>>>;

[

8
>>><

>>>:
v dom(int idj, int idi)

���������

hpid, int idi, int idj, opi 2 S2,

v dom lv(int idj, int idi, lev) 2 A3,

8lev0 > lev, v dom lv(int idi, int idj, lev0) 62 A3,

8lev0 > lev, v dom lv(int idj, int idi, lev0) 62 A3

9
>>>=

>>>;

=

8
><

>:
v dom(int idi, int idj)

�������

hpid, int idi, int idj, opi 2 S2,

(B [H)I
i

lev < (B [H)I
j

lev,

8lev0 > lev, (B [H)I
i

lev = (B [H)I
j

lev

9
>=

>;

[

8
><

>:
v dom(int idj, int idi)

�������

hpid, int idi, int idj, opi 2 S2,

(B [H)I
j

lev < (B [H)I
i

lev,

8lev0 > lev, (B [H)I
i

lev = (B [H)I
j

lev

9
>=

>;

=

(
v dom(int idi, int idj)

�����
hpid, int idi, int idj, opi 2 S2,

Ii �B[H Ij

)

[

(
v dom(int idj, int idi)

�����
hpid, int idi, int idj, opi 2 S2,

Ij �B[H Ii

)

, A = A1 [A2 [A3 [A4 [A5, where A5 is the set of atoms vp not resp(pid) for each

hpid, int idi, int idj, opi 2 S2 such that Ii is an accepting answer set of ei wrt B [H, Ij is an accepting

answer set of ej wrt B [H and hIi, Ij , opi 62 ord(B [H,AS(B [H [eictx)[AS(B [H [ejctx)) (the rules in

M
5
vp depend on the operator op and are satisfied if and only if Ii is an accepting answer set of ei wrt B [H

(guaranteed by the not as atoms in A1), Ij is an accepting answer set of ej wrt B [H (again guaranteed

by the not as atoms in A1), and hIi, Ij , opi 62 ord(B [H,AS(B [H [eictx) (guaranteed by the v dom atoms

303

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

in A4)).

Theorem 7.9. Given an ILP context
LOAS task and a set of violating reasons V R, let AS be the set of

optimal answer sets of MILASP2(T, V R)

1. For any hypothesis H, 9A 2 AS(MILASP2(T, V R)) such that H = M
�1
in h(A) if and only if

H 2 P(T) and 8vr 2 V R, vr is not a violating reason of H.

2. For any A 2 AS such that violating 2 A, extractV R(A) is a violating reason of M�1
in h(A).

3. If no A 2 AS contains violating, then the set of optimal remaining hypotheses (none of which

is violating) is exactly equal to the set {M�1
in h(A) | A 2 AS}.

Proof.

1. We partition theMILASP2(T, V R) program such that P1 is the programM(T)[{0{check violating}1.}

and P2 is the remaining program.

Let H ✓ SM . Assume that 9A 2 AS(MILASP2(T, V R)) such that M�1
in h(A) = H.

, 9A0
2 AS(P1) such that M

�1
in h(A) = H and the program {a. | a 2 A0

} [P2 is satisfiable (by

Corollary 2.14).

, 9A0
2 AS(P1) such that M

�1
in h(A) = H and the program {in h(hid). | h 2 H} [P2 is satisfiable

(as the other atoms in A0 do not occur in the bodies of ground instances of rules in P2)

, H 2 P(T) and the program {in h(hid). | h 2 H} [P2 is satisfiable (by Theorem 7.4 part (1))

, H 2 P(T) and the unique answer set of {in h(hid). | h 2 H} [Mvio(T, S1) [Mvp(T, S2) contains

not as(Iid) for each hI, ei 2 V R and does not contain vp not resp(oid) for any hhI1, I2i, oi 2 V R

, H 2 P(T) and for each hI, ei 2 V R, I is not an accepting answer set of e wrt B [H and for each

hhI1, I2i, oi 2 V R, hI1, I2i is not an accepting pair of answer sets of inverse(o) (by Theorem 7.7 and

Theorem 7.8)

, H 2 P(T) and 8vr 2 V R, vr is not a violating reason of H.

2. Let A 2 AS st violating 2 A.

Given the rules in M(T), as violating 2 A, either 9e 2 E� such that v i(eid) 2 A or 9o 2 Oc such that

v p(oid) 2 A. Hence, by Theorem 7.4 (points (2) and (3)), extractV R(A) can extract a violating reason

of M�1
in h(A) from A.

3. Assume no A 2 AS contains violating.

Case 1: AS = ;

) {H 2 P(T) | 8vr 2 V R, vr is not a violating reason of H} = ;

) the set of optimal remaining hypotheses is empty (and hence, is equal to {M
�1
in h(A) | A 2 AS})

Case 2: AS 6= ;

304

) {M
�1
in h(A) | A 2 AS} = {H 2 P

n(T) | 8vr 2 V R, vr is not a violating reason of H} (where n is

the smallest n for which this set is non-empty). This is the set of remaining hypotheses of length n

(and no shorter remaining hypotheses exist).

) {M
�1
in h(A) | A 2 AS} is the set of optimal remaining hypotheses.

It remains to show that none of the optimal remaining hypotheses is violating. For any optimal remaining

hypothesis H, 9A 2 AS such that M�1
in h(A) = H. Hence, 8vr 2 V R, vr is not a violating reason of H.

Hence the program {in h(hid). | h 2 H} [P2 is satisfiable.

Assume for contradiction thatH 2 V(T). Then 9A0
2 AS(P1) such that violating 2 A0 andM

�1
in h(A) =

H (by Theorem 7.4 (4)). Hence, there is an answer set A00 of P1 [P2 such that violating 2 A00 and

M
�1
in h(A) = H. But as this answer set contains violating and represents the same hypothesis H as the

answer sets in AS, it must be more optimal than the answer sets in AS. This contradicts AS being the

set of optimal answer sets of MILASP2(T, V R).

Proposition 7.10. Let T be any well-defined ILP context
LOAS task, and V R be a finite set of violating

reasons. groundrel(MILASP2(T, V R)) is finite.

Proof.

To prove that MILASP2(T, V R) has a finite relevant grounding, it is su�cient to prove that |HBrel
MILASP2(T,V R)|

is finite.

Firstly note that the relevant Herbrand base of MILASP2(T, V R) is equal to the relevant Herbrand base of

M(T)[{check violating.}[Mvio(T, S1)[Mvp(T, S2) (as the remaining rules are hard or weak constraints,

and thus do not contribute to the relevant Herbrand base).

Consider the following partition of the program:

P1 = M(T) [{check violating.}

P2 = {in h(hid). | h 2 SM} [Mvio(T, S1) [Mvp(T, S2)

Due to the division in the language of the two programs (other than the in h atoms, which are in the relevant

Herbrand base of both programs), HBrel
MILASP2(T,V R) = HBrel

P1
[HBrel

P2
.

Note that as the task is well defined, |HBrel
B[SM[CS | is finite, by Proposition 6.13, HBrel

P1
is finite, so it remains

to show that HBrel
P2

is finite. There are three predicates which appear unground in the head of a rule in

P2: not as, mmr and vio w. As vio w and not as do not appear in the bodies of any rule with an unground

head, it remains to show that there are a finite number of ground instances of mmr in HBrel
P2

. For every rule

R such that mmr(a, int id) is a ground instance of head(R), 9R0
2 B [SM [CS such that body+(R) =

R(body+(R0), mmr, int id) for some int id. Hence, a must be in HBrel
B[SM[CS (which is finite as the task is

well defined). As the int id’s are a finite set of ground terms, this means that HBrel
P2

has a finite relevant

Herbrand base.

