Signed k -domatic numbers of digraphs

H. Aram¹, M. Atapour¹, S.M. Sheikholeslami¹* and L. Volkmann²

¹Department of Mathematics Azarbaijan University of Tarbiat Moallem Tabriz, I.R. Iran s.m.sheikholeslami@azaruniv.edu

> 2 Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Abstract

Let D be a finite and simple digraph with vertex set $V(D)$, and let $f: V(D) \rightarrow \{-1,1\}$ be a two-valued function. If $k \geq 1$ is an integer and $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed k-dominating functions of D with the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(D)$, is called a *signed k-dominating* family (of functions) of D. The maximum number of functions in a signed k-dominating family of D is the signed k-domatic number of D, denoted by $d_{kS}(D)$. In this note we initiate the study of the signed k-domatic numbers of digraphs and present some sharp upper bounds for this parameter.

Keywords: Digraph, signed k -domatic number, signed k -dominating function, signed k -domination number

MSC 2000: 05C20, 05C69, 05C45

1 Introduction

In this paper, D is a finite and simple digraph with vertex set $V = V(D)$ and arc set $A = A(D)$. Its underlying graph is denoted $G(D)$. We write $\deg_D^+(v) = \deg^+(v)$ for the *outdegree* of a vertex v and $\deg_D^-(v) = \deg^-(v)$ for its *indegree*. The *minimum* and *maximum indegree* are $\delta^-(D)$ and $\Delta^-(D)$. The sets $N^+(v) = \{x \mid (v, x) \in A(D)\}\$ and $N^-(v) = \{x \mid (x, v) \in A(D)\}\$ are called the *outset* and inset of the vertex v. Likewise, $N^+[v] = N^+(v) \cup \{v\}$ and $N^-[v] = N^-(v) \cup \{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. For an arc $(x, y) \in A(D)$, the vertex y is an *outer neighbor* of x and x is an *inner neighbor* of y. Note that for any digraph D with m arcs,

$$
\sum_{u \in V(D)} \deg^{-}(u) = \sum_{u \in V(D)} \deg^{+}(u) = m.
$$
\n(1)

Consult [6] and [7] for notation and terminology which are not defined here.

For a real-valued function $f: V(D) \longrightarrow \mathbf{R}$ the weight of f is $w(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S) = \sum_{v \in S} f(v)$, so $w(f) = f(V(D))$. If $k \ge 1$ is an integer, then the

[∗]Corresponding author

signed k-dominating function is defined as a function $f: V(D) \longrightarrow \{-1,1\}$ such that $f(N^{-}[v]) =$ $\sum_{x \in N^{-}[v]} f(x) \geq k$ for every $v \in V(D)$. The signed k-domination number for a digraph D is

 $\gamma_{kS}(D) = \min \{ w(f) | f \text{ is a signed } k\text{-dominating function of } D \}.$

A $\gamma_{kS}(D)$ -function is a signed k-dominating function on D of weight $\gamma_{kS}(D)$. As the assumption $\delta^{-}(D) \geq k-1$ is necessary, we always assume that when we discuss $\gamma_{kS}(D)$, all digraphs involved satisfy $\delta^{-}(D) \geq k-1$ and thus $n(D) \geq k$. Then the function assigning +1 to every vertex of D is a SkD function, called the function ϵ , of weight n. Thus $\gamma_{kS}(D) \leq n$ for every digraph of order n with $\delta^- \geq k - 1$. Moreover, the weight of every SkD function different from ϵ is at most $n - 2$ and more generally, $\gamma_{kS}(D) \equiv n \pmod{2}$. Hence $\gamma_{kS}(D) = n$ if and only if ϵ is the unique SkD function of D.

The signed k-domination number of digraphs was introduced by Atapour, Hajypory, Sheikholeslami and Volkmann [1]. When $k = 1$, the signed k-domination number $\gamma_{kS}(D)$ is the usual signed domination number $\gamma_S(D)$, which was introduced by Zelinka in [16] and has been studied by several authors (see for example [8]).

Observation 1. ([1]) Let D be a digraph of order n. Then $\gamma_{kS}(D) = n$ if and only if $k - 1 \leq$ $\delta^{-}(D) \leq k$ and for each $v \in V(D)$ there exists a vertex $u \in N^{+}[v]$ such that $\deg^{-}(u) = k - 1$ or $\deg^{-}(u) = k.$

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_i(v) \leq 1$ for each $v \in V(D)$, is called a *signed k-dominating family* on D. The maximum number of functions in a signed k-dominating family on D is the *signed k-domatic number* of D , denoted by $d_{kS}(D)$. The signed k-domatic number is well-defined and $d_{kS}(D) \geq 1$ for all digraphs D in which $d_D^-(v) \geq k-1$ for all $v \in V$, since the set consisting of any one SkD function, for instance the function ϵ , forms a SkD family of D. A $d_{kS}(D)$ -family of a digraph D is a SkD family containing $d_{kS}(D)$ SkD functions. When $k = 1$, the signed k-domatic number of a digraph D is the usual signed domatic number $d_S(D)$, which was introduced by Sheikholeslami and L. Volkmann [9] and has been studied in [13].

