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SEMI-PARAMETRIC ESTIMATION OF GENERALIZED PARTIALLY

LINEAR SINGLE-INDEX MODELS

Yingcun Xia

Department of Zoology, University of Cambridge, UK

Wolfgang Härdle

CASE-Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin

One of the most difficult problems in applications of semiparametric generalized par-
tially linear single-index model (GPLSIM) is the choice of pilot estimators and complexity
parameters which may result in radically different estimators. Pilot estimators are often
assumed to be root-n consistent, although they are not given in a constructible way. Com-
plexity parameters, such as a smoothing bandwidth are constrained to a certain speed,
which is rarely determinable in practical situations.
In this paper, efficient, constructible and practicable estimators of GPLSIMs are

designed with applications to time series. The proposed technique answers two questions
from Carroll et al. (1997): no root-n pilot estimator for the single index part of the
model is needed and complexity parameters can be selected at the optimal smoothing
rate. The asymptotic distribution is derived and the corresponding algorithm is easily
implemented. Examples from real data sets (credit-scoring and environmental statistics)
illustrate the technique and the proposed methodology of minimum average variance
estimation (MAVE).

Key words and phrases: Asymptotic distribution; Generalized partially linear model;

Local linear smoother; Optimal consistency rate; Single-index model.

1. Introduction. Although the presence of nonlinearities in statistical data analysis

is often modelled with non- and semi-parametric methods, there are still few noncritical

semiparametric techniques. One argument that has been advanced is that - despite a re-

duction in dimensionality - the practical estimation still depends heavily on pilot estimators

and complexity parameters. Another argument against finely tuned semiparametrics is that

mathematical tools for inferential decisions and software implementations are either missing

or not readily accessible. The purpose of this paper is to show that such critiques may be

refuted even for the very flexible class of Generalized Partially Linear Single Index Models

(GPLSIM):

y = βT
0 Z + g(θT0 X) + ε, (1.1)
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where E(ε|X,Z) = 0 almost surely, β0 and θ0 (with ‖θ0‖ = 1) are unknown parameters, g(·)
is an unknown link function. The GPLSIM (1.1) was first analyzed by Carroll et al. (1997)

and contains the single-index models (β0 ≡ 0), generalized partially linear models (X one

dimensional and y observed logits), generalized linear models (β0 ≡ 0 and g known) and of

course the linear model (for g ≡ 0). Component identification of a more general model is

investigated recently by Samarov et al. (2002). The advantage of the GPLSIM lies in its

generality and its flexibility. The wide spread application of GPLSIMs though is somewhat

obstructed by the facts described above: necessity of pilot estimators for θ0 and complexity

parameters such as bandwidths (to estimate the link function g).

The issue of the order of magnitude of the complexity parameter was addressed in Carroll

et al. (1997, eqn.(18), p.483). The convenience of a root-n pilot estimator for θ0 was employed

in Härdle, Hall and Ichimura (1993) but was found to severely influence the final estimate. In

practical application, these two important questions will be addressed in this paper: we will

show that a simple multi-dimensional kernel estimator suffices to ensure root-n consistency

of the parametric parts of (1.1) and that no under-smoothing is required for the proposed

algorithm. In addition, we contribute to the theory of GPLSIMs by allowing the observations

to be time series with weak mixing properties.

One motivation of our work comes from credit scoring and the study of nonlinear effects

in retail banking. Another motivation comes from the analysis of circulatory and respiratory

problems in Hong Kong and the study of the complicated effect of weather conditions on the

health problems. Credit Scoring methods are designed to asses risk measures for potential

borrowers, companies etc. Typically, the scoring is reduced to a classification or (quadratic)

discriminant analysis problem, see Henley and Hand (1996) and Arminger et al. (1997).

The credit data set of Müller and Rönz (2000) consists of 6180 cases with 8 metric variables

(x2, · · · , x9) and 15 categorical explanatory variables (x10, · · · , x24). The response variable y

was = 0 or 1 on a rating scale {0, 1}. There were 372 cases with a y value of 1. A scatterplot

matrix of the observations (x2, x3, x4, x5) is given in Figure 1.

The distribution of the variable y (black points in Figure 1) shows a clear nonlinear

structure and speaks therefore against a linear discriminant analysis. A logit model

logit{P (y = 1|X,Z)} = βT
0 Z + θT0 X (1.2)

(also of linear structure) shows clear nonlinearity in the residuals, see Müller and Rönz (2000).

Here X denotes the vector of metric variables and Z the vector of categorical variables.

Müller and Rönz (2000) therefore applied a partially linear approach as in Severini and
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Figure 1: Scatterplots: variables x2 to x5, observations corresponding to y = 1 are emphasized in
black.
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Figure 2: Marginal dependency. Thicker bullets correspond to more observations in a class. The
lines are local linear smoothers.

Staniswalis (1994) by replacing one linear term in (1.2) operating on the metric variable x5

by a nonparametric function g(x5) as shown in Figure 2.

We partition the range of x4 (or x5) into 50 intervals with equal lengths. We cluster

the observations with x4 (or x5) in the same interval as one class. We calculate the relative

frequencies p̂ for y = 1. In Figure 2, the variable x4 (or x5) is plotted against the logit(p̂) =

log(p̂/(1 − p̂)). Using bootstrap, the nonlinearity was tested and found to be significant.

The question of how to integrate further nonlinear influences by the other metric variables

was analyzed in Müller and Rönz (2000) at a multidimensional kernel regression (e.g. on

(x4, x5), see Figure 5.6 in their article) and found to be too difficult to implement due to the

high dimensional kernel smoothing. The technique that we develop here will make it possible

to overcome the dimensionality issue and indicate nonlinear influences on the logits via the

GPLSIM.

The other motivation of this research comes from the investigation of the number of daily
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hospital admissions of patients suffering from the circulatory and respiratory (CR) problems

in Hong Kong from 1994-1996. There is a jump in the numbers at the beginning of 1995

due to the additional hospital beds released to accommodate CR patients from the beginning

of 1995. We remove this jump by a simple kernel smoothing over time and denote the

remaining time series by yt. The pollutants and weather conditions might cause the CR

problems. The pollutants include sulphur dioxide (x1t, in µgm−3), nitrogen dioxide (x2t, in

µgm−3), respirable suspended particulates (x3t, in µgm−3) and ozone (x4t, in µgm−3), and

weather conditions include temperature (x5t, in
oC) and relative humidity (x6t, in %). It

is obvious that the higher the levels of air pollutants are, the stronger they tend to cause

health problems. Furthermore, simple kernel smoothing suggests that we can approximate

the relations between yt and the pollution levels linearly; see Figure 3. However, for the

other covariates such as temperature and humidity, the relations are unknown and might be

nonlinear. Figure 3 is simple regression analyses based on kernel smoothing. The relation of

yt with NO2 is almost linear, but the relation of yt with humidity is nonlinear and hard to

explain. To explore the relation between yt and air pollutants and weather conditions, we

may consider the following model

yt = βTZt + g(θTXt) + εt, (1.3)

where Zt consists of levels of pollutants and their lagged variables, and Xt consists of weather

conditions and their lagged variables.
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Figure 3: The first and third panels are the plots of daily y against NO2 and humidity respectively.
In the second and fourth panels, the central lines are kernel smoothers of y on NO2 and humidity
respectively, the upper and lower lines are the corresponding 95% pointwise confidence intervals.

Before we present our estimation method, we briefly summarize the current four main

critiques on the estimations of model (1.1) or its special cases. (1) Heavy computational

burden: see, for example, Härdle et al., Carroll et al. (1997), Xia and Li (1999) and Xia

et al. (1999). These methods include complicated optimization techniques and no simple

algorithm is available up to now. (2) Strong restrictions on link functions or design of

covariates: Li (1991) required symmetric distribution of the covariate; Härdle and Stoker
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(1989) and Hristache et al. (2001a) required that |Eg ′(θT0 X)| is away from 0. If these

conditions are violated, their methods cannot obtain useful estimators. (3) Inefficiency: The

method of Härdle and Stoker (1989) and the method of Hristache et al. (2001a, 2001b) are

not asymptotically efficient in the semi-parametric sense. (4) Under-smoothing: Most of the

methods mentioned above require a bandwidth that is much smaller than the data-driven

bandwidth in order to allow the estimator of the parameters to achieve root-n consistency,

i.e. under-smoothing the link function is needed; see, Härdle and Stoker (1989) and Hristache

et al. (2001a, 2001b), Hall (1989) and Carroll et al. (1997) among others. More discussions

on the selection of bandwidth for the partially linear model can be found in Linton (1995).

In this paper we present the minimum average variance estimation (MAVE) method that will

provide a remedy to these four weak points.

2. Estimation method. The basic algorithm for estimating the parameters in (1.1) is

based on observing that

(β0, θ0) = argmin
β,θ

E
[

y − {βTZ + g(θTX)}
]2

(2.1)

subject to θT θ = 1. By conditioning on ξ = θTX, we see that (2.1) equals Eξσ
2
β,θ(ξ) where

σ2β,θ(ξ) = E
[(

y − {βTZ + g(ξ)}
)2∣
∣

∣
θTX = ξ

]

.

It follows that

E
[

y − {βTZ + g(θTX)}
]2

= Eξσ
2
β,θ(θ

TX).

Therefore, minimization (2.1) is equivalent to ,

(β0, θ0) = argmin
β,θ

Eξσ
2
β,θ(ξ) (2.2)

subject to θT θ = 1. Let {(Xi, Zi, yi) i = 1, 2, · · · , n} be a sample from (X,Z, y). The

conditional expectation in (2.2) is now approximated by the sample analogue. For Xi close

to x, we have the following local linear approximation

yi − βT
0 Z − g(θT0 Xi) ≈ yi − βT

0 Zi − g(θT0 x)− g ′(θT0 x)X
T
i0θ0,

where Xi0 = Xi−x. Following the idea of local linear smoothing, we may estimate σ2
β,θ(θ

Tx)

by

σ̂2β,θ(θ
Tx) = min

a,d

n
∑

i=1

{

yi − βTZi − a− dXT
i0θ
}2
wi0. (2.3)
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Here, wi0 ≥ 0, i = 1, 2, · · · , n, are some weights with
∑n

i=1wi0 = 1, typically centering at x.

Let Xij = Xi −Xj . By (2.2) and (2.3), our estimation procedure is to minimize

1

n

n
∑

j=1

G(θTXj)In(Xj)
n
∑

i=1

{

yi − βTZi − aj − djX
T
ijθ
}2
wij (2.4)

with respect to (aj , dj) and (β, θ), where G(·) is another weight function that controls the

contribution of (Xj , Zj , yj) to the estimation of β and θ. For example, when the model is

assumed to be heteroscedastic and V ar(y|X,Z) = V (θT0 X), then G(.) = V (.); see Härdle et

al. (1993) and Carroll et al. (1997). In(x) is employed here for technical purpose to handle

the boundary points. It is given in the next section. See also Härdle et al. (1993). For

simplicity, we can take In(·) = 1 in practice. We call the estimation procedure the minimum

average (conditional) variance estimation (MAVE) method. Minimizing (2.4) is a typical

quadratic programming and can be solved easily. Next, we give a GPLSIM algorithm. Given

(β, θ), we have

(

aj
dj

)

=

{

n
∑

i=1

wij

(

1
XT

ijθ

)(

1
XT

ijθ

)T
}−1 n

∑

i=1

wij

(

1
XT

ijθ

)

(yi − βTZi). (2.5)

Given (aj , dj), we calculate

(

β
θ

)

=







n
∑

j=1

G(θTXj)In(Xj)
n
∑

i=1

wij

(

Zi

djXij

)(

Zi

djXij

)T






−1

×
n
∑

j=1

G(θTXj)In(Xj)

n
∑

i=1

wij

(

Zi

djXij

)

(yi − aj) (2.6)

and standardize θ := θ/|θ|. Here and later, |γ| = (γTγ)1/2 for any vector γ. The minimization

in (2.4) can be solved by iterations between (2.5) and (2.6).