Theorem 7.11. Let T be any well-defined ILP context
LOAS task.

1. ILASP2(T) terminates in a finite time.

305

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

2. ILASP2(T) = ⇤ILP context
LOAS (T)

Proof.

1. By Proposition 7.10, we know that every call to solve must terminate (as the groundings of the programs

being solved are always finite). Hence to prove termination, it is su�cient to show that there can only be a

finite number of iterations of the while loop in the ILASP2 algorithm. We show this by proving that in ev-

ery iteration |{M
�1
in h(A) | A 2 AS(MILASP2(T, V R0))}| > |{M

�1
in h(A) | A 2 AS(MILASP2(T, V R1))}|

(where V R0 is the value of V R at the start of the loop iteration and V R1 is the value of V R at the end

of the loop iteration). As the initial value of |{M�1
in h(A) | A 2 AS(MILASP2(T, V R))}| is at most 2|SM |

(and is hence finite), this means that there must be a finite number of iterations.

• We first show that {M
�1
in h(A) | A 2 AS(MILASP2(T, V R1))} is a subset of |{M�1

in h(A) | A 2

AS(MILASP2(T, V R0))}.

Let H be a hypothesis and assume that 9A 2 AS(MILASP2(T, V R1)) such that H = M
�1
in h(A)

) H 2 P(T) and 8vr 2 V R1: vr is not a violating reason of H (by Theorem 7.9 (1))

) H 2 P(T) and 8vr 2 V R0: vr is not a violating reason of H (as V R0 ⇢ V R1)

) 9A 2 AS(MILASP2(T, V R0)) such that H = M
�1
in h(A) (by Theorem 7.9 (1))

• It remains to show that there is at least one H such that 9A 2 AS(MILASP2(T, V R0)) such that

H = M
�1
in h(A) and @A 2 AS(MILASP2(T, V R1)) such that H = M

�1
in h(A).

Let H = M
�1
in h(A), where A is the answer set used in ILASP2. Then extractV R(A) is a violating

reason of H (by Theorem 7.9 (2)), and hence V R1 contains a vr that is a violating reason of H.

Hence, H 62 {M
�1
in h(A) | A 2 AS(MILASP2(T, V R1))} (by Theorem 7.9 (1)).

2. We first show that at every step through the while loop, V R is a set violating reasons of T .

Base Case: Before the loop has been entered, V R = ;

Inductive Hypothesis: Let V R0 be a set of violating reasons. If V R = V R0 at the start of an interation

through the loop, then V R1, the value of V R after one iteration of the loop, is still a set of violating

reasons of T .

Proof of Inductive Hypothesis: violating 2 A. Hence, by Theorem 7.9 (2), extractV R(A) is a

violating reason. Hence as V R1 = V R0 [{extractV R(A)}, V R1 is a set of violating reasons.

Hence at every step through the loop, V R is a set of violating reasons of T .

When ILASP2(T) terminates, violating 62 A and hence no answer set in AS⇤(MILASP2(T, V R)) can

contain violating. Hence by Theorem 7.9 (3), {M�1
in h(as) | as 2 AS⇤(MILASP2(T, V R))} is the set of

optimal remaining hypotheses, none of which is violating. This means that they are the optimal inductive

solutions of T .

Proposition 7.13. Let T be any well-defined ILP context
LOAS task with a hypothesis space SM , and let

H be any hypothesis H ✓ SM . groundrel(Mfre(T,H)) is finite.

306

Proof. Consider the set S = R(HBrel
B[SM[CS , in as, 1) [R(HBrel

B[SM[CS , in as, 2) [{ctx(eid, i) | e 2 E+
[

E�, i 2 [1, 2]}[{w(wt, lv, args(t1, . . . , tn), i) | W 2 groundrel(B[SM [CS), tail(W) = [wt@lv, t1, . . . , tn], i 2

[1, 2]} [G (where G is the set of all ground atoms which appear in the heads of rules in Mfre(T,H)).

This set is finite, as the task is well defined. Hence, it su�ces to show that HBrel
Mfre(T,H) ✓ S. But this is the

case as there is no ground instance of any rule R in Mfre(T,H) such that body+(R) ✓ S and heads(R) 6✓ S.

Theorem 7.15. Let T be an ILP context
LOAS task, and let H be a hypothesis.

1. If H 2 ILP context
LOAS (T) then findRelevantExample(T,H) returns nil

2. If H 62 ILP context
LOAS (T) then findRelevantExample(T,H) returns an example that is relevant to

H given T .

Proof. Let T be the task hB,SM , hE+, E�, Ob, Oc
ii

We first show for each of the four types of examples, an example e is covered by H if and only if e 62

findRelevantExamples(T,H).

Note that the program Mfre(T,H) is equal to the program P in Theorem 6.6 (where ASids = {1, 2}, Pairids =

{h1, 2i}, E1 = E2 = E+
[E� and Oh1,2i = Ob

[{inverse(o) | i 2 Oc
}).

• Let e 2 E+
[E�

Firstly, assume that e is accepted by B [H.

) 9I such that I is an accepting answer set of e wrt B [H

) 9A 2 AS(Mfre(T,H)) such that 9I such that ctx(eid, 1), ctx(eid, 2) 2 A,M�1
as (A, 1) = M

�1
as (A, 2) =

I, and I is an accepting answer set of e wrt B [H (by Theorem 6.6 (1), with the list [hI, ei, hI, ei])

) 9A 2 AS(Mfre(T,H)) such that cov(eid, 1) 2 A (by Theorem 6.6 (2))

) Mfre(T,H) |=b cov(eid, 1)

On the other hand, assume Mfre(T,H) |=b cov(eid, 1)

) 9A 2 AS(Mfre(T,H)) such that cov(eid, 1) 2 A

) 9A 2 AS(Mfre(T,H)) such thatM�1
as (A) is an accepting answer set of e wrt B[H (by Theorem 6.6

(2))

) B [H accepts e

• Let o = he1, e2, opi 2 Ob
[{inverse(o) | o 2 Oc

}

Assume that B [H accepts o

, 9p = hI1, I2i such that p is an accepting pair of answer sets of o wrt B [H

, 9p = hI1, I2i such that I1 is an accepting answer set of e1 wrt B [H, I2 is an accepting answer set

of e2 wrt B [H, hI1, I2, opi 2 ord(B [H,AS(B [H [e1ctx) [AS(B [H [e2ctx))

, 9A 2 AS(Mfre(T,H)) such that cov(e1id, 1), cov(e
2
id, 2) 2 A and hM

�1
as (A, 1),M�1

as (A, 2)i is an

accepting answer set of o wrt B [H (by Theorem 6.6 (1) and (2))

, 9A 2 AS(Mfre(T,H)) such that ord respected(oid, 1, 2) 2 A (by Theorem 6.6 (3))

, Mfre(T,H) |=b ord respected(oid, 1, 2)

307

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Hence, CDPIs is the set of all CDPI examples e such that e 2 E+
[E� and e is accepted by B [H. Similarly,

CDOEs is the set of all CDOE examples o such that either o 2 Ob and o is accepted by B [H or o 2 Oc and

inverse(o) is accepted by B [H.

Hence the returned set is the set of all examples in E+
[E�

[Ob
[Oc that are not covered by H.

We can now prove the two properties of the theorem (about the findRelevantExample method).

1. Let H be any hypothesis in ILP context
LOAS (T). Then H covers all examples in T , and hence,

findRelevantExamples(T,H) will return ;. Hence, findRelevantExample(T,H) will return nil.

