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A b s t r a c t .  Many combinatorial problems can be efficiently solved 

for partial k-trees. The edge-coloring problem is one of a few com- 

binatorial problems for which no linear-time algorithm has been 

obtained for partial k-trees. The best known algorithm solves the 

problem for partial k-trees G in time O(nA 2~r where n is the 

number of vertices and A is the maximum degree of G. This paper 

gives a linear algorithm which optimally edge-colors a given partial 

k-tree for fixed k. 

1 Introduction 

This paper deals with the edge-coloring problem which asks to color, using 

a minimum number of colors, all edges of a given graph so that no two adjacent 

edges are colored with the same color. The chromatic index xt(G) of a graph 

G is the minimum number of colors used by an edge-coloring of G. This prob- 

lem arises in many applicationsl including various scheduling and partitioning 

problems [FW]. Since the edge-coloring problem is NP-complete [Hol], it seems 

unlikely that there exists a polynomial-time algorithm to solve the problem for 

general graphs. On the other hand, it is known that many combinatorial prob- 

lems can be solved very efficiently, say in linear time, for series-parallel graphs 

or partial k-trees [ACPD, AL, BPT, C, TNS]. Such a class of problems has been 

characterized in terms of "forbidden graphs" or "extended monadic logic of sec- 

ond order" [ACPD, AL, BPT, C, TNS]. The edge-coloring problem does not 



410 

belong to such a class, and is indeed one of the "edge-covering problems" which, 

as mentioned in [BPT], do not appear to be solved efficiently for partial k-trees. 

However the following three partial results have been known. First, Terada and 

Nishizeki have given an O(n 2) algorithm for series-parallel simple graphs G, i.e., 

partial 2-trees [TN]. In the paper n denotes the number of vertices in G. Second, 

Zhou, Suzuki and Nishizeki have given a linear-time algorithm for series-parallel 

multigraphs [ZSN]. Third, Bodlaender has given a polynomial-time algorithm 

for partial k-trees G [B] but the complexity O(nA(G) 22~+')) is very high, where 

the maximum degree A(G) of G is not always a constant although k is assumed 

to be a constant. 

In this paper we give a linear algorithm for partial k-trees, which determines 

the chromatic index xI(G) of a given partial k-tree G and actually finds an edge- 

coloring of G using x~(G) colors. Note that k is assumed to be a constant. 

Our algorithm greatly improves the complexity: for example, for partial 3-trees, 

Bodlaender's algorithm requires time O(n~57), but ours requires time O(n). Our 

idea is twofold: first, we prove that x'(G) = A(G) holds for every partial k-tree G 

of large maximum degree, say A(G) > 5k; and second, we show that such a graph 

G can be decomposed into several subgraphs G1, G 2 , . " ,  G~ of small maximum 
$ 

degrees such that A(G) = y ~  A(Gi) and x'(Gi) = A(Gi) < 5k for each i, and 
i - - -1  

hence an optimal edge-coloring of G can be obtained simply by extending those 

of G1, G2,- .- ,  G, which can be found in linear time by Bodlaender's algorithm. 

2 Terminology and Definitions 

In this section we give some definitions. Let G = (V, E) denote a graph with 

vertex set V and edge set E. We often denote by V(G) and E(G) the vertex 

set and the edge set of G, respectively. The paper deals with simple graphs 

without multiple edges or self-loops. An edge joining vertices u and v is denoted 

by (u, v). The class of k-trees is defined recursively as follows: 

(a) A complete graph with k vertices is a k-tree. 

(b) If G = (V, E) is a k-tree and k vertices vl, v2,..., Vk induce a 

complete subgraph of G, then H = (Y U {w}, EU {(vi, w)l! <_ 
i _< k}) is a k-tree where w is a new vertex not contained in 

G. 
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(c) All k-trees can be formed with rules (a) and (b). 

A graph is a partial k-tree if and only if it is a subgraph of a k-tree. Thus partial 

k-trees are simple graphs. In this paper we assume that k is a constant. 

The degree of vertex v 6 V(G) is denoted by d(v,G) or simply by d(v). 

The maximum degree of G is denoted by A(G) or simply by A. For a vertex 

v 6 V(G), denote by n~(v) the number of vertices which are adjacent to v 

and have degree A(G). The graph obtained from G by deleting all edges in 

E' C_ E(G) is denoted by G - E'. Similarly the graph obtained from G by 

deleting all vertices in Y' C_ V(G) is denoted by G - Y'. 

3 D e t e r m i n i n g  t h e  C h r o m a t i c  I n d e x  

By the classical Vizing's theorem, x'(G) = A(G) or A(G) + 1 for any simple 

graph G [FW]. In this section we first show that x'(G) = A(G) holds for any 

partial k-tree G with A(G) > 2k, and then show that the chromatic index x'(G) 

can be determined in linear time for any partial k-tree G. 

