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Stochastic user equilibrium traffic assignment

with price-sensitive demand: Do methods

matter (much)?

⇤

Adriaan Hendrik van der Weijde† Vincent A.C. van den Berg
Erik T. Verhoef

Department of Spatial Economics, Vrije Universiteit Amsterdam, De Boelelaan
1105, 1081HV Amsterdam, The Netherlands

Tinbergen Institute, Gustav Mahlerplein 117, 1082MS Amsterdam, The
Netherlands

Abstract
We compare three stochastic user equilibrium traffic assignment mod-

els (multinomial probit, nested logit, and generalized nested logit), using a

congestible transport network. We test the models in two situations: one

in which they have theoretically equivalent coefficients, and one in which

they are calibrated to have similar traffic flows. In each case, we examine

the differences in traffic flows between the SUE models, and use them to

evaluate policy decisions, such as profit-maximizing tolling or second-best

socially optimal tolling. We then investigate how the optimal tolls, and

their performance, depend on the model choice, and hence, how impor-

tant the differences between models are. We show that the differences

between models are small, as a result of the congestibility of the network,

and that a better calibration does not always lead to better traffic flow

predictions. As the outcomes are so similar, it may be better to use com-

putationally more efficient logit models instead of probit models, in at

least some applications, even if the latter is preferable from a conceptual

viewpoint.

1 Introduction

Stochastic user equilibrium (SUE) traffic assignment models are used in a wide
range of applications. Starting with Dial (1971), who proposed a simple logit
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edged. The authors thank Paul Koster, Andrew Koh, and the participants of the 2013
INFORMS Annual Meeting for helpful comments.
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model to analyze route choice in a network, many different formulations have
been developed. Choosing a SUE model for a specific application is therefore
not straightforward, especially since there are only a few studies that compare
different formulations systematically. The present paper attempts to remedy
this.

In a deterministic Wardropian equilibrium (Wardrop, 1952), the generalized
prices (i.e. costs plus tolls) of all used routes are equal, and lower than those
of all unused routes. This implicitly assumes that users have perfect knowledge
about the costs of all routes, and that all relevant user attributes can be per-
fectly observed. SUE models instead use random utility discrete choice theory,
which assumes that the utility users derive from a given route has a stochastic
part, which cannot be explained by an observer, but which follows a known
distribution. The resulting equilibrium differs from the Wardropian equilibrium
in that the systematic (or, deterministic) generalized prices of all routes are
typically not equal. Moreover, although the probability that a route will be
used can approach 0 arbitrarily closely, it never reaches it. Besides being more
realistic in many settings, this is also often computationally convenient.

In this paper, we first consider two ‘workhorse’ user equilibrium models: a
multinomial probit, and a logit model. Both models are used regularly in the
recent literature (see e.g. for logit: Meng et al., 2004; Yang, 1999; Yang et al.,
2001, and for probit: Connors et al., 2007; Uchida et al., 2007; Meng et al.,
2012). Probit models can account for partially overlapping routes and routes
with significantly different lengths, while simple logit models can not properly
handle overlap, and assume that all route costs are subject to the same level
of stochasticity. However, logit models have closed form solutions for choice
probabilities, while probit equilibria can only be determined using sampling
techniques or numerical integration, and are therefore highly computationally
intensive. It is therefore very useful to know how important the differences
between these models are likely to be in real-world situations.

Although many studies investigate the differences between alternative dis-
crete choice models, these almost exclusively focus on estimation, rather than
simulation. For estimation, it is important that models fit existing data well.
For simulation, the representation of one particular flow pattern is not of pri-
mary concern, as most models can be calibrated so as to achieve that. Instead,
it is important to see what happens if we move away from the calibrated state,
through, for instance, tolling. The different models imply different substitution
patterns, so the effects of these changes could be different. This could have
important implications for operational decisions and policies.

The few studies that do discuss the differences between logit and probit mod-
els for simulation purposes mostly date from the 70s, when these models were
first developed (e.g. Florian and Fox, 1976; Daganzo and Sheffi, 1977). These
studies compare simple versions of both models in small ‘toy’ networks; their
results do not necessarily carry over to more realistic situations. We therefore
compare the different SUE models in a setting that has:

1. A network that is more realistic than the simplest ‘toy’ networks that
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have been used in the past. Specifically, we model a network with several
pairs of origins and destinations (ODs) and multiple overlapping routes
between each OD-pair, which share links with routes that are used between
other OD-pairs. Using this network, we can not only look at the effects of
different SUE models on an OD-level, but also examine how these effects
interact in a network.