2. Let H ✓ SM such that H 62 ILP context
LOAS (T). Then there is at least one example e in T that H does not

cover. Hence, the set returned by findRelevantExamples(T,H) will be non-empty (and by the above

will be a set of examples that H does not cover). Hence, findRelevantExample(T,H) will return an

example in T that H does not cover (i.e. an example that is relevant to H given T).

Theorem 7.16. ILASP2i terminates for any well-defined ILP context
LOAS task.

Proof. Assume that the task T = hB,SM , Ei is well-defined. Note that this also means that hB,SM , Relevanti

is well-defined. The soundness of ILASP2 (Theorem 7.11) can be used to show that H will always cover every

example in Relevant; hence, at each step re must be an example which is in E but not in Relevant. As there

are a finite number of examples in E, this means there can only be a finite number of iterations; hence, it

remains to show that each iteration terminates. This is the case because, as hB,SM , Relevanti is well defined,

the call to ILASP2 terminates (Theorem 7.11) and findRelevantExample terminates (Corollary 7.14).

Theorem 7.17. Let T be a well-defined ILP context
LOAS task.

1. If T is satisfiable, then ILASP2i(T) returns an optimal inductive solution of T .

2. If T is unsatisfiable, then ILASP2i(T) returns UNSATISFIABLE.

Proof.

1. Assume that T is satisfiable. Then no matter which examples are added to Relevant, the call to ILASP2

will always return a hypothesis. So ILASP2i cannot return UNSATISFIABLE. Hence, it must return a

hypothesis (as it terminates by Theorem 7.16). This means that the while loop must terminate. For this to

happen findRelevantExample must return nil. This means that H 2 ILP context
LOAS (T) (by Theorem 7.15

part(2)). It remains to show that H is optimal. Assume for contradiction that there is a hypothesis

H 0
2 ILP context

LOAS (T) such that |H 0
| < |H|. Then as Relevant ✓ E, H 0

2 ILP context
LOAS (hB,SM , Relevanti).

Hence, by Theorem 7.11, ILASP2(hB,SM , Relevanti)) will not return H (contradiction!). Hence, H is

an optimal inductive solution of T .

2. Assume that T is unsatisfiable. In this case, findRelevantExample will never return nil (Theorem 7.15).

Hence, the while condition will never be satisfied. As ILASP2i is guaranteed to terminate (Theorem 7.16),

it must return UNSATISFIABLE (eventually, hB,SM , Relevanti will become unsatisfiable).

308

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

B.1 Proofs and Meta-programs from Chapter 10

Lemma 10.2.

Let P be any ASP program whose weak constraints are independent, l be any integer and I1 and I2

be any interpretations. Then �P
l (I1, I2) =

P
W2weak(P)

�W
l (I1, I2).

Proof.

�P
l (I1, I2) = P I1

l � P I2
l

�P
l (I1, I2) =

P

(wt, l, t1, . . . , tn)2weak(P,I1)

wt�
P

(wt, l, t1, . . . , tn)2weak(P,I2)

wt

�P
l (I1, I2) =

P
0

@

8
<

:
P

(wt, l, t1, . . . , tn)2weak({W},I1)
wt�

P

(wt, l, t1, . . . , tn)2weak({W},I2)
wt

������
W 2 weak(P)

9
=

;

1

A

(as the weak constraints are independent)

�P
l (I1, I2) =

P⇣n
{W}

I1
l � {W}

I2
l

���W 2 weak(P)
o⌘

�P
l (I1, I2) =

P
W2weak(P)

�W
l (I1, I2)

Lemma 10.3.

Let S be a set of interpretations and P be an ASP program. Given any pair of interpretations I1

and I2 in S and any binary operator op 2 {<,>,,�,=, 6=}, hI1, I2, opi 2 ord(P, S) if and only if

�P (I1, I2) op 0.

Proof. Case 1: op is <

Assume that hI1, I2, <i 2 ord(P, S)

, I1 �P I2

, there is a priority level l such that P I1
l < P I2

l and 8l0 > l P I1
l = P I2

l

, there is a priority level l such that �P
l (I1, I2) < 0 and 8l0 > l �P

l0 (I1, I2) = 0

, �P (I1, I2) < 0

Case 2: op is >

Assume that hI1, I2, >i 2 ord(P, S)

, I2 �P I1

, there is a priority level l such that P I1
l > P I2

l and 8l0 > l P I1
l = P I2

l

, there is a priority level l such that �P
l (I1, I2) > 0 and 8l0 > l �P

l0 (I1, I2) = 0

, �P (I1, I2) > 0

Case 3: op is =

Assume that hI1, I2,=i 2 ord(P, S)

309

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

, I1 6�P I2 and I2 6�P I1

, for every priority level l, P I1
l = P I2

l

, for every priority level l, �P
l (I1, I2) = 0

, �P (I1, I2) = 0

Case 4: op is 6=

Assume that hI1, I2, 6=i 2 ord(P, S)

, I1 �P I2 or I2 �P I1

, there is a priority level l such that P I1
l 6= P I2

l

, there is a priority level l such that �P
l (I1, I2) 6= 0

, �P
l (I1, I2) 6= 0

Case 5: op is 

Assume that hI1, I2,i 2 ord(P, S)

, I2 6�P I1

, either there is a priority level l such that P I1
l < P I2

l and 8l0 > l P I1
l = P I2

l , or for every priority level

l, P I1
l = P I2

l

, either there is a priority level l such that �P
l (I1, I2) < 0 and 8l0 > l �P

l0 (I1, I2) = 0, or for every

priority level l, �P
l (I1, I2) = 0

, �P (I1, I2) < 0 or �P (I1, I2) = 0

, �P (I1, I2)  0

Case 6: op is �

Assume that hI1, I2,�i 2 ord(P, S)

, I1 6�P I2

, either there is a priority level l such that P I1
l > P I2

l and 8l0 > l P I1
l = P I2

l , or for every priority level

l, P I1
l = P I2

l

, either there is a priority level l such that �P
l (I1, I2) > 0 and 8l0 > l �P

l0 (I1, I2) = 0, or for every

priority level l, �P
l (I1, I2) = 0

, �P (I1, I2) > 0 or �P (I1, I2) = 0

, �P (I1, I2) � 0

Lemma 10.6.

Consider a background knowledge B, hypothesis space SM and a context-dependent ordering example

o. Then for any hypothesis H ✓ SM , B[H cautiously respects o if and only if B[H does not bravely

respect inverse(o).

310

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

Proof. Assume that B [H cautiously respects o

, there is no accepting pair of answer sets of inverse(o)

, B [H does not bravely respect inverse(o)

It is useful to present the following two theorems earlier than they were presented in the chapter (as

their results are used by the proofs of some of the meta-level encodings which were omitted from the

main chapter).

Theorem 10.16. Let SC be a set of hypothesis schemas and SM be a hypothesis space. For each

H ✓ SM , there is exactly one answer setAH ofMsc(SC, SM) such thatH = M
�1
in h(AH). Furthermore,

8sc 2 SC, conforms(scid) 2 AH if and only if H conforms to sc.

Proof. We prove this by using the splitting set theorem [LT94]. eU (P,X) is the partial evaluation of P with

respect to X (over the atoms in U), which is described in [LT94].

To aid the proof, we partition the program Msc(SC, SM) into three subparts:

• M
1
sc =

n
not disj(did) : - not in h(d1), . . . , not in h(dn).

���d = {d1, . . . , dn} 2 DISJ(SC)
o

• M
2
sc =

(
conforms(scid) : - not not disj(D1id), . . . ,

not not disj(Dnid), not disj(Vid).