Observation 2. Let D be a digraph of order n. If $\gamma_{kS}(D) = n$, then ϵ is the unique SkD function of D and so $d_{kS}(D) = 1$.

In this paper we initiate the study of the signed k -domatic number of digraphs, and we present different bounds on $d_{kS}(D)$. Some of our results are extensions of well-known properties of the signed domatic number $d_S(D) = d_{1S}(D)$ of digraphs (see for example [9]) as well as the signed k-domatic number of graphs G (see for example [5, 14]).

We make use of the following results and observations in this paper.

Observation 3. Let $k \geq 1$ be an integer, and let D be a digraph with $\delta^{-}(D) \geq k - 1$. If for every vertex $v \in V(D)$ the set $N^+[v]$ contains a vertex x such that $\deg^{-}(x) \leq k$, then $d_{kS}(D) = 1$.

Proof. Assume that $N^+[v]$ contains a vertex x_v such that $\deg^-(x_v) \leq k$ for every vertex $v \in V(D)$, and let f be a signed k-dominating function on D. Since $\deg^{-}(x_v) \leq k$, we deduce that $f(v) = 1$. Hence $f(v) = 1$ for each $v \in V(D)$ and thus $d_{kS}(D) = 1$. \Box

A digraph is r -inregular if each vertex has indegree r .

Corollary 4. If D is an r-inregular digraph and $k = r - 1$ or r, then $\gamma_{kS}(D) = n$ and $d_{kS}(D) = 1$.

Observation 5. The signed k-domatic number of a digraph is an odd integer.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a signed k-dominating family on D such that $d = d_{kS}(D)$. Suppose to the contrary that $d_{kS}(D)$ is an even integer. If $x \in V(D)$ is an arbitrary vertex, then $\sum_{i=1}^{d} f_i(x) \leq 1$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore

it is an even number and we obtain $\sum_{i=1}^d f_i(x) \leq 0$ for each $x \in V(G)$. If v is an arbitrary vertex, then it follows that

$$
d \cdot k = \sum_{i=1}^{d} k \le \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_i(x) = \sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_i(x) \le 0.
$$

which is a contradiction, and the proof is complete.

2 Properties and upper bounds

In this section we present basic properties of the signed k-domatic number, and we find some sharp upper bounds for this parameter.

Proposition 6. If $k > p \ge 1$ are integers, then $d_{pS}(D) \ge d_{kS}(D)$ for any digraph D.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family on D such that $d = d_{kS}(D)$. Then $\{f_1, f_2, \ldots, f_d\}$ is also a SpD family on D and thus $d_{pS}(D) \geq d_{kS}(D)$.

Theorem 7. Let D be a digraph and $v \in V(D)$. Then

$$
d_{kS}(D) \le \begin{cases} \frac{\deg^-(v)+1}{k+1} & \text{if } \deg^-(v) \equiv k \pmod{2} \\ \frac{\deg^-(v)+1}{k} & \text{if } \deg^-(v) \equiv k+1 \pmod{2}. \end{cases}
$$

Moreover, if the equality holds, then for each function f_i of a SkD family $\{f_1, f_2, \dots, f_d\}$ and for every $u \in N^{-}[v], \sum_{u \in N^{-}[v]} f_i(u) = k+1$ if $\deg^{-}(v) \equiv k \pmod{2}, \sum_{u \in N^{-}[v]} f_i(u) = k$ if $\deg^{-}(v) \equiv k+1$ (mod 2) and $\sum_{i=1}^{d} f_i(u) = 1$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family of D such that $d = d_{kS}(D)$. If $\deg^{-}(v) \equiv k \pmod{2}$, then

$$
d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \frac{1}{k+1} \sum_{u \in N^{-}[v]} f_i(u)
$$

=
$$
\frac{1}{k+1} \sum_{u \in N^{-}[v]} \sum_{i=1}^{d} f_i(u) \le \frac{1}{k+1} \sum_{u \in N^{-}[v]} 1
$$

=
$$
\frac{\deg^{-}(v)+1}{k+1}.
$$

Similarly, if deg⁻ $(v) \equiv k + 1 \pmod{2}$, then

$$
d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \frac{1}{k} \sum_{u \in N^{-}[v]} f_i(u)
$$

