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Abstract.  An orthogonal drawing of a plane graph G is a drawing of 
G in which each edge is drawn as a sequence of alternate horizontal and 
vertical line segments. In this paper we give a linear-time algorithm to 
find an orthogonal drawing of a given 3-connected cubic plane graph 
with the minimum number of bends. The best known algorithm takes 
time O(nT/4o~/I'd'~) for any plane graph of n vertices. 

1 Introduct ion 

An orlhogonal drawing of a plane graph G is a drawing of G with the given 
embedding in which each vertex is mapped to a point, each edge is drawn as a 
sequence of alternate horizontal and vertical line segments, and any two edges do 
not cross except at their common end. Orthogonal drawings have attracted much 
attention due to its numerous practical applications in circuit schematics, data 
flow diagrams, entity relationships diagrams, etc [ B96, K96, T87]. In particular, 
we wish to find an orthogonal drawing with the minimum number of bends. 
For the plane graph in Fig. l(a), the orthogonal drawing in Fig. l(b) has the 
minimum number of bends, that is, seven bends. 

For a given planar graph G, if it is allowed to choose its planar embedding, 
then finding an orthogonal drawing of G with the minimum number of bends is 
NP-complete [GT94]. However, Tamassia [T87] and Garg and Tamassia [GT96] 
presented algorithms which find an orthogonal drawing of a given plane graph 
G with the minimum number of bends in O(n 2 log n) and O(nT/4ov/Y~) time 
respectively unless it is allowed to choose its planar embedding, where n is the 
number of vertices in G. They reduce the minimum-bend orthogonal drawing 
problem to a minimum cost flow problem. On the other hand, several linear- 
time algorithms are known for finding orthogonal drawings of plane graphs with 
a presumably small number of bends although they do not always find orthogonal 
drawings with the minimum number of bends [B96, K96]. 

In this paper we give a linear-time algorithm to find an orthogonal drawing 
of a 3-connected cubic plane graph with the minimum number of bends. To the 
best of our knowledge, our algorithm is the first linear-time algorithm to find an 
orthogonal drawing with the minimum number of bends for a fairly large class 
of graphs. 

* E-mail: sa~dur@nishizeki.ecei.tohoku.ac.jp, {nakano, nishi}@ecei.tohoku.ac.jp 
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Fig. 1. A plane graph and its orthogonal drawing. 

An orthogonal drawing in which there is no bend and each face is drawn as 
a rectangle is called a rectangular drawing. Linear-time algorithms have been 
known to find a rectangular drawing of a plane graph in which every vertex has 
degree three except four vertices of degree two on the outer boundary whenever 
such a graph has a rectangular drawing [Ktt94, RNN96]. The key idea of our al- 
gorithm is to reduce the orthogonal drawing problem to the rectangular drawing 
problem. 

An outline of our algorithm is illustrated in Fig. 1. Given a plane graph 
as shown in Fig. l(a), we first put four dummy vertices a, b, c and d of degree 
two on the outer boundary of G, and let G' be the resulting graph. The four 
dummy vertices are drawn by white circles in Fig. 1(c). We then contract each 
of some cycles C~,C~,.-. and their insides (shaded in Fig. 1(c)) into a single 
vertex as shown in Fig. l(d) so that the resulting graph G ~ has a rectangular 
drawing as shown in Fig. l(e). We also find orthogonal drawings of those cycles 
C1, C2,. . .  and their insides recursively (see Figs. l(d) and (e)). Patching the 
obtained drawings, we get an orthogonM drawing of G I as shown in Fig. l(f). 
Replacing the dummy vertices a, b, c and d in the drawing of G ~ with bends, we 
finally obtain an orthogonal drawing of G as shown in Fig. l(b). 

The rest of the paper is organized as follows. Section 2 gives some defini- 
tions and presents a known result. Section 3 presents an algorithm to find an 
orthogonal drawing in which the number of bends may not be the minimum but 
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does not exceed the minimum number by more than four. Section 4 presents an 
algorithm to find an orthogonal drawing with the minimum number of bends, 
using the algorithm in Section 3. Finally Section 5 is a conclusion. 