2. Congestion; specifically, we use the realistic congestion function proposed
by US Bureau of Public Roads (1964). As we will show in section 2.2,
congestion can have a large effect on the differences between SUE models.

3. Price-sensitive demand, through the addition of an alternative ‘virtual’,
uncongested route between each OD-pair, that does not overlap with any
others.

4. Parameters that are calibrated correctly. If all assignment models are cal-
ibrated to the same traffic flows, as would happen in reality, this might
give different results than a situation where the assignment models are the-
oretically equivalent (i.e. where possible, have comparable parameters).
Therefore, we consider two cases: one in which the assignment models have
comparable parameters, and one in which the logit models are calibrated
to the flows resulting from the probit model. We also investigate how the
introduction of additional (alternative-specific) parameters, which can be
used for calibration, affects the differences between the models.

Although the standard logit model is still widely used, several generalizations
and extensions have been proposed. As an example of such an advanced logit
model, we also include the generalized nested logit (GNL) model in our analysis.
A relatively novel model, the GNL (Wen and Koppelman, 2001) can partially
account for overlapping routes (though it does so in a different way than the
probit model); for this reason, it has been proposed as a possible SUE assignment
model (Bekhor and Prashker, 2002). Unlike the probit model, it cannot properly
account for the fact that routes have different lengths; however, it does have
closed-form probabilities.

To examine the differences between the assignment models, we test their
performance in a 12-node network. In particular, we evaluate how the differ-
ent assignment models affect policy decisions, such as profit-maximizing and
welfare-maximizing tolls, and the effects of such policies. As we will show, the
differences between models are, in many instances, small. However, improper
calibration can lead to large differences, and significant reductions in welfare.

The next section defines the assignment models, and explores the theoretical
differences between them, using a very simple network model with only one
origin and one destination. Section 3 gives an overview of the methodology
we use for the more realistic simulations, the results of which are presented in
section 4. Section 5 concludes.
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2 Theory

2.1 SUE assignment models
All the stochastic user equilibrium assignment models we examine are based
on random utility theory. In these models, the utility users derive from an
alternative (which, in traffic assignment, can be a route through a network, the
use of a specific link, or the option to stay home and not travel) consists of a
deterministic, and a stochastic part:

Uir = V (�cr) + "ir (1)

where Uij is the utility user i derives from alternative r, which is made up of
a deterministic value function V and a stochastic term "ir. For simplicity, we
define the value as a function of the generalized price cr of an alternative only;
we assume that benefits are the same for all alternatives. Since we have only one
user class, V is also independent of personal characteristics. Although, in much
of the recent literature, this random term is assumed to capture the uncertainty
that transport users face, it was originally intended to capture measurement
errors made by the observer (reflecting, for instance, the fact that users dif-
fer in unobservable characteristics, which influence the utility they derive from
the use of an alternative). Different assignment models assume different joint
distributions for the random terms.

Multinomial probit (MNP)

The first discrete choice model we consider is one of the most flexible. In the
multinomial probit (MNP) model, the random terms " follow a multivariate
normal distribution; " ⇠ N (0,⌃), where the index m refers to markets, or
OD-pairs. Importantly, if ⌃ 6= I, random terms are allowed to be correlated
across all alternatives, and the variances can differ across alternatives. We can
therefore set ⌃ such that the covariances between different routes, 0  �rr0 < 1,
indicate to what extent routes overlap, and variances �

2
r that vary with the

length of each route.
As already stated, we will model the price-sensitivity of demand through the

inclusion of a no-travel alternative, which has a given cost (or disutility). This
is not the only way to make travel demand price-sensitive. It is also possible
to make the total travel demand between an origin and a destination a direct
function of the expected utility of the discrete choice. However, particularly in
probit models, this is considerably more complicated, and for our purposes, it
yields few advantages. Our approach still results in a downward-sloping demand
curve, which is non-linear, and whose slope reflects by the elasticity of the no-
travel alternative choice probability.

There are several ways to derive the covariances �rr0 and variances �

2
r . The

most straightforward way, which we will use, is to formulate link-based random
terms "il. The total random utility faced by a user who takes a given route r,
"ir is then the sum of all link-based random terms, over all links that constitute
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the route. Since the sum of two or more independent normal distributions is
also a normal distribution, the covariance between two routes is then the sum
of the variances of the links they share. We set link-based variances �l = sKl,
where Kl is the length of link l, and s a parameter. For simplicity, we set the
variance of the no-travel alternative to 1. The variance of route r is then simplyP

l alr�
2
l , where alr = 1 if link l is part of route r, and zero otherwise. The

covariance between routes r and r0 is
P

l alralr0�
2
l ; the covariance between any

route and the no-travel alternative is zero. We use s to control the average route
variance �̃

