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Abstract. In this paper we introduce a new drawing style of a plane
graph G, called a “box-rectangular drawing.” It is defined to be a drawing
of G on an integer grid such that every vertex is drawn as a rectangle,
called a box, each edge is drawn as either a horizontal line segment
or a vertical line segment, and the contour of each face is drawn as
a rectangle. We establish a necessary and sufficient condition for the
existence of a box-rectangular drawing of G. We also give a simple linear-
time algorithm to find a box-rectangular drawing of G if it exists.
Keywords: Graph, Algorithm, Graph Drawing, Rectangular Drawing,
Box-drawing, Box-rectangular drawing.

1 Introduction

Recently automatic drawings of graphs have created intense interest due to their
broad applications, and as a consequence, a number of drawing styles and corre-
sponding drawing algorithms have come out [DETT94]. Among different drawing
styles, an “orthogonal drawing” has attracted much attention due to its beautiful
applications in circuit layouts, database diagrams, entity-relationship diagrams,
etc [B96, CP98, K96, T87]. An orthogonal drawing of a plane graph G is a draw-
ing of G in which each vertex is drawn as a grid point on an integer grid and each
edge is drawn as a sequence of alternate horizontal and vertical line segments
along grid lines as illustrated in Fig. 1(a). Any plane graph with the maximum
degree at most four has an orthogonal drawing. However, a plane graph with a
vertex of degree 5 or more has no orthogonal drawing.

A box-orthogonal drawing of a plane graph G is a drawing of G on an integer
grid such that each vertex is drawn as a rectangle, called a box, and each edge
is drawn as a sequence of alternate horizontal and vertical line segments along
grid lines, as illustrated in Fig. 1(b). Some of the boxes may be degenerated
rectangles, i.e., points. A box-orthogonal drawing is a natural generalization
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of an ordinary orthogonal drawing, and moreover, any plane graph has a box-
orthogonal drawing even if there is a vertex of degree 5 or more. Several results
are known for box-orthogonal drawings [BK97, FKK96, PT98].

(a) (b)

(c) (d)  

Fig. 1. (a) An orthogonal drawing, (b) a box-orthogonal drawing, (c) a rectan-
gular drawing, and (d) a box-rectangular drawing.

An orthogonal drawing of a plane graph G is called a rectangular drawing
of G if each edge of G is drawn as a straight line segment without bends and the
contour of each face of G is drawn as a rectangle, as illustrated in Fig. 1(c). Since
a rectangular drawing has practical applications in VLSI floorplanning, much
attention has been paid to it [KK84, L90]. However, not every plane graph has a
rectangular drawing. A necessary and sufficient condition for a plane graph G to
have a rectangular drawing is known [T84], and several linear-time algorithms
to find a rectangular drawing of G are also known [KH97, RNN98a].

Thus a box-orthogonal drawing is a generalization of an orthogonal drawing,
while an orthogonal drawing is a generalization of a rectangular drawing. Hence
an orthogonal drawing is an intermediate of a box-orthogonal drawing and a
rectangular drawing. In this paper we introduce a new style of drawings as
another intermediate of the two drawing styles. The new style is called a box-
rectangular drawing and is formally defined as follows.

A box-rectangular drawing of a plane graph G is a drawing of G on an integer
grid such that each vertex is drawn as a (possibly degenerated) rectangle, called
a box, and the contour of each face is drawn as a rectangle, as illustrated in
Fig. 1(d). If G has multiple edges or a vertex of degree 5 or more, then G
has no rectangular drawing but may have a box-rectangular drawing. However,



252 Md. Saidur Rahman et al.

not every plane graph has a box-rectangular drawing. We will see in Section 2
that box-rectangular drawings have beautiful applications in floorplanning of
MultiChip Modules (MCM) and in architectural floorplanning.

In this paper we establish a necessary and sufficient condition for the exis-
tence of a box-rectangular drawing of a plane graph, and give a linear-time al-
gorithm to find a box-rectangular drawing if it exists. The sum of the width and
the height of an integer grid required by a box-rectangular drawing is bounded
by m + 2, where m is the number of edges in a given graph.

The rest of the paper is organized as follows. Section 2 describes some appli-
cations of box-rectangular drawings. Section 3 introduces some definitions and
presents preliminary results. Section 4 deals with box-rectangular drawings of
G for a special case where some vertices of G are designated as corners of the
rectangle corresponding to the contour of the outer face. Section 5 deals with
the general case where no vertex is designated as a corner.