Hoover [Hoo] has claimed that x'(G) = A(G) holds for any partial k-tree 

G with A(G) >_ 4k, but his proof contains a flaw. His "proof" is based on 

"Theorem 4.5" in [Hoo]: if the chromatic index of a general graph G is A(G) + 1 

then 

IE I > nA(G) 
- 4 

However this "Theorem" is incorrect as seen from the following counterexample. 

Let G be a graph obtained from K7, a complete graph of seven vertices, by 

inserting many vertices, say seventy vertices, in an arbitrary edge e of KT. Then 

A(G) = 6, n = 77 and ]E I = 91. Clearly x'(G) = A ( G ) + I  = 7 since 7 < 

x'(K7 - e) <_ x'(G). However 

n (G) 
IEI < 

contrary to the "Theorem." This flaw looks to stem from an incorrect interpre- 

tation of a result on "critical graphs," Theorem 13.6 in [FW]. 

We prove a claim slightly stronger than his: x'(G) = A(G) holds for any 

partial k-tree G with A(G) > 2k. An edge (u, v) of G is eliminable [TN, NC] if 

the following equations hold: 

d(u) + na(v) < A if d(u) < A; and 
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n~(v) = 1 if d(u) = A. 

The following lemma is an expression of a classical result on "critical graphs," 

called "Vizing's adjacency lemma" (see, for example, [FW], [TN] or [NC]). 

L e m m a  3.1 I f  (u, v) is an eliminable edge of a simple graph G and x'(G - 

(u, v)) < A(a) ,  then x'(G) = 

For partial k-trees we have the following lemma. 

L e m m a  3.2 I f  a partial k-tree G = (V,E) has maximum degree A(G) > 2k, 

then G has an eliminable edge. 

Proof .  Let $1 = {v e V(G)] d(v,G) < k} and $2 = {v E V ( G - S 1 ) I  d ( v , G -  

$1) < k}. Then $1, S~ # r since A(G) > 2k. Furthermore there exists an edge 

joining vertices u e $1 and v E $2, because k + 1 < d(v, G) and d(v, G -  $1) < k. 

Every vertex w E $1 has degree d(w,G) < k < A(G), and d ( v , G -  $1) < k. 

Therefore d(u) < k < A, hA(V) < k, .and hence d(u) + hA(V) < 2k < A. Thus 

edge (u, v) is eliminable. ~.C.:D. 

Using Lemmas 3.1 and 3.2, we have the following theorem. 

T h e o r e m  3.3 I f  a partial k-tree G has maximum degree A(G) > 2k, then 
x ' ( a )  = 

Proof .  By Lemma 3.2 G has an eliminable edge el. Since G - {el} is also a 

partial k-tree, G - {el} has an eliminable edge e2 if A(G - {el}) > 2k. Thus 

there exists a sequence of edges el, e2 , . . . ,  em such that  

(a) A(6 ' )  = A(G)--  1 where G ' =  G -  {el ,e2,- . . ,em};  and 

(b) ei, 1 < i < m, is eliminable in G -  {c~,e2,. . . ,ei_~}. 

By the classical Vizing's theorem [FW], x'(G') < A(G') + 1 = A(G). Therefore, 

applying Lemma 3.1 repeatedly, we have x'(G) = A(G). Q.C.:D. 

Since A(G) can be computed in linear time, the chromatic index of a partial 

k-tree G with A(G) > 2k can be determined in linear time. On the other hand 

Bodlaender [B] has given an algorithm which determines x'(G) of a partial k-tree 

G and obtains an edge-coloring of G with x'(G) colors total in time O(nA ~2r ). 

Clearly his algorithm runs in linear time if A(G) < 2k. Note that  k is a constant. 

Thus we have the following theorem. 

T h e o r e m  3.4 The chromatic index of a partial k-tree can be determined in 

linear time if k is a constant. 
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4 Obtaining an Edge-Coloring 

In Section 3 we have shown that  the chromatic index x~(G) of a given 

partial k- t ree  G can be determined in linear time. In this section we give a 

linear algorithm which actually obtains an edge-coloring of G with x'(G) colors. 

Using Bodlaender's algorithm [B], one can obtain an edge-coloring of G with 

x'(G) colors in linear time if A(G) is a constant. Therefore it suffices to give a 

linear algorithm only for the case A(G) > 5k. 

The proofs in the previous section do not yield a linear algorithm for the 

case A(G) > 5k, as follows. Lemma 3.3 implies that a partial k-tree G with 

A(G) > 5k necessarily has an eliminable edge. If (u, v) is an eliminable edge 

in a graph G and an edge-coloring of G - (u, v) with A(G) colors is known, 

then, using a standard technique of "shifting a fan sequence," one can obtain an 

edge-coloring of G with x '(G) = A(G) (> 2k) colors in time O(IE D [NC, TN]. 

