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Abstract

Hashing is regarded as an efficient approach for image retrieval and many other big-
data applications. Recently, deep learning frameworks are adopted for image hashing,
suggesting an alternative way to formulate the encoding function other than the conven-
tional projections. However, existing deep learning based unsupervised hashing tech-
niques still cannot produce leading performance compared with the non-deep methods,
as it is hard to unveil the intrinsic structure of the whole sample space in the framework
of mini-batch Stochastic Gradient Descent (SGD). To tackle this problem, in this paper,
we propose a novel unsupervised deep hashing model, named Deep Variational Bina-
ries (DVB). The conditional auto-encoding variational Bayesian networks are introduced
in this work as the generative model to exploit the feature space structure of the train-
ing data using the latent variables. Integrating the probabilistic inference process with
hashing objectives, the proposed DVB model estimates the statistics of data representa-
tions, and thus produces compact binary codes. Experimental results on three benchmark
datasets, i.e., CIFAR-10, SUN-397 and NUS-WIDE, demonstrate that DVB outperforms
state-of-the-art unsupervised hashing methods with significant margins.

1 Introduction

Embedding high-dimensional data representations to low dimensional binary codes, hashing
algorithms arouse wide research attention in computer vision, machine learning and data
mining. Considering the low computational cost of approximate nearest neighbour search
in the Hamming space, hashing techniques deliver more effective and efficient large-scale
data retrieval than real-valued embeddings. Hashing methods can be typically categorized
as either supervised or unsupervised hashing, while this paper focuses on the latter.

Supervised hashing [10, 19, 26, 27, 34, 39, 42] utilises data labels or pair-wise sim-
ilarities as supervision during parameter optimization. It attains relatively better retrieval
performance than the unsupervised models as the conventional evaluation measurements of
data retrieval are highly related to the labels. However, due to the cost of manual annotation
and tagging, supervised hashing is not always appreciated and demanded. On the other hand,
unsupervised hashing [9, 11, 12, 17, 24, 25, 29, 30, 37, 38, 43, 47] learns the binary encod-
ing function based on data representations and require no label information, which eases the
task of data retrieval where human annotations are not available.

(© 2017. The copyright of this document resides with its authors.
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Figure 1: Illustration of DVB as a graphical model. The arrowed full lines with different
colours indicate different probability models implemented with deep neural networks. In
particular, pg (z|x) in blue acts as the (conditional) prior of the latent variables z; pg (b|x,z)
refers to the generation network for b; gy (z|x,b) is the variational posterior of z. The com-
ponent computing data centres assigns a low-dimensional pseudo centre ¢ to each data point
x using some dimensionality reduction and clustering methods. Implementation details are
given in Section 2.

Existing research interests on unsupervised hashing involve various strategies to formu-
late the encoding functions. For instance, Gong et al. propose the Iterative Quantization
(ITQ) [9], aiming at minimizing quantization error to produce binary representations. Spec-
tral Hashing (SH) developed by Weiss er al. [43] learns the hash function by preserving the
balanced and uncorrelated constraints of the learnt codes. Liu et al. employ unsupervised
graph hashing with discrete constraints, known as Discrete Graph Hashing (DGH) [32].
Mathematically profound as these works are, the performance of the shallow unsupervised
hashing on similarity retrieval is still far from satisfying. This is possibly due to the fact
that the simple encoding functions, e.g., linear projections, in these works are not capable to
handle complex data representations, and therefore the generated codes are suspected to be
less informative.

Recently, deep learning is introduced into image hashing, suggesting an alternative man-
ner of formulating the binary encoding function. Although supervised deep hashing has
been proved to be successful [3, 21, 28, 44, 48], existing works on unsupervised deep hash-
ing [4, 8, 22, 23] are yet suboptimal. Different from the conventional shallow methods men-
tioned above [9, 31, 32], unsupervised deep hashing models follow the mini-batch Stochastic
Gradient Decent (SGD) routine for parameter optimization. Consequently, providing no la-
bel information, the intrinsic structure and similarities of the whole sample space can be
skewed within training batches by these models.