The choice of the weights wij plays an important role in different estimation methods.

See Xia et al. (2002) and Hristache et al. (2001a, 2001b). In this paper, we use two sets of

weights. Suppose H(·) and K(·) are a p-variate and a univariate density function respectively.

The first set of weights is wij = Hb,i(Xj)/
∑n

`=1Hb,`(Xj), where Hb,i(Xj) = b−pH(Xij/b)

and b is a bandwidth. This is a multivariate dimensional kernel weight. For this kind of

weights, we set In(x) = 1 if n−1
∑n

`=1Hb,`(x) > c0; 0 otherwise for some constant c0 > 0.

Iterating (2.5) and (2.6) until convergence, denote the estimators (i.e., the final values) of

θ and β by θ̃ and β̃ respectively. Because of the so-called “curse of dimensionality”, the

estimation based on this kind of weights is not efficient. However, the multivariate kernel
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weight can help us to find an appropriate initial step of the estimation. We then use single-

index kernel weights wθ
i,j = Kθ

h,i(θ
TXj)/

∑n
`=1K

θ
h,`(θ

TXj), where K
θ
h,i(v) = h−1K{(θTXi −

v)/h}, h is the bandwidth and θ is the previous estimate of θ0. Here, we take In(x) = 1 if

n−1
∑n

`=1K
θ
h,`(θ

Tx) > c0; 0 otherwise. Iterating (2.5) and (2.6) until convergence, denote

the estimators (i.e. the final values) of θ and β by θ̂ and β̂ respectively. After obtaining

estimates θ̂ and β̂, we can then estimate g(v) by the solution of aj in (2.5) with θTXj

replaced by v, denote the estimate by ĝ(v). A computer code for the above algorithm is

available at http : //www.hku.hk/statisics/paper.

The main results of this algorithm are: (1) A
√
n-consistent pilot estimator is not needed,

see Theorem 1 below. This solves the problems addressed in Carroll et al. (1997); (2)

Convergence of the GPLSIM algorithm is proved, see the proof of Theorem 1 in section 6;

(3) An “undersmooth bandwidth” is not needed, since the cross-validated bandwidth (for

a smoothing estimate of g) suffices. This makes the algorithm stable and frees it from

the audible critique on “the necessity of uncontrollable hyperparameters”; (4) Under some

assumptions, the estimators of the parameters is asymptotically efficient in semi-parametric

sense, see Carroll et al. (1997); and (5) The GPLSIM algorithm is applicable to time series.

This feature makes the technique widely applicable in nonlinear time series analysis.

Let U = (XT , ZT )T . Suppose {(Ui, yi), i = 1, · · · , n} is a set of observations. We make

the following assumptions on the stochastic nature of the observations, the link function and

the kernel functions.

(C1) The observations are a strongly mixing and stationary sequence with geometric decaying
mixing rate α(k).

(C2) With Probability 1, X lies in a compact set D; the marginal density functions f of X
and fθ of θTX for any |θ| = 1 have bounded derivatives; regions {x : f(x) ≥ c0} and
{x : fθ(θ

Tx) > c0} for all θ : |θ| = 1 are non-empty.

(C3) For any perpendicular unit norm vectors θ and ϑ, the joint density function f(u1, u2)
of (θTX,ϑTX) satisfies f(u1, u2) < cfθTX(u1)fϑTX(u2), where c is a constant.

(C4) g has bounded, continuous third order derivative; the conditional expectations E(Z|X =
x), E(ZZT |X = x), E(U |θTX = v) and E(UUT |θTX = v) have bounded derivatives;

E(yr|X = x), E(|Z|r|X = x), E(|Z`||Z1|
∣

∣

∣
X1 = x1, X` = x`) and E(|Z`||Z1|

∣

∣

∣
θTX1 =

u, θTX` = v) are bounded by a constant for all ` > 0, x1, x`, x, u and v, where r > 2.

(C5) H is a density function with bounded derivative and compact support {|x| ≤ a0} for
some a0 > 0; K is a symmetric density function with bounded derivative and compact
support [−b0, b0] for some b0 > 0 and that the Fourier transform of K is absolute
integrable.
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(C6) E{(Z − E(Z|X))(Z − E(Z|X))T } is a positive definite matrix.

The mixing rate in (C1) can be relaxed to algebraic rate α(k) = O(k−ρ). Suppose the

bandwidth h ∼ n−δ. Then the mixing rate satisfying the following equation is sufficient.

∞
∑

n=1

n−{
1
2
− 1

r
−δ( 1

2
+ 1

r
)}ρ+2p+1+ 1

r
+( 1
2
+ 1

r
)δ(log n)ρ/2 <∞.

The regions with positive densities in (C2) are needed to avoid zero values of the denominator

of kernel estimator of regression. There are different approaches for this purpose. See, e.g.

Härdle et al. (1993), Härdle and Stoker (1989) and Linton (1995). However, their ideas

are the same. We can further assume that c0 decreases to 0 with n at a slow speed, but

it makes no difference in practices. Assumption (C3) ensures successful searching for the

direction θ globally. If we restrict the searching area, the assumption can be removed; see

Härdle et al. (1993). The third order derivatives in (C4) is needed for higher order expansion.

Actually, existence of second order derivative is sufficient for the root-n consistency. In this

paper, we only employ kernel functions with compact support as in (C5). (C6) is imposed

for identification. Similarly, if we search for the direction θ in a small neighbour of θ0 as in

Härdle et al. (1993) and Carroll et al. (1997), (C6) can be removed.

Lemma 1. Let β̃ and θ̃ be the estimators based on the multi-dimensional kernel weight.

Suppose that (C1)-(C6) hold, b → 0 and nbp+2/ logn → ∞. If we start the estimation
procedure with θ such that θT θ0 6= 0, then

θ̃ − (±θ0) = oP (1), β̃ − β0 = oP (1),

where the sign before θ0 is determined in accordance with the sign of θ
T θ0.

Let µθ(x) = E(X|θTX = θTx), νθ(x) = E(Z|θTX = θTx), and for k = 0 and 2,

Wk = E
{

G(θT0 X)I(fθ0(θ
T
0 X) > c0)

(

Z − νθ0(X)
{±g ′(θT0 X)}{X − µθ0(X)}

)

×
(

Z − νθ0(X)
{±g ′(θT0 X)}{X − µθ0(X)}

)T

|ε|k
}

.

Theorem 1. Let (β̂, θ̂) be the estimators based on the single-index kernel weight starting

with (β, θ) = (β̃, θ̃). Suppose (C1)-(C6) hold, h ∼ n−δ with 1/6 < δ < min(1/4, 1− 2/r) and

that E{εi|(Xj , Zj , yj), j < i} = 0 almost surely. Then

n1/2
(

β̂ − β0
θ̂ − (±θ0)

)

D→ N(0,W−
0 W2W

−
0 ),

8



where W−
0 is the Moore-Penrose inverse of W0, the signs before θ0 and g ′ (in Wk, k = 0, 2)

are determined in accordance with the sign of θ̃T θ0. If further the density function fθ0(v) of

θT0 X is positive and the derivative of E(ε2|θT0 X = v) exists, then

(nh)1/2{ĝ(v)− g(v)− 1

2
κ2g

′′(v)h2} D→ N(0, f−1θ0
(v)

∫

(K(v))2dvE(ε2|θT0 X = v)),

where κ2 =
∫

K(v)v2dv.

If E{εi|(Xj , Zj , yj), j < i} 6= 0, then the asymptotic normal distribution still holds, but

the variance matrix in the distribution depends on the structure of the stochastic process of

the observations. If E(ε2|X,Z) = σ2 is constant, then the asymptotic distribution of (β̂, θ̂) is

the same as that obtained by Carroll et al. (1997). They further showed that their estimator

is efficient in the semiparametric sense under some mild conditions. Therefore our estimator

is also efficient in the semiparametric sense under the same conditions. Bandwidth selection is

always an important issue for nonparametric methods. One of the advantages of our method

is that we don’t need under-smoothing the link function when r > 2.5. Therefore, most

commonly used bandwidth selection methods can be employed here. Consider estimation of

g , i.e. aj (and dj), at the final step of the iterations. For a given function w(·) with compact

support, minimizing the asymptotic weighted mean squared error with weight fθ0(·)w(·) yields
the optimal global bandwidth

ho =

{

σ2
∫

w(u)du
∫

(K(u))2du

κ22
∫

g ′′(u)fθ0(u)w(u)du

}1/5

n−1/5.

See also the discussion in Carroll et al. (1997). Both the cross-validation bandwidth selection

method and the plug-in method can be used to obtain bandwidths that are asymptotically

consistent of ho.

4. Numerical Comparisons. In this section, we first use an example to demonstrate

the relation between estimation errors and the bandwidth. We then use the examples in

Härdle et al. (1993) and Carroll et al. (1997) to check the performance of our estimation

method for finite data sets. In our simulations, kernel functionsH(x) = 3(1−|x|2)I(|x| < 1)/4

and K(u) = 3(1− u2)I(|u| < 1)/4 are used.

Example 4.1. Consider the following model

yt = β01z1t + β02z2t + 2 exp{−3(θ01xt−1 + θ02xt−2 + θ03xt−3)
2}+ 0.5εt,

where xt = 0.4xt−1 − 0.5xt−2 + ut with ut, t = 1, 2, · · · , IID∼ Uniform(−1, 1); z1t and z2t, t =

1, 2, · · · are IID as binary distribution taking values 0 and 1 with probability 0.5 each; εt, t =

9



1, 2, · · · , IID∼ N(0, 1); and that {ut}, {z1t}, {z1t} and {εt} are independent series. Here, Zt =

(z1t, z2t)
T and Xt = (xt−1, xt−2, xt−3, · · · , xt−p)

T . The true parameters are β = (β01, β02)
T =

(1, 2)T and θ = (θ01, θ02, θ03, · · · , θ0p)T = (−2/3, 1/3, 2/3, 0, · · · , 0)T . We define the estimation

errors as eβ = (|β̂1−β01|+|β̂2−β02|)/2 and eθ = 1−|θ̂T θ0| for β̂ = (β̂1, β̂2)
T and θ̂ respectively.

With different dimension p, sample sizes and bandwidths, the logarithm of the average errors

(the solid lines) are shown in Figure 4 (the number of replications is 100). The vertical

lines are the corresponding average of cross-validation bandwidths. Figure 4 shows that the

estimation procedure works quite well and the cross-validation bandwidth is applicable to

the estimation of the parameters.
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Figure 4: Simulation results of Example 4.1. The solid lines are logarithms of the means of the
estimation errors from 100 replications; The vertical lines are means of corresponding cross-validation
bandwidths.

Example 4.2. Consider the following two models

y = 4{(x1 + x2 − 1)/
√
2}2 + 4 + 0.2ε, (4.1)

y = sin{π((x1 + x2 + x3)/
√
3−A)/(B −A)}+ βZ + 0.1ε, (4.2)

where x1, x2, x3 are independent uniformly distributed on [0, 1], A = 0.3912 and B = 1.3409.

