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Optimal Parallel Algorithms for Edge-Coloring
Partial k-Trees with Bounded Degrees

SUMMARY Many combinatorial problems can be efficiently
solved for partial k-trees (graphs of treewidth bounded by k).
The edge-coloring problem is one of the well-known combinato-
rial problems for which no NC algorithms have been obtained
for partial k-trees. This paper gives an optimal and first NC
parallel algorithm to find an edge-coloring of any given partial
k-tree with bounded degrees using a minimum number of colors.
In the paper & is assumed to be bounded.
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1. Introduction

This paper deals with the edge-coloring problem which
asks to color all edges of a given simple graph G, us-
ing a minimum number of colors, so that no two adja-
cent edges are colored with the same color. The min-
imum number is called the chromatic index x'(G) of
G. Vizing showed that x'(G) = A or A + 1 for any
simple graph G where A is the maximum degree of G
[10]. The edge-coloring problem arises in many appli-
cations, including various scheduling and partitioning
problems | 10]. The problem is NP-complete[17], and
hence it is very unlikely that there exists a sequential al-
gorithm which edge-colors a given graph G with x'(G)
colors in polynomial time. On the other hand, there ex-
ist sequential algorithms which edge-color G with A+1
colors in polynomial time[11],[22],[25]. However, no
NC parallel algorithms for edge-coloring G with A 41
colors have been obtained except for the case when A
is bounded [ 19].

It is known that many combinatorial problems can
be solved very efficiently for partial k-trees or series-
parallel graphs [1],[2],[6],[9],[20],[24]. Such a class
of problems has been characterized in terms of “for-
bidden graphs” or “extended monadic logic of second
order” [1],[2],[6],[9].[24]. The edge-coloring prob-
lem does not belong to such a class of the “maximum

~ (or minimum) subgraph problems,” and is indeed one
of the “edge-covering problems” which does not appear
to be efficiently solved for partial k-trees [6]. However,
Bodlaender gave a sequential dynamic programming al-
gorithm which solves the edge-coloring problem on a

partial k-tree G in time O(nA2*""") [4]. Throughout
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the paper n denotes the number of vertices in G. His al-
gorithm takes linear time if A is bounded. Furthermore
the current authors have recently obtained a linear-time
sequential algorithm for any partial k-tree whose A is
not necessarily bounded[26]. On the other hand, NC
parallel algorithms for the edge-coloring problem have
not been obtained for partial k-trees[3], although NC
parallel algorithms have been obtained for the follow-
ing three restricted classes of graphs: planar graphs with
maximum degree A > 9 [8]; outerplanar graphs[7],
[13]; and series-parallel multigraphs[28]. Note that
outerplanar graphs and series-parallel simple graphs are
partial 2-trees.

In this paper we give an optimal and first NC par-
allel algorithm which solves the edge-coloring problem
for partial k-trees G with bounded A. Throughout the
paper we assume that k& is bounded. Given G with
its tree-decomposition, our parallel algorithm finds an
edge-coloring of G using x'(G) colors in O(logn) time
with O(n/logn) processors. It is known that a tree-
decomposition of G can be found in O(log? n) time
with O(n/logn) processors[5],[23]. Our algorithm
uses three techniques, a tree contraction, a parallel dy-
namic programming, and a bottom-up tree computa-
tion: from a given tree-decomposition T' of GG, the algo-
rithm constructs its “parsing tree” T? of O(logn) height
by means of a tree contraction, then solves the edge-
coloring problem on G by means of a dynamic program-
ming and a bottom-up tree computation on the parsing
tree 7. The parallel computation model we use is a
concurrent-read exclusive-write parallel random access
machine (CREW PRAM).

2. Terminology and Definitions

In this section we define some terms. Let G = (V, E) de-
note a graph with vertex set V' and edge set £. We often
denote by V(G) and E(G) the vertex set and the edge set
of G, respectively. The paper deals with simple graphs
without multiple edges or self-loops. An edge joining
vertices « and v is denoted by (u,v). The degree of
vertex v € V' is denoted by d(v). The maximum degree
of G is denoted by A(G) or simply by A. The graph
obtained from G by deleting all vertices in V' C V(G is
denoted by G — V'. The subgraph of G induced by the
edges in a subset E' C E(G) is denoted by G[E']. We
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(a (b)
Fig. 1  (a) 3-trees and (b) a partial 3-tree.