2, which we normalize to 1. Finally, we set V (�cr) = �cr/10, where
the coefficient is chosen such that, in equilibrium, a significant number of routes
is used. However, note that, in this model, we cannot differentiate between the
average variance of the random terms and this coefficient. Setting �̃

2
= 10 and

V (�cr) = �cr would yield the same results.
MNP models models do not have closed-form probabilities; instead, numeri-

cal methods are necessary to determine them. We use a Monte Carlo simulation,
where random terms " are sampled from the multivariate normal distribution
described above. Based on these sampled random terms and the deterministic
route costs, probabilities can be estimated. Naturally, since these probabilities
depend on traffic volumes, we need an iterative procedure to find the user equi-
librium assignment. We use the Method of Successive Averages (MSA), which
consists of the following steps:

1. Determine initial link flows vl0 (e.g. estimate probabilities based on free-
flow travel costs) and obtain link-based travel costs�l. Set n = 1.

2. Calculate auxiliary link flows v

A
l based on costs �l.

3. Set vln+1 = vln + n

�1
�
v

A
l � vln

�
and recalculate costs �l. Increase n by

1.

4. Repeat steps 2–3 until |vln+1 � vln| becomes sufficiently small.

Since step 2 requires a Monte-Carlo simulation, and the number of iterations
the MSA needs to converge can be high, this model can be computationally
intensive. It can, however, account for both overlapping routes, and routes of
different lengths, which the other models we will examine can not fully take into
account.

Logit

The simplest logit model assumes that all random terms "ir are independent.
However, the introduction of elastic demand through the addition of a no-travel
alternative makes this assumption particularly unrealistic; it is logical to assume
that users first decide whether to travel or not, and choose a route only after
they have decided to travel. We therefore use a somewhat more advanced nested
logit (NL) model (Ben-Akiva, 1974), in which one nest contains all the physical
routes, and the other the no-travel alternative. In the NL model, the random
terms follow a multi-variate extreme value distribution, and there is correlation
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within, but not between, nests. Hence, if we only consider the users that have
already chosen to travel, the traffic assignment model is still an standard logit
model; the NL formulation just allows us to model the demand elasticity cor-
rectly. To avoid confusion, however, we will refer to this model as an NL model
in what follows.

The Generalized Extreme Value (GEV) function of this model (see McFad-
den, 1978) for a given OD-pair (or market) m is

Gm

⇣
e

V (�C)
, e

V (�c1)
, ..., e

V (�cR)
⌘
= e

V (�C)
+

 
X

r

arm

⇣
e

V (�cr)
⌘ 1

µ

!µ

(2)

where arm = 1 if route r serves market m and zero otherwise, cr is the cost of
route r and C the cost incurred by a user who decides not to travel. 0 < µ  1

is a parameter, indicating the dissimilarity between the option to not travel on
the one side, and all possible routes on the other (more precisely, this implies a
correlation of (1� µ)

2 between the random terms attributed to different routes
(Daganzo and Kusnic, 1993)). We use linear value functions V (�C) = ��C

and V (�cr) = ��cr.
As stated before, we will examine two versions of this model. In the first

version, we set � = ⇡/

p
10⇥ 6 to achieve the same variance as MNP model:

since logit models assume that the random terms follow a Gumbell distribution,
which has a variance of ⇡2

/6, and the MNP model defined above has an average
variance �̃

2
= 1 and � = 1/10, we have to correct for this in the NL model. We

also set µ such that (1� µ)

2 is equal to the average overlap between routes. In
the second version, we instead estimate � and µ, using Maximum Likelihood Es-
timation (MLE) on the route flows resulting from the MNP model; the resulting
parameters are different than those in the first model.

Whatever the value of �, the resulting route choice probabilities have closed
forms:

pmr =

�
e

��cr
� 1

µ

P
r0 ar0m (e

��cr0
)

1
µ

⇣P
r0 ar0m

�
e

��cr0
� 1

µ

⌘µ

⇣P
r0 ar0m (e

��cr0
)

1
µ

⌘µ
+ e

��C
(3)

and consist of two parts. The first gives the probability that a randomly selected
user chooses route r, given that that particular traveler has already decided to
travel. The second part gives the probability that this user travels at all. Note
that, in this case,

P
r pmr < 1, since some users will choose not to travel.