Model (4.1) was used by Härdle et al. (1993), in which θ0 = (θ11, θ12)
T = (1/

√
2, 1/
√
2)T .

Model (4.2) was used by Carroll et al. (1997), in which θ0 = (θ21, θ22, θ23)
T = (1/

√
3, 1/
√
3,

1/
√
3)T . We start the simulation for model (4.1) with θ = (1, 3)T /

√
10 and model (4.2) with

θ = (0, 1, 2)T /
√
5. The cross-validation bandwidth is used. The number of replications is

100. With sample size n = 50, 100 and 200, the simulation results are listed in Table 1.

For model (4.1), the corresponding simulation results of φ = arccos(θ11) were 0.766(0.103),

0.792(0.084), 0.782(0.045) for n =50, 100 and 200 respectively in of Härdle et al. (1993).
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Our results outperform theirs. A possible reason is that minimizing the cross-validation

type of residuals was used to estimate the parameters in their paper, which reduces the

estimation efficiency. See Xia et al. (1999) for details. For model (4.2), the corresponding

simulation results of Carroll et al. (1997) for θ21, θ22 and θ23 were (1.4e-4), (1.6e-4) and

(1.3e-4) respectively when n = 200. Our results also improve theirs.

TABLE 1: Mean and mean squared error (in parentheses) of the estimated
parameters for models (4.1) and (4.2)

Model (4.1) Model (4.2)
n

θ11 θ12 φ = arccos(θ11) θ21 θ22 θ23 β
0.7117 0.6965 0.7746 0.5793 0.5727 0.5785 0.2967

50
(0.0040) (0.0045) (0.0918) (5.5e-4) (5.7e-4) (6.5e-4) (1.1e-3)

0.7074 0.7047 0.7835 0.5785 0.5780 0.5748 0.2972
100

(0.0015) (0.0015) (0.0541) (2.8e-4) (2.6e-4) (2.2e-4) (4.7e-4)

0.7071 0.7059 0.7845 0.5776 0.5770 0.5772 0.2992
200

(0.0008) (0.0008) (0.0403) (1.2e-4) (1.3e-4) (1.2e-4) (2.5e-4)

5. Real Data Analysis. Now we return to our real data sets in section 1. The

Epanechnikov kernel and the cross-validation bandwidths are used in the calculations.

Credit Scoring. We consider model (1.1) with all the covariates by taking Z = (x2, x3, x6,

x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24)
T , X = (x4, x5)

T

and assume E(ε2|X,Z) = σ2 is a constant. Here, x4 and x5 are standardized respectively

for ease of calculations. Applying the estimation procedure to the data set, we obtain the

estimates of the parameters as listed in table 2. See Müller and Rözn (2000) for more

explanations. The estimate of the unknown function is shown in the right panel of Figure 5.

The nonlinearity in x4 and x5, i.e. θ̂
TX = 0.249x4 + 0.969x5, is clear as shown in Figure 5.
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Figure 5: Estimation results of the credit scoring data. The left panel is y − β̂TZ plotted against
θ̂TX. The right panel is the estimated g and 95% symmetric pointwise confidence interval.
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Table 2. Estimation results of the Credit scoring data
variable coeff. S.E. variable coeff. S.E. variable coeff. S.E.
2 0.159 0.163 17#2 -1.718 0.472 20#3 -0.082 0.294
3 0.021 0.114 17#3 -1.211 0.433 20#4 0.263 0.251
6 -0.109 0.105 17#4 1.977 0.576 21#2 -2.194 0.683
7 -0.454 0.119 17#5 4.715 0.932 21#3 -1.490 0.363
8 0.189 0.120 17#6 -1.327 0.316 22#2 -1.102 0.582
9 0.032 0.091 18#2 2.145 0.528 22#3 -0.785 0.490

10#2 0.817 0.302 18#3 1.037 0.413 22#4 0.753 0.715
11#2 0.188 0.293 18#4 0.878 0.447 22#5 0.770 0.584
12#2 0.635 0.303 18#5 1.756 0.359 22#6 -3.837 0.957
13#2 -0.815 0.276 18#6 1.876 0.449 22#7 2.253 0.608
14#2 1.680 0.544 18#7 1.770 0.551 22#8 0.838 0.531
15#2 1.416 0.347 19#2 0.416 0.369 22#9 1.441 0.526
15#3 2.411 0.469 19#3 1.287 0.307 22#10 -1.519 1.199
15#4 3.247 0.520 19#4 -0.966 0.539 22#11 -0.644 0.510
15#5 2.782 0.617 19#5 1.343 0.673 23#2 0.087 0.350
15#6 0.987 0.374 19#6 1.691 0.465 23#3 0.787 0.499
16#2 0.214 0.476 19#7 0.992 0.539 24#2 1.717 0.612
16#3 0.680 0.431 19#8 -1.170 0.566 4 0.249 0.026
16#4 1.714 0.539 19#9 0.173 0.608 5 0.969 0.007
16#5 1.218 0.442 19#10 1.070 0.348
16#6 1.588 0.465 20#2 2.021 0.539 σ̂2 = 0.1589

Circulatory and respiratory problems in Hong Kong. Due to the hospital booking system,

the day-of-the-week can affect yt. We use dummy variables to describe the day of the t′th ob-

servation by a 6-dimension vector (Dt1, · · · , Dt6), where Dtk = 1 if the observation is taken on

the k′th day of a week; 0 otherwise. Together with lagged variables of pollutants and weather

conditions in one week, we take Zt = (Dt1, · · · , Dt6, x1,t−1, · · · , x1,t−7, x2,t−1, · · · , x2,t−7, x3,t−1,
· · · , x3,t−7, x4,t−1, · · · , x4,t−7)T andXt = (x5,t−1, · · · , x5,t−7, x6,t−1, · · · , x6,t−7)T in model (1.1).

Here, x1,t, · · · , x6,t are standardized. We further assume E(ε2t |Xt, Zt) = σ2 is a constant. By

the asymptotic distribution of the parameters, we remove the covariate with smallest t-values

in the estimated model one by one and re-estimate the model. Continue this procedure until

all the covariates have t-values larger than 1.8. We finally obtain the following model (the

values in the parentheses are the corresponding standard errors of the estimators)

yt = −0.3831Dt1 − 0.1728Dt2 − 0.5636Dt3 − 0.7399Dt4 − 1.0871Dt5 − 1.1562Dt6

(0.0942) (0.0943) (0.0945) (0.0947) (0.0946) (0.0942)

+0.0957x2,t−1 + ĝ(0.4257x5,t−2 − 0.6079x5,t−5 + 0.4974x6,t−4 + 0.4492x6,t−7).

(0.0287) (0.1576) (0.1104) (0.1745) (0.1475)

The estimated link function ĝ is shown in Figure 6.
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Based on this model, the effects of weather conditions on the CR problems are as follows.

The coefficients of temperatures x5,t−2 and x5,t−5 forms a contrast. Together with Figure

6, it suggests that a rapid temperature variation (rather than the temperature itself) will

increase the hospital admission yt. The coefficients of humidity x6,t−4 and x6,t−7 have about

the same value, which can be taken as an average. Together with Figure 6, it suggests that

extreme dry or wet weather will increase the hospital admission in Hong Kong.
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Figure 6: Estimation results for the circulatory and respiratory problems in Hong Kong. The left
panel is yt − β̂TZt plotted against θ̂TXt. The right panel is the estimated g and 95% symmetric
pointwise confidence interval.

6. Proofs. The basic tools are given in Lemmas A.1-A.3. Some simple calculation results

are listed in Lemmas A.4-A.6. Based on these Lemmas, Lemma 1 and Theorem 1 are proved.

For simplicity, we shall prove Theorem 1 for the case θ̃T θ0 > 0. The proof of Theorem 1 for

the other case (θ̃T θ0 < 0) is similar. Some differences in the proofs between these two cases

are addressed in the context. Let δθ = |θ− θ0|, δβ = |β − β0| and δγ = δθ + δβ . In a bounded

parameter space, δθ, δβ and δγ are bounded. Let δpn = {logn/(nbp)}1/2, τpn = b2 + δpn,

δn = {log n/(nh)}1/2, τn = h2 + δn and δ0n = (log n/n)1/2. By the condition h ∼ n−δ

with 1/6 < δ < 1/4, we have δ0n ¿ h2 ¿ h−1δn and δn ¿ h. We shall use these relations

frequently in our calculations. Let Θ = {θ : |θ| = 1}. Suppose An is a matrix. An = O(an) (or

o(an)) means every element in An is O(an) (or o(an)) almost surely. We adopt the consistency

in the sense of “almost surely” because we need to prove the convergence of the algorithm,

which theoretically need infinite iterations. Let c, c1, c2, · · · be a set of constants. For ease

of exposition, c may have different values at different places. We abbreviate Kh(θ
TXi0) and

Hb(Xi0) as K
θ
h,i(x) (or K

θ
h,i) and Hb,i(x) (or Hb,i) respectively in the following context. We

take G(·) ≡ 1 in the proofs for simplicity. We further assume that κ2
def
=
∫

K(v)v2 = 1

and H2
def
=
∫

H(U)UUTdU = Ip×p; otherwise we may take K(v) =: K(v/
√
κ2)/
√
κ2 and

H(U) =: H(H−1/22 U)(det(H2))
−1/2.
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Lemma A.1. Suppose that m1(θ, x, z) and ϕ(x, z, v) are measurable functions with

supθ∈ΘE|m1(θ, X, Z)|r <∞ for some r > 2 and supx,z |m1(θ, x, z)−m1(θ0, x, z)| < c|θ−θ0|.
Let ϕi = ϕ(Xi, Zi, yi). Assume supθ∈Θ,v E(|ϕi|r

∣

∣

∣
θTX = v) < ∞ and supθ∈Θ,u,v E(|ϕi

ϕ1|
∣

∣

∣
θTX1 = u, θTXi = v) < c for all i > 1. Let g(v) be any function with continu-

ous second order derivative, m(u, v) = g(u) − g(v) − g ′(v)(u − v) − g ′′(v)(u − v)2/2 and

ζk,`i = m(θT0 Xi, θ
T
0 x)z

k
i (θ

TXi0)
` where zi is any component of Zi, k = 0, 1 and ` = 0, 1. If

(C1) hold, then

sup
θ∈Θ

∣

∣

∣

1

n

n
∑

i=1

{m1(θ,Xi, Zi)− Em1(θ,Xi, Zi)}
∣

∣

∣
= O(δ0n),

sup
|θ−θ0|<an

∣

∣

∣

1

n

n
∑

i=1

{m1(θ,Xi, Zi)−m1(θ0, Xi, Zi)}εi
∣

∣

∣
= O(anδ0n),

where an → 0 as n→∞. If further (C2)-(C5) hold, h ∼ n−δ with 0 < δ < 1− 2/r, then

sup
x∈D

∣

∣

∣

1

n

n
∑

i=1

{Hb,iϕi − E(Hb,iϕi)}
∣

∣

∣
= O(δpn), sup

θ∈Θ
x∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iϕi − E(Kθ

h,iϕi)}
∣

∣

∣
= O(δn),

sup
|θ−θ0|<an

x∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iζ

k,`
i − E(Kθ

h,iζ
k,`
i )}

∣

∣

∣
= O{δnh`(a2n + h2)}.