X,={1,2,3}

/Iﬁil 23,4}

X2={1,3,4,5} X3={13,4,6}

Fig. 2 A tree-decomposition of the partial 3-tree in Fig. 1 (b).

will use notions as: leaf, node, internal node, child and
Jather, in their usual meaning.

The class of k-trees is defined recursively as fol-
lows[207]:

(a) A complete graph with k vertices is a k-tree.

(b) If G = (V, E) is a k-tree and k vertices vy, v, - - -, vg
induce a complete subgraph of G, then G' =
(VUu{w}, EU{(vs,w)|1 £ < k}) is a k-tree where
w 1s a new vertex not contained in G.

(c) All k-trees can be formed with rules (a) and (b).

A graph is a partial k-tree if it is a subgraph of a k-tree.
Thus partial k-trees G = (V, E) are simple graphs, and
|E| < kn. Figure 1(a) illustrates a process of generat-
ing a 3-tree, and Fig.1(b) depicts a partial 3-tree. In
this paper we assume that % is a constant.

A tree-decomposition of a graph G = (V,E) is a
tree T = (Vp, Er) with Vp a family of subsets of V
satisfying the following properties [20]:

o Ux,erp Xi =V

e for every edge e = (v,w) € E, there is a node
X; € Vp with v, w € X;; and

e if node X; lies on the path in T from node X; to
node Xj;, then X; N X; C X.

Figure 2 depicts a tree-decomposition of the partial 3-
tree in Fig. 1 (b). The treewidth of a tree-decomposition
T = (Vp, Ep) is maxx,cv, | Xi| — 1. The treewidth of
G is the minimum treewidth of a tree-decomposition of
G, taken over all possible tree-decompositions of G. It
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Fig. 3 Illustration of the binary transformation.

is known that every graph with treewidth < k is a par-
tial k-tree, and conversely, that every partial k-tree has
a tree-decomposition with treewidth < & [20].
Consider a tree-decomposition of a partial k-tree
G with treewidth < k. We transform it to a binary

tree T' as follows [4]: regard T as a rooted tree with

choosing an arbitrary node as the root, and replace ev-
ery internal node X; of r children by » 4 1 new nodes
Xil,Xim" . 7Xir+1 such that X; = Xi1 = Xz'g = ... =
Xi,,,,» where X;, has the same father as X, X, is the
father of Xi,,, and the pth child X, of X; (1<p<r),
and X; _, is a leaf of 7. (See Fig.3.) This transfor-
mation can be done in O(logn) parallel time using a
total of O(n) operations. 7" is a tree-decomposition of
G = (V, E) with the following characteristics:

e the number of nodes in T is O(n);

e cach internal node X; has exactly two children, say
X; and X, and either X; = X; or X; = X;; and

e for each edge (v,w) € E there is at least one leaf
X; with v,w € X;.

Such T is called a binary tree-decomposition[4].
Clearly T' has treewidth < k. For each edge ¢ =
(v,w) € E we choose an arbitrary leaf X, of 7" such
that v,w € X; and denote it by rep(e).

We next introduce two new concepts: a two-
terminal tree and its parsing tree. We define a rwo-
ferminal tree recursively as follows.

l. A tree T of a single edge is a two-terminal tree.
The ends of the edge are called the terminals of T
and denoted by X},(T) and X, (T'), respectively.

2. Let T}, 1 = 1,2, 3, be two-terminal trees with ter-
minals X, (7;) and X,(7;). Then a tree T ob-
tained from 73, 75 and T3 by identifying nodes
Xr(T1), Xn(T) and X5 (T3) is a two-terminal tree,
whose terminals are X5 (T') = X, (71) and X,.(T) =
X-(Tz) or X,.(T3). (See Fig.4.)

Figure 4 illustrates the rule 2 above, where terminals
are drawn by white circles.