Although this NL model allows for correlation between nests, and can there-
fore control for the difference between traveling and not traveling, it still assumes
that alternatives within a nest are independent. Hence, contrary to the MNP,
overlapping routes are not properly accounted for. Moreover, the variance is
the same for all alternatives, so it is also impossible to properly account for the
fact that routes have different lengths.
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Nested logit with alternative-specific constants (NL-ASC)

To see how better calibration affects the difference between models, we also
examine a version of the NL model that has additional parameters, which can
be used for calibration. We do this by defining an alternative-specific constant
Ar for every route (not including the no-travel option), such that the value
functions become:

V (�cr) = Ar � �cr (4)

Using MLE, these constants are then estimated, together with the � and µ.
There is no constant for the no-travel alternative, to avoid overspecification.

Naturally, the flow pattern resulting from this model will be closer to the
MNP flows in the calibrated state, as there are many additional parameters
to use for calibration. However, as the MNP model does not have alternative-
specific constants, the NL-ASC model may perform worse when we move away
from the calibrated state, for instance, when a link in the network is tolled. The
direction and magnitude of this effect depends on how the introduction of these
ASCs changes the calibrated values of � and µ.

Generalized nested logit (GNL)

Like the MNP model, the GNL model (Wen and Koppelman, 2001; see Daly and
Bierlaire, 2006 for an alternative formulation), also sometimes called the cross-
nested logit model, can control for overlap in routes. In the GNL, alternatives
can belong to several nests; inclusion parameters ↵rl indicate which share of
alternative r belongs to nest l. In a traffic assignment model, each link would
be a nest (with an additional nest containing the option not to travel), and the
share of a route that uses a specific link can be approximated using free-flow
travel speeds (Bekhor and Prashker, 2002). The GEV function for market m is
then

Gm

⇣
e

V (�C)
, e

V (�c1)
, ..., e

V (�cR)
⌘
= e

V (�C)
+

X

l

 
X

r

arm

⇣
↵rle

V (�cr)
⌘ 1

µl

!µl

(5)
where

↵rl =
�l

cr

����
nl 8l

(6)

and �l if the cost of using link l. Again, we define V (�C) = ��C and
V (�cr) = ��cr. Probabilities still have a closed form, and are given by

pmr =

X

l

0

B@
�
↵rle

��cr
� 1

µl

P
r0 ar0m (↵r0le��cr

)

1
µl

⇣P
r0 ar0m

�
↵r0le

��cr
� 1

µl

⌘µl

P
l

⇣P
r0 ar0m (↵r0le��cr

)

1
µl

⌘µl

+ e

��C

1

CA

(7)
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Note that, although this expression is very similar to Eq. 3, the crucial
difference is that there are now no longer two nests per market (travel and
no travel); instead the number of nests is equal to the number of routes plus
one. Again, Eq. 7 only gives the route choice probabilities; there is also the
option to not travel, so

P
r pmr < 1. Bekhor and Prashker (2002) propose to

directly relate µl to the network topology, by making it an inverse function of
the average inclusion coefficient of routes using link l. In our setting, all links
share the exact same characteristics, so we also average over all links to get a
single µ =

P
l (1/L) (1� (1/Rl)

P
r ↵rl), where L is the total number of links,

and Rl the number of routes passing through link. We then set µl = µ 8l, while
� has the same value as in the theoretically equivalent NL model. As with the
NL model, we also examine a calibrated version, in which we use MLE to find
a � and µ that provides the best fit with the probit route flows.

Although GNL models have closed-form probabilities, which is very conve-
nient for a traffic assignment model, the implied covariances between alterna-
tives do not, and are not easy to calculate. They are given by

Cov ("r, "r0) =

¨
R
(F ("r, "r0)� F ("r)F ("r0)) d"rd"r0 (8)

where
F ("r) = exp (� exp (��"r)) (9)

and

F ("r, "r0) = exp

 
�
X

l

⇣�
↵rle

��"r
� 1

µl
+

�
↵r0le

��"r
� 1

µl

⌘µl

!
(10)

(Marzano and Papola, 2008; Lemp et al., 2010). These covariances are different
than those of the MNP model, but do capture some of the overlap between
routes.

2.2 Model differences
Before considering a more complex setting, it is useful to look at the simplest
possible network in which the differences between the models above can be
illustrated. This simple network, which is often used in the early literature
on discrete choice models (e.g. Florian and Fox, 1976; Daganzo and Sheffi,
1977) has three routes, of which two partially overlap. Fig. 1 gives a graphical
representation of such a network, where all routes between A and C have a
length of 1, and the two routes that pass through B share a length of 1 � x.
We will have an independent route 1; the others routes are denoted 2 and 3.
For simplicity we assume, for a moment, that the no-travel alternative is not
available, such that the NL model collapses to the simplest possible multinomial
logit model.