=
$$
\frac{1}{k} \sum_{u \in N^{-}[v]} \sum_{i=1}^{d} f_i(u) \le \frac{1}{k} \sum_{u \in N^{-}[v]} 1
$$

=
$$
\frac{\deg^{-}(v)+1}{k}.
$$

If $d_{kS}(D) = \frac{\deg^-(v)+1}{k+1}$ when $\deg^-(v) \equiv k \pmod{2}$ or $d_{kS}(D) = \frac{\deg^-(v)+1}{k}$ when $\deg^-(v) \equiv k+1 \pmod{2}$ 2), then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement. \Box

Corollary 8. Let D be a digraph and $1 \leq k \leq \delta^{-1}(D) + 1$. Then

$$
d_{kS}(D) \le \begin{cases} \begin{array}{l} \delta^-(D)+1\\ \frac{k+1}{k+1} \le \frac{n}{k+1} \end{array} & \text{if} \quad \delta^-(D) \equiv k \pmod{2} \\ \frac{\delta^-(D)+1}{k} \le \frac{n}{k} & \text{if} \quad \delta^-(D) \equiv k+1 \pmod{2}. \end{array}
$$

The next corollary is a consequence of Observation 5 and Corollary 8.

Corollary 9. If D is a digraph of minimum degree δ^- , then $d_{kS}(D) = 1$ for every integer k such that $\frac{\delta^-+1}{3} < k \leq \delta^- + 1$.

Corollary 10. Let $k \ge 1$ be an integer, and let D be a $(k + 1)$ -inregular digraph of order n. If $k \ge 2$ or $k = 1$ and $n \not\equiv 0 \pmod{3}$, then $d_{kS}(D) = 1$.

Proof. By Corollary 8, $d_{kS}(D) \leq \frac{k+2}{k}$. If $k \geq 2$, then it follows from Observation 5 that $d_{kS}(D) = 1$. Now let $k = 1$. Then $d_{kS}(D) = 1$ or $d_{kS}(D) = 3$ by Observation 5. Suppose to the contrary that $\sum_{x \in N^{-}[v]} f(x) = 1$ for every $v \in V(D)$. This implies that $d_{kS}(D) = 3$. Let f belong to a signed k-dominating family on D of order 3. By Theorem 7, we have

$$
n = \sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x) = \sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x) = 3w(f).
$$

Since $w(f)$ is an integer, 3 is a divisor of n which contradicts the hypothesis $n \neq 0 \pmod{3}$, and the proof is complete. \Box

Corollary 11. Let $k \ge 1$ be an integer, and let D be a $(k + 4)$ -inregular digraph of order n. If $k \ge 2$ or $k = 1$ and $n \not\equiv 0 \pmod{5}$, then $d_{kS}(D) = 1$.

Proof. According to Corollary 8, $d_{kS}(D) \leq \frac{k+5}{k+1}$. If $k \geq 2$, then we deduce from Observation 5 that $d_{kS}(D) = 1$. Now let $k = 1$. In view of Observation 5, $d_{kS}(D) = 1$ or $d_{kS}(D) = 3$. Suppose to the contrary that $d_{kS}(D) = 3$. Let f belong to a signed k-dominating family on D of order 3. By Theorem 7, we have $\sum_{x \in N^{-}[v]} f(x) = 2$ for every $v \in V(D)$. This implies that

$$
2n = \sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x) = \sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x) = 5w(f).
$$

Thus 5 is a divisor of n, a contradiction to the hypothesis $n \not\equiv 0 \pmod{5}$.

Corollary 12. Let $k \ge 1$ be an integer, and let D be a $(k+2)$ -inregular digraph of order n. Then $d_{kS}(D) = 1.$

Proof. By Corollary 8, $d_{kS}(D) \leq \frac{k+3}{k+1}$. Therefore Observation 5 implies that $d_{kS}(D) = 1$. \Box

Theorem 13. Let $k \geq 1$ be an integer, and let D be an r-inregular digraph of order n such that $r \ge k - 1$. If $r < 3k - 1$, then $d_{kS}(D) = 1$, and if $r \ge 3k - 1$ and $(n, r + 1) = 1$, then

$$
d_{kS}(D) < \begin{cases} \begin{array}{c} \delta^-(D)+1 \\ \frac{k+1}{k+1} \end{array} & \text{if} \quad \delta^-(D) \equiv k \pmod{2} \\ \frac{\delta^-(D)+1}{k} & \text{if} \quad \delta^-(D) \equiv k+1 \pmod{2}. \end{cases}
$$

Proof. If $r < 3k-1$, then it follows from Corollary 8 that $d_{kS}(D) \leq \frac{r+1}{k} < 3$. Therefore Observation 5 implies that $d_{kS}(D) = 1$.

