Choosing a single cell technology

Choosing a single cell technology

Outline

-Key parameters that define technologies

- Cost, scale, data quality (sensitivity)
- Input requirements, potential biases

Brief overview of technologies and tradeoffs

• SMART-Seq, CelSeq, Fluidigm, Droplet-based methods

-Impossibly hard questions:

- How many cells do you need to sequence to make I've discovered everything?
- How deep do I need to sequence per cell?
- Which technology is the best one for all possible experiments?
- Should I always sequence more cells at high depth or fewer cells at low depth?

\$\$\$\$\$\$

Extreme A

Fluidigm C1: 96-cell chip ~\$35.00/cell

Extreme B

DropSeq/inDrop \$0.05/cell

Middle ground

Plate based methods \$3-6/cell

Key considerations for cost

Pooled or individual library preparation?

- Pooled methods do not grow linearly in cost, but need up-front investment
- No current protocols support pooled library prep and full-length transcripts

Key considerations for cost

Pooled or individual library preparation?

- Pooled methods do not grow linearly in cost, but need up-front investment
- No current protocols support pooled library prep and full-length transcripts

Commercial or home-brew?

- 'Do-it-yourself' strategies exist for almost all approaches
- Ease of use costs \$\$

Key considerations for cost

Pooled or individual library preparation?

- Pooled methods do not grow linearly in cost, but need up-front investment
- No current protocols support pooled library prep and full-length transcripts

Commercial or home-brew?

- 'Do-it-yourself' strategies exist for almost all approaches
- Ease of use costs \$\$

Which is squeezing your budget? Library prep or sequencing?

 Sequencing costs are user-defined, and can become overwhelming for large numbers of cells

Scale (how many cells per run?)

Extreme A

Plate-based methods
One cell at a time
Can be automated

Extreme B

Chromium system (10x) 48,000 cells/run

Middle ground

Fluidigm C1 (96 well chip) 48-96 cells/run

Key considerations for scale

Methods for parallelization

- Automation for plate-based systems
- Droplets are massively-parallel, offer the largest scale right now

Protocol length?

- Can vary dramatically between techniques, especially for library prep
- Nextera is one of the fastest, but other techniques require have much longer protocols (2-3 days)

Individual attention

Pooling reduces costs, but makes it impossible to 'zero-in' on a cell of interest

Sensitivity (genes/cell)

Extreme A

DropSeq/inDrop/10x Cell lines: ~5kgenes/cell Primary: ~1-3k genes/cell

Extreme B

Smart-Seq2 and CelSeq2
Cell lines: ~7-10kgenes/cell
Primary: ~2-6k genes/cell

Extreme B'

Fluidigm C1 (96-cell chip)
Cell lines: ~6-9k genes/cell
Primary: ~1-5k genes/cell

Key considerations for sensitivity

Molecular biology

- Optimization of lysis, RT
- Minimize purifications and material loss prior to amplification

Pre-amplification

- Unevenness inamplification (i.e. GC bias) can dampen sensitivity
- Overamplification can mask lowly expressed genes
- Cell size and RNA content is the greatest determinant of data quality

Other important considerations for data quality

Read 'efficiency'

- Many reads are discarded: don't align, aren't assigned to QC-passing cells, etc.
- What % of reads are actually useful for calculating gene expression?

Unique molecular identifiers

- Random sequences attached during RT, enable collapsing of PCR duplicates
- Sacrifices full-length data and (potentially) sensitivity

Evenness of coverage

— Especially for pooled protocols, do a subset of cells soak up all the reads?

Strengths and tradeoffs: Plate-based approaches

• Strengths:

- Optimized sensitivity, reasonable price, capable of automation
- Smart-Seq2: Full-length transcripts, PCR-based, ~6-8hr protocol
- CelSeq2: 3' end counting, pooled linear amplification, UMI, 2-3day protocol

Weaknesses:

Laborious, lack the scale of droplet-based methods

Ideal use-cases

- Deep and sensitive characterization of ~hundreds-thousands of cells
- Unique advantages for time-course and index-sorting experiments

Strengths and tradeoffs: Droplet methods

• Strengths:

- Transformative scale, low cost.
- Parallelized approach dramatically reduces batch effects, data is UMI-based
- Minimal equipment setup (no sorter or automation),

Weaknesses:

- Sensitivity and coverage, particularly for primary cells
- Cannot visualize or profile (i.e. index-sorting) sequenced cells

Ideal use-cases

Unbiased discovery of rare populations (<1%)

Strengths and tradeoffs: Droplet methods

Drop-seq

inDrop

10X Chromium

Similarities outnumber the differences, but there are differences

Strengths and tradeoffs: Fluidigm C1

• Strengths:

- Fully automated workflow up until library preparation, full-length sequencing
- Possible to visualize cell prior to sequencing

Weaknesses:

- High costs (equipment and microfluidic chips), capture is biased by cell size
- Time-course experiments require multiple machines

Ideal use-cases

Linking visual phenotypes with gene expression

How many cells do I need to sequence?

• It depends!

How many cells do I need to sequence?

It depends!

- Strong analogy to Human Genetics: How many people do I need to sequence?
 - » Common disease or driven by rare variants?
 - » What is the effect size of each variant?
- Single cell RNA-seq analogy
 - » How rare is the cell type of interest?
 - » Does it have highly expressed markers?

How many cells do I need to sequence?

• It depends!

- Strong analogy to Human Genetics: How many people do I need to sequence?
 - » Common disease or driven by rare variants?
 - » What is the effect size of each variant?
- Single cell RNA-seq analogy
 - » How rare is the cell type of interest?
 - » Does it have highly expressed markers?

Rahul's rule of thumb:

- Aim to profile 20-50 of each expected cell type/state (50-100 for droplet-based data)
- Check out <u>www.satijalab.org/howmanycells</u> (great for budget justifications!)

How deep do I need to sequence?

• It depends!

- Are you able to pool correlated genes across cells?
 - » Discovery of cell types, reconstructing regulatory networks
 - » Can exploit gene-gene correlations to gain power
 - » Could use much low-coverage sequencing
- Are you studying heterogeneity of single genes within a population?
 - » Would require deeper sequencing and more sensitive protocols

Which technology is best for my experiment?

It depends!

- Balance biological questions with experimental design
- How much **prior knowledge** do you have about cellular heterogeneity
- Are you searching for rare populations or 50/50 splits?
- Would it be beneficial to have **protein surface marker** data for your cells?
- Do you need to sample across multiple experimental conditions simultaneously?
- Are cell or sample number limiting?

Breadth or Depth?

• It depends!

- The argument for more cells at low coverage
 - Discovering rare populations requires huge datasets
 - Cell types are defined by highly expressed markers, networks are defined by highly expressed targets
 - Profiling more cells augments statistical power to subdivide abundant groups
- The argument for fewer cells at high coverage
 - Subtle subdivisions may be defined by lowly expressed transcripts, that are not in the top 1-2k most highly expressed genes

Breadth or Depth?

Shekhar et al., Cell 2016