If there is no congestion, and hence, all link costs are constant and equal,
the logit model will assign 1/3 of the total flow to each of the routes, which,
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A B C

1

x

x

1!x

Figure 1: Simple network

arguably, is unrealistic. A probit model can account for the overlap, by setting

X
=

2

4
�

2
0 0

0 �

2
(1� x)�

2

0 (1� x)�

2
�

2

3

5 (11)

The probabilities of the two overlapping routes will then increase in x, and the
probability of the independent route will decrease, as shown in the left-hand
panel of Fig. 2. Daganzo and Sheffi (1977) show a similar figure, and assuming
that the MNP model is the correct one, argue that the logit model is often highly
biased, because it fails to take the correlations between routes into account.

However, in traffic assignment models, links are usually congestible, so the
costs of each route depend on the fraction of travelers that uses it. In our simple
model, we can introduce congestion by, for instance, making link costs per unit
of distance a linear function of link flows:

c =

2

4
1 + 3p1

1 + 3 (xp2 + (1� x) (p2 + p))

1 + 3 (xp3 + (1� x) (p2 + p3))

3

5 (12)

where pl is the probability, or fraction of the total flow assigned to route l, and
the gradient of the congestion cost is set at 3 to generate a realistic fraction
of congestion costs to total costs. The right-hand panel of Fig. 2 shows the
fraction of the total flow assigned to route 1 that results from these route costs.

As Fig. 2 shows, the introduction of congestion significantly reduces the
difference between the logit and probit models. This happens because, when
the links are congestible, users of the two overlapping routes impose a congestion
externality on each other, since they both use link BC. This makes routes 2 and
3 less attractive, especially if x is small. The random terms in the logit model
are still independent, but the systematic utilities V (�cr) now share a common
term. Hence, the difference between the logit and probit models becomes less
important. It does not completely disappear, however, and is still significant if
the amount of overlap between routes 2 and 3 is big.
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Figure 2: Logit vs. probit
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Figure 3: GNL
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So far, we have only compared the simplest possible logit model with the
probit model. The left-hand panel in Fig. 3 shows the results of a similar
exercise, without congestion, this time including the GNL model, with

↵ =

2

4
1 0 0 0

0 x 0 1� x

0 0 x 1� x

3

5 (13)

and µ = 2x/3, which is chosen to generate route choice probabilities close to
the MNP model. As Fig. 3 shows, the MNP and GNL fractions are very close,
even in the model without congestion. The right-hand panel of Fig. 3 shows
the covariance between the two overlapping routes in both models, which are
calculated using Eqs. 8 and 11; they are also very close. Hence, the GNL model
seems to approximate the MNP model well, at least in this simple example.
Moreover, there is no clear relation between the amount of overlap and the
difference between the two models.

The simple network in Fig. 1, has only one market; travel from A to C. In
more realistic models, there are more complex network effects; links are used
by travelers in multiple markets. Depending on the network structure, this can
further reduce the difference between the assignment models. If, for instance,
the top link in Fig. 1 is also part of route that serves another market, and
that route partially overlaps another, the two differences between logit and
probit probabilities may cancel each other out. Moreover, note that, for there
to be a difference between the models, all three routes (two overlapping, and
one separate) must not only exist, but also be used by a significant fraction
of travelers. In a larger congested network, this is not necessarily the case; a
large amount of congestion on a major link between two large nodes could, for
instance, make that link so unattractive to travelers between other nodes, that
all routes using it would be assigned very low choice probabilities.

The introduction of an additional alternative, representing the option not to
travel, affects the models in different ways. On the one hand, the addition of a
non-overlapping alternative in every market makes it more likely that a situation
such as the one in Fig. 1 exists, and hence, that there are significant differences
between assignment models. On the other hand, however, if that alternative is
added as a separate nest in a nested logit model, as we will do, this gives an
extra parameter (the dissimilarity between traveling and not traveling) which
can be used to calibrate the logit model, and hence, reduce the difference with
the probit model.

3 Simulation methodology

3.1 Network
To compare our three assignment models, we will apply them to the simple net-
work shown in Fig. 4, where all links are bidirectional (and congestion levels are
direction-specific), and the size of each node indicates the potential demand for
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travel. Nodes indicated with asterisks are connection nodes only. All links are
10 km long, and we consider all possible non-circular routes. This network lay-
out allows us to examine partially overlapping routes, and interactions between
markets. Importantly, there is not only overlap of potential but unused routes;
in the base case equilibrium, which we will present below, there is still a signif-
icant amount of overlap if we only consider routes that are used by significant
fractions (e.g., > 5%) of travelers.

! ! !

! ! !

! ! !

! ! !