Driven by the issues discussed above, a novel deep unsupervised hashing algorithm is
proposed which utilises the structural statistics of the whole training data to produce reliable
binary codes. The auto-encoding variational algorithms [16] have shown great potential in
several applications [20, 46]. The recent Conditional Variational Auto-Encoding (CVAE)
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networks [41] provide an illustrative way to build a deep generative model for structured
outputs, by which we are inspired to establish our deep hashing model, named as Deep
Variational Binaries (DVB). In particular, the latent variables of the variational Bayesian
networks [16] are leveraged to approximate the representation of the pre-computed pseudo
clustering centre that each data point belongs to. Thus the binary codes can be learnt as
informative as the input features by maximizing the conditional variational lower bound of
the our learning objective. It is worth noticing that we are not using the quantized latent
variables as binary representations. Instead, the latent variables are treated as auxiliary data
to generate the conditional outputs as hashed codes. By the time of writing, we are aware
that Chaidaroon et al. [5] propose a variational binary encoder for text hashing. However, [5]
is not suitable for image encoding since it takes discrete word count vectors as input, while
images would have longer and more complex representations.

The contribution of this paper can be summarized as: a) to the best of our knowledge,
DVB is the first unsupervised deep hashing work in the framework of variational inference
suitable for image retrieval; b) the proposed deep hashing functions are optimized efficiently,
requiring no alternating training routine; ¢) DVB outperforms state-of-the-art unsupervised
hashing methods by significant margins in image retrieval on three benchmarked datasets,
i.e., CIFAR-10, SUN-397 and NUS-WIDE.

2 Deep Variational Binaries

This work addresses the problem of data retrieval with an unsupervised hashing procedure.
Given a data collection X = {x;}; € R¥*N consisting N data points with d-dimensional
real-valued representations, the DVB model learns an encoding function f (-), parametrized
by 0, so that each data point can be represented as

b; =sign(f(x;0)) € {—1,1}". (1)

Here m indicates the encoding length and sign (-) refers to the sign function for quantization.
In the following description, index i will be omitted when it clearly refers to a single data
point. In this section, we firstly explain the way to empirically exploit the intrinsic structure
of the training set by introducing a set of latent variables z and then, the encoding function
£ () is formulated by a Monte Carlo sampling procedure for out-of-sample extension.

2.1 The Variational Model

As shown in Figure 1, the DVB framework involves three types of variables, i.e., the data
representations x € RY, the output codes b € {—1,1}" and the latent representations z € R/
as auxiliary variables, where / denotes the dimensionality of the latent space. The variables in
DVB formulate three probabilistic models, i.e., the conditional prior pg (z|x), the variational
posterior g4 (z|x,b) and the generation network pg (b|x,z). Following Kingma er al. [16],
the probability models here are implemented using deep neural networks, parametrized by
0 or ¢. We consider the prototype of learning objective maximizing the log-likelihood
log pg (b|x) for each training data point by approximating the true posterior pg (z|x,b) using
g (z[x,b). Starting with the K-L divergence between g (z|x,b) and pg (z|x,b):

b
KL(qs () | po (sl ) = [ g s b)tog 224 2+ logpa (b))
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the likelihood of b can be written as

tog po (blx) = KL(go (2/x.b) || po (2/x.1) ~ [ 4 <z|x,b>10glw

> IF“qqy(zlx.b) [logpe (b;z|X) — IOgQ¢ (Z‘X,b)] .

d
oz b 3

Here the expectation term E[-] becomes the prototype of the learning objective of DVB.
Considering the deep neural networks mentioned above, we follow a similar way of [41] to
factorize the lower-bound, and thus we have

—log pg (b[x) < L =Eqy, (4x) [l0240 (2|x,b) —log pg (b,z|x)]
=Eg, x) [10290 (2[x,b) —log pe (z[x) —log pg (b|x,2)]  (4)
= KL (qy (z[x,b) ||pe (2[x)) — Ey, (zjxp) [log po (b]x,2)].

We denote £ as the numerical inverse of the lower-bound to log pg (b|x) for the ease of
description in the rest of this paper. Therefore DVB performs SGD to minimize L.