2 Preliminaries 

In this section we give some definitions and present a known result. 
Let G be a connected graph with n vertices and m edges. We denote the set 

of vertices of G by V(G), and the set of edges of G by E(G). The degree of a 
vertex v is the number of neighbors of v in G. If every vertex of G has degree 
three, then G is called a cubic graph. The connectivity ~¢(G) of a graph G is the 
minimum number of vertices whose removal results in a disconnected graph or 
a single-vertex graph K1. We say that G is k.connected if ~(G) > k. 

A graph is planar if it can be embedded in the plane so that no two edges 
intersect geometrically except at a vertex to which they are both incident. A 
plane graph is a planar graph with a fixed embedding. A plane graph divides 
the plane into connected regions called faces. We regard the contour of a face as 
a clockwise cycle formed by the edges on the boundary of the face. We denote 
the contour of the outer face of graph G by Co(G). 

For a simple cycle C in a plane graph G, we denote by G(C) the plane 
subgraph of G inside C (including C). We say that cycles C1 and C2 in a plane 
graph G are independent if G(C~) and G(C~) have no common vertex. An edge 
which is incident to exactly one vertex of a simple cycle C and located outside of 
C is called a leg of the cycle C, and the vertex on C to which the leg is incident 
is called a leg-vertex of C. A simple cycle with exactly k legs is called a k-legged 
cycle. 

An orthogonal drawing of a plane graph G is a drawing of G with the given 
embedding in which each vertex is mapped to a point, each edge is drawn as a 
sequence of alternate horizontal and vertical line segments, and any two edges 
do not cross except at their common end. A point where an edge changes its 
direction in a drawing is called a bend. We denote by b(G) the minimum number 
of bends needed for an orthogonal drawing of G. 

A rectangular drawing of a plane graph G is a drawing of G such that each 
edge is drawn as a horizontal or vertical line segment, and each face is drawn as a 
rectangle. Thus a rectangular drawing is an orthogonal drawing in which there is 
no bend and each face is drawn as a rectangle. The drawing of G II in Fig. l(e) is a 
rectangular drawing. The drawing of G I in Fig. l(f) is not a rectangular drawing, 
but is an orthogonal drawing. The following result on rectangular drawings is 
known. 

L e m m a  1. Let G be a connected plane graph such that all vertices have degree 
three except four vertices of degree two on Co(G). Then G has a rectangular 
drawing if and only if G has none of the following three types of simple cycles 
[TS4]: (rl) l-legged cycles, (r2) 2-legged cycles which contain at most one vertex 
of degree two, and (r3) 3-legged cycles which contain no vertex of degree two. 
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Furthermore one can check in linear time whether G satisfies the condition 
above, and if  G does then one can find a rectangular drawing of G in linear time 
[RNN96]. D 

0 vertex of degree two 
@ vertex of degree three 

(a) l-legged cycle (b) 2-legged cycles (c) 3-legged cycles 

Fig. 2. Bad cycles C1, C2, C3 and Cs, and non-bad cycles C4, C6 and C7. 

In a rectangular drawing of G, the four vertices of degree two are the four 
corners of the rectangle corresponding to Co(G). A cycle of type (rl), (r2) or 
(r3) is called a bad cycle. Figs. 2(a), (b) and (c) illustrate l-legged, 2-legged 
and 3-legged cycles, respectively. Cycles C1, C~, Ca and Cs are bad cycles. On 
the other hand, cycles C4, C6 and 6'7 are not bad cycles; 6'4 is a 2-legged cycle 
but contains two vertices of degree two, and C6 and C7 are 3-legged cycles but 
contain one or two vertices of degree two. 

Linear-time algorithms to find a rectangular drawing of a plane graph satisfy- 
ing the condition in Lemma 1 have been obtained [KH94, RNN96]. Our orthogo- 
hal drawing algorithm uses the algorithm in [RNN96] which we call Rectangular- 
Draw in this paper. 

3 O r t h o g o n a l  D r a w i n g  

In this section we give a linear-tirne algorithm to find an orthogonal drawing of 
a 3-connected cubic plane graph G with at most b(G) + 4 bends. Thus there are 
at most four extra bends in a drawing produced by the algorithm. 

