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Abstract. What difficulties do beginners face when learning object-oriented programming? How 
are these reflected in the code they write? In the context of a new introductory programming course 
based on “inverted curriculum” ideas, and taking advantage of our ability to instrument the 
compiler, we obtained interaction logs from two different groups of students across two unrelated 
universities. We developed a methodology for analysing these logs to identify students’ intentions, 
with the goal of providing contextual feedback in an Intelligent Tutoring System. 

 
Keywords: Data collection, Data analysis, Intelligent tutoring system, Inverted curriculum  

 

INTRODUCTION 
Collecting student’s interaction logs provides data for educational research in the relevant domain. Transforming 
this data into useful information usually requires deriving appropriate methodologies suited to the data and the 
aims of the study being carried out. 

We wanted to determine the typical errors students make and understand their behaviours while learning to 
program in order to help them better in our courses and ultimately in an intelligent tutoring system (ITS) that will 
act as additional support in a one-to-one tutoring fashion. Various methods used in the past have involved 
interviews, “talk-alouds”, and observing students while they solve problems in a “looking over the shoulder” 
manner (Jackson, Cobb & Carver, 2005). Although they provide some insight, these techniques are often tedious 
to apply and susceptible to observer bias. To obtain a more objective assessment, we automated data collection, 
with the help of the compiler, by storing “snapshots” of student programs at every compilation. The resulting 
interaction logs allow us to explore the behaviour of students while they solve programming tasks, usually 
outside of any human supervision. The analysis of the data, using both statistical and non-statistical techniques, 
gave us insights into helping students learn programming. These insights have already led to improvements to the 
next iteration of the course and will inform the design of the ITS under development. 

We first present the context of this work. We then describe the courses and the organization of the study. The 
methods used to analyse the collected data are detailed in the next section. We finally show the initial findings on 
the patterns discovered from this work and test results before concluding and a brief discussion of future work. 

This article departs from local administrative terminology for the sake of consistency: what is called a 
“module” at Birkbeck appears here as a “course”, etc. For object-oriented terminology, we follow the definitions 
used for the course: OOSC (Meyer, 1997) and the Touch of Class textbook (Meyer, 2003b). 

OVERVIEW OF THE SYSTEM FRAMEWORK 
The goal of this research is to build an ITS that will provide support to beginners in object-oriented programming 
(OOP). This paper describes the work done to implement the engine behind part of the pedagogical agent of the 
ITS (Intention Matching), whose architecture is shown on Figure 1. The figure illustrates communication 
between agents: For example, when the pedagogical agent needs information related to the exercise presented to 
the student, it communicates with the Tutor agent which has this information embedded in its exercises 
“module”; or the Interface agent which manages the user interface (UI) needs to pass information related to the 
actions performed by the student to the pedagogical agent which then processes the information by storing it in 
the student model, providing feedback, etc. The results of the intention matching process will be used to provide 
feedback to the students while they solve exercises. 

 



 
Figure 1: Prototype’s architecture 

THE STUDY 
In October 2003, ten years after the first papers proposing an Inverted Curriculum for teaching introductory 
programming (Meyer, 2003a), ETH Zurich started applying these ideas to the Introduction to Programming 
course (“Introduction to programming”), part of the first year of the computer science program. 

Rather than a bottom-up or top-down approach, the Inverted Curriculum, also known as “consumer-to-
producer strategy” or “outside-in”, is the process of progressively opening “black boxes” to unveil the underlying 
principles of higher-level concepts gradually. The “black boxes” are libraries of reusable components. This 
approach enables students who are “beginner programmers” to learn both how to re-use libraries of real-world 
complexity and size and how to build reliable software. In addition to the sense of achievement, motivation is 
improved from working with a real application: It is fun to play with something that works, is visible and non-
trivial and there is greater opportunity for active learning. 

In all the courses used for this study students learn programming using Eiffel (Eiffel Software, 2006) 

Student Groups 

Data for the first iteration of this study came from two instances of the course, taught with minor variations to 
two groups of students across two unrelated universities. The second iteration was done later in only one of the 
universities: 

• ETH (Introduction to Programming) 
In the 2004/2005 session, 22 out 1801 students from the Introduction to Programming course (“Introduction to 
programming”) at ETH (first year of the Computer Science Bachelor's program) voluntarily participated in the 
study. In the 2005/2006 session, an average of 64 out of 1801 students voluntarily participated. The course lasts a 
semester (14 weeks) with, each week, two 2-hour full-class lectures and 3 hours of tutorials in groups of about 20 
students. In addition to fundamental OOP and procedural concepts such as objects, classes, inheritance, control 
structures, recursion, etc., students learn more advanced topics such as event-driven and concurrent programming 
and fundamental concepts of software engineering. 