2 Applications of Box-Rectangular Drawings

In this section we mention some applications of box-rectangular drawings.
As mentioned in Section 1, rectangular drawings have practical applications

in VLSI floorplanning. In a VLSI floorplanning problem, an input is a plane
graph F as illustrated in Fig. 2(a); F represents the functional entities of a
chip, called modules, and interconnections among the modules; each vertex of F
represents a module, and an edge between two vertices of F represents the inter-
connections between the two corresponding modules. An output of the problem
for the input graph F is a partition of a rectangular chip area into smaller rect-
angles as illustrated in Fig. 2(d); each module is assigned to a smaller rectangle,
and furthermore, if two modules have interconnections, then their corresponding
rectangles must be adjacent, that is, must have a common boundary.
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Fig. 2. Floorplanning by a rectangular drawing.

A conventional floorplanning algorithm using rectangular drawings is out-
lined as follows. First, obtain a graph F ′ by triangulating all inner faces of F
as illustrated in Fig. 2(b), where dotted lines indicate new edges added to F .
Then obtain a dual-like graph G of F ′ as illustrated in Fig. 2(c), where the four
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vertices of degree 2 drawn by white circles correspond to the four corners of the
rectangular chip area. Finally, by finding a rectangular drawing of G, obtain a
possible floorplan for F as illustrated in Fig. 2(d).

In the conventional floorplan above, two rectangles are always adjacent if the
modules corresponding to them have interconnections. However, two rectangles
may be adjacent even if the modules corresponding to them have no interconnec-
tions. For example, module e and module f have no interconnection in Fig. 2(a),
but their corresponding rectangles are adjacent in the floorplan in Fig. 2(d).
Such unwanted adjacencies are not desirable in some other floorplanning prob-
lems. In floorplanning of a MultiChip Module (MCM), two chips generating
excessive heat should not be adjacent, or two chips operating on high frequency
should not be adjacent to avoid malfunctioning due to their interference [S95].
Unwanted adjacencies may cause a dangerous situation in some architectural
floorplanning, too [FW74]. For example, in a chemical industry, a processing
unit that deals with poisonous chemicals should not be adjacent to a cafeteria.

We can avoid the unwanted adjacencies if we obtain a floorplan for F by
using a box-rectangular drawing instead of a rectangular drawing, as follows.
First, without triangulating the inner faces of F , find a dual-like graph G of
F as illustrated in Fig. 3(b). Then, by finding a box-rectangular drawing of G,
obtain a possible floorplan for F as illustrated in Fig. 3(c). In Fig. 3(c) rectangles
e and f are not adjacent although there is a dead space corresponding to a vertex
of G drawn by a rectangular box. Such a dead space to separate two rectangles
in floorplanning is desirable for dissipating excessive heat in an MCM or for
ensuring safety in a chemical industry.
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Fig. 3. Floorplanning by a box-rectangular drawing.

3 Preliminaries

In this section we give some definitions and present preliminary results.
Throughout the paper we assume that a graph G is a so-called multigraph

which has no self loops but may have multiple edges, i.e., edges sharing both
ends. If G has no multiple edges, then G is called a simple graph. We denote the
set of vertices of G by V (G), and the set of edges of G by E(G). Let n = |V (G)|
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and m = |E(G)|. The degree of a vertex v, denoted by d(v), is the number of
edges incident to v in G. We denote the maximum degree of a graph G by ∆(G)
or simply by ∆.

A cycle C is an alternating sequence v0, e0, v1, e1, · · · , el−1, vl(= v0) of vertices
and edges where ei = vivi+1 for each i and all edges e0, e1, · · · , el−1 are distinct
each other. If no vertex appears twice or more on C, then C is called a simple
cycle. Thus a pair of multiple edges is a simple cycle. We hereafter call a simple
cycle a cycle unless otherwise specified.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding in the plane. A plane
graph G divides the plane into connected regions called faces. The unbounded
region is called the outer face. We regard the contour of a face as a cycle formed
by the edges on the boundary of the face. We denote the contour of the outer
face of G by Co(G).

