
Understanding novice errors and error paths in
Object-oriented programming through log analysis

M-Helene Ng Cheong Vee

SCSIS, Birkbeck,
University of London

marie-helene@dcs.bbk.ac.uk

Bertrand Meyer
Chair of Software Engineering,

ETH Zurich
bertrand.meyer@inf.ethz.ch

Keith L. Mannock
SCSIS, Birkbeck,

University of London
keith@dcs.bbk.ac.uk

Abstract. What difficulties do beginners face when learning object-oriented programming? How
are these reflected in the code they write? In the context of a new introductory programming course
based on “inverted curriculum” ideas, and taking advantage of our ability to instrument the
compiler, we obtained interaction logs from two different groups of students across two unrelated
universities. We developed a methodology for analysing these logs to identify students’ intentions,
with the goal of providing contextual feedback in an Intelligent Tutoring System.

Keywords: Data collection, Data analysis, Intelligent tutoring system, Inverted curriculum

INTRODUCTION
Collecting student’s interaction logs provides data for educational research in the relevant domain. Transforming
this data into useful information usually requires deriving appropriate methodologies suited to the data and the
aims of the study being carried out.

We wanted to determine the typical errors students make and understand their behaviours while learning to
program in order to help them better in our courses and ultimately in an intelligent tutoring system (ITS) that will
act as additional support in a one-to-one tutoring fashion. Various methods used in the past have involved
interviews, “talk-alouds”, and observing students while they solve problems in a “looking over the shoulder”
manner (Jackson, Cobb & Carver, 2005). Although they provide some insight, these techniques are often tedious
to apply and susceptible to observer bias. To obtain a more objective assessment, we automated data collection,
with the help of the compiler, by storing “snapshots” of student programs at every compilation. The resulting
interaction logs allow us to explore the behaviour of students while they solve programming tasks, usually
outside of any human supervision. The analysis of the data, using both statistical and non-statistical techniques,
gave us insights into helping students learn programming. These insights have already led to improvements to the
next iteration of the course and will inform the design of the ITS under development.

We first present the context of this work. We then describe the courses and the organization of the study. The
methods used to analyse the collected data are detailed in the next section. We finally show the initial findings on
the patterns discovered from this work and test results before concluding and a brief discussion of future work.

This article departs from local administrative terminology for the sake of consistency: what is called a
“module” at Birkbeck appears here as a “course”, etc. For object-oriented terminology, we follow the definitions
used for the course: OOSC (Meyer, 1997) and the Touch of Class textbook (Meyer, 2003b).

OVERVIEW OF THE SYSTEM FRAMEWORK
The goal of this research is to build an ITS that will provide support to beginners in object-oriented programming
(OOP). This paper describes the work done to implement the engine behind part of the pedagogical agent of the
ITS (Intention Matching), whose architecture is shown on Figure 1. The figure illustrates communication
between agents: For example, when the pedagogical agent needs information related to the exercise presented to
the student, it communicates with the Tutor agent which has this information embedded in its exercises
“module”; or the Interface agent which manages the user interface (UI) needs to pass information related to the
actions performed by the student to the pedagogical agent which then processes the information by storing it in
the student model, providing feedback, etc. The results of the intention matching process will be used to provide
feedback to the students while they solve exercises.

Figure 1: Prototype’s architecture

THE STUDY
In October 2003, ten years after the first papers proposing an Inverted Curriculum for teaching introductory
programming (Meyer, 2003a), ETH Zurich started applying these ideas to the Introduction to Programming
course (“Introduction to programming”), part of the first year of the computer science program.

Rather than a bottom-up or top-down approach, the Inverted Curriculum, also known as “consumer-to-
producer strategy” or “outside-in”, is the process of progressively opening “black boxes” to unveil the underlying
principles of higher-level concepts gradually. The “black boxes” are libraries of reusable components. This
approach enables students who are “beginner programmers” to learn both how to re-use libraries of real-world
complexity and size and how to build reliable software. In addition to the sense of achievement, motivation is
improved from working with a real application: It is fun to play with something that works, is visible and non-
trivial and there is greater opportunity for active learning.