Proof. The proofs of Lemma A.1 are quite standard; see, e.g. Härdle et al. (1988) and

Xia and Li (1999). We here give the details for the last two equations. Note that Θ⊗D ⊂ R
2p

is bounded. There are n2p balls Bnk centered at (θnk , xnk), 1 ≤ k ≤ n2p, with diameter less

then cn−1/2h3/2(> c/n), such that Θ⊗D ⊂ ∪1≤k≤n2pBnk . Then

sup
x∈D,θ∈Θ

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,i(x)ϕi − E(Kθ

h,i(x)ϕi)}
∣

∣

∣

≤ max
1≤k≤n2p

∣

∣

∣

1

n

n
∑

i=1

[

K
θnk
h,i (xnk)ϕi − E{Kθnk

h,i (xnk)ϕi}
]∣

∣

∣

+ max
1≤k≤n2p

sup
(θ,x)∈Bnk

∣

∣

∣

1

n

n
∑

i=1

[

{Kθ
h,i(x)−K

θnk
h,i (xnk)}ϕi

−E{(Kθ
h,i(x)−K

θnk
h,i (xnk))ϕi}

]∣

∣

∣

def
= max

1≤k≤n2p
|Rn,k,1|+ max

1≤k≤n2p
sup

(θ,x)∈Bnk

|Rn,k,2|. (6.1)

By assumption (C5), we have

max
1≤k≤n2p

x∈D

sup
(θ,x)∈Bnk

|Kθ
h,i(x)−K

θnk
h,i (xnk)| ≤ max

1≤k≤n2p

x∈D

sup
(θ,x)∈Bnk

ch−2(|θ − θnk |+ |x− xnk |)

≤ c(nh)−1/2.
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By the strong law of large numbers for dependent observations (see, e.g. Rio, 1995), we have

max
1≤k≤n2p

sup
(θ,x)∈Bnk

|Rn,k,2| ≤ c(nh)−1/2
1

n

n
∑

i=1

|ϕi| = O(δn). (6.2)

More clearly, we write h as hn. Let T` = {`/(h` log(`))}κ, where κ = 1/(2r − 2). Let

ϕo
i,` = ϕiI{|ϕi| ≥ T`} and ϕI

i,` = ϕi − ϕo
i,`. We have

Rn,k,1 =
1

n

n
∑

i=1

[

Kθ
h,i(x)ϕ

o
i − E{Kθ

h,i(x)ϕ
o
i }
]

+
1

n

n
∑

i=1

ξnk,i, (6.3)

where ξnk,i = K
θnk
h,i (xnk)ϕ

I
i − E{Kθnk

h,i (xnk)ϕ
I
i }.

It is easy to check that

∞
∑

`=1

(`/h`)
−1/2E|ϕo

`,`| ≤
∞
∑

`=1

(`/h`)
−1/2T−r+1

` E|ϕ`|r <∞.

Therefore (cf. Rao, 1973, p.111)

∞
∑

`=1

(`/h`)
−1/2|ϕo

`,`| <∞

almost surely. By the Kronecker lemma, we have

1

n

n
∑

`=1

E|ϕo
`,`| = O{(n/h)−1/2}, 1

n

n
∑

`=1

|ϕo
`,`| = O{(n/h)−1/2}.

Note that |ϕo
`,n| ≤ |ϕo

`,`| for all ` ≤ n, and |Kθnk
h,i (x)| < ch−1 by (C5). We have

max
1≤k≤n2p

1

n

n
∑

i=1

E|Kθnk
h,i (x)ϕ

o
i,n| = O{(nh)−1/2}, (6.4)

max
1≤k≤n2p

1

n

n
∑

i=1

|Kθnk
h,i (x)ϕ

o
i,n| = O{(nh)−1/2}. (6.5)

Next, we shall show

max
1≤k≤n2p

Var(
n
∑

i=1

ξnk,i) ≤ c1n/h. (6.6)

By stationarity in (C1), we have

Var(
n
∑

i=1

ξnk,i) = nVar(ξnk,i) + 2
n
∑

i=2

(n− i)Cov(ξnk,1, ξnk,i). (6.7)
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Let ϕ̃θnk
(u) = E(|ϕ(X,Z, y)|`

∣

∣

∣
θTnkX = u) and ϕ̃θnk

(u, v|i) = E(|ϕ1ϕi|
∣

∣

∣
θTnkX1 = u, θTnkXi = v).

By the conditions about ϕ in Lemma A.1 and assumption (C2), we have

L(`)
def
= E{(Kθnk

h,i (xnk))
`|ϕi|`}

≤ E{(Kθnk
h,i (xnk))

`E(|ϕi|`
∣

∣

∣
θTnkXi)}

= h−`

∫

(Kh(u− θTnkxnk))
`ϕ̃θnk

(u)fθTnkX
(u)du

= h−`+1

∫

(K(u))`ϕ̃θnk
(θTnkxnk + hu)fθTnkX

(θTnkxnk + hu)du

≤ ch−`+1, 0 ≤ ` ≤ r,

M(i)
def
= E

{

K
θnk
h,1 (xnk)K

θnk
h,i (xnk)|ϕ1ϕi|

}

≤ E
{

K
θnk
h,1 (xnk)K

θnk
h,i (xnk)E

(

|ϕ1ϕi|
∣

∣

∣
θTnkX1, θ

T
nk
Xi

)}

= h−2
∫

K{(u− θTnkxnk)/h}K{(v − θTnkxnk)/h}ϕ̃θnk
(u, v|i)fθTnkX1,θTnkXi

(u, v)dudv

=

∫

K(u)K(v)ϕ̃θnk
(θTnkxnk + hu, θTnkxnk + hv|i)

×fθTnkX1,θTnkXi
(θTnkxnk + hu, θTnkxnk + hv)dudv

≤ c

∫

K(u)K(v)ϕ̃θnk
(θTnkxnk + hu, θTnkxnk + hv|i)dudv ≤ c i = 2, 3, · · · ,

where fθTnkX
and fθTnkX1,θ

T
nk

Xi
are the density functions of θTnkX and (θTnkX1, θ

T
nk
Xi) respec-

tively. Therefore

Var(ξnk,i) ≤ L(2) ≤ c/h. (6.8)

By the Davydov’s lemma (Hall and Heyde, 1980, Corollary 2),

|Cov(ξnk,1, ξnk,i)| ≤ 8{α(i− 1)}1−2/r(E|ξnk,1|r)2/r

≤ 8{α(i− 1)}1−2/r{L(r)}2/r

≤ ch−2+2/r{α(i− 1)}1−2/r. (6.9)

Let N1 = INT (h(−1+2/r)/(2p)), where INT (v) denotes the integer part of v. From (6.7)-(6.9)

and assumption (C1), we have

Var(
n
∑

i=1

ξnk,i) = nVar(ξnk,i) + 2
(

N1
∑

i=2

+
n
∑

i=N1+1

)

(n− i)Cov(ξnk,1, ξnk,i)

≤ cn/h+ 2cn

N1
∑

i=2

M(i) + 2cnh−2+2/r
n
∑

i=N1+1

{α(i− 1)}1−2/r
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≤ cn/h+ 2cnN1 + 2cnh−2+2/rN−2p
1

n
∑

i=N1+1

i2p{α(i− 1)}1−2/r

≤ cn/h.

Note that c does not depend on k. Therefore (6.6) follows.

LetN2 = INT (n1/2−1/rh1/2+1/r(log n)−1/2) andN3 = INT (n/(2N2)). Then n = 2N2N3+

N0 and 0 ≤ N0 < 2N2. We write

Wnk(j) =

j·N2
∑

i=(j−1)N2+1

ξnk,i, j = 1, · · · , 2N2.

Then

n
∑

i=1

ξnk,i =

N3
∑

j=1

Wnk(2j − 1) +

N3
∑

j=1

Wnk(2j) + ST
n,0 , (6.10)

where ST
n,0 is the residual and has less than 2N2 terms. Its contribution is negligible.

For every η > 0, we use the strong approximation theorem of Bradley (1983) to approxi-

mate the random variablesWnk(1),Wnk(3), · · · ,Wnk(2j−1) by independent random variables

W ∗
nk
(1),W ∗

nk
(3), · · · ,W ∗

nk
(2j−1) defined as follows. By enlarging the probability space if nec-

essary, introduce a sequence (U1, U2, · · ·) of independent uniform [0, 1] random variables that

are independent of {Wnk(1), · · · ,Wnk(2j − 1)}. Define W ∗
nk
(0) = 0,W ∗

nk
(1) = Wnk(1). Then

for each j ≥ 2, there exists a random variable W ∗
nk
(2j − 1) which is a measurable func-

tion of Wnk(1),Wnk(3), · · · ,Wnk(2j − 1) and Uj such that W ∗
nk
(2j − 1) is independent of

W ∗
nk
(1), · · · ,W ∗

nk
(2j − 3), has the same distributions as Wnk(2j − 1) and satisfies

P (|W ∗
nk
(2j − 1)−Wnk(2j − 1)| > η) ≤ 18(|Wnk(2j − 1)|∞/η)1/2α(N2), (6.11)

where | · |∞ is the sup-norm. It follows from the definition of W ∗
nk
(2j − 1) and (6.6) that,

EW ∗
nk
(2j − 1) = 0, max

k,j
Var(W ∗

nk
(2j − 1)) ≤ c2n

1/2−1/rh−1/2+1/r(log n)−1/2
def
= N4. (6.12)

By the condition in Lemma A.1, we have h−r(n/ logn)−r+2 → 0. Hence

max
1≤k≤n2p

|ξnk,i| ≤ ch−1Tn = c{n/(h log n)}1/2{h−r(n/ logn)−r+2}κ

≤ c3{n/(h log n)}1/2
def
= N5. (6.13)

Let N6 = c4(nh
−1 log n)1/2. By the Bernstein’s inequality, we have from (6.12) and (6.13)

P (|
N3
∑

j=1

W ∗
nk
(2j − 1)| > N6) ≤ exp

( −c24nh−1 logn
2(N3N4 +N5N6)

)

≤ exp{−c24 logn/(c2 + 2c3c4)}

≤ c5n
−2p−2. (6.14)
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The last inequality holds if we choose c4 sufficiently large. By (6.11), if (i) N6/N3 ≤ |W ∗
nk
(2j−

1)|∞, we have

Pr(|Wnk(2j − 1)−W ∗
nk
(2j − 1)| > N6/N3) ≤ 18(N2N5/(N6/N3))

1/2α(N2)

≤ c6(n/ logn)
1/2α(N2); (6.15)

if (ii) N6/N3 > |W ∗
nk
(2j − 1)|∞, take η = |W ∗

nk
(2j − 1)|∞ in (6.11), we have

Pr(|Wnk(2j − 1)−W ∗
nk
(2j − 1)| > η) ≤ 18α(N2) ,

which is smaller than the right hand side of (6.15) as n→∞. Therefore,

Pr(|
N3
∑

j=1

{Wnk(2j − 1)−W ∗
nk
(2j − 1)}| > N6)

≤
N3
∑

j=1

Pr(|Wnk(2j − 1)−W ∗
nk
(2j − 1)| > N6/N3)

≤ c7N3(n/ log n)
1/2α(N2). (6.16)

From (6.14) and (6.16), we have

Pr( max
1≤k≤n2p

|
N3
∑

j=1

Wnk(2j − 1)| ≥ 2N6)

≤
n2p
∑

k=1

Pr(|
N3
∑

j=1

W ∗
nk
(2j − 1)| ≥ N6) +

n2p
∑

k=1

Pr(|
N3
∑

j=1

|Wnk(2j − 1)−W ∗
nk
(2j − 1)| ≥ N6)

≤ n2p{c5n−2p−2 + c7N3(n/ log n)
1/2α(N2)}.