As image data are usually presented in high-dimensional representations, directly recon-
structing x from z as [5, 16] is not optimal and could induce redundant noise to the training
procedure. In DVB, z act as auxiliary variables encoding latent information through the con-
ditional network pg (z|x). By reducing the divergence between the posterior ¢4 (z|x,b) and
Do (z|x), the generated binaries b are supposed to have similar semantics to the original fea-
ture X in reconstructing z. To solve the intractability of the posterior g4 (z|x,b), the inference
network is built using the reparameterizaion trick in [16] with a Gaussian distribution so that

q¢ (zx,b) = N (z; py(x,b),diag (oﬁ(x,b))) : 3)

Note that all u. (-) and o. (+) can be implemented with multi-layer neural networks, which is
provided in Figure 1. A similar trick is also performed on pg (z|x) as follows

po (zx) =N (z: p(x),diag (05(x))). (6)

Although the continues distributions pg (z|x) and gy (z|x,b) can be reparameterized, it
is still hard to model pg (b|x,z) because b needs to be discrete and there is no additional su-
pervision available. Hence, the log-likelihood log pg (b|x,z) is replaced by a serious of deep
hashing learning objectives 1 (-), i.e., —Ey, zxp) [logpe (b[x,2)] — H(go(x,2)). Here
go(+) refers to the deep neural network to generate b so thatb = sign(gg(x,2)).

Exploiting the intrinsic data structure. In addition to the lower-bound mentioned
above, we consider utilising the statistical information on the whole training set for bet-
ter performance. Inspired by [31, 32], a small set of K anchor points {¢/ };(:] € R*K are
computed before the SGD training starts, which is also shown in Figure 1. Each anchor
point refers to a pseudo clustering centre of the training data. Then each data point x; is
assigned with a clustering centre by nearest neighbour search, i.e., {x;,¢;}. In practice, this
is achieved by successively performing dimension reduction and clustering on the training
set. Different from [31, 32], we are not building the anchor graph on the whole dataset since
this is not practical for mini-batch SGD. Instead, the latent variable z is used to predict the
representation of the corresponding anchor ¢ of each x. More precisely, the mean network
Ug (x) of pg (z|x) is related to ¢, formulating an additional /2 loss term, which particularly
requires z have the same dimensionality as ¢. This procedure intuitively endows the condi-
tional network pg (z|x) with more informative latent semantics. Therefore, the total learning
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objective can be written as
£ = KL (go (2]x.b) || po (z/x)) +H (86(%.2)) + | (x) — ¢ %

Note that £ here can be no longer regarded as the exact lower-bound of log pg (b|x). This em-
pirical learning objective partially represents the likelihood of b with more hashing concerns.
In the next subsection, the details of the hashing objective term 7 (gg(x,z)) is discussed.

2.2 Hashing Objectives

The hashing objective H (-) in Equation (7) in replacement of —E, s (zx.b) [log pg (b|x,2)] is
formulated by several unsupervised loss components to regular the output of the proposed
hashing model. Since DVB is trained using mini-batch SGD, the losses need to be able
to back-propagate. Inspired by several unsupervised deep hashing works [8, 22, 23], we
formulate the following hashing losses to construct H () within a batch of data points Xg =
{X,-}?E] and sampled latent variables Zp = {z,-}ff], where Np is the batch size.

Quantization Penalty. As DVB produces binary codes, the output bits of gg (-) need to
be close to either 1 or —1. This minimizes the numerical gap between the network output
and the quantized product of the sign (-) function. The quantization loss can thus be written
with a Frobenius norm as follows

Hi = ||go (X5,Zp) — sign(go (X5,Zp)) |If- (®)

The quantization losses are widely adopted in several hashing works [3, 22, 23, 48] with
different formulations. In our experiments, we find the Frobenius norm works best for DVB
with a tanh activation on the top layer of gg (+).

Bit Decorrelation. The encoded binaries in hashing algorithms are in general short in
length. To make the produced code representative, it is necessary to decorrelate each bit and
balance the quantity of 1 and —1 in a code vector. To this end, the second component of
H (+) is derived as

Ha = |20 (X5, Z5)" g0 (Xp,Z5) —1||f, ©)

where I refers to the identity matrix and both Xp and Zp are row-ordered matrices. Equa-
tion (9) suggests an indirect way to enrich the information encoded in the binary codes by
balancing the output bits.