In all the courses used for this study students learn programming using Eiffel (Eiffel Software, 2006)

Student Groups

Data for the first iteration of this study came from two instances of the course, taught with minor variations to
two groups of students across two unrelated universities. The second iteration was done later in only one of the
universities:

• ETH (Introduction to Programming)
In the 2004/2005 session, 22 out 1801 students from the Introduction to Programming course (“Introduction to
programming”) at ETH (first year of the Computer Science Bachelor's program) voluntarily participated in the
study. In the 2005/2006 session, an average of 64 out of 1801 students voluntarily participated. The course lasts a
semester (14 weeks) with, each week, two 2-hour full-class lectures and 3 hours of tutorials in groups of about 20
students. In addition to fundamental OOP and procedural concepts such as objects, classes, inheritance, control
structures, recursion, etc., students learn more advanced topics such as event-driven and concurrent programming
and fundamental concepts of software engineering.

• Birkbeck (Object-oriented programming part-time and full-time)
52 out of a group of approximately 751 students taking the OOP course in the MSc program at Birkbeck2
participated. Students were required to send their logs as part of the coursework submission although they were
not penalised for not doing so. The course lasts a term (11 weeks). We taught OOP in Eiffel, including all the
basic concepts and a few advanced ones (genericity with inheritance, exception handling) in the first part of the
course; the remaining time was used to teach Java. Data was collected in the spring term 2004/2005.

Most of the Birkbeck students are “mature” students, many already employed full-time in the IT industry (this
explains their request for inclusion of some Java training). All of them did an Introduction to Programming
module in C++ prior to the OOP module. By contrast, almost all ETH students are around 20 years old and fresh

1 All group sizes are approximations because of drop-outs and of some re-takes who do not need to submit
coursework.
2 In full-time mode, the degree lasts 1 year and in part-time mode, it lasts 2 years.

out of high school; they have varying exposure to IT and programming, with a fair number3 being complete
novices.

While teaching styles differed slightly between the two groups and instructors were obviously different in the
two institutions, the teaching material was kept as similar as possible. The assignments were drawn from the
same collection of exercises, but due to time constraints the Birkbeck students had fewer of them; the data
analysis used the same seven exercises for all the groups.

The time given to the MS students to solve the exercises was adjusted to take into account the different mode
of study. The Birkbeck exercises were graded and contribute towards the final grading of the degree. For the
ETH group, these exercises are not graded but students are required to show they have made a reasonable attempt
at solving them to be allowed to sit the exams.

The Data Collection Mechanism

We benefited from the “Melting Ice Technology” of the free EiffelStudio environment used by the students
(EiffelStudio, 2006). This incremental compilation mechanism allows speedy and efficient development by only
processing the classes changed since the latest compile step (Meyer, 1997).

To collect interaction logs, we were able to use an existing option of EiffelStudio enabling changes to be
recorded from one incremental compilation (“Melting'”) to the next. The data saved includes a copy of the
program and some information relating to compilation. The information relating to compilation includes the
version of EiffelStudio used, whether compilation was successful, etc. All such data was treated anonymously,
allaying any privacy concerns.

The Structure of the Collected Data

Collecting the data meant processing a large number of files: total number of participants, multiplied by number
of exercises, multiplied by number of compilations for each exercise.

Figure 2 shows the structure of the data: A student submits a number of compilation folders (zipped) for each
exercise via an upload page. Each compilation folder in turn contains various files and folders. The relevant
documents in the compilation folders are the source code files (Temperature.e in Figure 3) and the file
compilation_info.txt containing information about the compilation. This last file contains meta-data associated
with the compilation: compiler version used, compilation outcome (successful or not), program files changed,
etc.

3 In the 2004/2005 group, 17% describe themselves as complete beginners and 31% as having programmed a
little bit. The percentages are 18% and 29% respectively in the following year.

Figure 2: Structure of the data collected.

Figure 3: Temperature.e

MINING THE COLLECTED DATA

Statistical Information

The interaction logs contained a wealth of information. The first step was to obtain statistical information such as
the amount of time taken to accomplish tasks, the number of compilations, and time between compilations with
the help of shell scripts working with the logs and compilation information files. This information was useful in
getting a rough idea of the data we would be dealing with.

Student Errors

The statistical information described previously is not enough to reach any meaningful conclusions. More
important and relevant is to understand where difficulties arise and provide help in these areas. The Unix “diff”
utility was used to extract the differences in program files between successive compilations. To extract novice
errors, the output of the “diff” scripts was manually examined. Individual errors were noted as well as their
frequency (enabling us to focus on the most acute problems) and other verbose information such as why the error
happened and who diagnosed the error (compiler, instructor, runtime?).