• Birkbeck (Object-oriented programming part-time and full-time) 
52 out of a group of approximately 751 students taking the OOP course in the MSc program at Birkbeck2 
participated. Students were required to send their logs as part of the coursework submission although they were 
not penalised for not doing so. The course lasts a term (11 weeks). We taught OOP in Eiffel, including all the 
basic concepts and a few advanced ones (genericity with inheritance, exception handling) in the first part of the 
course; the remaining time was used to teach Java. Data was collected in the spring term 2004/2005. 

Most of the Birkbeck students are “mature” students, many already employed full-time in the IT industry (this 
explains their request for inclusion of some Java training). All of them did an Introduction to Programming 
module in C++ prior to the OOP module. By contrast, almost all ETH students are around 20 years old and fresh 

                                                           
1 All group sizes are approximations because of drop-outs and of some re-takes who do not need to submit 
coursework. 
2 In full-time mode, the degree lasts 1 year and in part-time mode, it lasts 2 years. 



out of high school; they have varying exposure to IT and programming, with a fair number3 being complete 
novices. 

While teaching styles differed slightly between the two groups and instructors were obviously different in the 
two institutions, the teaching material was kept as similar as possible. The assignments were drawn from the 
same collection of exercises, but due to time constraints the Birkbeck students had fewer of them; the data 
analysis used the same seven exercises for all the groups. 

The time given to the MS students to solve the exercises was adjusted to take into account the different mode 
of study. The Birkbeck exercises were graded and contribute towards the final grading of the degree. For the 
ETH group, these exercises are not graded but students are required to show they have made a reasonable attempt 
at solving them to be allowed to sit the exams. 

The Data Collection Mechanism 

We benefited from the “Melting Ice Technology” of the free EiffelStudio environment used by the students 
(EiffelStudio, 2006). This incremental compilation mechanism allows speedy and efficient development by only 
processing the classes changed since the latest compile step (Meyer, 1997). 

To collect interaction logs, we were able to use an existing option of EiffelStudio enabling changes to be 
recorded from one incremental compilation (“Melting'”) to the next. The data saved includes a copy of the 
program and some information relating to compilation. The information relating to compilation includes the 
version of EiffelStudio used, whether compilation was successful, etc. All such data was treated anonymously, 
allaying any privacy concerns. 

The Structure of the Collected Data 

Collecting the data meant processing a large number of files: total number of participants, multiplied by number 
of exercises, multiplied by number of compilations for each exercise. 

Figure 2 shows the structure of the data: A student submits a number of compilation folders (zipped) for each 
exercise via an upload page. Each compilation folder in turn contains various files and folders. The relevant 
documents in the compilation folders are the source code files (Temperature.e in Figure 3) and the file 
compilation_info.txt containing information about the compilation. This last file contains meta-data associated 
with the compilation: compiler version used, compilation outcome (successful or not), program files changed, 
etc.  

                                                           
3 In the 2004/2005 group, 17% describe themselves as complete beginners and 31% as having programmed a 
little bit. The percentages are 18% and 29% respectively in the following year. 

 
 

Figure 2: Structure of the data collected. 
 

Figure 3: Temperature.e



MINING THE COLLECTED DATA 

Statistical Information 

The interaction logs contained a wealth of information. The first step was to obtain statistical information such as 
the amount of time taken to accomplish tasks, the number of compilations, and time between compilations with 
the help of shell scripts working with the logs and compilation information files. This information was useful in 
getting a rough idea of the data we would be dealing with. 

Student Errors 

The statistical information described previously is not enough to reach any meaningful conclusions. More 
important and relevant is to understand where difficulties arise and provide help in these areas. The Unix “diff” 
utility was used to extract the differences in program files between successive compilations. To extract novice 
errors, the output of the “diff” scripts was manually examined. Individual errors were noted as well as their 
frequency (enabling us to focus on the most acute problems) and other verbose information such as why the error 
happened and who diagnosed the error (compiler, instructor, runtime?).  

Figure 4 illustrates the database structure used for storing the information we extracted from the log analysis: 
Each exercise given to the student is decomposed into subproblems (PSE). Errors occur within PSEs. We tracked 
frequencies within groups of participants. Moreover, errors can occur for multiple reasons (speculative at this 
stage since we cannot gauge it in a better way). 