In-Batch Similarity. For unsupervised hashing, it is usually in demand to closely encode
data samples that have similar representations into the Hamming space. Inspired by [2, 13],
the in-batch Laplacian graph is introduced to build the last term of #(-). To do this, an
in-batch Laplacian matrix is defined by S = diag (A1) — A. Here A is an Np x Np distance

llxi=, 1> )
matrix of which each entrance A;; is computed by A;; =e™ 7 ", where t is a small-valued
hyper-parameter. A trace-like learning objective for in-batch similarity can be written as

Ha = —trace (go (Xn,Zs)"S g0 (Xp,Zp) ). (10)

‘H3 functionally works similarly to the pre-computed low-dimensional clustering centres ¢
in preserving the unlabelled data similarities. However, H3 focuses on regulating b within a
batch while ¢ provides support to form the latent space z on the whole training set.

Therefore, H in Equation (7) can be formulated by a weighted combination of H{, H>
and Hs, ie., H(go(x,2)) = a1H + opHy + asH3z, where @, o and 3 are treated as
hyper-parameters.
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Algorithm 1: Parameter Learning of DVB

Input: A dataset with representations X = {x;}¥ | € RIXN
Qutput: network parameters 6 and ¢
Perform dimension reduction and clustering on the dataset to have {c}

repeat
Get a random mini-batch Xp from X

for each x; in Xg do
Relate x; with a closest clustering centre representation ¢;

Sample z; ~ pg (z|x;) following [16]

b; = sign(gg(xi,2:))
end

Z; + Equation (11)
(6,0)"" < (0,0)-T (V(,Z},W Z;) by back-propagation

until convergence;

2.3 Optimization

By introducing the hashing losses discussed in Subsection 2.2 into DVB, the overall learning
objective Lp on a mini-batch Xp can be written as follows

Np
Lp= Y (KL (qp (zi]xi,b;)||po (zi|x:)) + || to (x;) — ¢i|?) + ouHi + oty + o3Hs. (11)
i=1
The SGD training procedure of DVB is illustrated in Algorithm 1. For each data point x;
within a batch Xp, a latent representation z; is obtained by sampling the conditional distribu-
tion pg (+|x;) and an estimated binary vector b; can be calculated by b; = sign(ge(x;,2;)) to
further compute Lg. The parameters (0, @) are updated following the mini-batch SGD. I"(+)
here refers to an adaptive gradient scaler, which is the Adam optimizer [15] in this paper
with a starting learning rate of 1074,

2.4 Out-of-sample extension

Once the set of parameters 0 is trained, the proposed DVB model is able to encode data out
of the training set. Given a query data x?, the corresponding binary code b? can be obtained
by a Monte Carlo (MC) sampling procedure defined as

L
f(x%;0) Z z() ~ po (z[x7),

b? =Slgn(f(xq;9))>

12)

which simulates the sampling trick described in [16, 41]. In the experiments of this work, L
is fixed to 10 for best performance via cross-validation.

3 Experiments

The extensive experiments of DVB are conducted on three benchmark image datasets, i.e.,
CIFAR-10 [18], SUN-397 [45] and NUS-WIDE [7] for image retrieval. We firstly introduce


Citation
Citation
{Kingma and Welling} 2014

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Kingma and Welling} 2014

Citation
Citation
{Sohn, Lee, and Yan} 2015

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Xiao, Hays, Ehinger, Oliva, and Torralba} 2010

Citation
Citation
{Chua, Tang, Hong, Li, Luo, and Zheng} 2009


SHEN, LIU, SHAO: UNSUPERVISED DEEP GENERATIVE HASHING 7

Method Deep CIFAR-10 SUN-397 NUS-WIDE
Hashing 16 bits 32bits 64 bits 16 bits 32bits 64 bits 16 bits 32 bits 64 bits
ITQ [9] X 0319 0334 0347 0.047 0070 0.086 0512 0.526  0.538
SH [43] X 0218 0.198 0.181 0.021 0.033 0.048 0346 0.358  0.365
SpH [14] X 0229 0253 0283 0.032 0039 0.043 0418 0456 0474
LSH [6] X 0.163 0.182 0232 0.006 0.007 0.011 0410 0416 0.439
SKLSH [35] X 0.103 0.112 0.114 0.005 0.006 0.008 0377 0.379 0.388
SELVE [49] X 0309 0281 0239 0049 0.072 0.089 0467 0462 0432
AGH [31] X 0301 0270 0238 0.059 0.057 0.062 0498 0476 0471
DGH [32] X 0332 0354 0356 0061 0074 0.079 0530 0.527 0.496
DH [23] v 0.172  0.176 ~ 0.179  0.035 0.047 0.056 0.404 0.467 0.427
DeepBit [22] v 0.193 0216 0219 0.029 0.058 0.061 0452 0463 0.496
UN-BDNN [8] v 0301 0309 0312 0062 0073 0.088 0513 0517 0.547
DVB (proposed) v 0347 0365 0381 0.069 0.084 0.098 0546 0.560 0.574