Consider a binary tree-decomposition of a partial
k-tree G = (V,E). Add a new dummy node X, to
it as a father of the root and regard X,,.: and a leaf
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Fig. 4 Two-terminal trees.
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Fig. 5 (a) Two-terminal tree T and (b) its parsing tree T%.

as terminals as depicted in Fig. 5 (a), then the resulting
tree T is a two-terminal tree. Let X, ., = ¢, then T is
a tree-decomposition of . Since a two-terminal tree T
can be recursively constructed by the rules above, 7' can
be represented by a “parsing tree” T%. Every leaf of 1
represents a two-terminal tree induced by a single edge
of T'. On the other hand, each internal node u of TP has
exactly three children, say, wy, v; and w,, and the two-
terminal tree corresponding to « is obtained from the
three two-terminal trees 77, 15 and 75 corresponding to
up, Uy and v, by the rule 2 above. Thus the root of TP
corresponds to 7. Figure 5 illustrates a two-terminal
tree T' having terminals X,.,,; and X, together with its
parsing tree TP, where each node u of tree T? is denoted
by the pair of terminals of a two-terminal subtree of T
corresponding to w.

We next define an edge-set E(u) C E for each node

u = (Xp,X,) of T? as follows. If u is a leaf of T?,
then F(u) = {e € E| rep(e) is Xp or X,.}. If u is
an internal node of I? having children v, = (X5, X;),
w = (X5, X;) and u, = (X;, X,.), then E(u) = E(up) U
E{u;) U E(u,). Note that the three edge-sets F(uy),
E(w;) and E(u,) are pairwise disjoint. Thus node
u = (X, X,) of T corresponds to a subgraph G[E(u)]
of G induced by the edges in F(u). The subgraph
G|E(u)] is an edge-disjoint union of three subgraphs
G|E(up)], G[E(w)] and G[E(u,)], which share com-
mon vertices only in X; because of the third property of
a tree-decomposition. Similarly the subgraph G[E(u)]
shares common vertices with the other parts of G only
in X, and X,. The root X,,,, in particular, of 77
corresponds to G. Figure 6 illustrates 7', T* and four
subgraphs G[E(u)], G[E(u,)], G[E(w)] and G[E(u,)].
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Fig. 6 (a) T, (b) T? and (c) four subgraphs of G.

3. Optimal Parallel DP Algorithm

In this section we prove the following theorem. Al-
though the algorithm in the theorem only decides the
chromatic index x'(G) of G, it can be easily modified
so that it actually edge-colors G with x/(G) colors.
Theorem 1: Let G be a partial k-tree of n vertices given
by its tree-decomposition with treewidth < k. Then
there is a parallel algorithm which determines the chro-
matic index x'(@) in O(log n) parallel time using a total
of O(n{A28G+1AFD) 4 (A 4 1)(B+k+2)/21 operations.

If A is bounded, then {A28*+D(A+1) 4 (A 4

1)(F*+k+2)/2} s also bounded although it is very large,
and hence the algorithm in Theorem 1 is an optimal par-
allel algorithm. The following general lemma is well-
known[12],[18].
Lemma 1: Let A be a given algorithm with O(logn)
parallel computation time. Suppose that A involves a
total number of m operations. Then A can be imple-
mented using p processors in O(m/p + logn) parallel
time.

If there is an algorithm A which solves the edge-
coloring problem in O(log n) parallel time using a total
of m = O(n) operations, then by adapting Lemma !
with choosing p = n/logn one can know that A can be
implemented using O(n/logn) processors in O(logn)
parallel time. (We omit the “lower-level details” of
implementing the algorithm with O(n/logn) proces-
sors[18].) Thus by Theorem 1 and Lemma 1 we have
the following corollary.

Corollary 1: The chromatic index x'(G) can be de-
termined in O(logn) parallel time with O(n/ logn)
processors for a partial k-tree G given by its tree-



466

(a) Contraction of a two-terminal tree T

unew

=X =0 X)) u=0% X,)

1

(b) Construction of a parsing tree TPcorresponding to (a)

Fig. 7 Illustration for the proof of Lemma 2.

decomposition with treewidth < k if £ and the max-
imum degree A are bounded.

In the remaining of this section we will give a proof
of Theorem 1. Our first idea is to construct a parsing
tree T? of O(logn) height. Since a tree-decomposition
T of G has O(n) nodes, a parsing tree T% has O(n)
height in general. However, using the tree-contraction
technique[15],[16],[ 18], we can necessarily construct a
parsing tree 77 of O(logn) height, as follows.