Let G be a 3-connected cubic plane graph. Since G is 3-connected, G has 
no 1- or 2-legged cycle. A polygonal drawing of every cycle C in G has at least 
four convex corners, i.e., polygonal vertices of inner angle 90 °, in any orthogonal 
drawing of G. Since G is cubic, such a corner must be a bend if it is not a 
leg-vertex of C. Thus we have the following facts for any orthogonal drawing of 
G. 
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Fact 2. At least four bends must appear on Co(G). 

Fact 3. At least one bend must appear on each 3-1eggedxycle in G. El 

An outline of our algorithm is as follows. 
Let G' be a graph obtained from G by adding four dummy vertices a, b, e and 

d of degree two on Co(G) as follows. If IE(Co(G))I > 4, then add four dummy 
vertices on any four distinct edges on Co(G). If IE(Co(G))t = 3, then add two 
dummy vertices on any two distinct edges on Co and two dummy vertices on the 
remaining edge. 

If the resulting graph G' has luckily no bad cycle, then by Lemma 1 G' has 
a rectangular drawing, in which the four dummy vertices become the corners 
of the rectangle corresponding to Co(Gt). From the rectangular drawing of G' 
one can immediately obtain an orthogonal drawing of G with exactly four bends 
by replacing the four dummy vertices with bends at the corners. By Fact 2 the 
orthogonal drawing of G has the minimum number of bends. 

Thus we may assume that G' has a bad cycle. Since G has no 1- or 2-legged 
cycle, every bad cycle in G ~ is a 3-1egged cycle containing no vertex of degree 
two fike C~ in Fig. 2(c). Among all bad cycles of G', let C1,C2,.--,C1 be the 
"maximal" ones, that is, those that are not located inside of any other bad cycle. 
Let G" be the graph obtained from G ~ by contracting the inside G~(CI) of each 
cycle C/, 1 < i < l, into a single vertex. We find a rectangular drawing of G ' ,  
and recursively find a "suitable" orthogonal drawing of G(C/), 1 < i < l, called 
a feasible drawing and defined later, and finally patch them to get an orthogonal 
drawing of G. (See Fig. 1.) 

Before describing the algorithm in details, we analyze a hierarchical structure 
of 3-legged cycles in G t. A 3-legged cycle C in G I is called a descendant cycle of 
Co(G') if C contains none of the four dummy vertices. We denote by 79(G') the 
set of all descendant cycles of Co(G'). A cycle C in O(G') is called a child-cycle 
of Co(G') if C is not located inside of any other cycle in 79(G'). Since G is a 
3-connected cubic plane graph, all child-cycles of Co(G') are independent each 
other. For two distinct cycles C and C* in 70(G'), if C* is located in G(C) but 
not located inside of any other 3-legged cycle in G(C) except C, then C* is called 
a child-cycle of C. For any cycle C E/)(G'),  all child-cycles of C are independent 
each other. Thus we get a hierarchical structure of cycles in D(G') represented 
by a "genealogical tree" Tg. 

In Fig. 3(a) /)(G') = {C1, C2, C3, C4, C5, C6}. The 3-legged cycle Cz, indi- 
cated by a dashed line, is not in :D(G') since it contains a dummy vertex a. 
Cycles C1, C2, C3 and C4 are the child-cycles of Co(G'), and C5 and C6 are the 
child-cycles of C4. The hierarchical structure of 3-legged cycles in G' in Fig. 3(a) 
is illustrated as a tree Tg in Fig. 3(b). 

Using a method similar to one in [RNN96], one can find such a hierarchical 
structure Tg of 3-legged cycles in G ~ in linear time by traversing the contour of 
each face a constant number of times. 