Figure 4 illustrates the database structure used for storing the information we extracted from the log analysis:
Each exercise given to the student is decomposed into subproblems (PSE). Errors occur within PSEs. We tracked
frequencies within groups of participants. Moreover, errors can occur for multiple reasons (speculative at this
stage since we cannot gauge it in a better way).

From the logs we were able to reconstruct scenarios of the student's problem-solving steps from initial
attempt to final solution. Using a small tool that tracks the evolution of certain portions of code using the output
of the “diff” scripts, we specify what portion of code we want to track starting from a certain compilation
(number). Examples of the scenarios/error paths produced are discussed in greater detail in (Ng Cheong Vee,
Meyer & Mannock, 2006).

Figure 4: Database design for the information extracted from the log analysis

Intention Matching for the Provision of Feedback

It is not always possible to identify errors (whether syntactic or semantic) present in a student answer without
placing it into context. In a few cases, identification of errors might be possible using pattern matching, but the
manual analysis has shown that in many cases this is insufficient. We therefore relied on the concept of an
“intention” (Johnson, 1990). Intentions, or reference programs, are correct solutions to the given problem. We
estimate the intention the student was attempting to use and build a discrepancy list by applying an algorithm
based on the Levenshtein or Edit-Distance algorithm (Levenshtein, 1965). Other possible approaches we
considered for finding the best match for one piece of code to a number of model solutions are program slicing
(Tip, 1995), Advanced Object-oriented Program Dependence Graph (AOPDG) (McGregor, Malloy & Siegmund,
1996), and Abstract Syntax Trees. These are, however, coarse-grained and would need to be instrumented for our
purposes since we are working with small modular sections of code rather than complete programs. The
Levenshtein distance algorithm yields the minimum number of character insertions, deletions and substitutions
necessary to make two strings equal, allows us to estimate with simple computations a best match. We modified
the original algorithm to take into account multi-line solutions.

Example of exercise and intentions
In the second of the seven exercises examined in the data analysis, students were asked to write a program to

convert temperatures amongst three different units (Celsius, Fahrenheit and Kelvin). They were asked to use a
given interface for the class TEMPERATURE. We decompose the problem into subtasks (PSE). Here we
concentrate on the subtask of writing the body of the function celsius_to_fahrenheit. Two (out of the seven)
intentions are:

These two intentions correspond to two different ways of creating and initializing a TEMPERATURE object. The
second one uses a local variable for the creation, then assigns it to the Result of the function. The second one
achieves conciseness by using Result directly.

Cost criteria
Several experiments were run to determine which criteria and cost combinations yielded a more accurate
intention matching. For example, costs such as too many lines, too few lines, threshold (to discard very high
scores) and unmatched tokens proved redundant and were discarded, being implicitly included in adjustment
costs (see the “ Adjustment ratios” in the next subsection). We tried placing more weight on some criteria rather
than others but the cost combination yielding the best results was a uniform add, delete, replace set to 1.

 Algorithms and steps for finding a best match
Finding which intention matches a given student code requires several steps. The “word-by-word” matrix shown
on Figure 5 depicts a comparison of one of the lines of the student code to one of the lines of the model solutions.
A “line-by-line” matrix must next be built to show the score obtained for each line of the student code compared
to each line of the intention. The cells of the latter are populated by placing the value of the last cell (lower right
cell) of each relevant “word-by-word” matrix into the appropriate cell of the “line-by-line” matrix.

Figure 5: Output for the application of the Levenshtein distance to compare the student’s answer and the

intention

The “line-by-line” matrix having the lowest overall score indicates the best match. The algorithm used to

calculate its overall score is as follows:
Case 1: When dealing with a matrix where the number of lines in the intention exceeds that of the student

code: (1) Select a minimum per row (mark the row as being “taken”). (2) If there is more than one minimum in a
column; starting from the column where a “clash” occurs (its row had already been marked previously), search
for the next minimum in the row, checking that the new minimum's row is not marked as “taken” - otherwise
repeat search in the same manner. (3) Add values of the marked cells.