From the logs we were able to reconstruct scenarios of the student's problem-solving steps from initial 
attempt to final solution. Using a small tool that tracks the evolution of certain portions of code using the output 
of the “diff” scripts, we specify what portion of code we want to track starting from a certain compilation 
(number). Examples of the scenarios/error paths produced are discussed in greater detail in (Ng Cheong Vee, 
Meyer & Mannock, 2006). 

 

 
Figure 4: Database design for the information extracted from the log analysis 

Intention Matching for the Provision of Feedback 

It is not always possible to identify errors (whether syntactic or semantic) present in a student answer without 
placing it into context. In a few cases, identification of errors might be possible using pattern matching, but the 
manual analysis has shown that in many cases this is insufficient. We therefore relied on the concept of an 
“intention” (Johnson, 1990). Intentions, or reference programs, are correct solutions to the given problem. We 
estimate the intention the student was attempting to use and build a discrepancy list by applying an algorithm 
based on the Levenshtein or Edit-Distance algorithm (Levenshtein, 1965). Other possible approaches we 
considered for finding the best match for one piece of code to a number of model solutions are program slicing 
(Tip, 1995), Advanced Object-oriented Program Dependence Graph (AOPDG) (McGregor, Malloy & Siegmund, 
1996), and Abstract Syntax Trees. These are, however, coarse-grained and would need to be instrumented for our 
purposes since we are working with small modular sections of code rather than complete programs. The 
Levenshtein distance algorithm yields the minimum number of character insertions, deletions and substitutions 
necessary to make two strings equal, allows us to estimate with simple computations a best match. We modified 
the original algorithm to take into account multi-line solutions. 



Example of exercise and intentions 
In the second of the seven exercises examined in the data analysis, students were asked to write a program to 

convert temperatures amongst three different units (Celsius, Fahrenheit and Kelvin). They were asked to use a 
given interface for the class TEMPERATURE. We decompose the problem into subtasks (PSE). Here we 
concentrate on the subtask of writing the body of the function celsius_to_fahrenheit. Two (out of the seven) 
intentions are: 
 

 
 

 
 
 
 

 
These two intentions correspond to two different ways of creating and initializing a TEMPERATURE object. The 
second one uses a local variable for the creation, then assigns it to the Result of the function. The second one 
achieves conciseness by using Result directly. 

Cost criteria 
Several experiments were run to determine which criteria and cost combinations yielded a more accurate 
intention matching. For example, costs such as too many lines, too few lines, threshold (to discard very high 
scores) and unmatched tokens proved redundant and were discarded, being implicitly included in adjustment 
costs (see the “ Adjustment ratios” in the next subsection). We tried placing more weight on some criteria rather 
than others but the cost combination yielding the best results was a uniform add, delete, replace set to 1. 

 Algorithms and steps for finding a best match 
Finding which intention matches a given student code requires several steps. The “word-by-word” matrix shown 
on Figure 5 depicts a comparison of one of the lines of the student code to one of the lines of the model solutions. 
A “line-by-line” matrix must next be built to show the score obtained for each line of the student code compared 
to each line of the intention. The cells of the latter are populated by placing the value of the last cell (lower right 
cell) of each relevant “word-by-word” matrix into the appropriate cell of the “line-by-line” matrix. 
 

 
Figure 5: Output for the application of the Levenshtein distance to compare the student’s answer and the 

intention 
 
The “line-by-line” matrix having the lowest overall score indicates the best match. The algorithm used to 

calculate its overall score is as follows:  
Case 1: When dealing with a matrix where the number of lines in the intention exceeds that of the student 

code: (1) Select a minimum per row (mark the row as being “taken”). (2) If there is more than one minimum in a 
column; starting from the column where a “clash” occurs (its row had already been marked previously), search 
for the next minimum in the row, checking that the new minimum's row is not marked as “taken” - otherwise 
repeat search in the same manner. (3) Add values of the marked cells.  

Case 2: When dealing with a matrix where the number of lines in the student code exceeds that of the 
intention: (1) Select a minimum per column (mark the cell). (2) If there is more than one minimum in a row; 
starting from the row that “clashes”, search for the next minimum in the column, checking that the new 
minimum's column is not marked - otherwise repeat search in the same manner. (3) Add values of the marked 
cells. 

create Result.make_with_fahrenheit (9/5 * value + 32) 

local 
 temperature: TEMPERATURE 
do 
 create temperature.make_with_fahrenheit (9/5 * value + 32) 
 Result := temperature 
end



Adjustment ratios 
To normalise the overall score of the matrices (and take account of the disparateness in the number of lines in the 
two pieces of code being compared), an adjustment ratio is applied. The adjustment ratio is a coefficient 

entioninlinesofno
codestudentinlinesofno

int−−−−
−−−−−  in the case where the number of lines in student code exceeds that of the intention. The 

reverse is applied in the opposite case. 