1 2 3

4 5 6

7 8 9

10 11 12

Figure 4: Network

All links in the network are congestible; we model congestion using the well-
known Bureau of Public Roads (BPR) function (US Bureau of Public Roads,
1964), a widely used approximation of the congestion costs of highway travel:

�l = vot · Kl

Sf

⇣
1 + 0.15 (vl/Vl)

4
⌘
+ fl (14)

where vot is the value of time, Kl the length of link l, Sf the free-flow travel
speed (which we assume to be the same on all links), fl a potential toll (or fare),
and vl/Vl the volume-capacity ratio on link l. We set the latter set such that the
ratio of congestion costs to total costs remains within realistic limits; specifically,
such that the term multiplying the value of time in Eq. 14 is between 2 and 12.
The traffic volume on a link is the sum of the realized demand of every route
using the link:

vl =

X

m

X

r

armalrpmrDm (15)

In the logit models, route choice probabilities pmr and route flows pmrDm

can be calculated directly. In the probit model, this is more involved. Each
iteration of the MSA uses new multivariate draws, which are independent of
the previous one; hence, there is simulation noise in every iteration. Link flows
are calculated as a weighted average of all auxiliary flows in previous iterations,
which averages out the simulation noise. Route flows can be calculated in every
iteration, but as they are not averaged, they will contain a much larger amount
of noise.
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The most straightforward way to accurately estimate route flows is to run
one last iteration with a large sample size, after the link flows have converged,
and calculate route flows in that iteration. This can be highly computationally
intensive, especially in larger networks. Another solution, which we will use,
is to calculate a successive average of route flows in all iterations; a similar
procedure as the one followed to obtain link flows (except for the fact that
averaged link flows are used in the following iterations, whereas route flows
are just stored). This method uses information that is already available, and
gives consistent results, provided that the number of iterations is large enough,
such that the remaining simulation noise in the resulting average route flow is
sufficiently small.

Finally, the cost of taking a given route is simply the sum of the the link-
based costs over all links that make up the route

cr =

X

l

alr�l (16)

3.2 Demand
The potential demand (or demand function intercept) in market m is calculated
with a simple gravity model, such that it increases in the size Ni of each of
the two nodes that form the market, and decreases in the distance Km between
them:

Dm =

Q
i2m Ni

�Km
(17)

where � is a parameter. The realized demand depends on the generalized price
of travel, trough the SUE models.

3.3 Welfare and profit
It is difficult to define a consistent welfare measure across all models. Logsums
are a natural choice for the logit models, but the lack of a closed form in the
probit model makes calculating an equivalent measure there more complicated.
We therefore use the Rule of Half, which is often used for policy analyses. It
approximates the welfare gains from a certain policy policy change (in our case,
a change in toll) by

�W =

X

r

1

2

�
q

1
r + q

2
r

� �
c

1
r � c

2
r

�
+

�
⇡

2 � ⇡

1
�

(18)

where
�
⇡

2 � ⇡

1
�

is the profit change resulting from the change in toll, c1r and
c

2
r the route costs before and after the change respectively, and q

1
r and q

2
r the

numbers of users choosing each route (this includes the no-travel alternative)
before and after the change. Hence, it approximates the demand curve between
q

1
r and q

2
r with a linear function. To calculate the welfare gains of a specific

toll f , we use the cumulative benefits of all changes, up to a toll of f . This is
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Figure 5: Expected welfare and Rule of Half approximation

a significantly better approximation than simply using the Rule of Half once,
where the situation before the policy change would have a zero toll (see Nellthorp
and Hyman, 2003). In the latter case, the whole demand function between a
zero toll and a toll of f would be approximated with a linear function, which is
particularly inappropriate in a discrete choice setting, where demand functions
are usually highly convex. Our approach uses a piecewise linear approximation.
The step size is, to some extent, arbitrary, but the decision to use just a single
step would be too; moreover, increasing the number of steps has a quickly
decreasing impact on the results.

Although this piecewise linearization is obviously a simplification, it per-
forms well. Figure 5 shows, for the calibrated NL model, how the approximation
compares to the expected welfare when we vary the toll one of the links in the
network; the difference between the two is only substantial if the toll is so high
that the flow on the tolled link approaches zero, which is generally not a situa-
tion of interest. Since the expected welfare is much more difficult to calculate
in a probit model, we use the approximation in what follows.

3.4 Parameters
Initial parameters are shown in Table 1. We initially also set all fl = 0, and
estimate the parameters in the calibrated versions of the logit models using the
flows resulting from the probit model in that situation.