Case 2: When dealing with a matrix where the number of lines in the student code exceeds that of the
intention: (1) Select a minimum per column (mark the cell). (2) If there is more than one minimum in a row;
starting from the row that “clashes”, search for the next minimum in the column, checking that the new
minimum's column is not marked - otherwise repeat search in the same manner. (3) Add values of the marked
cells.

create Result.make_with_fahrenheit (9/5 * value + 32)

local
 temperature: TEMPERATURE
do
 create temperature.make_with_fahrenheit (9/5 * value + 32)
 Result := temperature
end

Adjustment ratios
To normalise the overall score of the matrices (and take account of the disparateness in the number of lines in the
two pieces of code being compared), an adjustment ratio is applied. The adjustment ratio is a coefficient

entioninlinesofno
codestudentinlinesofno

int−−−−
−−−−− in the case where the number of lines in student code exceeds that of the intention. The

reverse is applied in the opposite case.

The discrepancy list
A by-product of the Levenshtein distance algorithm are the series of transformations (add, replace, delete)
needed to transform one string into another. In this context, we can also obtain the transformations which we
have called the discrepancy-list (See Figure 5). This will be used to generate feedback. At the time of writing, the
method for feedback generation from discrepancy-lists is incomplete. In Figure 5, the first discrepancy-list
indicates the following transformations are necessary to achieve compliance between the student answer and the
reference solution: (1) Add the create keyword at place-holder 1. (2) Replace ‘:=’ by ‘.’ at place-holder 3. (3)
Add make_with_fahrenheit at place-holder 4.

PATTERN DISCOVERY OF INTENTIONS
To understand student behaviours from a different perspective than the one presented in (Ng Cheong Vee, et al.,
2006), we considered how intentions cluster in the data, whether the same clusters appears in all three groups
used for testing, and which were the most popular intentions. This analysis, summarised in Figure 6, revealed
that: (1) Intentions in the data group according to how we manually grouped them. (2) A substantial number of
students (4->5 grouping is the second highest point in the graph) made use of extra variables: an example of such
behaviour was given in Section Example of exercise and intentions. This gives us an indication that students
think in “small steps” rather than holistically. Teaching can be improved by pointing out such redundancies in
code and helping students refactor their code in more elegant and efficient ways. (3) The comparison of results
between the ETH group and MSc group in the Temperature exercise shows that in general, they had the same
patterns – the distribution is similar.

ETH vs. MSc

0%
10%
20%
30%
40%
50%
60%

1->
3

1->
4

1->
6

1->
3=

4
3->

5
4->

5

5->
3=

4
5->

4

6->
2=

7
6->

7
6->

3

Groupings

%
 O

cc
ur

en
ce

s

ETH MSC

Figure 6: Intention grouping for ETH and MSc
students

Number of … MSC45T MSC45F ETH56T

Students 36 37 51
Answers 178 165 163

Syntax Errors 99 26 68
Not allowed

answers
0 83 9

Successful
predictions

79 53 84

Unclassifiable
(syntax Correct)

0 3 1

Mispredictions 0 0 1

Table 1: Summary of test results

The groupings on the graph (x-axis), are represented as: the “first choice” intention is on the left hand side of the
arrow and the intention that comes out as second choice in the data is on the right-hand side.

RELATED WORK
Studies similar in their scope to ours were carried out three decades ago for imperative languages (Litecky &
Davis, 1976) (Moulton & Muller, 1967). They highlighted and classified various common programming errors
pertinent to the imperative paradigm. Some of these studies used compiler instrumentation to gather data, while
others used other methods such as interviews mentioned above.

A more recent study (Jadud, 2005) used Java and the BlueJ environment (Kölling, Quig, Patterson and
Rosenberg, 2003). This study is more relevant, being situated in the object-oriented paradigm and using a very
similar data collection method. It focuses on analysing novice compilation behaviours by looking at features such
as frequency of compilations, compilation times and others. Although the author's stated goal – to determine if
novices have different characteristic compilation behaviours – is somewhat different from ours, he also provides
a list of common errors. Nevertheless most considered errors are syntactic, whereas we are interested in semantic

errors. Moreover, he uses quantitative analysis while we consider qualitative analysis better suited for our
purposes.

It is often difficult to clearly distinguish syntactic from semantic errors. Methods for identifying bugs in
program code in the area of “program analysis'” have been proposed for example in (Hovemeyer & Pugh, 2004),
(Hangal & Lam, 2002). However, these are usually useful for intermediate to advanced programmers. Novices
make very basic errors that are reflected syntactically but may carry more meaning and significance at the
cognitive level. Moreover, their way of solving tasks (even simple ones) is different. They seem to often use trial
and error and not think of the real problem.