Let G be a plane connected graph. For a cycle C in G, we denote by G(C)
the plane subgraph of G inside C (including C). An edge which is incident to
exactly one vertex of a cycle C and located outside of C is called a leg of C, and
the vertex of C to which the leg is incident is called a leg-vertex of C. A cycle
C in G is called a k-legged cycle if C has exactly k legs. We say that cycles C
and C′ in a plane graph G are independent if G(C) and G(C′) have no common
vertex. A set S of cycles is independent if any pair of cycles in S are independent.

We often use the following operation on a plane graphG [O67]. Let v be a ver-
tex of degree d in a plane graph G, let e1 = vw1, e2 = vw2, · · · , ed = vwd be the
edges incident to v, and assume that these edges e1, e2, · · · , ed appear clockwise
around v in this order. Replace v with a cycle v1, v1v2, v2, v2v3, · · · , vdv1, v1, and
replace the edges vwi with viwi for i = 1, 2, · · · , d. We call the operation above
the replacement of a vertex by a cycle. The cycle v1, v1v2, v2, v2v3, · · · , vdv1, v1 in
the resulting graph is called the replaced cycle corresponding to vertex v of G.

We often construct a new graph from a graph as follows. Let v be a vertex
of degree 2 in a connected graph G. We replace the two edges u1v and u2v
incident to v with a single edge u1u2, and delete v. We call the operation above
the removal of a vertex of degree 2 from G.

The width and the height of a rectangular drawing D of G is the width
and the height of the rectangle corresponding to Co(G). The following result on
rectangular drawings is known.

Lemma 1. Let G be a connected plane graph such that all vertices have degree
3 except four vertices of degree 2 on Co(G). Then G has a rectangular drawing if
and only if G has none of the following three types of cycles [T84]: (r1) 1-legged
cycles, (r2) 2-legged cycles which contain at most one vertex of degree 2, and
(r3) 3-legged cycles which contain no vertex of degree 2. Furthermore one can
check in linear time whether G satisfies the condition above, and if G does then
one can find a rectangular drawing of G in linear time. The sum of the width
and the height of the produced rectangular drawing is bounded by n

2 , where n is
the number of vertices in G [RNN98a]. ✷
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We now give some definitions regarding box-rectangular drawings. We say
that a vertex of graph G is drawn as a degenerated box in a box-rectangular
drawing D if the vertex is drawn as a point in D. We often call a degenerated
box in D a point and call a non-degenerated box a real box. We call the rectangle
corresponding to Co(G) the outer rectangle, and we call a corner of the outer
rectangle simply a corner. A box in D containing at least one corner is called a
corner box. A corner box may be degenerated. The width of a box-rectangular
drawing D is the width of the outer rectangle. The height of D is defined in a
similar manner.

If n = 1, that is, G has exactly one vertex, then the box-rectangular drawing
of G is trivial; the drawing is just a degenerated box corresponding to the vertex.

Thus in the rest of the paper, we may assume that n ≥ 2. We now have the
following four facts and a lemma.

Fact 31 Any corner box in a box-rectangular drawing contains either one or two
corners. ✷

Fact 32 Any box-rectangular drawing has either two, three, or four corner boxes.
��

Fact 33 In a box-rectangular drawing D of G, any vertex v of degree 2 or 3
satisfies the following (i), (ii) or (iii). (i) Vertex v is drawn as a point containing
no corner; (ii) v is drawn as a corner box containing exactly one corner; and
(iii) v is drawn as a real (corner) box containing exactly two corners. ✷

Fact 34 In a box-rectangular drawing D of G, every vertex of degree 5 or more
is drawn as a real box. ✷

Lemma 2. If G has a box-rectangular drawing, then G has a box-rectangular
drawing in which every vertex of degree 4 or more is drawn as a real box. ✷

The choice of vertices as corner boxes plays an important role in finding
a box-rectangular drawing. For example, the graph in Fig. 4(a) has a box-
rectangular drawing if we choose vertices a, b, c and d as corner boxes as il-
lustrated in Fig. 4(g). However, the graph has no box-rectangular drawing if
we choose vertices p, q, r and s as corner boxes. If all vertices corresponding to
corner boxes are designated for a drawing, then it is rather easy to determine
whether G has a box-rectangular drawing with the designated corner boxes. We
deal this case in Section 4. In Section 5 we deal with the general case where no
vertex of G is designated as corner boxes.