����� sc 2 SC, sc = h{D1, . . . , Dn
}, V i

)

• M
3
sc = {0{in h(hid)}1.|h 2 SM}

Let H ✓ SM and assume 9AH 2 AS(Msc(SC, SM)) st H = M
�1
in h(AH)

, A1 = {in h(hid) | h 2 H} 2 AS(M3
sc) and 9A2 2 AS(eU (M1

sc [M
2
sc, A1))}

such that AH = A1 [A2

(by the splitting set theorem, using the in h atoms as the splitting set U).

, 9A2 2 AS({not disj(did). | d 2 DISJ(SC), ids(H) \ d = ;} [M
2
sc)}

such that AH = {in h(hid) | h 2 H} [A2

(by evaluating the function eU)

, AH = {in h(hid) | h 2 H} [A2 [A3, where:

A2 = {not disj(did) | d 2 DISJ(SC), ids(H) \ d = ;} and

A3 =

(
conforms(scid)

�����
sc 2 SC, sc = hD,V i,

8d 2 D, not disj(did) 62 A2, not disj(Vid) 2 A2

)

by the splitting set theorem (with the not disj atoms as a splitting set)

, AH = {in h(hid) | h 2 H} [A2 [A3, where:

A2 = {not disj(did) | d 2 DISJ(SC), ids(H) \ d = ;} and

311

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

A3 =

8
><

>:
conforms(scid)

�������

sc 2 SC, sc = hD,V i,

8d 2 D, ids(H) \ d 6= ;,

ids(H) \ V = ;

9
>=

>;

, AH = {in h(hid) | h 2 H} [A2 [A3, where:

A2 = {not disj(did) | d 2 DISJ(SC), ids(H) \ d = ;} and

A3 = {conforms(scid) | sc 2 SC,H conforms to sc}

Hence, for eachH 2 SM , there is exactly one answer set AH ofMsc(SC, SM) stH = M
�1
in h(AH), and 8sc 2 SC,

conforms(scid) 2 AH if and only if H conforms to sc.

Theorem 10.18.

Let SM be a hypothesis space, SC be a set of hypothesis schemas and OSC be a set of ordering

schemas such that {sc | hsc, ws, opi 2 OSC} ✓ SC. For each H ✓ SM , there is exactly one answer

set AH of Msc(SC, SM) [Mosc(OSC, SM) such that M�1
in h(AH) = H. Furthermore:

1. 8sc 2 SC, conforms(scid) 2 AH if and only if H conforms to sc

2. 8osc 2 OSC, osc conforms(oscid) 2 AH if and only if H conforms to osc

Proof. Let H ✓ SM . Assume AH is an answer set of Msc(SC, SM) [Mosc(OSC, SM) and M
�1
in h(AH) = H.

, AH \HBMsc(SC,SM) 2 AS(Msc(SC, SM)), M�1
in h(AH \HBMsc(SC,SM)) = H and AH\HBMsc(SC,SM)

is an answer set of following program:8
><

>:
diff(!id, 1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] > 0

9
>=

>;
[

8
><

>:
diff(!id,�1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] < 0

9
>=

>;

[

8
>>>>>><

>>>>>>:

osc diff(oscid, D) : -

diff(!i, D),

not diff(!id
1 ,�1), not diff(!id

1 , 1),

. . . ,

not diff(!id
i�1,�1), not diff(!id

i�1, 1).

������������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

i 2 [1,m]

9
>>>>>>=

>>>>>>;

[

8
>>>>>><

>>>>>>:

osc diff(oscid, 0) : -

not osc diff(oscid, 1),

not osc diff(oscid,�1).

osc conforms(oscid) : -

osc diff(oscid, D), D op 0.

������������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

conforms(scid) 2 AH \HBMsc(SC,SM)

9
>>>>>>=

>>>>>>;

, AH \HBMsc(SC,SM) 2 AS(Msc(SC, SM)), M�1
in h(AH \HBMsc(SC,SM)) = H and AH\HBMsc(SC,SM)

is an answer set of following program:8
><

>:
diff(!id, 1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] > 0

9
>=

>;
[

8
><

>:
diff(!id,�1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] < 0

9
>=

>;

312

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

[

8
><

>:
osc diff(oscid, D) : - diff(!i, D).

�������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

i 2 [1,m],

8j 2 [1, i� 1],!j [H] = 0

9
>=

>;

[

8
>>>>>><

>>>>>>:

osc diff(oscid, 0) : -

not osc diff(oscid, 1),

not osc diff(oscid,�1).

osc conforms(oscid) : -

osc diff(oscid, D), D op 0.

������������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

conforms(scid) 2 AH \HBMsc(SC,SM)

9
>>>>>>=

>>>>>>;

, AH \HBMsc(SC,SM) 2 AS(Msc(SC, SM)), M�1
in h(AH \HBMsc(SC,SM)) = H and AH\HBMsc(SC,SM)

is an answer set of following program:8
><

>:
diff(!id, 1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] > 0

9
>=

>;
[

8
><

>:
diff(!id,�1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] < 0

9
>=

>;

[

(

osc diff(oscid, 1).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) > 0

)

[

(

osc diff(oscid, 0).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) = 0

)

[

(

osc diff(oscid,�1).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) < 0

)

[

8
><

>:
osc conforms(oscid).

�������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

conforms(scid) 2 AH \HBMsc(SC,SM),

" ([!1[H], . . . ,!m[H]]) op 0

9
>=

>;

Hence, for each H ✓ SM there is a unique answer set AH of Msc(SC, SM) [Mosc(OSC, SM) such that

M
�1
in h(AH) = H. Furthermore, AH \HBMsc(SC,SM) 2 AS(Msc(SC, SM)) and AH\HBMsc(SC,SM) is the

unique answer set of following program:8
><

>:
diff(!id, 1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] > 0

9
>=

>;
[

8
><

>:
diff(!id,�1)

�������

hsc, ws, opi 2 OCS,

! 2 ws,

![H] < 0

9
>=

>;

[

(

osc diff(oscid, 1).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) > 0

)

[

(

osc diff(oscid, 0).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) = 0

)

[

(

osc diff(oscid,�1).

�����
osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

" ([!1[H], . . . ,!m[H]]) < 0

)

[

8
><

>:
osc conforms(oscid).

�������

osc = hsc, {!1, . . . ,!m}, opi 2 OSC,

conforms(scid) 2 AH \HBMsc(SC,SM),

" ([!1[H], . . . ,!m[H]]) op 0

9
>=

>;

Hence, the unique answer set AH of Msc(SC, SM) [Mosc(OSC, SM) such that M
�1
in h(AH) = H has the

following properties: (i) for each sc 2 SC, conforms(scid) 2 AH if and only if H conforms to sc (by

Theorem 10.16); and (ii) for each osc = hsc, {!1, . . . ,!m}, opi 2 OSC, osc conforms(oscid) 2 AH if and

only if H conforms to sc and " ([!1[H], . . . ,!m[H]]) op 0 (this is the case if and only if H conforms to osc).

313

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Our method for computing a translation of an interpretation into a hypothesis schema (Algorithm 10.1)

makes use of a meta-level program that we omitted from the main thesis. This meta-level program is

used to compute a potential unfounded subset for a partial hypothesis schema. Given an interpretation

I and a hypothesis schema sc, this meta-level program finds a hypothesis that conforms to sc, but for

which I has at least one unfounded set with respect to B [H.