We assign the following information to each cycle in ~9(G') in a recursive 
manner from leafs to the root of Tg. Each cycle C in 79(G') is divided into 
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Fig. 3. (g) 3-legged cycles in G', and (b) a genealogical tree Tg. 
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three paths P1, P2 and P3 by the three leg-vertices z, y and z of C. These three 
paths P1, P2 and Pz are called the contour paths of C. Each contour path of C 
is classified as a green path or a red path. In addition, each cycle C in D(G ~) 
is assigned an integer bc(C) called the bend-count of C. We will show later 
that  G(C) has an orthogonal drawing with be(C) bends and has no orthogonal 
drawing with fewer than be(C) bends, that is b(G(C)) = be(C). Furthermore we 
will show that,  for any green path of C, G(C) has an orthogona] drawing with 
bc(C) bends including a bend on the green path. On the other hand, for any 
red path of C, G(C) does not have any orthogonal drawing with be(C) bends 
including a bend on the red path. We do these classification and assignment by 
the following bottom-up computation on the tree Tg, as follows. 

Assume that  we have already done the classification and the assignment for 
all child-cycles C1, C~, . . . ,  Cz of a cycle C E 77(G') and are going to do them for 
C. There are three cases. 

x ~ ] 

c ~ c 
(a) c~e 1 (b) cas~ 2 (c) Case 3 

Fig. 4. Green paths. 
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Case  1: C has no child-cycle, that  is, l = 0 and C is a leaf in Tg (see Fig. 4(a)). 
In this case, we classify all the three contour paths of C as green paths, and 

set bc(C) - 1. (By Fact 3 we need at least one bend.) In Fig. 4(a) green paths 
of C are indicated by dotted lines. 
Case  2: None of the child-cycles of C has a green path on C. 

(In Fig. 4(b) the child-cycles of C are C1, C~, . . . ,  C~, and all green paths of 
them, drawn by thick lines, do not lie on C.) In this case, we classify all the three 

! 
contour paths of C as green paths, and set bc(C) = 1 + ~i=1 bc(Ci). Since none 
of C1, C2, - . . ,  Q and their descendant cycles in Tg has a green path on C, the 
orthogonal drawings of G(C1), G(C2),..., G(Cz) have no bend on C and hence 
we need to introduce a new bend on C in an orthogonal drawing of G(C). In 
Fig. 4(b) the three green paths of C are indicated by dotted lines. 
Case  3: Otherwise (see Fig. 4(c)). 

In this case at least one of the child-cycles C1, C2,- . . ,  Cz, for example C1, C4 
and Ca in Fig. 4(c), has a green path on C. Classify a contour path P~, 1 < i < 3, 
of C as a green path if a child-cycle of C has its green path on Pi- Otherwise, 
classify Pi as a red path. Thus at least one of/91, P2 and P3 is a green path. 
(In Fig. 4(c) P1 and P2 are green paths but P3 is a red path.) We set bc(C) - 

t ~i=1 bc(Ci). (For a cycle Cj having a green path on C, G(Cj) has an orthogonal 
drawing with bc(Cj) bends including a bend on the green path, and hence we 
need not to introduce any new bend on C.) 

We have the following lemmas. 

L e m m a 4 .  At least one of the three contour paths of every 3-1egged cycle in 
I)(G I) is a green path under the classification above. [3 

L e m m a  5. For every cycle C in I)(G'), G(C) has at least be(C) vertex-disjoint 
3-legged cycles in G' which contain no edge on red paths of C. 

Proof. It is easy to prove the proposition by an induction based on Tg. [] 

L e m m a  6. For every cycle C i ,  b(C(C)) > bc(C). 

Proof. By Fact 3 at least one bend must appear on each of the 3-legged cycles 
in :D(G'). By Lemma 5 G(C) has at least be(C) vertex-disjoint 3-legged cycles 
in :D(G~). Therefore any orthogonal drawing of G(C) has at least bc(C) bends, 
that  is, b(G(C)) >_ be(C). [] 

Conversely proving b(G(C)) < bc(C), we have b(G(C)) = be(C) for any 
cycle C E :D(GI). Indeed we will prove a stronger claim later in Lemma 7 after 
introducing the following definition. 

Let x, y and z be the three leg-vertices of C. One may assume that z, y and 
z appear on C in clockwise order. For a green path P with ends x and y on 
C, an orthogonal drawing of G(C) is defined to be feasible for P if the drawing 
satisfies the following properties (pl)-(p3): 
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( p l )  Exactly bc(C) bends appear  in the drawing of G(C). 
(p2)  At least one bend appears on the green path P.  
(p3)  None of the the following six open halflines intersects the drawing of G(C). 