Lemma 2: Any two-terminal tree T of O(n) nodes has
a parsing tree 77 of O(logn) height, and such a tree T?
can be constructed in O(logn) parallel time using O(n)
operations.
Proof: A required parsing tree T? = (V,,, E,,) can be
constructed by the following algorithm. Note that we
use adjacency lists to represent 7" and 77.
begin
Vo i=¢; Ep =
choose the terminal X, (1) of 1" as the root of T}
for each edge u = (X5, X,) of T' in parallel do
Vp = Vp U{u};
{ current 77 is a forest of isolated nodes }
for each leaf X; of T' in parallel do
index(X;) « left-to-right leaf index X;;
{ the leaves are numbered in left-to-right order }
while 7" has at least four nodes do
for each leaf X; of T' with odd index(X;) such that X;
is the left child of X;’s father X; in parallel do
begin { See Fig. 7}
let X, be the father of X; in T';
let X,. be the right child of X; in T’;
let up = (Xh,Xi), u; = (Xi,Xz) and
uy = (X, X,) be edges of the current tree T';
{ un, w; and u, are roots of trees
in the current forest 7?7 = (V,,, E,,) }
delete nodes X; and X; from T, and
add to T a new edge joining X and X,;
Vp 1= Vo U{tnew }, Where unew = (Xn, Xr);
{ add a new node unew to T? and
join node une, with nodes un, u; and u, in 7% }
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Ep, = Ep U{(Unew; Un), (Unew, Ui); (Unew, Ur ) }
end;
for each leaf X, of T with odd index(X,) such that X,
is the right child of X,’s father X, in parallel do
begin
let X, be the father of X, in T}
let X; be the left child of X, in T;
let up, = (Xh,Xi), U = (XI,XL) and
u, = (X;, X;) be edges of T';
delete nodes X, and X, from 7", and
add to T a new edge joining X and X;;
Vp := Vp U {tnew}, where tnew = (Xn, Xi);
Eip := Ep U {(Unew, tn), (tnew, w), (tnew, ur) }
end;
for each leaf v of T in parallel do
index(v) « index(v)/2
end-while
end.

The number of leaves of T reduces by half when-
ever the for-loops in the while statement are executed.
Therefore the for-loops are executed O(logn) times in
total. Hence the algorithm above correctly finds a pars-
ing tree 7% of O(logn) height in O(logn) parallel time
using O(n) operations. Note that each node of T? cor-
responds to either an original edge in 7" or a new edge
added to T' during the tree-contraction process. o

Figure 5 illustrates a two-terminal tree and its pars-
ing tree obtained by the algorithm above.

Our second idea is to solve the edge-coloring prob-
lem on G by means of a parallel dynamic program-
ming and a bottom-up tree computation on the parsing
tree 77 of O(logn) height: for each node uw of 77 from
leaves to the root, we construct all (equivalent classes
of) edge-colorings of G[E(u)] from those of three sub-
graphs G[FE(up)], GIE(u)] and G[E(u,)] by means of a
dynamic programming.

Let C' = {1,2,---,|C|} be the set of colors where
|C] = A or A+ 1. A mapping (coloring) f : E — C
is called a total edge-coloring of G if no two adjacent
edges in E are colored with the same color. For a subset
E'CFE amapping f: B/ — C is called a partial edge-
coloring of G if no two adjacent edges in E’ are col-
ored with the same color. For a partial edge-coloring
f and each vertex v € V, let f(v) = {f((v,2))|(v,2) €
E’ and z € V}, that is, f(v) is the set of colors appear-
ing at v in the edge-coloring f. A partial edge-coloring
is feasible if it can be extended to a total edge-coloring.

For a node u = (X}, X,) of T% let C(h,r) be a
2|C|-tuple of vertex sets such that

(a) C(h,m) = (S,R);
(b) §=(S1,---,S|¢|) and R = (Ry,- -+, Rc)); and
(c) S.C Xy and R, C X, for each color c € C.

We call such C(h,r) a color vector on u = (X, X,). A
color vector C(h,r) is good if there exists a partial edge-
coloring f : E(u) — C such that S; = {v € X|f(v) >
¢} and R, = {v € X,|f(v) 3 ¢} for each color ¢ € C.
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Such C(h, r) is called the color vector of the partial edge-
coloring f. Then we have the following lemma. (Bod-
laender has proved a similar lemma [4].)
Lemma 3: Let f and g be partial edge-colorings on
= (X}, X,) with the same color vector. Then f. is
feasible if and only if g is feasible.
Proof:  Suppose that f is feasible. Then there ex-
ists a total edge-coloring f’ such that f'(e) = f(e) for
e € E{u). One can extend g to a total edge-coloring ¢’
as follows: g'(e) = g(e) for e € E(u), and ¢'(e) = f'(e)
for e € E— E(u). Note that the subgraph G[E(u)] of G
shares common vertices with the other parts of G only
in X5 and X,. O

Thus a color vector on v = (X3, X,) can be
seen as an equivalence class of partial edge-colorings
[+ E(u) — C. The total number of different color
vectors on (X, X,) is bounded by 22(:+DICI gince
WXhia |XT| é k4 1.