Table 1: Image retrieval mean-Average Precision (mAP@all) on the three datasets with
VGG-16 [40] features.

the implementation details, experimental settings and baselines on the three data sets. Then
qualitative and quantitative analysis are provided.

Implementation Details. The DVB networks are implemented with the well-known
deep learning library TensorFlow [1]. Before being rendered to the DVB networks, a 4096-
dimensional deep feature vector of each training image is extracted using the output of the
fc_7 layer of the VGG-16 network [40], pre-trained on ImageNet [36], i.e., d = 4096. We
follow a similar way presented in [16, 20, 41] to build the deep neural networks pg (z|x),
q¢ (z|x,b) and gg (x,z). The detail structures of these networks in DVB are provided Fig-
ure 1. The dimensionality of the latent space z is set to [ = 1024 via cross-validation. To
generate a set of pseudo data centres {c}, PCA is performed on the /2 normalized training set
X to reduce its dimensionality from 4096 to 1024, followed by a clustering procedure to ob-
tain a set of ¢. The number of clustering centres K is set according to different datasets. For
the rest of the hyper-parameters, ¢, a1, 0 and 3 are set to 1073,0.5,0.1 and 1 respectively.
For all the experiments, the training batch size is fixed to Np = 200.

Baselines. Several benchmarked unsupervised hashing methods are involved in the ex-
periments of this paper, including ITQ [9], SH [43], SpH [14], LSH [6], SKLSH [35],
SELVE [49], AGH [31] and DGH [32]. Several recent unsupervised deep hashing mod-
els are also considered, i.e., DH [23], DeepBit [22] and UN-BDNN [8]. To make a fair
comparison between the shallow methods and the deep models, we utilize the VGG-16 [40]
features as inputs for all baselines. As a result, the performance figures of the traditional
hashing works reported here are slightly higher than those in their original papers, but are
still reasonable and illustrative. Three additional baselines are also introduced by removing
some components of the learning objective in Equation (11) for ablation study. Particularly,
we exclusively omit the /2 loss on ug(-), Ha and H3 to build the three baselines to see the
impact of each term in the proposed learning objective.

CIFAR-10 [18]. This dataset consists of 60000 small-size images, subjected to 10 cate-
gories. We follow the setting in [32] to randomly select 100 images from each class as the
test set, and use the rest 59000 images as the training set and retrieval gallery. K is set to 20
on this dataset by cross-validation.

SUN-397 [45]. A total number of 108754 images are in involved in this dataset with 397
exclusive class labels. For each class, 20 images are randomly selected to form the test set.
The reset images are used as training and retrieval candidates. K is set to 500 on this dataset.
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32-bit PR Curves on CIFAR-10 32-bit PR Curves on NUS-WIDE 32-bit PR Curves on SUN-397
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(a) 32-bit image retrieval precision-recall curves.
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(b) Retrieval Precision@5000 curves for encoding length m = 16,32 and 64.

Figure 2: 32-bit image retrieval Precision-Recall (PR) curves (a) and Precision@5000 curves
for all bits of DVB and several existing methods (b).

NUS-WIDE [7]. This is a multi-label dataset containing 269648 images. We use a subset
of 195834 images from the 21 most frequent topics, from which 100 images for each topic
are randomly picked for testing. K is set to 100 on this dataset.