(Sykes & Franek, 2004a) used a methodology based on the Levenshtein distance in their work. They use an
“Intention Recognition” module (IR) to establish the student’s intention and deliver feedback. Their IR module is
composed of the A-type and B-type functionalities as they call it. In later work (Sykes & Franek, 2004b), they
seem to have adopted a slightly different algorithm (JECA) based on the Burke-Fisher Error Recovery algorithm
(Burke & Fisher, 1987) to get rid of the A and B-Type functionalities. Our definition of “Intention Matching”
(what they call “Intention Recognition”) is different from theirs. By intention matching, we mean to discover
what conceptual plan or algorithm the student has been following, as we assume our intention matching engine
received syntactically correct code (thereby dealing with logic or semantic errors). We compare two pieces of
code on a word-by-word basis followed by a line-by-line comparison. In both their approaches (using the A and
B-Type functionalities and the JECA algorithm), their comparison is done character-by-character for all the
keywords that exist in Java. This is obviously computationally expensive and explains why they restrict the
programming concepts covered in their system. Moreover they have decided to cover procedural aspects of
programming (variables, operators and looping structures). We aim to cover basic OO concepts taught in our
courses (e.g. classes, objects, message, passing, etc…). The main difference between their work and ours lies in
the emphasis they place on syntax as illustrated by this statement:

“So even though the IR algorithm and tutoring process results in source code that is syntactically correct,
there is no guarantee that it will satisfy the program requirements.”(Sykes & Franek, 2004a).

We assume that our parser, based on the Gobo library (Gobo parser for Eiffel, 2006), will deliver
syntactically correct and successfully compiled code to our intention matching engine. Moreover, because we use
Eiffel, a language with a small number of keyword and syntactic constructs, the number of trivial syntax errors
such as balancing brackets, missing semicolons, etc. are considerably reduced. Additionally, the straightforward
correspondence between the language’s constructs and the concepts of OO (each syntactic construct has one
precise meaning and therefore are not overloaded) allows us to focus on more important conceptual issues and
helps us better in finding intentions in student’s solutions.

TEST RESULTS FOR INTENTION MATCHING
The data arising from ETH in the 2004/2005 session was used to derive the described methodology. Three

other batches of data were used to test the methodology: The MSc data collected from Birkbeck in the 04/05 data
collection for two of the problems set to the student: the Temperature and Fraction problem (Introduction to
programming, 2006). The last batch is the ETH batch in the 05/06 data collection for the Temperature problem.
The Fraction problem is a more complex exercise to solve than Temperature, involving the use of more concepts
such as inheritance. We identified 17 intentions for this problem. The results are summarised in Table 1.

Those answers that would not occur in the prototype (since the prototype applies certain constraints on what
students can do – for instance, the prototype imposes an order in which subproblems (PSEs) are solved) were
pre-filtered (Not allowed answers row in Table 14). There are also syntactically correct answers that would be
allowed to be formed in the prototype but are difficult to map onto an intention due to the student programming
in a non-standard way that can still yield correct output: three in MSC45F and one in ETH56T. To deal with such
cases, an error margin metric tolerance was introduced to compute the real difference between the system's 1st
and 2nd predictions. If the delta is below 10%5 we cannot have confidence in the system’s prediction. Otherwise,
we accept the prediction. For three of those four answers, the margin was below 10%. When testing correct
predictions in all three batches, one answer had a margin below 10%. We might, however, not have to use the
margin metric as it is unlikely that basing feedback on the system's first prediction will confuse the student.

In twenty one of the MSC45T answers for the Temperature exercise, students used intentions that would not
work in the given context but would work in others. These intentions were included in the intention matching
process as they are useful for feedback generation.

4 As can be seen this number is much higher in the MSC45F batch. This is because of the nature of the problem
and the constraints that are therefore necessary to put in place.
5 The 10% metric was decided based upon our experiments – these showed that the difference was below 10% in
general in these specific cases. For the rest, the difference was above 10%.

These results show that the method can be used for various exercises and does intention matching with very
high accuracy as only one misprediction was detected in ETH56T.