The main step of our parallel algorithm is (i) to
find a parsing tree 7?7 of T' such that the height of T? is
O(logn), and (ii) to compute a table of all good color
vectors on the root of TP by means of a dynamic pro-
gramming and a bottom-up tree computation on 77, If
the table has at least one good color vector, then the
graph G corresponding to the root of TP can be cor-
rectly colored with [C| colors.

For each leaf u = (X}, X,) of TP, the table of
all good color vectors on (X4, X,) can be computed in
O(1) parallel time using O(|C|*(#T1)/2+1) operations as
follows:

(1) enumerate all partial edge-colorings f : E(u) — C;
and

(2) compute all the color vectors (S,R) on (Xp, X,)
from the edge-colorings f : E(u) — C.

Since |E(u)| £ k(k+1)/2, the number of edge-colorings
E(u) — C is at most |C|¥(®+1)/2_ Since k is bounded,
steps (1) and (2) can be executed in O(1) parallel time
using O(|C|*(F+1)/2+1) operations. -

Next we show how to compute all good color vec-
tors on the root of 7P. Let an internal node v =
(Xn, X,) of T? have three children u, = (X, X;),
U = (XZ‘,XZ) and u, = (Xi,XT). Let Cpn (h,7,7l,’l") be a
6|C|-tuple of vertex sets such that
@) C(h,i,l,7) = (8", R 8L, R ST, R,

(b) 8* = (SF,--,Sf) and R = (RY,- -
z € {h,l,r}, and

, Rig) for

(c) SFC Xn, RE,SLSIC X, RRCX;, and RLC X,
for each color ¢ € C.

We call such Cp,(h,i,l,7) a multi-color vector on
(Xn,X.). A multi-color vector C,,(h,i,1,7) is good if
there exists a partial edge-coloring f : E(u) — C such

467
that
={ve Xu|fu(v)3c}, Ri={ve X;|fu(v) 3¢},
={veX;|fi(v)>c}, Rl={veX|fi(v)>¢c},
Se={veX;|fr(v)2c}, Rp={ve X,|fr(v) 3¢},

for every color ¢ € C where f, f; and f. are the
partial edge-colorings of f restricted to E(up), E(u;)
and E(u,), respectively. Such Cp,(h,1,1,7) is called the
multi-color vector of f. Then we have the following
lemma.

Lemma 4: Let an internal node v = (X, X,)
of T? have three children wp, = (Xp,X;), w =
(X;, Xy) and u, = (X4, X,). Let Cp(h,i,lr) =
(Sh,RM SR S™,R™) be a multi-color vector on
(Xp, Xy). Then C,,(h,i,1,7) is good if and only if the
following (a) and (b) hold:

(a) C(h,i) = (S, RM), C(3,1) = (S, RY) and C(i,r) =
(8", R") are good color vectors on (X, X;),
(X;, X;) and (X;, X,.), respectively; and

(b) (SZURE)N(SYURY) =
z # vy, and any c € C.

¢ for any z,y € {h,l,r},

Proof: = Let f: E(u) — C be a partial edge-
coloring with the multi-color vector C,,(h,7,1,7). Let
fn, f1 and f, be partial edge-colorings of f restricted to
E(un), E(w) and E(u,), respectively. Clearly C(h,1),
C(3,1) and C(i,7) are color vectors of partial edge-
colorings fx, fi and fr, respectively, and hence C(h, 1),
C(4,1) and C(4,r) are good. Since fp, f; and f, are par-
tial edge-colorings of pairwise disjoint sets F(uz), E(u;)
and E(u,) respectively and f is a partial edge-coloring
of E(u) = E(up) U E(u) U E(uy,), one can easily know
that (b) holds true. (See Fig.6(c).)