By (C1), it follows that

∞
∑

n=1

Pr( max
1≤k≤n2p

|
N3
∑

j=1

Wnk(2j − 1)| ≥ 2N6) <∞.

By the Borel-Cantelli lemma, we have

max
1≤k≤n2p

|
N3
∑

j=1

Wnk(2j − 1)| = O(N6). (6.17)

Similarly, we can show

max
1≤k≤n2p

|
N3
∑

j=1

Wnk(2j)| = O(N6). (6.18)
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Combining (6.4), (6.5), (6.10), (6.17), (6.18) and (6.3), we have

max
1≤k≤n2p

|Rn,k,1| = O(δn). (6.19)

Therefore, the fourth part of Lemma A.1 follows from (6.1), (6.2) and (6.19).

Note that the key steps in the proof above are the continuity of the related functions and

bounded variance in (6.6). To prove the last part of Lemma A.1, it is sufficient to show

sup
|θ−θ0|≤an,x∈D

E(Kθ
h,iζ

k,`
i )τ ≤ chτ`−τ+1(a2τn + h2τ ), 2 ≤ τ ≤ r. (6.20)

Write θ0 = ρnθ + %nϑ, where ϑ ⊥ θ, |θ| = 1 and |ϑ| = 1. It is easy to see that |ρn| < c and

|%n| ∼ an when |θ − θ0| < an. Let (θ, ϑ,Γ) be an orthogonal matrix. Let f̃(v, u1, u2, · · · , up)
and f̃(v, u1, u2) be the density functions of (z, θTX,ϑTX,ΓTX) and (z, θTX,ϑTX) respec-

tively. By (C3), we have

E(Kθ
h,iζ

k,`
i )τ =

∫

(Kh(u1 − θTx))τ (u1 − θTx)τ`vτkmτ (ρnu1 + %nu2, ρnθ
Tx+ %nϑ

Tx)

×f̃(v, u1, u2 · · · , up)dvdu1du2 · · · dup
= hτ`−τ+1

∫

(K(v1))
τvτ`1 v

τkmτ (ρnv1h+ ρnθ
Tx+ %nu2, %nθ

Tx+ ρnϑ
Tx)

×f̃(v, θTx+ hv1, u2, · · · , up)dvdv1du2 · · · dup
= hτ`−τ+1

∫

(K(v1))
τvτ`1 v

τkmτ (ρnv1h+ ρnθ
Tx+ %nu2, ρnθ

Tx+ %nϑ
Tx)

×f̃(v, θTx+ hv1, u2)dvdv1du2.

Note that |m(u, v)| ≤ c(u− v)2. Therefore

E(Kθ
h,iζ

k,`
i )τ ≤ chτ`−τ+1

∫

(K(v1))
τvτ`1 v

τk(ρ2τn v2τ1 h2τ + %2τn )f̃(v, θTx+ hv1, u2)dvdv1du2

= O{hτ`−τ+1(a2τn + h2τ )}. 2

The equations in Lemma A.1 still hold if we replace |θ− θ0| < an with |θ+ θ0| < an. The

latter is needed for the proof of Theorem 1 in the case θ̃T θ0 < 0.

Lemma A.2. Let ϕi be defined in Lemma A.1 and f(x, z, y) be the density function of

(X,Z, y). If (C1) and (C5) hold, then

sup
θ∈Θ

∣

∣

∣

1

n2

n
∑

i=1

n
∑

j=1

{

Kθ
h,i(Xj)ϕj −

∫

Kθ
h,i(x)ϕ(x, z, y)f(x, z, y)dxdzdy

}

εi

∣

∣

∣
= O(δ2n).

Proof. Let ∆n(θ) be the value in the absolute symbols. By the continuity of Kθ
h,i in θ, there

are n1 < cn2p points θn,1, · · · , θn,n1 in Θ such that ∪n1k=1{θ : |θ − θn,k| < h2δ2n} ⊃ Θ and

max
1≤k≤n1

sup
|θ−θn,k|<h2δ2n

∣

∣

∣
∆n(θ)−∆n(θn,k)

∣

∣

∣
= O(δ2n). (6.21)
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The Fourier transform φ(s) =
∫

exp(isv)K(v)dv will be used in the following, where i is the

imaginary unit. Thus K(v) =
∫

exp(−isv)φ(s)ds. We have

∆n(θn,k) =
1

n2
h−1

n
∑

j=1

n
∑

i=1

∫

[

exp{−isθTn,kXij/h}ϕj

−
∫

exp{−isθTn,kXi0/h}ϕ(x, z, y)f(x, z, y)dxdzdy
]

φ(s)dsεi

= h−1
∫

1

n

n
∑

i=1

exp(−isθTn,kXi/h)εi ·
1

n

n
∑

j=1

[

exp(isθTn,kXj/h)ϕj

−
∫

exp(isθTn,kx/h)ϕ(x, z, y)f(x, z, y)dxdzdy
]

φ(s)ds.

Following the same steps leading to (6.19), we have

max
1≤k≤n1

| 1
n

n
∑

i=1

exp(−isθTn,kXi/h)εi| ≤ c8δ0n,

max
1≤k≤n1

∣

∣

∣

1

n

n
∑

j=1

[

exp(isθTn,kXj/h)ϕj −
∫

exp(isθTn,kx/h)ϕ(x, z, y)f(x, z, y)dxdzdy
]∣

∣

∣
≤ c9δ0n

almost surely, where c8 and c9 are constants which do not depend on s. Hence

max
1≤k≤n1

∣

∣

∣
∆n(θn,k)

∣

∣

∣
≤ h−1

∫

c8δ0nc9δ0n|φ(s)|ds = O(h−1δ20n) = O(δ2n). (6.22)

Note that

sup
θ∈Θ
|∆n(θ)| ≤ max

1≤k≤n1

∣

∣

∣
∆n(θn,k)

∣

∣

∣
+ max

1≤k≤n1
sup

|θ−θn,k|<h2δ2n

∣

∣

∣
∆n(θ)−∆n(θn,k)

∣

∣

∣
. (6.23)

Therefore, the second part of Lemma A.2 follows from (6.21), (6.22) and (6.23). 2

For easy of exposition, we abuse D as the positive support of the f(x). Let d(x,Dc) =

minx′∈Rp−D |x−x′| and define bounded functions J0(x), Jθ(v) such that J0(x) = 0 if d(x,Rp−
D) > a0b and Jθ(θ

Tx) = 0 if d(θTx, θT (Rp −D)) > b0h. By the definition, we have

1

n

n
∑

j=1

J0(Xj) = O(b),
1

n

n
∑

j=1

Jθ(Xj) = O(h). (6.24)

To cope with the boundary points, we give the following nonuniform rate of convergency.

Lemma A.3. Suppose assumptions (C3) and (C5) hold. Then

EHb(X − x){θT (X − x)/b}k{ϑT (X − x)/b}` = vθ,ϑk,` f(x) + J0(x) +O(h),

EKh(θ
T (X − x)){θT (X − x)/h}` = τ`fθ(θ

Tx) + Jθ(x) +O(h),

uniformly for θ, ϑ ∈ Θ and x ∈ D, where vθ,ϑk,` =
∫

Rp H(U)(θTU)k(ϑTU)`dU and τ` =
∫

K(u)u`du.
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Proof. We here only give the details for the first part. If d(x,Dc) > a0b, we define J0(x) = 0.

From (C5), we have

∫

D
Hb(U − x){θT (U − x)/b}k{ϑT (U − x)/b}`f(U)dU

=

∫

Rp

H(U){θTU}k{θTU}`f(x+ hU)dU = vθ,ϑk,` f(x) +O(h).

If d(x,Dc) < a0b, we have by (C3)

J0(x)
def
=

∫

D
Hb(U − x){θT (U − x)/b}k{ϑT (U − x)/b}`f(U)dU

≤
∫

Rp

H(U){θTU}k{ϑTU}`f(x+ hU)dU = O(1).

Therefore, the first part of Lemma A.3 follows. 2

In the following context, we abbreviate L for any function L(x), and Lθ or Lθ(x) for any

function Lθ(θ
Tx). Let νθ and µθ be defined as in section 2, and

ν = E(Z|X = x), π = E(ZZT |X = x), πθ = E(ZZT |θTX = θTx),

Σ̃θ = E(XXT |θTX = θTx)− µθx
T − xµT

θ + xxT .

Let

ς0 =
1

n

n
∑

i=1

Hb,i, S1 =
1

n

n
∑

i=1

Hb,iXi0, S2 =
1

n

n
∑

i=1

Hb,iXi0X
T
i0,

T1 =
1

n

n
∑

i=1

Hb,iZi, T2 =
1

n

n
∑

i=1

Hb,iZiZ
T
i , C2 =

1

n

n
∑

i=1

Hb,iXi0Z
T
i ,

E1 =
1

n

n
∑

i=1

Hb,iZiyi, D1 =
1

n

n
∑

i=1

Hb,iXi0yi, Wn = ς0S2 − S1S
T
1

and

w̄θ
a,i(x) = {θTS2θ}Hb,i − θTS1Hb,iθ

TXi0, w̄θ
d,i(x) = ς0Hb,iθ

TXi0 − θTS1Hb,i.

Based on (2.4), we can obtain initial estimators of θ0 and β0 as follows. Choose a vector θ

with norm 1 and any vector β. Let w̄θ
j = θTWn(Xj)θ and calculate

āθj = {w̄θ
j}−1

n
∑

i=1

w̄θ
a,i(Xj){yi − βTZi}, d̄θj = {w̄θ

j}−1
n
∑

i=1

w̄θ
d,i(Xj){yi − βTZi}, (6.25)

(

β̄
θ̄

)

= {D̄θ
n}−

n
∑

j=1

In(Xj)

(

E1(Xj)− āθjT1(Xj)

d̄θjD1(Xj)− āθj d̄
θ
jS1(Xj)

)

/ς0(Xj), θ̄ := θ̄/|θ̄|, (6.26)
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where

D̄θ
n =

n
∑

j=1

In(Xj)

(

T2(Xj) d̄θjC2(Xj)

d̄θjC
T
2 (Xj) (d̄θj)

2S2(Xj)

)

/ς0(Xj),

and A− denotes the Moore-Penrose inverse of matrix A. Repeat the calculations in (6.25)

and (6.26) with (θ, β) replaced by (θ̄, β̄) until convergence. Denote the final value by (β̃, θ̃).