3.1 Quantitative results

The performance of the proposed DVB model is evaluated by conducting image retrieval on
the three datasets mentioned above. For experiments on CIFAR-10 [18] and SUN-397 [45],
the retrieval candidates having the same label as the query image are marked as the ground-
truth relevant data. Since NUS-WIDE [7] is a multi-label dataset, a relevant retrieval can-
didate is defined as sharing at least one label with the query image, which is a conventional
setting in image hashing and retrieval. The code length m is chosen to be 16, 32 and 64.
The image retrieval mean-Average Precision (mAP@all) results are provided in Table 1,
which gives a brief insight of binary encoding capability. In general, DVB outperforms all
state-of-the-art shallow and deep unsupervised methods with evident margins in most cases.
Particularly, the minimum mAP gaps yield 1.5%, 0.7% and 1.6% on the three datasets re-
spectively between DVB and other methods. It is clear that some existing unsupervised
deep hashing models [22, 23] are no longer leading the retrieval performance compared
with the shallow ones with deep features. Although benefited from the compact encoding
neural networks, these deep methods still struggle in handling unsupervised hashing. This
is probably because the batch-wise SGD procedure only manages to preserve the in-batch
data similarities and therefore skews the statistics of the whole training set, which is em-
pirically compensated in DVB by introducing the latent variables z. UN-BDNN [8] obtains
most acceptable performance among the existing deep methods, while it involves a more so-
phisticated optimization procedure than DVB. The Precision-Recall (PR) curves for image
retrieval are illustrated in Figure 2 (a). To keep the paper reasonably concise, only 32-bit PR
curves are reported here. The precision at top 5000 retrieval candidates (Precision@5000)
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Top-20 Retrieved Images
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Figure 3: Examples of top-20 32-bit image retrieval results (a) and t-SNE [33] visualization
(b) on CIFAR-10 [18].

Method 32-bit  Training  Coding Method 16 bits 32 bits 64 bits

mAP Time Time Without 2 on flg(-) 0269 0325 0342
DH [23] 0176 152 minutes _ 20.7ms Without #, 0286 0344  0.349
DeepBit[22] 0216 210 minutes  21.9ms Without H3 0317 0350 0363
DVB 0.365 127 minutes  29.4ms DVB (full) 0347 0365 0381

Table 2: Comparison of 32-bit training and Table 3: Ablation study results (mAP) of
encoding efficiency on CIFAR-10 [18] with DVB on CIFAR-10 [18] with some terms of
some deep hashing methods. the learning objective removed.

curves with all bits are plotted in Figure 2 (b) to have a more comprehensive view on retrieval
performance.

The training and encoding time of DVB is demonstrated in Table 2, where DH [23] and
DeepBit [22] are included for comparison. All experiments are conducted on an Nvidia
TitanX GPU. DVB requires less training time than the two listed deep models since it takes
less training epochs to reach the best performance. The test time of DVB tends to be slightly
longer than DH [23] and DeepBit [22] but is still acceptable. This is because DVB involves
a Monte Carlo multiple sampling procedure shown in Equation (12) to encode test data.

The retrieval performances of the three additional baselines for ablation study are shown
in Table 3. We have experienced a significant mAP drop of 5% on average when omitting
the /2 loss on Ug(+). It also can be observed that #, and H3 do have a positive impact on the
final result of DVB.

3.2 Qualitative results

Qualitative analysis is also provided to empirically demonstrate the binary encoding per-
formance of DVB. Some intuitive retrieval results on 32-bit CIFAR-10 [18] are shown in
Figure 3 (a), which suggests DVB is able to provide relative candidates in top of the retrieval
sequences. The t-SNE [33] visualisation results on the test set of CIFAR-10 are illustrated
in Figure 3 (b). It can be observed that the produced codes are not perfectly scattered on the
two-dimensional panel as no class information is provided during parameter training. How-
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ever, most classes are clearly segregated, which means the produced binary codes are still
compact and semantically informative to some extent.

4 Conclusion

In this paper, a novel unsupervised deep hashing method DVB was proposed. The recent
advances in deep variational Bayesian models have been leveraged to construct a generative
model for binary coding. The latent variables in DVB approximate the pseudo data centres
that each data point in the training set belongs to, by means of which DVB exploits the intrin-
sic structure of the dataset. By minimizing the gap between the constructed and reconstructed
latent variables from data inputs and binary outputs respectively, the proposed model pro-
duces compact binary codes with no supervision. Experiments on three large-scale datasets
suggested that DVB outperforms state-of-the-art unsupervised hashing methods with evident
margins.
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