The discrepancy list 
A by-product of the Levenshtein distance algorithm are the series of transformations (add, replace, delete) 
needed to transform one string into another. In this context, we can also obtain the transformations which we 
have called the discrepancy-list (See Figure 5). This will be used to generate feedback. At the time of writing, the 
method for feedback generation from discrepancy-lists is incomplete. In Figure 5, the first discrepancy-list 
indicates the following transformations are necessary to achieve compliance between the student answer and the 
reference solution: (1) Add the create keyword at place-holder 1. (2) Replace ‘:=’ by ‘.’ at place-holder 3. (3) 
Add make_with_fahrenheit at place-holder 4. 

PATTERN DISCOVERY OF INTENTIONS 
To understand student behaviours from a different perspective than the one presented in (Ng Cheong Vee, et al., 
2006), we considered how intentions cluster in the data, whether the same clusters appears in all three groups 
used for testing, and which were the most popular intentions. This analysis, summarised in Figure 6, revealed 
that: (1) Intentions in the data group according to how we manually grouped them. (2) A substantial number of 
students (4->5 grouping is the second highest point in the graph) made use of extra variables: an example of such 
behaviour was given in Section Example of exercise and intentions. This gives us an indication that students 
think in “small steps” rather than holistically. Teaching can be improved by pointing out such redundancies in 
code and helping students refactor their code in more elegant and efficient ways. (3) The comparison of results 
between the ETH group and MSc group in the Temperature exercise shows that in general, they had the same 
patterns – the distribution is similar.  
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Figure 6: Intention grouping for ETH and MSc 
students 

 
Number of … MSC45T MSC45F ETH56T 

Students 36 37 51 
Answers 178 165 163 

Syntax Errors 99 26 68 
Not allowed 

answers 
0 83 9 

Successful 
predictions 

79 53 84 

Unclassifiable 
(syntax Correct) 

0 3 1 

Mispredictions 0 0 1 

 
Table 1: Summary of test results 

 
The groupings on the graph (x-axis), are represented as: the “first choice” intention is on the left hand side of the 
arrow and the intention that comes out as second choice in the data is on the right-hand side. 

RELATED WORK 
Studies similar in their scope to ours were carried out three decades ago for imperative languages (Litecky & 
Davis, 1976) (Moulton & Muller, 1967). They highlighted and classified various common programming errors 
pertinent to the imperative paradigm. Some of these studies used compiler instrumentation to gather data, while 
others used other methods such as interviews mentioned above. 

A more recent study (Jadud, 2005) used Java and the BlueJ environment (Kölling, Quig, Patterson and 
Rosenberg, 2003). This study is more relevant, being situated in the object-oriented paradigm and using a very 
similar data collection method. It focuses on analysing novice compilation behaviours by looking at features such 
as frequency of compilations, compilation times and others. Although the author's stated goal – to determine if 
novices have different characteristic compilation behaviours – is somewhat different from ours, he also provides 
a list of common errors. Nevertheless most considered errors are syntactic, whereas we are interested in semantic 



errors. Moreover, he uses quantitative analysis while we consider qualitative analysis better suited for our 
purposes. 

It is often difficult to clearly distinguish syntactic from semantic errors. Methods for identifying bugs in 
program code in the area of “program analysis'” have been proposed for example in (Hovemeyer & Pugh, 2004), 
(Hangal & Lam, 2002). However, these are usually useful for intermediate to advanced programmers. Novices 
make very basic errors that are reflected syntactically but may carry more meaning and significance at the 
cognitive level. Moreover, their way of solving tasks (even simple ones) is different. They seem to often use trial 
and error and not think of the real problem.  