By Lemma 3.3 there exists an edge-sequence e l , e 2 , " - , e m  such that  A ( G -  

{e l , e2 , . - . , em})  = 5k and e~ is an eliminable edge in G -  {e l ,e~ , . - - ,e i_ l}  for 

every i, 1 < i < m. Using Bodlaender's algorithm, one can obtain an edge- 

coloring of G' = G - {el ,e2,--- ,  e,~} with x'(G') = 5k (> 2k) colors in time 

O(n). Add edges ern, e r a - I , ' " ,  e2, el to G ~ in this order, and modify the edge- 

coloring of G ~ to an edge-coloring of G with A(G) colors by repeatedly using 

the technique of "shifting a fan sequence." Such a repetition of recoloring would 

require time O(n2). 

Our idea is to decompose G into several subgraphs when A(G) is large, say 

A(G) > 5k, as in the following lemma. 

L e m m a  4.1 I f  a partial k-tree G = (V,E) has maximum degree A(G) > 5k, 

then E can be partitioned into subsets El, E2, . . .  ,Es such that the subgraphs Gj, 

1 < j < s, of G induced by Ej satisfy 

(a) A(Gj) ---- 2k for each j,  1 < j < s -  1, and 

( b )  3k < A ( c , )  = A ( c )  - - < 5k.  

Furthermore such a partition of E can be found in time O(n). 

Such a partition El, E2 , . . . ,  E, o f f  is said A-bounded. Since 2k < A(Gj) < 

5k for each j ,  1 < j < s, by Theorem 3.4 x ' (Gj)  = A(Gi). Using Bodlaender's 

algorithm , one can obtain an edge-coloring of Gj with A(Gj) colors in time 

O(]Ej ]). Since A(G) = ~ = 1  A(Gj),  one can immediately extend these edge- 
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colorings of G1, G 2 , . . . ,  G~ to an edge-coloring of G with A(G) colors in linear 

time. 

,In order to prove Lemma 4.1, we need the following two lemmas. Let 

$ 1 , $ 2 , . . . , S t  be a partition of V(G). For each v E Si, 1 < i < l, let 

S 1 S 2 Si.l Si Si+l St 

Figure 1. Illustration for notations. 

Eb(v, G) ={(v, w) 6 El w e St and j < i}, 

E I ( v , G  ) ={(v,w) e El w e s t a n d j  > i}, 

db(v, G) =lEb(v, G)], and 

dy(v,G) =IEj(v,G)I .  

Thus d(v, G) = db(v, G) + dl(v,  G). (See Figure 1.) The partition $1, $2 , . . ' ,  St 

of V is dy-bounded if dl(v,  G) < k for every vertex v E V. 

L e m m a  4.2 Every partial k-tree G has a dy-bounded partition. 

Proof .  Since G is a partial k-tree, G h a s  a vertex of degree at most k. Let 

$1 be the set of all such vertices, and delete all vertices in $1 from G. Since the 

resulting graph G1 is also a partial k-tree, G1 has a vertex of degree at most k. 

Let $2 be the set of all such vertices, and delete all vertices in $2 from G1. By 

repeating the same operation above, one can obtain a d/-bounded partition $1, 

$ 2 , . . . ,  St of V. Q.E.:D. 

L e m m a  4.3 Let G = (V,E) be a partial k-tree, and let S1,$2," ",SI be a tit- 

bounded partition of V. Let I = { i l , i 2 , ' " , i v } ,  1 < il < i2 < "" < iv < l, and 

let S~, i E I, be a nonempty subset of Si such that db(v, G) > 2k for every vertex 

v 6 S~. Then G has a subgraph G' such that A(G') = 2k and VA(G') = Uiei  S~, 

when Va(G') = {v e V(G')I d(v) = F= hermore G' van be found in 
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time O(IE(G')I) if Eb(v, G) for all vertices v 6 V are known. 

P r o o f .  A required subgraph G'  can be constructed as follows. 

1 P r o c e d u r e  Subgraph; 

2 b e g i n  

3 let G '  ' " = ( U ~ ,  s~, r 
4 f o r  j := l ~ d o w n t o  1 do  

5 f o r  each vertex v E S~ do  

6 add to G '  any 2k - d(v, G t) edges in Eb(v, G) 

7 e n d .  