4 Simulation results

4.1 Theoretically equivalent models
We first compare link flows resulting from the three theoretically equivalent
models: the MNP, NL with comparable coefficients, and GNL with comparable
coefficients. Starting from a situation where no links are tolled, we increase the
toll on the link between nodes 5 and 8, in both directions. Fig. 6 shows the
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Parameter Value
c 35
vot 10
Vl 15000
Sf 120

Ni

2

664

225000 0 0

0 200000 0

0 0 275000

350000 0 0

3

775

� 50000

Table 1: Initial parameters

resulting flows v, as a function of these tolls f58 = f85, for four representative
links. Flow patterns on the other links either do not vary significantly with this
toll, or display similar patterns as those in Fig. 6.
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Figure 6: Link flows in theoretically equivalent models

Since these three models imply different substitution patterns, their resulting
flows are, of course, not exactly the same. However, the differences between the
models are relatively small, even on the link that is tolled (the top left panel in
Fig. 6). As we have shown in section 2.2, this is, to a large extent, the result
of congestion. Because all links are congested, the utilities users derive from
routes always correlate if routes overlap, even in the NL model. The presence
or absence of correlation between the stochastic parts of the utilities still has
an impact, but not nearly as big as one might expect. Moreover, since most
links are used in several markets, OD-level differences may partially cancel each
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other out on the network level.
Fig. 6 also shows that the GNL model, which allows for some correlation

between random terms of routes, often results in flows closer to the Probit
model, and it is never significantly further away.

4.2 Calibrated models
Although the difference between the theoretically equivalent models is a good
benchmark, models are usually calibrated, which might increase or decrease the
differences. Calibration obviously brings the traffic flows closer together in the
calibrated point (in our case, where no links are tolled), but this could reduce
the predictive power of the models.

Since we are only interested in the differences between models, and not in
determining which mode best fits a particular dataset, we examine these effects
by calibrating the NL and GNL models to the Probit route flows. Fig. 7 shows
the flows on four representative links, resulting from the Probit, calibrated NL
and calibrated GNL models.
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Figure 7: Link flows in calibrated models

As before, the differences between the models are small; in fact, the calibra-
tion has decreased them almost everywhere. It seems that, in this particular
setting, a good choice of model parameters can compensate for the fundamental
differences in the variance-covariance structure of the models. Moreover, the
GNL model is now always closer to the Probit flows than the NL model is.
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4.3 Overcalibration
The logit models used above are simple, and only have a few parameters that
can be calibrated. Since, as we have seen above, calibration can bring the SUE
models closer together, it might be advantageous to use a more flexible logit
model with alternative-specific constants, as defined in Eq. 4. Fig. 8 shows the
same Probit and NL flows as Fig. 7, but in addition, the flows resulting from a
calibrated NL model with alternative-specific constants.
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Figure 8: Link flows: NL vs NL-ASC

Naturally, the introduction of more calibration parameters allows the NL-
ASC model to be closer to the Probit model when tolls are zero. If we move
away from this calibrated state, however, the NL-ASC model is significantly
further away from the Probit model than any other model we have examined,
at least for the tolled link. This happens because the introduction of ASCs also
changes the other calibrated parameters, � and µ. A decrease in µ makes routes
less similar, and thus poorer substitutes. This decreases the price elasticity of a
demand for each route. Conversely, a decrease in � leads to larger differences in
route costs, which increases elasticities. The introduction of ASCs may change
both parameters in each direction. In this case, both � and µ are lower, but
the effect of the latter parameter is larger, which leads to an decrease in the
price elasticity of demand for link 58. Hence, better calibration of the initial
equilibrium is not always good for out-of-equilibrium predictions, especially if
there is no theoretical foundation (e.g., a correction for the number of left-hand
turns in a route) for the addition of more parameters.
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4.4 Implications for tolling
Although the differences in link flows between the various SUE models are small,
it is difficult to say whether these small differences are important without spec-
ifying where these flows are going to be used for. We therefore examine two
situations: one in which link 58 is tolled (in both directions) by a private opera-
tor, which maximizes its profits, and one in which the toll on this link is set by a
social planner, which maximizes social welfare. Other policies, such as capacity
extensions, are likely to give similar results, as they also affect the cost of us-
ing specific links (although indirectly, through a higher of lower congestibility,
rather than directly).