- the vertical open halfline with the upper end at x. 
- the horizontal open halfline with the right end at x. 
-- the vertical open halfline with the lower end at y. 
- the horizontal open halfline with the left end at y. 
- the vertical open halfline with the upper end at z. 
- the horizontal open halfline with the left end at z. 

It should be noted that  the starting line segment of each leg of C must lie 
on one of the six open halflines above in any orthogonal drawing of G extended 
from an orthogonal drawing of G(C) feasible for P.  

L e m m a  7. For any cycle C in I)(a') and any green palh P of C, G(C) has an 
orthogonal drawing feasible for P. 

Proof. We give an algorithm to find a feasible orthogonal drawing of G(C) re- 
cursively, as follows. There are three cases. 
Case  1: C has no child-cycle. 

In this case bc(C) = 1. We insert, as a bend, a dummy vertex t of degree two 
on an arbitrary edge on the green path P. Let F be the resulting graph. Every 
vertex of F has degree three except the three leg vertices x, y and z, and the 
dummy vertex t. Furthermore F has no bad cycle. Therefore by the algorithm 
Rectangular-Draw in [RNN96] one can find a rectangular drawing of F with 
four corners on x, B, z and t. The drawing of F immediately yields an orthogonal 
drawing of G(C) with exactly one bend at t. Thus the drawing satisfies (pl)-(p3),  
and hence is feasible for P. 
Cas e  2: None of the child-cycles of C has a green path on C. 

Let C1,C2,'",Ct be the child-cycles of C. First, we find an orthogonal 
drawing D(G(Ci)) of a(Ci) feasible for an arbitrary green path of Ci, for each 
i = 1, 2 , . . . ,  l, in a recursive manner. 

Next, we construct a graph F from G(C) by contracting each G(Ci),i = 
1, 2, • • •, l, to a single vertex vi. We then construct a graph H from F by adding 
a dummy vertex t on any of the edges of P that  remain in F.  Thus there are 
exactly four vertices x, y, z and t of degree two on Co(H), and H has no bad 
cycle. Therefore, by the algorithm Rectangular-Draw, we can find a rectangular 
drawing D(H) of H with four corners on x, y, z and t. Fig. 5(a) illustrates H for 
C in Fig. 4(5). 

Finally, patching the drawings D(G(Cl)), D(G(C~)),..., D(G(Ct)) into D(H) ,  
1 we can construct an orthogonal drawing of G(C) with bc(C) = 1 4" ~i=1 bc(Ci) 

bends (see Figs. 1 and 5). As illustrated in Fig. 6(b), there are twelve distinct 
embeddings of a contracted vertex vi and the three legs incident to vl, depending 
on the directions of the three legs. For each of the twelve cases, we can replace 
a contracted vertex vi with a feasible orthogonal drawing of G(C/) or a rotated 
one shown in Fig. 6(c). Clearly t is a bend on P in the drawing of G(C). Thus 
the drawing is feasible for P.  
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Fig. 5. (a) A rectangular drawing of H and (b) a feasible orthogonal drawing of G(C) 
for Case 2. 
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Fig. 6. (a) A 3-legged cycle, (b) twelve embeddings of a vertex vi and three legs incident 
to vi, and (c) twelve feasible orthogona] drawings of G(Ci) and rotated ones. 

