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Outline

—Key parameters that define technologies

* Cost, scale, data quality (sensitivity)
* Input requirements, potential biases

—Brief overview of technologies and tradeoffs
* SMART-Seq, CelSeq, Fluidigm, Droplet-based methods

—Impossibly hard questions:
* How many cells do you need to sequence to make I've discovered everything?
* How deep do | need to sequence per cell?
* Which technology is the best one for all possible experiments?
* Should | always sequence more cells at high depth or fewer cells at low depth?
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Fluidigm C1 : 96-cell chip DropSeq/inDrop Plate based methods
~$35.00/cell $0.05/cell $3-6/cell
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Key considerations for cost

* Pooled or individual library preparation?

— Pooled methods do not grow linearly in cost, but need up-front investment

— No current protocols support pooled library prep and full-length transcripts
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— Pooled methods do not grow linearly in cost, but need up-front investment

— No current protocols support pooled library prep and full-length transcripts
* Commercial or home-brew?

— ‘Do-it-yourself’ strategies exist for almost all approaches

— Ease of use costs SS
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Key considerations for cost

* Pooled or individual library preparation?

— Pooled methods do not grow linearly in cost, but need up-front investment
— No current protocols support pooled library prep and full-length transcripts
* Commercial or home-brew?
— ‘Do-it-yourself’ strategies exist for almost all approaches
— Ease of use costs SS
* Which is squeezing your budget? Library prep or sequencing?

— Sequencing costs are user-defined, and can become overwhelming for large
numbers of cells
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Scale (how many cells per run?)
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Plate-based methods Chromium system (10x) Fluidigm C1 (96 well chip)
One cell at a time 48,000 cells/run 48-96 cells/run

Can be automated
-Gl o




Key considerations for scale

 Methods for parallelization

— Automation for plate-based systems
— Droplets are massively-parallel, offer the largest scale right now
* Protocol length?

— Can vary dramatically between techniques, especially for library prep

— Nextera is one of the fastest, but other techniques require have much longer
protocols (2-3 days)

* Individual attention

— Pooling reduces costs, but makes it impossible to ‘zero-in” on a cell of interest
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Sensitivity (genes/cell)
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DropSeq/inDrop/10x Smart-Seq2 and CelSeq2 Fluidigm C1 (96-cell chip)
Cell lines : ~5kgenes/cell Cell lines : ~7-10kgenes/cell Cell lines: ~6-9k genes/cell
Primary : ~1-3k genes/cell Primary: ~2-6k genes/cell Primary: ~1-5k genes/cell
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Key considerations for sensitivity

* Molecular biology

— Optimization of lysis, RT
— Minimize purifications and material loss prior to amplification
* Pre-amplification
— Unevenness inamplification (i.e. GC bias) can dampen sensitivity

— Overamplification can mask lowly expressed genes

* Cell size and RNA content is the greatest determinant of data quality
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Other important considerations for data quality

* Read ‘efficiency’
— Many reads are discarded: don’t align, aren’t assigned to QC-passing cells, etc.
— What % of reads are actually useful for calculating gene expression?

* Unique molecular identifiers

— Random sequences attached during RT, enable collapsing of PCR duplicates
— Sacrifices full-length data and (potentially) sensitivity

* Evenness of coverage
— Especially for pooled protocols, do a subset of cells soak up all the reads?
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Strengths and tradeoffs : Plate-based approaches

* Strengths:

— Optimized sensitivity, reasonable price, capable of automation

— Smart-Seqg2: Full-length transcripts, PCR-based, ~6-8hr protocol
— CelSeqg2: 3’ end counting, pooled linear amplification,UMI, 2-3day protocol

* Weaknesses:

— Laborious, lack the scale of droplet-based methods

* Ideal use-cases
— Deep and sensitive characterization of “hundreds-thousands of cells
— Unique advantages for time-course and index-sorting experiments
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Strengths and tradeofts : Droplet methods

* Strengths:

— Transformative scale, low cost.

— Parallelized approach dramatically reduces batch effects, data is UMI-based
— Minimal equipment setup (no sorter or automation),

* Weaknesses:
— Sensitivity and coverage, particularly for primary cells
— Cannot visualize or profile (i.e. index-sorting) sequenced cells

* |deal use-cases

— Unbiased discovery of rare populations (<1%)
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Strengths and tradeofts : Droplet methods

Drop-seq inDrop 10X Chromium

Drop-seq single cell analysis
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1000s of DNA-barcoded single-cell transcriptomes

Similarities outhnumber the differences, but there are differences
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Strengths and tradeoffs : Fluidigm C1

* Strengths:

— Fully automated workflow up until library preparation, full-length sequencing
— Possible to visualize cell prior to sequencing
* Weaknesses:
— High costs (equipment and microfluidic chips), capture is biased by cell size
— Time-course experiments require multiple machines
* ldeal use-cases
— Linking visual phenotypes with gene expression
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How many cells do | need to sequence?

* It depends!




How many cells do | need to sequence?

* It depends!
— Strong analogy to Human Genetics : How many people do | need to sequence?
» Common disease or driven by rare variants?
» What is the effect size of each variant?
— Single cell RNA-seq analogy
» How rare is the cell type of interest?
» Does it have highly expressed markers?
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How many cells do | need to sequence?

* It depends!
— Strong analogy to Human Genetics : How many people do | need to sequence?
» Common disease or driven by rare variants?
» What is the effect size of each variant?
— Single cell RNA-seq analogy
» How rare is the cell type of interest?
» Does it have highly expressed markers?

* Rahul’s rule of thumb:
— Aim to profile 20-50 of each expected cell type/state (50-100 for droplet-based data)
— Check out www.satijalab.org/howmanycells (great for budget justifications!)
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How deep do | need to sequence?

* It depends!
— Are you able to pool correlated genes across cells?
» Discovery of cell types, reconstructing regulatory networks
» Can exploit gene-gene correlations to gain power
» Could use much low-coverage sequencing
— Are you studying heterogeneity of single genes within a population?
» Would require deeper sequencing and more sensitive protocols
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Which technology is best for my experiment?

* It depends!
— Balance biological questions with experimental design
— How much prior knowledge do you have about cellular heterogeneity

— Are you searching for rare populations or 50/50 splits?
— Would it be beneficial to have protein surface marker data for your cells?

— Do you need to sample across multiple experimental conditions
simultaneously?

— Are cell or sample number limiting?
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Breadth or Depth?

* It depends!

* The argument for more cells at low coverage
— Discovering rare populations requires huge datasets

— Cell types are defined by highly expressed markers, networks are defined by
highly expressed targets

— Profiling more cells augments statistical power to subdivide abundant groups
* The argument for fewer cells at high coverage

— Subtle subdivisions may be defined by lowly expressed transcripts, that are
not in the top 1-2k most highly expressed genes
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Breadth or Depth?

Louvain—Jaccard 26 clusters (27,499 cells)
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Rule of thumb : More cells >> More genes/cell

Vsx2—-GFP Smart-seq2 clustering
+ RF-type assignments
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