4 Box-Rectangular Drawing with Designated Corner
Boxes

In this section we establish a necessary and sufficient condition for the existence
of a box-rectangular drawing of a plane graph G when all vertices of G corre-
sponding to corner boxes are designated, and we also give a simple linear-time
algorithm to find such a box-rectangular drawing of G if it exists.
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By Fact 32, any box-rectangular drawing has either two, three or four corner
boxes. In Section 4.1 we consider the case where exactly four vertices are des-
ignated as corner boxes, and in Section 4.2 we consider the case where two or
three vertices are designated as corner boxes.

4.1 Drawing with Exactly Four Designated Corner Boxes

In this section we assume that exactly four vertices a, b, c and d in a given plane
graph G are designated as corner boxes. We construct a new graph G′′ from
G through an intermediate graph G′, and reduce the problem of finding a box-
rectangular drawing of G with four designated vertices to a problem of finding a
rectangular drawing of G′′.

A plane graph having a vertex of degree 1 has no box-rectangular drawing.
Also, a plane graph having a cycle with exactly one leg-vertex has no box-
rectangular drawing. Thus we may assume that our input plane graph G has no
vertex of degree 1 and has no cycle with exactly one leg-vertex.

We first construct G′ from G as follows. If a vertex of degree 2 in G, as
vertex d in Fig. 4(a), is a designated vertex, then it is drawn as a corner point
in a box-rectangular drawing of G. On the other hand, if a vertex of degree 2, as
vertex t in Fig. 4(a), is not a designated vertex, then it is drawn as a point on a
vertical or horizontal line segment corresponding to the two edges incident to it,
as illustrated in Fig. 4(g). Thus we remove all non-designated vertices of degree
2 one by one from G. The resulting graph is G′. Thus all vertices of degree 2
in G′ are designated vertices. Note that some new multiple edges may appear
in G′. Clearly G has a box-rectangular drawing with the four designated corner
boxes if and only if G′ has a box-rectangular drawing with the four designated
corner boxes. Fig. 4(a) illustrates a plane graph G with four designated vertices
a, b, c and d, and Fig. 4(b) illustrates G′. Fig. 4(f) illustrates a box-rectangular
drawing D′ of G′, and Fig. 4(g) illustrates a box-rectangular drawing D of G.

Since every vertex of degree 2 in G′ is a designated vertex, it is drawn as
a (corner) point in any box-rectangular drawing of G′. Every designated vertex
of degree 3 in G′, as vertex a in Fig. 4(b), is drawn as a real box since it is
a corner. On the other hand, every non-designated vertex of degree 3 in G′ is
drawn as a point. These facts together with Lemma 2 imply that if G′ has a
box-rectangular drawing then G′ has a box-rectangular drawing D′ in which all
designated vertices of degree 3 and all vertices of degree 4 or more in G′ are
drawn as real boxes.

We now construct G′′ from G′. Replace by a cycle each of the designated
vertices of degree 3 and the vertices of degree 4 or more, as illustrated in Fig. 4(c).
The replaced cycle corresponding to a designated vertex x of degree 3 or more
contains exactly one edge, say ex, on the contour of the outer face, where x =
a, b, c or d. Put a dummy vertex x′ of degree 2 on ex. The resulting graph is G′′.
We let x′ = x if a designated vertex x has degree 2. (See Fig. 4(d).) Now G′′

has exactly four vertices a′, b′, c′, and d′ of degree 2 on Co(G′′), and all other
vertices have degree 3.

We now have the following theorem.
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Theorem 1. Let G be a connected plane graph with four designated vertices
a, b, c and d on Co(G), and let G′′ be the graph transformed from G as mentioned
above. Then G has a box-rectangular drawing with four corner boxes correspond-
ing to a, b, c and d if and only if G′′ has a rectangular drawing.

Proof. Necessity. Assume that G has a box-rectangular drawing with the four
designated vertices a, b, c and d as corner boxes. Then by Fact 33 and Lemma 2
G has a box-rectangular drawing D in which all designated vertices of degree
3 and all vertices of degree 4 or more are drawn as real boxes, as illustrated in
Fig. 4(g). The drawing D immediately yields a box-rectangular drawing D′ of
G′, and D′ immediately gives a rectangular drawing D′′ of G′′.