(Sykes & Franek, 2004a) used a methodology based on the Levenshtein distance in their work. They use an 
“Intention Recognition” module (IR) to establish the student’s intention and deliver feedback. Their IR module is 
composed of the A-type and B-type functionalities as they call it. In later work (Sykes & Franek, 2004b), they 
seem to have adopted a slightly different algorithm (JECA) based on the Burke-Fisher Error Recovery algorithm 
(Burke & Fisher, 1987) to get rid of the A and B-Type functionalities. Our definition of “Intention Matching” 
(what they call “Intention Recognition”) is different from theirs. By intention matching, we mean to discover 
what conceptual plan or algorithm the student has been following, as we assume our intention matching engine 
received syntactically correct code (thereby dealing with logic or semantic errors). We compare two pieces of 
code on a word-by-word basis followed by a line-by-line comparison. In both their approaches (using the A and 
B-Type functionalities and the JECA algorithm), their comparison is done character-by-character for all the 
keywords that exist in Java. This is obviously computationally expensive and explains why they restrict the 
programming concepts covered in their system. Moreover they have decided to cover procedural aspects of 
programming (variables, operators and looping structures). We aim to cover basic OO concepts taught in our 
courses (e.g. classes, objects, message, passing, etc…). The main difference between their work and ours lies in 
the emphasis they place on syntax as illustrated by this statement: 

“So even though the IR algorithm and tutoring process results in source code that is syntactically correct, 
there is no guarantee that it will satisfy the program requirements.”(Sykes & Franek, 2004a). 

We assume that our parser, based on the Gobo library (Gobo parser for Eiffel, 2006), will deliver 
syntactically correct and successfully compiled code to our intention matching engine. Moreover, because we use 
Eiffel, a language with a small number of keyword and syntactic constructs, the number of trivial syntax errors 
such as balancing brackets, missing semicolons, etc. are considerably reduced. Additionally, the straightforward 
correspondence between the language’s constructs and the concepts of OO (each syntactic construct has one 
precise meaning and therefore are not overloaded) allows us to focus on more important conceptual issues and 
helps us better in finding intentions in student’s solutions. 

TEST RESULTS FOR INTENTION MATCHING 
The data arising from ETH in the 2004/2005 session was used to derive the described methodology. Three 

other batches of data were used to test the methodology: The MSc data collected from Birkbeck in the 04/05 data 
collection for two of the problems set to the student: the Temperature and Fraction problem (Introduction to 
programming, 2006). The last batch is the ETH batch in the 05/06 data collection for the Temperature problem. 
The Fraction problem is a more complex exercise to solve than Temperature, involving the use of more concepts 
such as inheritance. We identified 17 intentions for this problem. The results are summarised in Table 1. 

Those answers that would not occur in the prototype (since the prototype applies certain constraints on what 
students can do – for instance, the prototype imposes an order in which subproblems (PSEs) are solved) were 
pre-filtered (Not allowed answers row in Table 14). There are also syntactically correct answers that would be 
allowed to be formed in the prototype but are difficult to map onto an intention due to the student programming 
in a non-standard way that can still yield correct output: three in MSC45F and one in ETH56T. To deal with such 
cases, an error margin metric tolerance was introduced to compute the real difference between the system's 1st 
and 2nd predictions. If the delta is below 10%5 we cannot have confidence in the system’s prediction. Otherwise, 
we accept the prediction. For three of those four answers, the margin was below 10%. When testing correct 
predictions in all three batches, one answer had a margin below 10%. We might, however, not have to use the 
margin metric as it is unlikely that basing feedback on the system's first prediction will confuse the student. 

In twenty one of the MSC45T answers for the Temperature exercise, students used intentions that would not 
work in the given context but would work in others. These intentions were included in the intention matching 
process as they are useful for feedback generation. 

                                                           
4 As can be seen this number is much higher in the MSC45F batch. This is because of the nature of the problem 
and the constraints that are therefore necessary to put in place. 
5 The 10% metric was decided based upon our experiments – these showed that the difference was below 10% in 
general in these specific cases. For the rest, the difference was above 10%. 



These results show that the method can be used for various exercises and does intention matching with very 
high accuracy as only one misprediction was detected in ETH56T. 

CONCLUSION AND FUTURE WORK 
The initial results of this study have provided valuable insights into the ways in which students learn to program: 
the errors they make and the ways in which they overcome them. In this paper we presented a methodology that 
combines pattern matching and an augmented version of the Levenshtein distance algorithm to analyse students’ 
interaction logs and guess their programming intentions. This analysis has helped us understand why these errors 
occur and why students tackle them the way they do, with direct feedback into the design and teaching of the 
course, for which the results are full of lessons. The results of the tests demonstrated that the methodology can be 
successfully applied to problems of considerable complexity and size.   

In our work on feedback generation, we are exploring patterns in the use of intentions by students and we are 
using the discrepancy-lists (by-product of the algorithm/method described in the paper) to extract rules to 
incorporate in the system. From these we will be able to design a feedback mechanism to guide students using the 
prototype. 
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