The first two components in Mu state which atoms are in the object-level interpretation, and use

a set of choice rules to “guess” at an unfounded subset U of this interpretation (represented by the

in u atoms). The next two components define what it means for an atom to be supported by a rule

(without using the atoms in U in the positive body literals of the rule). If a background rule gives

support to an atom, then it is definitely supported; on the other hand, if a rule in the hypothesis

space gives support to the atom, then it may or may not be supported, depending on whether the

rule is part of a hypothesis. We use the predicate supports to represent which rules in the hypothesis

space represent which atoms. This program is used iteratively to find the rule-disjunctions D of a

hypothesis schema. Given any already computed rule-disjunction d in D, we know that any hypothesis

must contain at least one of the rules whose ids are in d. This is ensured by the fifth component of

the program. The final component computes the atoms that are supported, and constrains away any

meta-level answer set in which an element of U has support (i.e. those answer sets where U is not an

unfounded set). For any remaining answer set, U must therefore be an unfounded set.

Meta-program B.1 (Mu(P, SM , I, sc)). Let P be a program, SM be a hypothesis space, I be

the interpretation {a1, . . . am} and sc be the hypothesis schema hD,V i. Mu(P, SM , I, sc) is the

ASP program including the following rules:

1. in as(ai), for each atom ai 2 I.

2. 1{in u(a1), . . . , in u(am)}m.

3. supported(rh) : -R(body(r), in as),NR(body+(r), in u).

for each rule r 2 P and for each atom rh 2 heads(r)

4. supports(rh, rid) : -R(body(r), in as),NR(body+(r), in u).

for each rule r 2 SM and for each atom rh 2 heads(r)

5. 1{in h(d1), . . . , in h(dn)}n.

for each {d1, . . . , dn} 2 D

6.

(
supported(Atom) : - supports(Atom, Rid), in h(Rid).

: - in u(Atom), supported(Atom).

)

Proposition B.2. (proof on page 315)

314

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

Let P be a program, SM be a hypothesis space, I be an interpretation, sc be a hypothesis schema

and U be any set of atoms. 9A 2 AS(Mu(P, SM , I, sc)) such that U = {a | in u(a) 2 A} if and only

if U is a potential unfounded subset of I wrt sc.

Proof. Assumes that D is always disjoint from V (which is the case).

Assume 9A 2 AS(Mu(P, SM , I, sc)) such that U = {a | in u(a) 2 A}

, U is non empty, and the program:n
in as(a).

���a 2 I
o

[

n
in u(a).

���a 2 U
o

[

n
supported(rh) : -R(body(r), in as),NR(body+(r), in u)

���r 2 P, rh 2 heads(r)
o

[

n
supports(rh, rid) : -R(body(r), in as),NR(body+(r), in u)

���r 2 SM , rh 2 heads(r)
o

[{1{in h(d1), . . . , in h(dn)}.|{d1, . . . , dn} 2 D}

[

(
supported(ATOM) : - supports(ATOM, RID), in h(RID).

: - in u(ATOM), supported(ATOM).

)
is satisfiable.

, U is non-empty and 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and the program:n
in as(a).

���a 2 I
o

[

n
in u(a).

���a 2 U
o

[

n
supported(rh) : -R(body(r), in as),NR(body+(r), in u)

���r 2 P, rh 2 heads(r)
o

[

n
supports(rh, rid) : -R(body(r), in as),NR(body+(r), in u)

���r 2 SM , rh 2 heads(r)
o

[{in h(hid).|h 2 H}

[

(
supported(ATOM) : - supports(ATOM, RID), in h(RID).

: - in u(ATOM), supported(ATOM).

)
is satisfiable.

, U is non-empty and 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and the program:(

supported(rh).

�����
r 2 ground(P), rh 2 heads(r), body+(r) ✓ I,

body�(r) \ I = ;, body+(r) \ U = ;

)

[

(

supports(rh, rid).

�����
r 2 SM , gr 2 ground(r), rh 2 heads(gr), body+(gr) ✓ I,

body�(gr) \ I = ;, body+(gr) \ U = ;

)

[

n
supported(ATOM) : - supports(ATOM, hid).

���h 2 H
o

has at least one answer set that does not contain supported(atom) for any atom 2 U .

, U is non-empty and 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and the unique

answer set of the program:(

supported(rh).

�����
r 2 ground(P), rh 2 heads(r), body+(r) ✓ I,

body�(r) \ I = ;, body+(r) \ U = ;

)

[

(

supports(rh, rid).

�����
r 2 SM , gr 2 ground(r), rh 2 heads(gr), body+(gr) ✓ I,

body�(gr) \ I = ;, body+(gr) \ U = ;

)

[

n
supported(ATOM) : - supports(ATOM, hid).

���h 2 H
o

does not contain supported(atom) for any atom 2 U

315

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

(the program is definite, and so has exactly one answer set).

, U is non-empty and 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and the unique

answer set of the program:(

supported(rh).

�����
r 2 ground(P), rh 2 heads(r), body+(r) ✓ I,

body�(r) \ I = ;, body+(r) \ U = ;

)

[

(

supports(rh, rid).

�����
r 2 H, gr 2 ground(r), rh 2 heads(gr), body+(gr) ✓ I,

body�(gr) \ I = ;, body+(gr) \ U = ;

)

[

n
supported(ATOM) : - supports(ATOM, hid).

���h 2 H
o

does not contain supported(atom) for any atom 2 U

(the removed rules have no e↵ect).

, U is non-empty and 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and

@r 2 ground(P [H) such that heads(r) \ U 6= ;, body+(r) ✓ I\U and body�(r) \ I = ;.

, 9H ✓ SM st H conforms to hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and U is a non-empty unfounded

subset of I wrt P [H.

, 9H ✓ SM st H conforms to hD,V i and U is a non-empty unfounded subset of I wrt P [H. Note

that for every hypothesis H1 that conforms to hD,V i there exists a hypothesis H2 that conforms to

hD, {hid | h 2 SM , 8d 2 D : hid 62 d}i and H2 ✓ H1 (and if U is an unfounded subset of I wrt P [H1, then

it is also an unfounded subset of I wrt P [H2).

, U is a potential unfounded subset of I wrt sc and P .

Theorem 10.8.
Let P be a program, SM be a hypothesis space and I be an interpretation. The procedure

translateAS(P, SM , I) terminates and returns a translation of I.

Proof.

1. We first show that if translateAS(P, SM , I) terminates, then it returns a translation of I. First note that

V is the set of rule ids hid 2 ids(SM) such that the corresponding rule h is not a model of I. Hence,

8H ✓ SM such that I is a model of H, H conforms to h;, V i. So at line 4, just before the first iteration

of the loop, 8H ✓ SM such that I 2 AS(P [H), H conforms to hD,V i. We now show that this property

is an invariant of the while loop. Assume for contradiction that at the start of an arbitrary loop iteration

8H ✓ SM such that I 2 AS(P [H), H conforms to hD,V i but that at the end, 9H⇤
✓ SM such that

I 2 AS(P [H⇤) but H⇤ does not conform to hD,V i. This means that for the set U in the loop iteration

ids(H⇤)\ {hid | hid 2 ids(SM)\V, I |= body(h), U \ body+(h) = ;, heads(h)\U 6= ;} = ;. Hence, there is

a U such that U is a non-empty unfounded subset of I wrt P [H⇤ (P cannot contain any rule preventing

316

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

U from being an unfounded subset of I, or U would not be a potential unfounded subset of I wrt hD,V i

and P). This contradicts that I is an answer set of P [H⇤. Hence, when the while loop terminates

8H ✓ SM such that I 2 AS(P [H), H conforms to hD,V i.