Sufficiency. Assume that G′′ has a rectangular drawing D′′ as illustrated in
Fig. 4(e). In D′′, each replaced cycle is drawn as a rectangle, since it is a face in
G′′. Furthermore, the four vertices a′, b′, c′ and d′ of degree 2 in G′′ are drawn
as corners of the rectangle corresponding to Co(G′′). Therefore, D′′ immediately
gives a box-rectangular drawing D′ of G′ having the four vertices a, b, c and d as
corner boxes, as illustrated in Fig. 4(f). Then, inserting non-designated vertices
of degree 2 on horizontal or vertical line segments in D′, one can immediately
obtain from D′ a box-rectangular drawing D of G having the designated vertices
a, b, c and d as corner boxes, as illustrated in Fig. 4(g). ��

We now have the following theorem.

Theorem 2. Given a plane graph G with m edges and four designated vertices
a, b, c and d on Co(G), one can determine in O(m) time whether G has a box-
rectangular drawing with a, b, c and d as corner boxes, and if G has, then one
can find a box-rectangular drawing of G in O(m) time. The sum of the width
and the height of a produced box-rectangular drawing of G is bounded by m + 2.

Proof. Time Complexity. Clearly one can construct G′′ from G in time O(m). G′′

is a connected plane graph such that all vertices have degree 3 except vertices a′,
b′, c′ and d′ of degree 2. Therefore, by Lemma 1 one can determine in linear time
whether G′′ has a rectangular drawing or not and find a rectangular drawing D′′

of G′′ if it exists. One can easily obtain a box-rectangular drawing D of G from
D′′ in linear time.

Grid size. Let n2 be the non-designated vertices of degree 2 in G. Let n′ =
|V (G′)| and m′ = |E(G′)|. Then m′ = m−n2. We replace some vertices of G′ by
cycles and add at most 4 dummy vertices to construct G′′ from G′. Therefore G′′

has at most 2m′+4 vertices. From Lemma 1, the sum of the width and the height
of the produced rectangular drawing of G′′ is bounded by 2m′+4

2 = m′ + 2. Now
the insertion of a vertex of degree 2 on a horizontal line segment or a vertical
line segment increases the width or the height of the box-rectangular drawing
by at most one. Thus the sum of the width and the height of the produced box-
rectangular drawing of G is bounded by m′ + 2 + n2 = m + 2. ��

There are infinitely many cycles with four designated vertices for which the
sum of the width and the height of any box-rectangular drawing of the cycles is
m − 2.
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Fig. 4. Illustration of G, G′, G′′, D′′, D′ and D.

4.2 Drawing with Two or Three Designated Corner Boxes

If two or three vertices in G are designated as corner boxes and no other vertex
can be a corner box, then we can easily reduce this case to the case where
exactly four vertices are designated as corner boxes. The details are omitted in
this extended abstract.

5 Box-Rectangular Drawing with No Designated Corner
Boxes

In this section we consider the general case where no vertex of G is designated
as a corner box.
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By Fact 32 there are either two, three or four corner boxes in any box-
rectangular drawing of G. Therefore, considering all combinations of two, three
and four vertices on Co(G) as corner boxes and applying the algorithm in the
previous section for each of the combinations, one can determine whether G has
a box rectangular drawing. Such a straightforward method requires time O(n5)
since there are O(n4) combinations and the algorithm in Section 4 can examine
in time O(n) whether G has a box-rectangular drawing for each of them. In this
section we first establish a necessary and sufficient condition for the existence of
a box-rectangular drawing of G when no vertex is designated as a corner box,
and then show that the characterization leads to a linear-time algorithm.

In Section 5.1, we first derive a necessary and sufficient condition for a plane
graph G with the maximum degree ∆ ≤ 3 to have a box-rectangular drawing,
and then give a linear-time algorithm to obtain a box-rectangular drawing of
such a plane graph G if it exists. In Section 5.2 we give a linear-time algorithm
for a plane graph G with the maximum degree ∆ ≥ 4 by modifying the algorithm
in Section 5.1.

5.1 Box-Rectangular Drawing of G with ∆ ≤ 3.

Let G be a plane graph with the maximum degree at most 3. As in Section 4,
we can assume that G is connected and has neither a vertex of degree 1 nor a
1-legged cycle. The following theorem is a main result of Section 5.1.