Next, we shall improve the efficiency of the estimators using a univariate kernel. Let

ςθk =
1

n

n
∑

i=1

Kθ
h,i{θTXi0}k, k = 0, 1, 2, 3,

wθ
a,i = ςθ2K

θ
h,i − ςθ1K

θ
h,iθ

TXi0, wθ
d,i = ςθ0K

θ
h,iθ

TXi0 − ςθ1K
θ
h,i,

wθ =
1

n

n
∑

i=1

wθ
a,i, Sθ

1 =
1

n

n
∑

i=1

Kθ
h,iXi0, Sθ

2 =
1

n

n
∑

i=1

Kθ
h,iXi0X

T
i0,

T θ
1 =

1

n

n
∑

i=1

Kθ
h,iZi, Eθ

1 =
1

n

n
∑

i=1

Kθ
h,iZiyi, Dθ

1 =
1

n

n
∑

i=1

Kθ
h,iXi0yi,

T θ
2 =

1

n

n
∑

i=1

Kθ
h,iZiZ

T
i , Cθ

2 =
1

n

n
∑

i=1

Kθ
h,iθ

TXi0Z
T
i ,

Sθ
1,1 =

1

n

n
∑

i=1

Kθ
h,i{θTXi0}Xi0, Sθ

2,1 =
1

n

n
∑

i=1

Kθ
h,i{θTXi0}2Xi0,

Sθ
1,2 =

1

n

n
∑

i=1

Kθ
h,i{θTXi0}Xi0X

T
i0, Sθ

3 =
1

n

n
∑

i=1

Kθ
h,iXi0{(θ − θ0)

TXi0}2.

Based on (2.4), we improve the estimators θ̃ and β̃ as follows. Let wθ
j = wθ(Xj). Starting

with (θ, β) = (θ̃, β̃), calculate

ãθj = (wθ
j )
−1

n
∑

i=1

wθ
a,i(Xj){yi − βTZi}, d̃θj = (wθ

j )
−1

n
∑

i=1

wθ
d,i(Xj){yi − βTZi}, (6.27)

(

β̃

θ̃

)

= (D̃θ
n)
−

n
∑

j=1

In(Xj)

(

Eθ
1(Xj)− ãθjT

θ
1 (Xj)

d̃θjD
θ
1(Xj)− ãθj d̃

θ
jS

θ
1(Xj)

)

/ςθ0 (Xj), θ̃ := θ̃/|θ̃|, (6.28)

where

D̃θ
n =

n
∑

j=1

In(Xj)

(

T θ
2 (Xj) d̃θjC

θ
2(Xj)

d̃θj{Cθ
2(Xj)}T (d̃θj)

2Sθ
2(Xj)

)

/ςθ0 (Xj).

Repeat the procedure (6.27) and (6.28) with (θ, β) replaced by (θ̃, β̃) until convergence.

Denote the final value by (β̂, θ̂).

Let ∆̄i(x) = yi − ā− βT
0 Zi − d̄XT

i0θ0 and ∆̃θ
i (x) = yi − ã− βT

0 Zi − d̃XT
i0θ0. We have

(

β̄
θ̄

)

=

(

β0
θ0

)

+ D̄−n (θ)
n
∑

j=1

In(Xj)
n
∑

i=1

Hb,i(Xj)

(

Zi

Xij d̄j

)

∆̄i(Xj)/ς0(Xj), (6.29)
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(

β̃

θ̃

)

=

(

β0
θ0

)

+ D̃−n (θ)

n
∑

j=1

In(Xj)

n
∑

i=1

Kθ
h,i(θ

TXj)

(

Zi

Xij d̃j

)

∆̃θ
i (Xj)/ς

θ
0 (θ

TXj). (6.30)

By Lemmas A.1 and A.3, we have

ς0 = f(x) +O(J0 + τpn), S1 = O(bJ0 + bτpn),

S2 = f(x)Ip×pb
2 +O(b2J0 + b2τpn), T1 = f(x)ν(x) +O(J0 + τpn),

T2 = f(x)π(x) +O(J0 + τpn),
1

n

n
∑

i=1

Hb,iZiεi = O(δpn),

1

n

n
∑

i=1

Hb,iεi = O(δpn),
1

n

n
∑

i=1

Hb,iXi0{θTXi0}kεi = O(bk+1δpn),

1

n

n
∑

i=1

Hb,i|Xi0|k = O(bk), C2 = O(bJ0 + b2 + bδn), (6.31)

and

ςθ0 = fθ +O(Jθ + τn), ςθ1 = O(hJθ + h2 + hδn), ςθ2 = fθh
2 +O(h2Jθ + h2τn),

ςθ3 = O(h4 + b3Jθ + h3δn), Sθ
1 = fθ{µθ − x}+O(Jθ + τn), Sθ

2 = Σ̃θfθ +O(Jθ + τn),

wθ = f2θ h
2 +O(h2Jθ + h2τn), T θ

1 = fθνθ +O(Jθ + τn), T θ
2 = fθπθ +O(Jθ + τn),

Cθ
2 = O(hJθ + h2 + hτn), Sθ

1,1 = O(hJθ + h2 + hτn), Sθ
1,2 = O(hJθ + h2 + hτn),

Sθ
2,1 = fθ{µθ − x}h2 +O(h2Jθ + h2τn), Sθ

3 = O(δ2θ). (6.32)

Let ā, d̄, ã and d̃ be respectively the values of āj , d̄j , ãj and d̃j with Xj replaced by x.

For simplicity, we further assume that f(x) > c0 and fθ(θ
Tx) > c0 for all x ∈ D (otherwise,

we only need to change D to {x : f(x) > c0} or {x : fθ(θ
Tx) > c0} in the proofs). Thus,

In(Xj) ≡ 1 when n is sufficiently large.

Lemma A.4. Let βd = β0 − β and θd = θ0 − θ. Suppose assumptions (C1)-(C5) hold.

We have

ā = g(θT0 x) + νTβd +O(J0 + b+ δpn),

d̄ = θT θ0g
′(θT0 x) +O{(1 + b−1J0)δβ + b−1δpn + b},

ã = g(θT0 x) + g ′(θT0 x){µθ − x}T θd + νTθ βd +
1
2g
′′(θT0 x)h

2 +Rn,3

+O(δ2θ + Jθδγ + τnδγ + hτn),

d̃ = g ′(θT0 x) + h−1Rn,4 +O{δ2θ + (h−1Jθ + 1 + h−1δn)δγ + τn}

uniformly for x ∈ D and θ ∈ Θ, where Rn,3 = {nfθ}−1
∑n

i=1K
θ
h,iεi and Rn,4 = {nhfθ}−1

∑n
i=1K

θ
h,iθ

TXi0εi.

23



Proof. By assumption (C4), we have the following Taylor expansion

yi = βT
0 Zi + g(θT0 x) + g ′(θT0 x)θ

T
0 Xi0 +

1

2
g ′′(θT0 x){θT0 Xi0}2 +m(θT0 Xi, θ

T
0 x) + εi, (6.33)

where m(θT0 Xi, θ
T
0 x) is defined as in Lemma A.1. Because θT θ = 1, we have by the set of

equations in (6.31),

Wn = f2Ip×pb
2 +O(b2J0 + b2τpn),

1

n

n
∑

i=1

w̄θ
a,i = θTWnθ,

1

n

n
∑

i=1

w̄θ
a,iX

T
i0θ0 = O(b3),

1

n

n
∑

i=1

w̄θ
a,i{XT

i0θ0}2 = O(b3),
1

n

n
∑

i=1

w̄θ
a,iεi = O(b2δpn),

1

n

n
∑

i=1

w̄θ
a,iZ

T
i = θTS2θT

T
1 − θTS1θ

TC2 = f2νT b2 +O(b2J0 + b2τpn). (6.34)

Combining the equations in (6.34), (6.33) and (6.25), we have the first part of Lemma A.4.

By the definition of w̄θ
d,i and the set of equations in (6.31), we have

1

n

n
∑

i=1

w̄θ
d,i = 0,

1

n

n
∑

i=1

w̄θ
d,i{XT

i0θ0}2 = O(b3J0 + b3δn + b4),

1

n

n
∑

i=1

w̄θ
d,iX

T
i0θ0 = θTWnθ0 = θT θ0f

2b2 +O(b2J0 + b2τpn),

1

n

n
∑

i=1

w̄θ
d,iZ

T
i = θTS1T

T
1 − ς0θ

TC2 = O(b2 + bJ0 + bδpn),

1

n

n
∑

i=1

w̄θ
d,iεi = θTS1

1

n

n
∑

i=1

Hb,iεi − ς0
1

n

n
∑

i=1

Hb,iθ
TXi0εi = O(bδpn). (6.35)

Combining the equations in (6.35), (6.33) and (6.25), we have the second part of Lemma A.4.

Write θ0 = θd + θ. We have by the set of equations in (6.32)

1

n

n
∑

i=1

wθ
a,i = wθ = f2θ h

2 +O(h2Jθ + h2τn),

1

n

n
∑

i=1

wθ
a,iX

T
i0θ0 = ςθ2θ

T
d S

θ
1 − ςθ1θ

T
d S

θ
1,1 = f2θ {µθ − x}T θdh2 +O{h2(Jθ + τn)δθ},

1

n

n
∑

i=1

wθ
a,i{XT

i0θ0}2 = ςθ2

{

θTd S
θ
2θd + 2θTd S

θ
1,1 + ςθ2

}

− ςθ1

{

θTd S
θ
2,1θd + 2θTd S

θ
1,2 + ςθ3

}

= f2θ h
4 +O{Jθh4 + h5 + h2δ2θ + h2(h2 + Jθ)δθ},

1

n

n
∑

i=1

wθ
a,iZi = ςθ2T

θ
1 − ςθ1T

θ
1,1 = f2θ νθh

2 +O{h2(Jθ + τn)},

1

n

n
∑

i=1

wθ
a,im(θT0 Xi, θ

T
0 x) = O{(h2 + δ2θ)(h+ Jθ) + h2δn(δ

2
θ + h2)},
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1

n

n
∑

i=1

wθ
a,iεi = ςθ2fθR3,n − ςθ1fθhR4,n = f2θ h

2R3,n +O{h2(h+ Jθ)δn}. (6.36)

Therefore, the third part of Lemma A.4 follows from (6.27), (6.33) and the set of equations

in (6.36).

Similarly, we have by the set of equations in (6.32) and Lemma A.1 and A.3, n−1
∑n

i=1w
θ
d,i

= 0 and

1

n

n
∑

i=1

wθ
d,i{XT

i0θ0} = wθ + {ςθ0Sθ
1,1 − ςθ1S

θ
1}T θd = wθ +O{(hJθ + h2)δθ},

1

n

n
∑

i=1

wθ
d,i{XT

i0θ0}2 = ςθ0

{

ςθ3 + 2θTd S
θ
1,2 + θTd S

θ
1,2θd

}

− ςθ1

{

ςθ2 + 2θTd S
θ
1,1 + θTd S

θ
2θd

}

= O(h4 + h3Jθ + hJθδθ + h2δθ),

1

n

n
∑

i=1

wθ
d,im(θT0 Xi, θ

T
0 x) = O{h(h2 + δ2θ)(h+ Jθ) + hδn(δ

2
θ + h2)},

1

n

n
∑

i=1

wθ
d,iZi = ςθ0C

θ
2 − ςθ1T

θ
1 = O(h2 + hδn + hJθ),

1

n

n
∑

i=1

wθ
d,iεi = ςθ0hfθR4,n − ςθ1fθR3,n = hf2θR4,n +O{(h2 + hJθ)δn}. (6.37)

The last part of Lemma A.4 follows from the equations in (6.37), (6.33) and (6.27). 2

To prove Theorem 1 for the case that θ̃T θ0 < 0, we need to change θd = θ0−θ and g ′(θT0 x)

in Lemma A.4 to θd = −θ0 − θ and −g ′(θT0 x) respectively.