CONCLUSION AND FUTURE WORK
The initial results of this study have provided valuable insights into the ways in which students learn to program:
the errors they make and the ways in which they overcome them. In this paper we presented a methodology that
combines pattern matching and an augmented version of the Levenshtein distance algorithm to analyse students’
interaction logs and guess their programming intentions. This analysis has helped us understand why these errors
occur and why students tackle them the way they do, with direct feedback into the design and teaching of the
course, for which the results are full of lessons. The results of the tests demonstrated that the methodology can be
successfully applied to problems of considerable complexity and size.

In our work on feedback generation, we are exploring patterns in the use of intentions by students and we are
using the discrepancy-lists (by-product of the algorithm/method described in the paper) to extract rules to
incorporate in the system. From these we will be able to design a feedback mechanism to guide students using the
prototype.

REFERENCES
Burke, M.G. & Fisher, G.A. (1987) A practical method for LR and LI syntactic error diagnosis and recovery,

ACM Transactions on Programming Languages and Systems, 9, 2, 164-197.
Eiffel Software (2006): Retrieved 2 April 2006 from http://www.eiffel.com
EiffelStudio (2006): Retrieved 2 April 2006 from http://www.eiffel.com/products/studio
Gobo Parser for Eifel (2006): Retrieved 2 April 2006 from http://www.gobosoft.com/eiffel/gobo/geyacc/
Hangal, S. and Lam, M.S. (2002) Tracking down software bugs using automatic anomaly detection. In

Proceedings of the 24th International Conference on Software Engineering.
Hovemeyer, D. and Pugh, W. (2004) Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN

conference on Object-oriented programming systems, languages and applications (OOPSLA). ACM
Press.

Introduction to Programming (2006). Retrieved 27 March 2006 from http://se.inf.ethz.ch/teaching/ws2004/0001
Jackson, J., Cobb, M. and Carver, C. (2005) Identifying top java errors for novice programmers. 35th ASEE/IEEE

Frontiers in Education Conference, Indianapolis, October.
Jadud, M. (2005) A first look at novice compilation behaviour using bluej. Computer Science Education, 15,

1,25-40.
Johnson, W. (1990) Understanding and debugging novice programs. Artificial Intelligence, 42, 1, 51-97.
Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. (2003) The bluej system and its pedagogy. Journal of

Computer Science Education, Special Issue on Learning and Teaching Object Technology, 13, 4.
Levenshtein, V.I. (1965) Binary codes capable of correcting spurious insertions and deletions of ones (original in

Russian). Russian Problemy Peredachi Informatsii, 1, 12-25.
Litecky, C. and Davis, G. (1976) A study of errors, error-proneness, and error diagnosis in cobol.

Communications of the ACM, 19, 1, 33-38.
McGregor, J, Malloy, B. and Siegmund, R. (1996) A comprehensive program representation of object-oriented

software. Annals of Software Engineering, 2, 51-91.
Meyer, B. (1993) Towards an oo curriculum. Journal of Object-Oriented Programming, 6, 2, 76-81.
Meyer, B. (1997) Object-oriented software construction. Prentice Hall, 2nd edition.
Meyer, B. (2003a) The outside-in method of teaching introductory programming. In Manfred Broy and Alexandr

Zamulin(Ed.), Perspective of System Informatics, Proceedings of fifth Andrei Ershov Conference, pages
66-78, Novosibirsk, July. Lecture Notes in Computer Science 2890, Springer-Verlag.

Meyer, B. (2003b) Touch of class – Learning to program well. http://se.inf.ethz.ch/touch/, online edition.
Moulton, P. and Muller, M. (1967) Ditran – a compiler emphasizing diagnostics. Communications of the ACM,

10, 1, 45-52.
Ng Cheong Vee, M.H., Meyer, B. and Mannock, K.L. (2006) Empirical study of novice errors and error paths in

object-oriented programming. Submitted to 7th Annual HEA-ICS conference, Dublin, April 2006.
Sykes, E.R. and Franek, F. (2004a) A prototype for an intelligent tutoring system for students learning to

program in JavaTM. Advance Technology for Learning, 1.
Sykes, E.R. and Franek, F. (2004b) Presenting JECA: a Java error correcting algorithm for the Java Intelligent

Tutoring System. Proceedings of the IASTED Conference on Advances in Computer science and
Technology. St. Thomas, US Virgin Islands.

Tip, F. (1995) A survey of program slicing techniques. Journal of programming languages, 3, 3.