C a s e  3" Otherwise. 
Let C1, C2 , . - . ,  Ci be the child-cycles of C, where l > 1. In this case, a child- 

cycle of C has a green path on C. One may assume without loss of generality 
that  C1 has a green path Q on the green path P of C, that the three leg-vertices 
x t , y l  and zl of C1 appear on C1 clockwise in this order, and that  z l  and Yl 
are the ends of Q. We first construct a graph F from G(C) by contracting each 
G(C~), 2 < i < l, to a single vertex and by replacing G(C1) with a quadrangle 
zltyl zl, where ¢ is a dummy vertex of degree two. Thus F has four vertices of 
degree two on Co(F), that is, t and the three leg-vertices z, y and z of C. By the 
algorithm Rectangular-Draw we then find a rectangular drawing D(F) of F with 
four corners on z,y,z and t, in which the contour xltylzl of a face is drawn as 
a rectangle. We next find an orthogonal drawing D(G(C1)) of G(C1) feasible for 
Q and an orthogonal drawing D(G(Ci)) of G(Ci) feasible for an arbitrary green 
path of Ci for each i = 2, 3 , . . . , l  in a recursive manner. Finally, patching the 
drawings D(G(Cl)), D(G(C2)),..., D(G(Ct)) into D(F), we can construct an 
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orthogonal drawing of G(C) feasible for P. Clearly be(C) t = ~ = 1  bc(Q) bends 
appear in the drawing of G(C), and the bend t appears on Q and hence on P.  [] 

Lemmas 6 and 7 immediately imply the following Lenmaa 8. 

L e m m a  8. For every cycle C in 7)(G'), b(G(C)) "- bc(C). [3 

The algorithm for finding a feasible orthogonal drawing of G(C) described 
in the proof of Lemma 7 above will be called Feasible-Draw from now on. 
Rectangular-Draw takes linear time. As mentioned before, one can find T a in 
linear time by traversing every face boundary a constant number of times. Us- 
ing Tg, one can easily compute bc(C) and classify the three contour paths as 
green or red paths for all cycles C E 79(G') in linear time. Thus one can show 
that  Feasible-Draw takes linear time. (The detail is omitted in this extended 
abstract.) 

W~ are now ready to present our algorithm for orthogonal drawings of G. 

Algor i thm Orthogonal-Draw(G) 
begin 

1 add dummy vertices of degree two on Co(G) so that the resulting graph has four 
vertices of degree two on the contour of the outer face; 

{if Co(G) has four or more edges, add four dummy vertices on four distinct 
edges, otherwise, add two dummy vertices on two distinct edges and two 
dummy vertices on the remaining edge.} 

2 let G' be the resulting graph; 
3 let (71, C2-.-,  Ct be the child-cycles of Co(G'); 
4 for each i = l, 2,--.,1, find an orthogonal drawing D(G(Ci)) of G(Ci) 

feasible for an arbitrary green path of Ci by algorithm Feasible-Draw; 
5 let G" be the graph derived from G I by contracting each G(Ci), i = 1,2,. . . ,  l, 

to a single vertex; {G" has no bad cycle.} 
6 find a rectangular drawing of D(G") of G" by algorithm Rectangular-Draw; 
7 patch the drawings D(G(C1)), D(G(C2)),..., D(G(C,)) into D(G") to get an 

orthogonal drawing of G 
end. 

We now have the following theorem. 

T h e o r e m  9. For any 3-connected cubic plane graph G, an orthogonal drawing 
of G with at most b(G) + 4 bends can be found in linear time. 

Proof. (a) Number of bends. 
There are two cases. 

Case  1: Co(G) has no child:cycle. 
In this case we have a drawing with exactly four bends. By Fact 2 it is a 

drawing with the minimum number of bends. 
Case  2" Otherwise. 

Let C 1 , C 2 , . . . , C  l be the child-cycles of G'. Then we have an orthogonal 
• I drawing of G with 4 + ~ i = 1  bc(Ci) bends. By Lemma 5 G has ~ = 1  bc(Ci) vertex- 

disjoint 3-legged cycles. Therefore Fact 3 implies that l ~ = 1  bc(Ci) < b(G). Thus 
the number of bends in the derived drawing is at most b(G) + 4. 
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(b) Time complexity. 
Orthogonal-Draw calls Rectangular-Draw for G"  and Feasible-Draw for G(Ci), 

1 < i < I. Both Rectangular-Draw and Feasible-Draw take linear time. Further- 
more cycles Ci, 1 < i < l, are independent each other. Therefore Orthogonal- 
Draw takes linear time. 0 

4 B e n d  Minimizat ion 

The algori thm Orthogonal-Draw in the preceding section finds an orthogonal 
drawing of a 3-connected cubic plane graph G with at most b(G) + 4 bends. In 
this section we give a linear-time algorithm to find an orthogonal drawing with 
the min imum number b(G) of bends, using Orthogonal-Draw. 