Lemma A.5. Suppose assumptions (C1)-(C5) hold. We have

1

n
D̄n(θ) =

(

E(ZZT ) +O(b+ δpn) O(b2 + bδpn)
O(b2 + bδpn) (θT θ0)

2E{g ′(θT0 X)}2Ip×pb
2 +O(bδpn + b2δβ)

)

,

and

1

n
D̃n(θ) =

(

E(ZZT ) C̃12

C̃T
12 2W̃0

)

+O(h−1δn + δγ),

uniformly for θ ∈ Θ, where C̃12 = E{g ′(θT0 X)Z(µθ0(X)−X)T } and W̃0 = E[{g ′(θT0 X)}2{X−
µθ0(X)}{X − µθ0(X)}T ].
Proof . To prove Lemma A.5, it is sufficient to show that

1

n

n
∑

j=1

T2(Xj)/ς0(Xj) = E(ZZT ) +O(b+ δpn),
1

n

n
∑

j=1

d̄θjC2(Xj)/ς0(Xj) = O(b2 + bδpn),

1

n

n
∑

j=1

(d̄θj)
2S2(Xj)/ς0(Xj) = (θT θ0)

2E{g ′(θT0 X)}2Ip×pb
2 +O{b2(δβ + b−1τpn)},
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1

n

n
∑

j=1

T θ
2 (θ

TXj)/ς
θ
0 (θ

TXj) = E(ZZT ) +O(h−1δn + δγ),

1

n

n
∑

j=1

d̄θjC
θ
2(θ

TXj)/ς
θ
0 (θ

TXj) = C̃12 +O(h−1δn + δγ),

1

n

n
∑

j=1

(d̄θj)
2Sθ

2(Xj)/ς
θ
0 (θ

TXj) = 2W̃0 +O(h−1δn + δγ).

Here, we give the details for the last equation. The other equations can be proved similarly.

By Lemma A.1 and that Rn,4 = O(h−1δn), we have

d̃ = g ′(θT0 x) +O{h2 + h−1δn + (1 + h−1Jθ)δγ}.

By (C2) and (C3), Σ̃θ has bounded derivative in θ. By the equations in (6.32), (6.24) and

the first part of Lemma A,1, we have

1

n

n
∑

j=1

(d̄θj)
2Sθ

2(Xj)/ς
θ
0 (θ

TXj) =
1

n

n
∑

j=1

{g ′(θT0 Xj)}2Σ̃θ(Xj) +O(h−1δn + δγ)

=
1

n

n
∑

j=1

{g ′(θT0 Xj)}2Σ̃θ0(Xj) +O(h−1δn + δγ)

= 2W̃0 +O(δ0n) +O(h−1δn + δγ)

= 2W̃0 +O(h−1δn + δγ). 2

Lemma A.6. Suppose assumptions (C1)-(C5) hold. Then

1

n2

n
∑

j=1

n
∑

i=1

Hb,i(Xj)Zi∆̄i(Xj)/ς0(Xj) = E{ν(X)νT (X)}(β − β0) +O(b+ δpn),

1

n2

n
∑

j=1

d̄j

n
∑

i=1

Hb,i(Xj)Xij∆̄i(Xj)/ς0(Xj) = b2(θT θ0)(1− θT θ0)E{g ′(θT0 X)}2θ0

+O(b3 + bδpn + b2δβ),

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Zi∆̃

θ
i (Xj)/ς

θ
0 (θ

TXj) = E{νθ(X)νTθ (X)}βd +
1

n

n
∑

i=1

{Zi − νθ(Xi)}εi

+O{(δθ + h+ h−1δn)δγ + hτn},
1

n2

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,i(Xj)Xij∆̃

θ
i (Xj)/ς

θ
0 (θ

TXj) = W̃0θd +
1

n

n
∑

i=1

g ′(θT0 Xi){µθ0(Xj)−Xi}εi

+O{(δγ + h−1δn + h)δγ + hτn + h−1δ2n},

uniformly for θ ∈ Θ.

Proof. By Lemma A.4 and expansion (6.33), we have

∆̄i = εi + (1− θT θ0)g
′(θT0 x)X

T
i0θ0 − νT (β0 − β) +Qn,i,
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where Qn,i = O
(

δpn+J0δβ + b2+ {(1+ b−1J0)δβ + b−1δpn+ b}|Xi0|+ |Xi0|2
)

. It follows from

(6.24), the equations in (6.32) and Lemmas A.1 and A.3 that

1

n2

n
∑

j=1

n
∑

i=1

Hb,i(Xj)Zi∆̄n,i(Xj)/ς0(Xj) =
1

n

n
∑

j=1

ν(Xj)ν(Xj)(β − β0) +O(b+ δpn).

Therefore, the first part of Lemma A.6 follows from the first part of Lemma A.1 by taking

m1(θ,X,Z) = ν(X)νT (X). Note that by Lemmas A.1 and A.3,

d̄ = (θT θ0)g
′(θT0 x) +O{(1 + b−1J0)δβ + b−1δpn + b}. (6.38)

It follows from the equations in (6.32) that

1

n2

n
∑

j=1

d̄j

n
∑

i=1

Hb,i(Xj)Xijεi = O(bδpn). (6.39)

Note that

1

n

n
∑

i=1

Hb,iXi0(1− θT θ0)X
T
i0θ0 = b2f(1− θT θ0)θ0 +O(b2J0 + b2τpn),

1

n

n
∑

i=1

Hb,iXi0{XT
i0θ0}2 = O(b3J0 + b4 + b3δpn),

1

n

n
∑

i=1

Hb,iXi0ν
Tβd = O{(b2 + bJ0 + bδpn)δβ},

1

n

n
∑

i=1

Hb,iXi0Qn,i = O{b3 + (b2 + bJ0)δβ + bδpn}.

Hence by the foregoing set of equations and (6.38), we have

1

n2

n
∑

j=1

d̄j

n
∑

i=1

Hb,i(Xj)Xij∆̄n,i(Xj)/ς0(Xj)

= b2
1

n

n
∑

j=1

d̄jg
′(θT0 Xj)(1− θT0 θ)θ0 +O(b3 + bδpn + b2δβ)

= b2
1

n

n
∑

j=1

{g ′(θT0 Xj)}2(θT θ0)(1− θT θ0)θ0 +O(b3 + bδpn + b2δβ).

Therefore, the second part of Lemma A.6 follows from the foregoing equation and the first

part of Lemma A.1.

By the expansions of ã and d̃ in Lemma A.4, we have

∆̃θ
i = {εi −Rn,3 −XT

i0θ0Rn,4}+
1

2
{(XT

i0θ0)
2 − h2}g ′′(θT0 x)− g ′(θT0 x){µθ − x}T θd

−νTθ βd +m(θT0 Xi, θ
T
0 x) +O(δ2θ + Jθδγ + τnδγ + hτn)

+O{δ2θ + (h+ h−1Jθ + h−1δn)δγ + τn}|θT0 Xi0|
def
=

7
∑

k=1

∆̃θ
k,i. (6.40)
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By the set of equations in (6.24) and (6.32), we have

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Ziεi/ς

θ
0 (θ

TXj) =
1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)f

−1
θ (θTXj)Ziεi +O(hδn)

=
1

n

n
∑

i=1

Ziεi{
1

n

n
∑

j=1

Kθ
h,i(Xj)f

−1
θ (θTXj)}+O(hδn)

=
1

n

n
∑

i=1

Ziεi +O(hδn). (6.41)

Note that Rn,3 = O(δn). It follows from Lemmas A.1 and A.2 that

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)ZiRn,3(Xj)/ς

θ
0 (θ

TXj) =
1

n

n
∑

j=1

νθ(Xj)Rn,3(Xj) +O(hδn)

=
1

n

n
∑

j=1

νθ(Xj){
1

n
f−1θ (θTXj)

n
∑

i=1

Kθ
h,i(Xj)εi}+O(hδn)

=
1

n

n
∑

i=1

{ 1

n

n
∑

j=1

Kθ
h,i(Xj)νθ(Xi)f

−1
θ (θTXj)

}

εi +O(hδn)

=
1

n

n
∑

i=1

νθ(Xi)εi +
1

n

n
∑

i=1

{ 1

n

n
∑

j=1

Kθ
h,i(Xj)νθ(Xi)f

−1
θ (θTXj)− νθ(Xj)

}

εi +O(hδn)

=
1

n

n
∑

i=1

νθ0(Xj)εi +O(hδn). (6.42)

Similarly,

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)ZiX

T
ijθ0Rn,4(Xj)/ς

θ
0 (θ

T
0 Xj)

=
1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)ZiX

T
ijθ0f

−2
θ (θTXj)

1

nh2

n
∑

`=1

Kθ
h,`(Xj)θ

TX`jε`

+O{(h2 + δθ)h
−1δnτn}

= O(δ2n + hδn + h−1δnδθ). (6.43)

Combining (6.41)-(6.43) and Lemma A.2, we have

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Zi∆̃

θ
1,i(Xj)/ς

θ
0 (θ

TXj) =
1

n

n
∑

i=1

{Zi − νθ0(Xj)}εi +O(hδn + h−1δnδθ).

By (C2), µθ has bounded derivative in θ. Hence

1

n

n
∑

i=1

Kθ
h,i(x)Zi∆̃

θ
3,i = fθ0(θ

T
0 x)g

′(θT0 x)νθ0{µθ0 − x}T θd +O{(Jθ + δθ + τn)δθ},
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Since E[g ′(θT0 X)νθ0(X){µθ0(X)−X}] = 0, we have

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Zi∆̃

θ
3,i(Xj)/ς

θ
0 (θ

TXj) = O{(δθ + h+ δn)δθ}.

It is easy to see that

1

n

n
∑

i=1

Kθ
h,iZi∆̃

θ
4,i = νθν

T
θ βd +O{(Jθ + δn)δβ}.

By the first part of Lemma A.1, we have

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Zi∆̃

θ
4,i(Xj) = E{νθ0(X)νTθ0(X)}βd +O{(h+ δn)δβ}.

For the other terms, we have

1

n

n
∑

i=1

Kθ
h,iZi∆̃

θ
2,i = O(δ2θ + hδθ + h3 + h2Jθ),

1

n

n
∑

i=1

Kθ
h,iZi∆̃

θ
5,i = O{(h2 + δ2θ)(h+ Jθ) + δn(δ

2
θ + h2)},

1

n

n
∑

i=1

Kθ
h,iZi∆̃

θ
6,i = O(δ2θ + h−1 + hJθδγ + δnδγ + hτn),

1

n

n
∑

i=1

Kθ
h,iZi∆̃

θ
7,i = O{(δθ + h+ h−1δn)δγ + hτn}.

By (6.24), we have

1

n2

n
∑

j=1

n
∑

i=1

Kθ
h,i(Xj)Zi{∆̃θ

2,i(Xj) + ∆̃θ
5,i(Xj) + ∆̃θ

6,i(Xj) + ∆̃θ
7,i(Xj)} = O{(h+ δn)δβ}.

Combining the forgoing equations, we finish the proof of the third part of Lemma 6.

Note that Rn,4 = O(h−1δn). Hence

1

n

n
∑

i=1

Kθ
h,iRn,4X

T
i0θ0 = O{h−1δnδθ + (h+ Jθ)δn}.