Whenever line 6 is going to be executed, d(v, G ~) <_ k for a current graph G ~ 

since d.t(v , G) <_ k. Therefore k <_ 2 k -  el(v, G') <_ 2k. Furthermore db(v, G) >_ 

2k, and none of edges in Eb(v, G) has not been added to G ~ so far. Thus one 

can always add to G' 2k - d(v, G') (>_ k) edges in Eb(v, G) which have not been 

added to G' so far. 

Clearly d(v, G')  = 2k holds for the final graph G'  if v E Uie I  St. On 

the other hand d(v,G') <_ df(v,G) <_ k holds if v E V(G') - [.JiexS~. Thus 

A(G') = 2k and VA(G') -- [.JieI S~. Given lists containing Eb(v,G) for all 

vertices v E V, one can easily execute the procedure above in t ime O(]E(G')[). 
Q.c.v. 

We are now ready to prove Lemma 4.1. 

P r o o f  o f  L e m m a  4.1 The following algorithm finds a required decomposition 

G a , G 2 , . - . ,  G,  of G. 

1 P r o c e d u r e  Subgraphs; 

2 b e g i n  

3 A :=  A ( G ) ;  

4 find a d l -bounded part i t ion $1, $ 2 , . . . ,  St of V(G); 

{ Lemma 4.2 } 

5 f o r  each i, 1 < i < l, do  S~ := {v e Si[ d(v, G) > 3k); 

{ db(v,G) > 2k for every vertex v e S~, 1 < i < I } 

6 I : = { i 1  l < i < l a n d S ~ # r  
A - - k  . 

7 s :=  [ - ~ - J ,  { 3k < Zx - 2 k ( s  - 1) < 5k } 

s f o r  j := 1 t o  s -  1 d o  

9 b e g i n  { A(G) = A -- 2k(j - 1) > 5k } 



416 

10 find a subgraph Gj of G such that A(Gj) = 2k 

and VA(Gj) = Uiet s[; {Lemma 4.3 ) 

11 G : =  G -  E(Gj); { A(G) decreases exactly by 2k ) 

12 S t := {v E Si[ d(v,e)  >_ 3k} for all i, i E I; { update S t ) 

13 I := {i EI I  S~ r r { update I } 

14 end; 

15 G 8 :----~ G; 

16 r e t u r n  G1, G 2 , . . . ,  G~ 

17 end. 

Whenever line 10 is executed for a current graph G, dI(v , G) <_ k holds for 

every vertex v E V, and db (v, G) _ 2k holds for every v E St, i E I. Therefore by 

Lemma 4.3 G has a subgraph Gj such that A(Gj) = 2k and VA(Gj) = [.Jiez St" 

Since A(G) >_ 5k, A(G) decreases exactly by 2k whenever line 11 is executed. 

Thus we have 3k < A(G,) = A - 2k(s - 1) < 5k. Hence the algorithm above 

correctly finds subgraphs G1, G2,. ' . ,  Gs. 

We now analyze the time complexity�9 Lines 4 and 5 can be clone in time 

O([E[). By Lemma 4.3 line 10 can be done in time O([E(Gj)[) for every j.  
�9 �9 s - - 1  Therefore the for loop at lines 8-14 can be done total m hme O(~j= 1 [E(Gj)[) < 

O([E[). Since [E[ < kn, the algorithm above runs in time O(n). Q.g.:D. 

This paper concludes the following theorem�9 

T h e o r e m  4.4 The edge-coloring problem can be solved in linear time for partial 

k-trees if k is a constant. 

5 Conc lus ion  

In this paper we gave an efficient algorithm for the edge-coloring prob- 

lem on partial k-trees. The algorithm runs in linear time for fixed k and in 

O((min{hk, A}) 22(k+l)n) time for general k. 

Our algorithm solves a single particular problem, that is, the edge-coloring 

problem�9 However the methods which we developed in this paper appear to be 

useful for many other problems, especially for the "edge-partition problem with 

respect to property 7r" which asks to partition the edge set of a given graph 

into a minimum number of subsets so that the subgraph induced by each subset 

satisfies the property 7r. For the edge-coloring problem, 7r is indeed a matching. 
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Consider for example a property 7r: the degree of each vertex v is not 

greater than f(v), where f(v) is a positive integer assigned to v. Clearly the 

edge-partition problem with respect to such a property zr is the same as the 

so-called f-coloring problem INNS, HK]. Our algorithm can be generalized to 

solve the f-coloring problem on partial k-trees in linear time. 

Another direction of generalization is to parallelize the sequential algorithm 

of this paper. Indeed we have recently obtained an optimal parallel algorithm 

for edge-coloring partial k-trees [ZNN]. It is the first NC parallel algorithm, and 

runs in O(log n) time using O(n/log n) processors for a partial k-tree G given 

by its decomposition tree. It is known that a decomposition tree of G can be 

found in O(log 3 n) time using O(n) processors [BK]. 
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