It remains to show that when the while loop terminates, 8H ✓ SM such that H conforms to hD,V i,

I 2 AS(P [H). Let H⇤ be a hypothesis that conforms to hD,V i and assume for contradiction that

I 62 AS(P [H⇤). By the definition of V , I must be a model of AS(P [H⇤); hence there must be a

non-empty unfounded subset U of I wrt P [H⇤. As H⇤ conforms to hD,V i, this means that U is a

potential unfounded subset of I wrt hD,V i and P . This contradicts that the loop terminates.

2. Note that in each iteration, by Proposition B.2, hD,V i is conformed to by a fewer number of hypotheses

than in the iteration before – each potential unfounded subset U is no longer a potential unfounded subset

by the end of the iteration, meaning that at least one hypothesis that conformed to the schema at the

start of the iteration does not conform to the schema at the end of the iteration. Hence, as h;, V i is

conformed to by a finite number of hypotheses, and it is impossible for a schema to be conformed to by

a negative number of hypotheses, there must be a finite number of iterations.

Algorithm 10.2 uses a meta-level program (omitted from the main thesis) that searches for a hypothesis

H that accepts a CDPI e but does not conform to any schema in a set SC. This program is formalised

in Meta-program B.2.

Meta-program B.2 (Mtrans(T, e, SC)). Let T be the ILPnoise
LOAS task hB,SM , Ei, e be an

example, where epi = h{einc1 , . . . , eincm }, {eexc1 , . . . , eexcn }i, and SC be a partial translation of e.

Mtrans(T, e, SC) is the program consisting of the following components:

• R(B [ectx, in as) [{A(R(h, in as), in h(hid)) | h 2 SM}

• cov : - in as(einc1), . . . , in as(eincm), not in as(eexc1), . . . , not in as(eexcn).

• : - not cov.

• Msc(SC, SM) [{: - conforms(scid). | sc 2 SC}

The first component of the meta-level program Mtrans(T, e, SC) is the reification of B [SM , where

the rules h 2 SM are appended with an extra condition, ensuring that the rule takes e↵ect if and

only if the atom in h(hid) is in an answer set. Each answer set of this first component therefore

corresponds to an answer set A of B[ectx[H, for some H ✓ SM . The particular H for which A is an

answer set can be extracted from the in h atoms in the meta-level answer set. The second and third

components in the meta-level program ensures that only answer sets that extend epi are returned.

The final component makes use of the previous meta-level program Msc to ensure that the hypothesis

represented by the meta-level answer set does not conform to any previously computed schema. This

prevents us from computing the same schema twice.

317

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Proposition B.3. (proof on page 318)

Let T be an ILPnoise
LOAS task, e be an example and SC be a partial translation of e. For every interpre-

tation I, 9A 2 AS(Mtrans(T, e, SC)) such that I = {a | in as(a) 2 A} if and only if 9H ✓ SM such

that H does not conform to any schema in SC and I is an accepting answer set of e wrt B [H.

Proof. In the proof below, let COV be the program:8
><

>:

cov : - in as(einc1), . . . , in as(eincm),

not in as(eexc1), . . . , not in as(eexcn).

: - not cov.

9
>=

>;

Let I be an interpretation. Assume 9A 2 AS(Mtrans(T, e, SC)) st I = {a | in as(a) 2 A}.

, 9A 2

(
A2

�����
A1 2 AS(Msc(SC, SM) [{: - conforms(scid). | sc 2 SC}),

A2 2 AS(eU (R(B [ectx, in as) [{A(R(h, in as), in h(hid)) | h 2 SM} [COV,A1))

)

such that I = {a | in as(a) 2 A}

(as the atoms in Msc form a splitting set U of Mtrans).

, 9A 2

(
A2

�����
A1 2 AS(Msc(SC, SM) [{: - conforms(scid). | sc 2 SC}),

A2 2 AS(R(B [ectx, in as) [{R(h, in as) | h 2 SM , in h(hid) 2 A1} [COV)

)

such that I = {a | in as(a) 2 A}

, 9A 2

(
A2

�����
H ✓ SM st 8sc 2 SC,H does not conform to sc,

A2 2 AS(R(B [ectx[H, in as) [COV)

)

such that I = {a | in as(a) 2 A}

(by Theorem 10.16)

, I 2

(
{a | in as(a) 2 A2}

�����
H ✓ SM st 8sc 2 SC,H does not conform to sc,

A2 2 AS(R(B [ectx [H, in as)[COV)

)

, I 2

(
{a | in as(a) 2 A2}

�����
H ✓ SM st 8sc 2 SC,H does not conform to sc,

A2 2 AS(R(B [ectx [H, in as))

)

and I extends epi

, I 2

(
A

�����
H ✓ SM st 8sc 2 SC,H does not conform to sc,

A 2 AS(B [ectx [H)

)

and I extends epi

, 9H ✓ SM st 8sc 2 SC, H does not conform to sc and I is an accepting answer set of e wrt B [H.

318

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

Theorem 10.11.

Let T be an ILPnoise
LOAS task and e be an example. translateExample(T, e) terminates and returns a

pair he, SCi where SC is a complete translation of e.

Proof. Before the first iteration of the while loop in translateExample, SC = ;. Hence, at this stage SC is

(vacuously) a partial translation of e.

We now show that for an arbitrary iteration of the loop, if SC is a partial translation of e at the beginning of

the iteration, then SC is still a partial translation of e at the end of the iteration.

Note that I is an interpretation for which 9H ✓ SM such that 8sc 2 SC, H does not conform to sc and I

is an accepting answer set of e wrt B [H. Hence, the call to translateAS returns a schema sc such that

any hypothesis H that conforms to sc must accept e (as sc is the translation of I, by Theorem 10.8). Hence

SC [{sc} is a partial translation of e. Therefore, at the end of the iteration, SC is still a partial translation of

e.

If translateExample terminates, then there is no interpretation I for which 9H ✓ SM such that 8sc 2 SC, H

does not conform to sc and I is an accepting answer set of e wrt B [H. Hence, there is no hypothesis that

accepts e but does not conform to at least one schema in SC. Hence, as SC must be a partial translation of e

from the above, SC is a complete translation of e.

It remains to show that translateExample always terminates. Note that the number of hypotheses that conform

to at least one schema in SC increases with every iteration – as the hypothesis H that causes the while condition

to be met does not conform to any schema in SC at the start of the iteration, but conforms to the new schema

that is added to SC during the iteration. As there are a finite number of hypotheses, this means that there

must be a finite number of iterations.

Theorem 10.13.

Let T be a ILPnoise
LOAS task and let A1 and A2 be interpretations. Let [!1, . . . ,!n] = !(T,A1, A2). For

any H ✓ SM , �B[H(A1, A2) = " ([!1[H], . . . ,!n[H]])

Proof.

Let [l1, . . . , ln] be the list of priority levels in B [SM (in descending order).

�B[H(A1, A2) = "
�⇥
�B[H

l1
, . . . ,�B[H

ln

⇤�

= "

 "
P

W2weak(B[H)

�W
l1

!
, . . . ,

P

W2weak(B[H)

�W
ln

!#!

= " ([!(T,A1, A2, l1)[H], . . . ,!(T,A1, A2, ln)[H]])

= " ([!1[H], . . . ,!n[H]])

Meta-program B.3 formalises the meta-level program, Mpair that searches for a hypothesis that does

not conform to any of a set of ordering schemas, but that accepts a given ordering example. For any

such hypothesis, there must be a pair of interpretations that form an accepting pair of answer sets of

the ordering example. Mpair can be used to find these pairs of interpretations.