In Section 3 we have defined a child-cycle for the cycle Co(G I) and for cycles 
in ~9(G~). In this section we define a child-cycle for any 3-legged cycle in G as 
follows. For two distinct 3-legged cycles C and C* in G, if C* is located in G(C) 
but  not located inside of any other 3-legged cycle in G(C) except C, then C* 
is called a child.cycle of C. We also extend the definitions of a contour path,  a 
green path,  a red pa th  and the bend-count bc(C) for any 3-legged cycle C in G. 

Our idea is as follows. If  G has a 3-legged cycle which has a green pa th  on 
Co(G), then we can save one of the four bends mentioned in Fact 2, because 
a bend on the green pa th  can play a role of a bend in Fact 2 and also a role 
of a bend in Fact 3. We therefore want to find such 3-legged cycles as many  as 
possible and up to four. We define a corner cycle to be a 3-legged cycle tha t  
has a green pa th  on Co(G) but none of whose child-cycles has a green pa th  on 
Co(G). I f  G has independent corner cycles C~, C~ , - - . ,  C~, k < 4, then we can 
save k bends. We are now ready to give our algorithm to find an orthogonM 
drawing with the minimum number of bends. 

A l g o r i t h m  Minimum-Bend(G) 
begin  

1 find independent corner cycles C~, C~,. . . ,  C~ of G as many as possible and up 
to four; {k < 4. The detail of this step is omitted in this extended abstract.} 

2 let P[,1 < i < k, be a green path of e~ on Co(G); 
3 let xi, yi and zi be the leg-vertices of C~, and let the ends of P[ be zl and Yi; 
4 replace each subgraph G(C~), 1 < i < k, in G with a quadrangle xitiyizi where 

ti is a dummy vertex of degree two; 
5 let G ~ be the resulting graph; 
6 Orthogonal-Draw(G'); 
7 {tl, t2 ,-- . ,  tk are corners of the drawing of Co(G~), and the quadrangle xi~iyiz~ 

is drawn as a rectangle for each i, 1 < i < k.} 
8 find an orthogonal drawing D(G(C~)) of G(C~) feasible for P[ for 

each i = 1, 2,-- . ,  k; 
9 patch the drawings D(G(C~)), D(G(C~)),..., D(G(C~))into the drawing of G' 

to get an orthogonal drawing of G 
end. 

We now have the following theorem. 
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T h e o r e m  10. Algorithm Minimum-Bend produces an orthogonal drawing of a 
3-connected cubic plane graph G with the minimum number of bends in linear 
time. O 

5 C o n c l u s i o n s  

In this paper we presented a linear-time algorithm to find an orthogonal drawing 
of a 3-connected cubic plane graph with the minimum number of bends. It is 
remained as a future work to find a linear-time algorithm for a larger class of 
graphs. 

An orthogonal drawing is called an orlhogonal grid drawing if all vertices and 
bends are located on integer grid points. Given an orthogonal drawing, one can 
find a corresponding (that means preserving the directions of edges) orthogonal 
grid drawing in linear time [T87]. Let W be the width of a grid, that  is the number 
of vertical lines in the grid minus one, and H be the height of a grid. Let n be the 
number of vertices, and let m b e the number of edges in a given graph. It is known 
that  any orthogonal drawing using b bends has a corresponding orthogonal grid 
drawing on a grid such that W + H < b + 2n - m -  2 [B96]. It is also known that  
any 3-connected cubic plane graph has an orthogonal grid drawing using at most 
n_z + 3 bends on a grid such that W _< ~ and H _< ~ [B96, K96]. By using our 
algorithm and the algorithm in [T87], one can find in linear time an orthogonal 
grid drawing of a 3-connected cubic plane graph with exactly b(G) bends on a 

1 grid such that  W < '~ H < '~ and W + H < b(G) + 2 n -  m - 2 = b(G) + 7n - 2. _-~,  _5"  
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