By (6.24), we have

1

n2

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,i(Xj)Xij∆̃θ,1,i/ς

θ
0 (θ

TXj) =
1

n2

n
∑

j=1

g ′(θT0 Xj)f
−1
θ (θTXj)

×
n
∑

i=1

Kθ
h,i(Xj)Xij

{

εi −
1

n

n
∑

`=1

Kθ
h,l(Xj)ε`

}

+O{(h+ h−1δn)δθ + hδn}.
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By the set of equations in (6.32), we have

1

n2

n
∑

j=1

g ′(θT0 Xj)f
−1
θ (θTXj)

n
∑

i=1

Kθ
h,i(Xj)Xij{

1

n

n
∑

`=1

Kθ
h,`(Xj)ε`}

=
1

n

n
∑

j=1

g ′(θT0 Xj){µθ(Xj)−Xj}{
1

n

n
∑

`=1

Kθ
h,`(Xj)ε`}+O{(h+ δn)δn}

=
1

n

n
∑

j=1

g ′(θTXj){µθ(Xj)−Xj}{
1

n

n
∑

`=1

Kθ
h,`(Xj)ε`}+O{(h+ δn + δθ)δn}

= O(hδn + δnδθ).

Therefore, by Lemma A.2 and the third equation of Lemma A.1, we have

1

n2

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,i(Xj)Xij∆̃

θ
1,i(Xj)/ς

θ
0 (θ

TXj)

=
1

n2

n
∑

j=1

g ′(θT0 Xj)f
−1
θ (θTXj)

n
∑

i=1

Kθ
h,i(Xj)Xijεi +O(h−1δnδθ + hδn + h−1δ2n)

=
1

n

n
∑

i=1

{ 1
n

n
∑

j=1

Kθ
h,i(Xj)Xijg

′(θTXj)f
−1
θ (θTXj)}εi +O(h−1δnδθ + hδn + h−1δ2n)

=
1

n

n
∑

i=1

g ′(θTXi){µθ(Xi)−Xi}εi +O(h−1δnδθ + hδn + h−1δ2n)

=
1

n

n
∑

i=1

g ′(θT0 Xi){µθ0(Xi)−Xi}εi +O(h−1δnδθ + hδn + h−1δ2n). (6.44)

By the equations in (6.32), we have

1

n

n
∑

i=1

Kθ
h,iXi0∆̃

θ
3,i = −fθg ′(θT0 x){µθ − x}{µθ − x}T θd +O{δθ(h+ Jθ + δn)}.

Note that d̃j = g ′(θT0 Xj) +O{(1 + h−1Jθ)δγ + h−1δn}. We have by (6.24),

1

n

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,i(Xj)Xij∆̃

θ
3,i(Xj)/ς

θ
0 (θ

TXj)

=
1

n

n
∑

j=1

{g ′(θT0 Xj)}2{µθ(Xj)−Xj}{µθ(Xj)−Xj}T θd +O{δθ(δγ + h−1δn) + δθτn}

=
1

n

n
∑

j=1

{g ′(θT0 Xj)}2{µθ0(Xj)−Xj}{µθ0(Xj)−Xj}T θd +O{δθ(δγ + h−1δn) + δθτn}

= W̃0θd +O{δθ(δγ + h−1δn) + δθτn}. (6.45)

The first part of Lemma A.1 was used to obtain the last equation above. Similarly,

1

n

n
∑

i=1

Kθ
h,iXi0∆̃

θ
4,i = fθ{µθ − x}νTθ βd +O{(Jθ + δn)δβ}.
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Note that E{µθ(Xj)−Xj}νTθ (Xj) = 0. By the first part of Lemma A.1, we have

1

n

n
∑

j=1

{µθ(Xj)−Xj}νTθ (Xj) = O(δ0n).

By (6.24), we have

1

n

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,i(Xj)Xij∆̃

θ
4,i(Xj)/ς

θ
0 (θ

TXj) = O{(δγ + h+ h−1δn)δβ}. (6.46)

For the other terms, we have

1

n

n
∑

i=1

Kθ
h,iXi0∆̃

θ
2,i =

1

2
g ′′(θT0 x)

{

Sθ
1,2 + 2θTd S

θ
2,1 + Sθ

3 − Sθ
1h

2
}

= O(h2δθ + h2τn + h2Jθ + δ2θ),

1

n

n
∑

i=1

Kθ
h,iXi0∆̃

θ
5,i = O(δ2θ + hJθδθ + h2δθ),

1

n

n
∑

i=1

Kθ
h,iXi0{∆̃θ

6,i + ∆̃θ
7,i} = O{δ2θ + (h−1τn + Jθ)δγ + hτn}.

Thus

1

n

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,iXi0∆̃

θ
2,i(Xj)/ς

θ
0 (θ

TXj) = O(hδθ + h2τn + δ2θ), (6.47)

1

n

n
∑

j=1

d̃j

n
∑

i=1

Kθ
h,iXi0∆̃

θ
k,i(Xj)/ς

θ
0 (θ

TXj) = O{(δγ + h+ h−1τn)δγ + hτn}, (6.48)

k = 5, 6, 7. Therefore the last part of Lemma A.6 follows from (6.44)-(6.48). 2

Proof of Lemma 1. We shall prove that the equations in the Lemma 1 hold with probability

1. Therefore, Lemma A.1 follows. From Lammas A.5 and A.6 and (6.29), we have for any β

and θ with θT θ = 1,

β̄ − β0 = {E(ZZT )}−1E{ν(Z)νT (Z)}(β − β0) +O(b+ b−1δpn). (6.49)

Note that the above equation does not depend on the choice of θ. This is because we use a

multivariate kernel, i.e. we use a more general multivariate function to replace g(θT0 x). In

the algorithm, (6.49) can be written as

β̄k+1 − β0 = {E(ZZT )}−1E(ν(X)νT (X))(β̄k − β0) +O(b+ b−1δpn), (6.50)

where the sub-index k indicates that the corresponding values are the results of the k ′th itera-

tion in the algorithm; see (6.25) and (6.26). By assumption (C6), E(ZZT )−E{ν(X)νT (X)}
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is a positive definite matrix. Note that E{ν(X)νT (X)} is a semipositive matrix. Hence the

eigenvalues of {E(ZZT )}−1E{ν(X)νT (X)} are all less than 1. After sufficiently many steps,

we have from (6.50)

β̄k − β0 = O(b+ b−1δpn). (6.51)

See the proof of Theorem 1 below for more details. Therefore

β̃ − β0 = O(b+ b−1δpn). (6.52)

If θT θ0 6= 0, then it follows from Lemmas A.5 and A.6 and (6.29) that

θ̄ − θ0 = (θT θ0)
−1(1− θT θ0)θ0 +O(δβ + b+ b−1δpn),

i.e. θ̄ = (θT θ0)
−1θ0 + O(δβ + b + b−1δpn). By (6.52), we may assume δβ is small enough

(otherwise, take β = β̃). Thus

θ̄ =: θ̄/|θ̄| = sign(θT θ0)θ0 +O(δβ + b+ b−1δpn).

In the algorithm, we have

θ̄k+1 − sign(θT θ0)θ0 = O(δβ̄k + b+ b−1δpn). (6.53)

Combining (6.51) and (6.53), we have,

θ̃ − sign(θT θ0)θ0 = O(b+ b−1δpn). (6.54)

The proof is completed. 2

Proof of Theorem 1. We only prove the first part in the case θ̃T θ0 > 0. The second part

follows immediately from the first part and Theorem 1 of Carroll et al. (1997). It follows

from Lemmas A.1, A.4 and A.5 and (6.30) that

(

β̃ − β0
θ̃ − θ0

)

= D̃−Nn + D̃−C̃

(

β − β0
θ − θ0

)

+O{(δγ + h+ h−1δn)δγ + hτn + h−1δ2n}, (6.55)

where

C̃ =

(

E{νθ0(X)νTθ0(X)} 0

0 W̃0

)

, D̃ =

(

E(ZZT ) C̃12

C̃T
12 2W̃0

)

,

Nn =
1

n

n
∑

i=1

(

Zi − ν(Xi|θ0)
g ′(θT0 Xi){µθ0(Xj)−Xi}

)

εi.
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Following the proof of Lemma 1 of Xia et al. (1999), we have C̃, D̃ and W0 = D̃ − C̃ are

all semi-positive matrices with rank p+ q − 1. Therefore, D
def
= (D̃−)1/2C̃(D̃−)1/2 is a semi-

positive matrix with all eigenvalues less than 1. There exist 1 > λ1 ≥ λ2 ≥ · · · ≥ λp+q−1 > 0

and orthogonal matrix Γ such that

D = Γdiag(λ1, · · · , λp+q−1, 0)Γ
T .

Let (β̃k, θ̃k) be the calculation results of the k′th iteration in the algorithm; see (6.27) and

(6.28). For any k, equation (6.55) holds with (β̃, θ̃) replaced by (β̃k+1, θ̃k+1) and (β, θ) by

(β̃k, θ̃k). Let γ̃k = D̃1/2(β̃T
k − βT

0 , θ̃
T
k − θT0 )

T , we have

γ̃k+1 = (D̃−)1/2Nn +Dγ̃k +O{(δγ̃k + h+ h−1δn)δγ̃k + hτn + h−1δ2n}. (6.56)

It follows that

δγ̃k+1 ≤ δ0n + λ1δγ̃k + c(δγ̃k + h+ h−1δn)δγ̃k + c(hτn + h−1δ2n)

= δ0n + {λ1 + cδγ̃k + c(h+ h−1δn)}δγ̃k + c(hτn + h−1δ2n) (6.57)

almost surely, where c is a constant. We can further take c > 1. Because h, h−1δn, τn, δ0n → 0

as n→∞, we may assume that

c(h+ h−1δn) ≤ (1− λ1)/3, δ0n + c(hτn + h−1δ2n) ≤ (1− λ1)
2/(9c). (6.58)

By (6.52) and (6.54), we may assume

δγ̃1 ≤ (1− λ1)/(3c). (6.59)

Therefore, it follows from (6.57), (6.58) and (6.59) that

δγ̃2 ≤ {λ1 + 2(1− λ1)/3}(1− λ1)/(3c) + (1− λ1)
2/(9c) = (1− λ1)/(3c). (6.60)

From (6.57), (6.58) and (6.60), we have

δγ̃3 ≤ (1− λ1)/(3c).

Consequently, δγ̃k ≤ (1− λ1)/(3c) for all k. Therefore we have from (6.57) that

δγ̃k+1 ≤ λ0δγ̃k + δ0n + c(hτn + h−1δ2n)

almost surely, where 0 ≤ λ0 < (2 + λ1)/3 < 1. It follows that

δγ̃k ≤ λk
0δγ̃1 + {δ0n + c(hτn + h−1δ2n)}

∞
∑

j=1

λj
0 = O(δ0n + hτn + h−1δ2n),
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for sufficiently large k. By (6.56), we have

D̃1/2

(

β̂ − β0
θ̂ − θ0

)

= (D̃−)1/2Nn +DD̃1/2

(

β̂ − β0
θ̂ − θ0

)

+O(δ20n + hτn + h−1δ2n)

= (D̃−)1/2Nn +DD̃1/2

(

β̂ − β0
θ̂ − θ0

)

+ o(n−1/2). (6.61)

The facts that n1/2h3 → 0 and n1/2h−1δ2n → 0 are used in the last step above. It follows

from (6.61) that

(D̃ − D̃1/2DD̃1/2)

(

β̂ − β0
θ̂ − θ0

)

= Nn + o(n−1/2),

or

W0

(

β̂ − β0
θ̂ − θ0

)

= Nn + o(n−1/2).

The first part of Theorem 1 follows from the above equation and the central limiting theorem

of dependent data, see e.g. Rio (1995). 2
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