<: Let gn:FE(un) — C, guE(w) — C and
gr:E(ur) — C be partial edge-colorings with the color
vectors C(h,1), C(i,1) and C(i,r), respectively. By the
condition (b) clearly the following extension f of gi, ¢
and g,

gne) ifee E(uh)
fle)=1< ai(e) ifee€ E(y), and
gr( ) ifee F(u,)
)

is a partial edge-coloring E(u) — C, and Cp,(h,4,1,7)
is the multi-color vector of the partial edge-coloring f.
Hence Cy, (h,1,1,7) is good. O

The number of different multi-color vectors on any
internal node v = (Xp,X,) of TP is bounded by
26(k+1)IC1  Therefore by Lemma 4 one can compute
a table of all good multi-color vectors on u from the
three given tables of all good color vectors on the chil-
dren up, u; and w, in O(1) parallel time using a total
of O(|C|28(k+DICT) operations. Remember that |C| = A
or A+ 1. The following lemma shows how to compute
the table of all good. color vectors on u from the tables
of all good multi~color vectors on w.
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Lemma 5: Let an internal node v = (Xp, X,.) of T?
have three children up = (X, X;), w = (X, X;) and
ur = (X;, X,). Then a color vector C(h,r) = (S, R) is
good if and only if there exists a good multi-color vector
Cr(h,i,1,7) such that S. = X,NY, and R, = X,.NY, for
every color ¢ € C, where Y, = SPURPUS!URL USTURT.
Proof: Immediate from the definitions. O

From the lemmas above we have a parallel algo-
rithm to determine whether a given partial k-tree G can
be colored with |C| colors:

(1) find a parsing tree TP of a tree-decomposition T of
G such that the height of 7% is O(logn);

(2) compute a table of all good color vectors on each
leaf of T7;

(3) for each internal node, all the three children of
which are leaves, compute a table of all good color
vectors on this node in parallel, and delete its chil-
dren from T7;

(4) repeat to do (3) until T has only one node; and

(5) finally check whether there exists a good color vec-
tor in the table corresponding to the root.

We apply the procedure above twice to G with choosing
|C| = A and |C| = A + 1 to determine the chromatic
index of a partial k-tree G.

Since the height of T7 is O(logn), (3) is executed at
most O(logn) times. Therefore one can easily execute
the algorithm above in O(logn) parallel time. Clearly
step (1) requires O(n) operations in total. Step (2) re-
quires O((A + 1)(*+5+2)/2) gperations for each leaf as
mentioned before, and hence step (2) requires O(n(A +
1)(K*+k42)/2) operations in total. As mentioned above,
step (3) requires O(A28(F+1(A+1)) gperations per node.
Since (3) is executed for O(n) nodes in total in step (4),
step (4) requires O(nA28¢*+1(A+D) gperations in total.
Step (5) requires O(28(F+D(A+1)Y operations in total.
Thus the total number of required computational opera-
tions above is O(n{ A28+ DATY) L (A 1 1)K +h+2)/2})

This completes a proof of Theorem 1.

4. Conclusion

In this paper we gave an optimal and first NC parallel
algorithm to solve the edge-coloring problem on par-
tial k-trees G such that & and the maximum degree A of
G are bounded. Given a partial k-tree G with its tree-
decomposition, the algorithm takes in O(logn) parallel
time with O(n/logn) processors where n is the number
of vertices in G.

We have given an optimal parallel algorithm for
decomposing a partial k-trees of large A into several
subgraphs of small maximum degrees totaling exactly
A [26]. Combining it with the algorithm in this paper,
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one can obtain an optimal parallel algorithm to solve
the edge-coloring problem for any partial k-tree whose
maximum degree is not necessarily bounded [27].

Our algorithm solves a single particular problem,
that is, the edge-coloring problem. However the meth-
ods which we developed in this paper appear to be use-
ful for many other problems, especially for the “edge-
partition problem with respect to property w” which
asks to partition the edge set of a given graph into a
minimum number of subsets so that the subgraph in-
duced by each subset satisfies the property =. For the
edge-coloring problem, 7 is indeed a matching.

Consider for example a property 7: the degree of
each vertex v is not greater than f(v), where f(v) is a
positive integer assigned to v. Clearly the edge-partition
problem with respect to such a property 7 is the same
as the so-called f-coloring problem[14],[21]. Our al-
gorithm can be generalized to solve the f-coloring prob-
lem on partial k-trees in parallel.
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