Theorem 3. A plane connected graph G with ∆ ≤ 3 has a box-rectangular
drawing if and only if G satisfies the following two conditions: (br1) every 2-
legged or 3-legged cycle in G contains an edge on Co(G); and (br2) any set S of
independent cycles in G satisfies 2 · |S2|+ |S3| ≤ 4, where S2 is the set of 2-legged
cycles in S and S3 is the set of 3-legged cycles in S. ✷

Before proving the necessity of Theorem 3, we observe the following fact.

Fact 51 In a box-rectangular drawing D of G, any 2-legged cycle of G contains
at least two corners, any 3-legged cycle of G contains at least one corner, and
any cycle with four or more legs may contain no corner. ✷

We now prove the necessity of Theorem 3.
Necessity of Theorem 3. Assume that G has a box-rectangular drawing D.
By Fact 51 any 2-legged or 3-legged cycle in D contains a corner, and hence
contain an edge on Co(G).

Let S be any set of independent cycles in G. Then by Fact 51 any 2-legged
cycle in S contains at least two corners and any 3-legged cycle in S contains at
least one corner. Since all these cycles in S are independent, they are vertex-
disjoint each other. Therefore there are at least 2 · |S2|+ |S3| corners in D. Since
there are exactly four corners in D, we have 2 · |S2|+ |S3| ≤ 4. ��

We give a constructive proof for the sufficiency of Theorem 3. Our proof,
which is omitted in this extended abstract, implies the following corollary.
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Corollary 1. A plane connected graph G with ∆ ≤ 3 has a box-rectangular
drawing if and only if G satisfies the following four conditions: (c1) every 2-
legged or 3-legged cycle in G contains an edge on Co(G); (c2) at most two 2-
legged cycles of G are independent each other; (c3) at most four 3-legged cycles
of G are independent of each other; and (c4) if G has a pair of independent
2-legged cycles C1 and C2, then {C1, C2, C3} is not independent for any 3-legged
cycle C3 in G, and neither G(C1) nor G(C2) has more than two independent
3-legged cycles of G. ✷

Using a method similar to ones in [RNN98a, RNN98b], one can determine
whether a given plane graph with ∆ ≤ 3 satisfies the conditions in Corollary 1 in
time O(m). If G satisfies the conditions in Corollary 1, then one can construct a
box-rectangular drawing of G in linear time, following the method described in
the constructive proof of the sufficiency of Theorem 3 and using the algorithm
in [RNN98a]. (We omit the proof in this extended abstract.) We, thus, have the
following theorem.

Theorem 4. Given a plane graph with the maximum degree ∆ ≤ 3, one can
determine in time O(m) whether G has a box-rectangular drawing or not, and
if G has, one can find a box-rectangular drawing of G in time O(m), where m
is the number of edges in G. The sum of the width and the height of a produced
box-rectangular drawing is bounded by m + 2. ✷

5.2 Box-Rectangular Drawings of Graphs with ∆ ≥ 4.

In this section we give a necessary and sufficient condition for a plane graph
with ∆ ≥ 4 to have a a box-rectangular drawing when no vertex is designated
as corner boxes.

Let G be a plane connected graph with ∆ ≥ 4. We first transform G into a
graph H with ∆(H) ≤ 3, and then obtain a box-rectangular drawing of G by ap-
plying the algorithm in section 5.1 to H with appropriately choosing designated
vertices.

We construct H from G by replacing each vertex v of degree four or more in
G by a cycle. Each replaced cycle corresponds to a real box in a box-rectangular
drawing. We do not replace a vertex of degree 2 or 3 by a cycle since such a
vertex may be drawn as a point by Fact 33. Thus ∆(H) ≤ 3. We now have the
following theorem.

Theorem 5. Let G be a connected plane graph with no vertex of degree 1, and
let H be the graph transformed from G as above. Then G has a box-rectangular
drawing if and only if H has a box-rectangular drawing. ✷

It is rather easy to prove the necessity of Theorem 5; one can easily transform
any box-rectangular drawing of G to a box-rectangular drawing of H . On the
other hand, it is not trivial to prove the sufficiency. However, we give a method
to find a box-rectangular drawing of G in linear time if H has a box-rectangular
drawing. The detail is omitted in this extended abstract.
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