319

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Meta-program B.3 (Mpair(T,OSC, o)). Let T be a ILPnoise
LOAS task, OSC be a set of hy-

pothesis schemas, and o be an ordering example, where oeg1 = he1ctx, e
1
pii and oeg2 = he2ctx, e

2
pii.

Mpair(T,OSC, o) is the program consisting of the following components:

• M1(T)

• {as(1). as(2).}

• check ord(T, o, 1, 2)

• : - not ord respected(oid, 1, 2)

• Msc(SC, SM) (where SC is the set of all hypothesis schemas that occur in OSC).

• Mosc(OSC, SM) [{: - osc conforms(oscid). | osc 2 OSC}

Proposition B.4. (proof on page 320)

Let T be the ILPnoise
LOAS task hB,SM , Ei and let OSC be a partial translation of the CDOE o. For

every pair of interpretations I1, I2, 9A 2 Mpair(T,OSC, o) such that I1 = {a | in as(a, 1) 2 A} and

I2 = {a | in as(a, 2) 2 A} if and only if 9H ✓ SM that does not conform to any schema in OSC and

hI1, I2i is an accepting pair of answer sets of o wrt B [H.

Proof. Let I1 and I2 be interpretations and assume 9A 2 Mpair(T,OSC, o) such that I1 = {a | in as(a, 1) 2 A}

and I2 = {a | in as(a, 2) 2 A}.

, 9A 2 AS

0

BBBBBBBB@

M1(T)

[{as(1). as(2).}

[check ord(T, o, 1, 2)

[{: - not ord respected(oid, 1, 2).}

[Msc({sc | hsc, ws, opi 2 OSC}, SM)

[Mosc(OSC, SM) [{: - osc conforms(oscid). | osc 2 OSC}

1

CCCCCCCCA

such that I1 = {a | in as(a, 1) 2 A} and I2 = {a | in as(a, 2) 2 A}.

, 9H ✓ SM such that 9A 2 AS

0

BBBBBB@

M1(T)

[{as(1). as(2).}

[check ord(T, o, 1, 2)

[{: - not ord respected(oid, 1, 2).}

[{in h(hid). | h 2 H}

1

CCCCCCA

such that I1 = {a | in as(a, 1) 2 A} and I2 = {a | in as(a, 2) 2 A} and

9A0
2 AS

Msc({sc | hsc, ws, opi 2 OSC}, SM)

[Mosc(OSC, SM) [{: - osc conforms(oscid). | osc 2 OSC}

!

such that M�1
in h(A

0) = H.

320

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

, 9H ✓ SM such that 9A 2 AS

0

BBBBBB@

M1(T)

[{as(1). as(2).}

[check ord(T, o, 1, 2)

[{: - not ord respected(oid, 1, 2).}

[{in h(hid). | h 2 H}

1

CCCCCCA

such that I1 = {a | in as(a, 1) 2 A} and I2 = {a | in as(a, 2) 2 A} and H does not conform to any

ordering schema in OSC (by Theorem 10.18).

, 9H ✓ SM such that H does not conform to any ordering schema in OSC and hI1, I2i is an accepting pair

of answer sets of o wrt B [H (by Theorem 6.6).

Theorem 10.14.

Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii. Also let o be a CDOE and A1 and A2 be in-

terpretations that extend (oeg1)pi and (oeg2)pi, respectively. translatePairAS(T, o,A1, A2) terminates

and returns an ordering schema osc such that 8H ✓ SM , H conforms to osc if and only if hA1, A2i is

an accepting pair of answer sets of o wrt B [H.

Proof.

The procedure translatePairAS terminates as the two calls to translateAS terminate (by Theorem 10.8). It

remains to show that 8H ✓ SM , H conforms to the returned schema hsc1 [sc1,!(T,A1, A2), oopi if and only if

hA1, A2i is an accepting pair of answer sets of o wrt B [H.

Let H be an arbitrary subset of SM and assume that H conforms to hsc1 [sc1,!(T,A1, A2), oopi.

, H conforms to sc1 [sc2 and " ([!i[H] | !i 2 !(T,A1, A2)]) oop 0.

, H conforms to sc1, H conforms to sc2 and " ([!i[H] | !i 2 !(T,A1, A2)]) oop 0.

, A1 is an accepting answer set of oeg1 wrt B [H, A2 is an accepting answer set of oeg2 wrt B [H and

" ([!i[H] | !i 2 !(T,A1, A2)]) oop 0.

(by Theorem 10.8)

, A1 is an accepting answer set of oeg1 wrt B [H, A2 is an accepting answer set of oeg2 wrt B [H and

�B[H(A1, A2) oop 0.

(by Theorem 10.13)

, A1 is an accepting answer set of oeg1 wrt B [H, A2 is an accepting answer set of oeg2 wrt B [H and

hA1, A2, oopi 2 ord(B [H,AS(B [H [(oeg1)ctx) [AS(B [H [(oeg2)ctx)).

(by Lemma 10.3)

, hA1, A2i is an accepting pair of answer sets of o wrt B [H.

321

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

Theorem 10.15.

Let T be any ILPnoise
LOAS task and o be any CDOE. translateOrderingExample(T, o) terminates and

returns a pair ho,OSCi, where OSC is a complete translation of o.

Proof. (Similar to the proof of Theorem 10.11)

Before the first iteration of the while loop in translateOrderingExample, OSC = ;. Hence, at this stage OSC

is (vacuously) a partial translation of o (wrt T).

We now show that for an arbitrary iteration of the while loop, if OSC is a partial translation of o at the

beginning of the iteration, then OSC is still a partial translation of o at the end of the iteration.

Note that hI1, I2i is a pair of interpretations for which 9H ✓ SM such that 8osc 2 OSC, H does not conform to

osc and hI1, I2i is an accepting pair of answer sets of o wrt B [H. This means that I1 extends (oeg1)pi and I2
extends (oeg2)pi. Hence, the call to translatePairAS returns an ordering schema osc such that any hypothesis

H that conforms to osc must accept o, by Theorem 10.14. Hence OSC [{osc} is a partial translation of o.

Therefore, at the end of the iteration, OSC is still a partial translation of o.

If translateOrderingExample terminates, then there is no pair of interpretations hI1, I2i for which 9H ✓ SM

such that 8osc 2 OSC, H does not conform to osc and hI1, I2i is an accepting pair of answer sets of o wrt

B [H. Hence, there is no hypothesis that accepts o but does not conform to at least one schema in OSC.

Hence, as OSC must be a partial translation of o from the above, OSC is a complete translation of o.

It remains to show that translateOrderingExample always terminates. Note that the number of hypotheses

that conform to at least one schema in OSC increases with every iteration – as the hypothesis H that causes the

while condition to be met does not conform to any schema in OSC at the start of the iteration, but conforms

to the new schema that is added to OSC during the iteration. As there are a finite number of hypotheses, this

means that there must be a finite number of iterations.

Theorem 10.20.

For any set CC of coverage constraints, and any ILPnoise
LOAS task T :

1. solve current task(CC, T) terminates.

2. If there is no hypothesisH ✓ SM such that Slb(H,T,CC) is finite, then solve current task(CC, T)

returns hnil, nili.

3. If there is a hypothesisH ✓ SM such that Slb(H,T,CC) is finite, then solve current task(CC, T)

returns a pair hH⇤, ApproxCovi, where H⇤ is optimal with respect to CC and

ApproxCov = ApproxCoverage(H,T,CC).

Proof. Let T be the ILPnoise
LOAS task hB,SM , hE+, E�, Ob, Oc

ii.