Fig. 9 gives the private operator’s profit, as a function of f58 = f85, for three
models: MNP, calibrated NL, and calibrated NL-ASC. Naturally, the differences
between the models are only important if they lead to different optimal tolls,
or affect the choice for tolling as such. The Probit and NL models result in
optimal tolls that are very similar; the profit levels are also comparable. If the
Probit model is the correct model, using an NL model to obtain tolls would only
reduce profits by 0.3%. Using an NL model with alternative-specific constants,
however, would result in a significantly higher toll, and a profit loss of 8.6%, a
direct result of the fact that this model uses a lower � and µ, which lowers the
demand elasticity on link 58.
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Figure 9: Profits as a function of tolls

Fig. 10 shows the result of a similar exercise, in which a social planner
maximizes the social welfare improvement resulting from tolling, as defined in
Eq. 18. This figure is very similar to Fig. 9; again, there is only a minimal
difference in optimal tolls between the MNP and NL models. If the Probit
model is correct, using an NL model to obtain optimal tolls results in only a
1.2% welfare loss. Using the NL-ASC model, however, results in a significantly
different toll, and a welfare loss of 5.4% if. This implies that, although simple
logit-based SUE models often give very similar results to more realistic probit
models, overcalibration can negatively affect policy effectiveness.
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Figure 10: Changes in welfare as a function of tolls

4.5 Sensitivity
In Figs. 9 and 10, optimal tolls are higher in the MNP model than in the NL
model, and even higher than in the ASC model. This is, however, not systematic.
If, instead of link 58, another link is tolled, the results are different, as illustrated
in Fig. 11, where we toll the link between nodes 10 and 11. Although this figure
shows profits only, welfare follows a very similar pattern.

Because this link is much less central, it is used by fewer markets. Hence,
although tolling still has a local effect, it has a much smaller impact on the
other links in the model. As a result, the differences between the models are
negligible. Although, here, both logit models result in a higher toll than the
MNP model, this difference is so minor that the use of even the toll from an
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Figure 11: Tolling link 1011
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Figure 12: Lower congestibility – flows

NL-ASC model results in less than a 0.04% profit loss if the MNP model is
correct.

Figs. 12–14 show link flows and welfare for the various SUE models, in a
situation where the congestibility of the links is lower (specifically, �l = vot ·
Kl
Sf

⇣
1 + 0.15 (vl/Vl)

2
⌘
+ fl, where the square replaces the fourth power of the

original BPR function). Note that this does not only decrease the congestibility
of all links, but through that, also affects demand levels, and hence all demand
elasticities. As Fig. 12 shows, the differences between models are larger than in
the base case parameterization. This confirms that it is congestion that brings
the models close together. As before, the GNL flows are much closer to the
MNP flows than the NL flows. Moreover, as Fig. 13 shows, NL-ASC flows are
now even further away from flows in the other models; in particular, the price
elasticity of demand is much higher on the tolled link. As a result, the socially
optimal NL-ASC toll is much lower, as Fig. 14 shows. If NL-ASC tolls are used
while the MNP tolls are correct, this results in a 78% welfare loss, while using
NL tolls would only reduce welfare by 28%.

5 Conclusions

We have shown that, in a small but realistic congestible transport network,
simple logit SUE models can give results that are very similar to more general
probit models. This result stems mostly from the fact that transport networks
are congestible, which implies that the systematic utilities that users derive from
overlapping routes are correlated, even if the random utilities corresponding to
the routes are not. Moreover, in networks, OD-level differences can potentially
cancel each other out. The differences in link flows between models are not
systematic, i.e., one model does not always result in higher profit-maximizing
or socially optimal tolls than another; this depends on the characteristics of the
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Figure 13: Lower congestibility – overcalibration
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network and the links on which particular policies are enacted.
Since logit models are much less computationally intensive, this indicates

that they might, at least in heavily congested settings, be a better choice. As
logit models need no simulation, they can lead to more accurate results and
allow for studying of more and more complex policy instruments and games
(e.g., tax competition, networks with multiple operators, etc.). However, we
also find that models can be overcalibrated, especially when parameters are
introduced that have no theoretical justification. This is, for instance, the case
if alternative-specific constants are introduced in a logit model when there is no
theoretical basis for their inclusion. In that case, significant differences between
models can arise, and careful evaluation of the various possibilities is necessary.

We have focused on a few representative SUE models, and have disregarded
others; in particular, link-based route choice models, as proposed by, e.g. Fos-
gerau et al. (2013). Although these models are very useful for estimation, their
complexity makes them less suitable for many simulation application. Further
research has to determine how large different these models are from existing
logit and probit models in practical situations.

Naturally, our results were obtained for a very specific situation. We have
chosen our network such as to maximize the possible differences between models,
and have chosen realistic parameters. It is unlikely that other networks or
parameterizations would give significantly different results, and our sensitivity
analyses confirm this. The network we have examined, though small, features
a large number of overlapping routes between all OD-pairs; moreover, many
of these routes are used in equilibrium. We therefore do not expect different
results, with stronger contrasts, for larger networks.
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