322

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

1. As the program Msolve(CC, SM , hE+, E�, Ob, Oc
i) has a finite grounding (the program contains no func-

tion symbols), the call to solve will terminate in a finite time. Hence SolveCurrentTask will also

terminate in a finite time.

2. Assume that there is no hypothesis H ✓ SM such that Slb(H,T,CC) is finite. It is su�cient to show that

Msolve(CC, SM , hE+, E�, Ob, Oc
i) is unsatisfiable. Assume for contradiction that there is an answer set

A of Msolve(CC, SM , hE+, E�, Ob, Oc
i). Then there must be an answer set A0 of Msc(ALL SC, SM) [

Mosc(OSC, SM) such that the following four properties all hold:

(a) 8he, SCi 2 CC such that e 2 E+ and epen = 1, 9sc 2 SC such that conforms(scid) 2 A0

(b) 8he, SCi 2 CC such that e 2 E� and epen = 1, 8sc 2 SC, conforms(scid) 62 A0

(c) 8ho,OSCi 2 CC such that o 2 Ob and open = 1, 9osc 2 OSC such that osc conforms(oscid) 2 A0

(d) 8ho,OSCi 2 CC such that inverse(o) 2 Oc and open = 1, 8osc 2 OSC, osc conforms(oscid) 62 A0

Hence, by Theorem 10.18, there is a hypothesis H such that the following four properties all hold:

(a) 8he, SCi 2 CC such that e 2 E+ and epen = 1, 9sc 2 SC such that H conforms to sc

(b) 8he, SCi 2 CC such that e 2 E� and epen = 1, 8sc 2 SC, H does not conform to sc.

(c) 8ho,OSCi 2 CC such that o 2 Ob and open = 1, 9osc 2 OSC such that H conforms to osc

(d) 8ho,OSCi 2 CC such that inverse(o) 2 Oc and open = 1, 8osc 2 OSC, H does not conform to H

Hence Slb(H,T,CC) is finite. Contradiction!

Hence, Msolve(CC, SM , hE+, E�, Ob, Oc
i) is unsatisfiable, and hence solve current task(CC, T) returns

hnil, nili.

3. We first show that for any H such that Slb(H,T,CC) is finite, there is a unique answer set AH of the

program Msolve(CC, SM , hE+, E�, Ob, Oc
i) and the score of AH at level 0 is equal to Slb(H,T,CC).

First note that there is a unique answer set of AH of the program Msolve(CC, SM , hE+, E�, Ob, Oc
i)

with the final three components omitted, and that for each e 2 (E+
[E�

[Ob
[Oc), uncov(eid) 2 AH

if and only if e 62 ApproxCoverage(H,T,CC) (this follows from Theorem 10.18 and the definition of

the uncov rules). Hence, the hard constraints in Msolve(CC, SM , hE+, E�, Ob, Oc
i) are not violated,

and the score of AH at level 0 is equal to Slb(H,T,CC) (this follows from the weak constraints in

Msolve(CC, SM , hE+, E�, Ob, Oc
i)).

Hence if there is at least one hypothesis H ✓ SM such that Slb(H,T,CC) is finite, then the pro-

gram Msolve(CC, SM , hE+, E�, Ob, Oc
i) must be satisfiable. Hence, solve current task(CC, T) returns

hM
�1
in h(A

⇤), {e 2 E+
[E�

[Ob
[Oc

| uncov(eid) 62 A⇤
}i, where A⇤ is the optimal answer set of

Msolve(CC, SM , hE+, E�, Ob, Oc
i). By the above, this is a pair hH⇤, ApproxCoverage(H,T,CC)i, where

H⇤ is optimal wrt CC.

Theorem 10.21.

Let T be a well-defined ILPnoise
LOAS task.

1. ILASP3(T) terminates.

323

APPENDIX B. PROOFS AND META-PROGRAMS OMITTED FROM THE MAIN THESIS

2. If T is satisfiable, then ILASP3(T) returns an optimal inductive solution of T .

3. If T is unsatisfiable, then ILASP3(T) returns UNSATISFIABLE.

Proof. Let T be the ILPnoise
LOAS task hB,SM , Ei, where E = hE+, E�, Ob, Oc

i.

By Theorem 10.11 and Theorem 10.15, at each stage in the ILASP3 algorithm, CC is a set of coverage constraints

such that each element in CC is of one of the following three forms:

1. he, SCi, where e 2 E+
[E� and SC is a complete translation of e.

2. ho,OSCi, where o 2 Ob and OSC is a complete translation of o.

3. ho,OSCi, where inverse(o) 2 Oc and OSC is a complete translation of o.

1. Firstly, we show that the calls findRelevantExample will never return the same example twice. This is

because at any time that findRelevantExample is called, if it has returned an example e in a pre-

vious iteration, then he, SCi will be in the set CC, where SC is a complete translation of e. For

findRelevantExample to return e again, e would have to be in the set ApproxCoverage, but if this

is the case, then by Theorem 10.20, e must be covered by H, and therefore will not be returned by

findRelevantExample. Hence, there must be a finite number of iterations. As each of these iterations

is guaranteed to terminate (as the individual function calls have been proven to terminate, and there are

no loops inside each iteration), ILASP3 must terminate.

2. Assume that T is satisfiable.

At each stage of the ILASP3 algorithm CC is a set of coverage constraints such that for each element

he, SCi 2 CC, SC is a complete translation of e. Hence, 8he, SCi 2 CC, for any hypothesis H ✓ SM

such that H covers e, H must satisfy he, SCi. Hence, for any hypothesis H, Slb(H,T,CC)  S(H,T).

As the task is satisfiable, there is at least one hypothesis with a finite score, and hence, in each iteration,

there is always at least one hypothesis with a finite lower bound score. Hence, by Theorem 10.20 (part

(3)), solve current task will never return hnil, nili. Hence, as ILASP3 is guaranteed to terminate, it

must return a hypothesis.

Let H⇤ be the hypothesis returned by ILASP3. findRelevantExample(hB,SM , ApproxCoveragei) =

nil. And hence, ApproxCoverage(H⇤, T, CC) ✓ Coverage(H⇤, T). Hence, Slb(H⇤, T, CC) � S(H⇤, T).

Hence, Slb(H⇤, T, CC) = S(H⇤, T).

Assume for contradiction that there is a hypothesis H 0 such that S(H 0, T) < S(H⇤, T). Then

Slb(H 0, T, CC) < Slb(H⇤, T, CC). This contradicts the fact that H⇤ is optimal wrt CC (which is the

case due to Theorem 10.20 part (3)). Hence, H⇤
2

⇤ILPnoise
LOAS(T).

3. Assume that T is unsatisfiable. Then no hypothesis H has a finite score; and hence, every hypothesis

H fails to cover at least one example with an infinite penalty. This means that solve current task

will never return a pair hH,ApproxCovi such that H covers every example in ApproxCov, as every

example with infinite penalty must be in ApproxCov. This is the case because Slb(H,T,CC) is finite,

and ApproxCov = ApproxCoverage(H,T,CC).

324

B.1. PROOFS AND META-PROGRAMS FROM CHAPTER 10

This means that the condition of the while loop will never be falsified. As findRelevantExample is

guaranteed to return a di↵erent example every time it is called (shown in the proof of (1)), there will

eventually be an iteration where CC is such that Slb(H,T,CC) is infinite for every hypothesis H. In

this iteration, solve current task(CC, T) will return hnil, nili (by Theorem 10.20 part(2)), and hence,

ILASP3 will return UNSATISFIABLE.

325