Now assume that $r \geq 3k - 1$ and $(n, r + 1) = 1$. First let $r = \delta^{-1}(D) \equiv k \pmod{2}$ (if $\delta^{-1}(D) \equiv$ $k + 1 \pmod{2}$, then the proof is similar). Suppose to the contrary that $d_{kS}(D) \geq \frac{\delta^-(D)+1}{k+1}$. Then by Corollary 8, $d_{kS}(D) = \frac{\delta^-(D)+1}{k+1}$. Let f belong to a signed k-dominating family on D of order $\frac{\delta^-(D)+1}{k+1}$. By Theorem 7, we have $\sum_{x\in N^{-}[v]} f(x) = k+1$ for every $v \in V(D)$. This implies that

$$
n(k+1) = \sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x) = \sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x) = (r+1)w(f).
$$

Since $w(f)$ is an integer and $(n, r + 1) = 1$, the number $r + 1$ is a divisor of $k + 1$. It follows from $k-1 \leq \delta^{-}(D) = r$ that $r = k-1$ or $k = r$, a contradiction to the hypothesis that $r \geq 3k-1$. \Box

 \Box

Theorem 14. Let D be a digraph with $\delta^{-}(D) \geq k-1$, and let $\Delta = \Delta(G(D))$ be the maximum degree of $G(D)$. Then

$$
d_{kS}(D) \leq \begin{cases} \begin{array}{c} \Delta(G(D)) + 2 \\ 2(k+1) \end{array} & \text{if } \delta^-(D) \equiv k \pmod{2} \\ \Delta(G(D)) + 2 & \text{if } \delta^-(D) \equiv k+1 \pmod{2}. \end{cases}
$$

Proof. First of all, we show that $\delta^{-}(D) \leq \Delta/2$. Suppose to the contrary that $\delta^{-}(D) > \Delta/2$. Then $\Delta^+(D) \leq \Delta - \delta^-(D) < \Delta/2$, and (1) leads to the contradiction

$$
\frac{\Delta \cdot |V(D)|}{2} < \sum_{u \in V(D)} \text{deg}^{-}(u) = \sum_{u \in V(D)} \text{deg}^{+}(u) < \frac{\Delta \cdot |V(D)|}{2}.
$$

Applying Corollary 8, we deduce the desired result.

Let D be a digraph. By D^{-1} we denote the digraph obtained by reversing all the arcs of D. A digraph without directed cycles of length 2 is called an *oriented graph*. An oriented graph D is a tournament when either $(x, y) \in A(D)$ or $(y, x) \in A(D)$ for each pair of distinct vertices $x, y \in V(D)$.

Theorem 15. For every oriented graph D of order n and $1 \le k \le \min\{\delta^{-}(D) + 1, \delta^{-}(D^{-1}) + 1\},\$

$$
d_{kS}(D) + d_{kS}(D^{-1}) \le \frac{n+1}{k} \tag{2}
$$

with equality if and only if D is an r-regular tournament of order $n = 2r + 1$ and $r = k - 1$.

Proof. Since $\delta^{-}(D) + \delta^{-}(D^{-1}) \leq n-1$, Corollary 8 implies that

$$
d_{kS}(D) + d_{kS}(D^{-1}) \le \frac{\delta^-(D)+1}{k} + \frac{\delta^-(D^{-1})+1}{k} \le \frac{n+1}{k}.
$$

If D is an r-regular tournament of order $n = 2r + 1$ and $r = k - 1$, then D^{-1} is also an r-regular tournament, and it follows from Observation 3 that

$$
d_{kS}(D) + d_{kS}(D^{-1}) = 2 = \frac{2(r+1)}{k} = \frac{n+1}{k}.
$$

If D is not a tournament or D is a non-regular tournament, then $\delta^-(D) + \delta^-(D^{-1}) \leq n-2$ and hence we deduce from Corollary 8 that

$$
d_{kS}(D) + d_{kS}(D^{-1}) \leq \frac{n}{k}.
$$

If D is an r-regular tournament, then $n = 2r + 1$. If $k - 1 < r < 3k - 1$, then Theorem 13 leads to

$$
2 = d_{kS}(D) + d_{kS}(D^{-1}) < \frac{n+1}{k}.
$$

Finally, assume that $r \geq 3k - 1$. We observe that $(n, r + 1) = (2r + 1, r + 1) = 1$. Using Theorem 13, we deduce that

$$
d_{kS}(D) + d_{kS}(D^{-1}) < \frac{\delta^-(D)+1}{k} + \frac{\delta^-(D^{-1})+1}{k} = \frac{n+1}{k},
$$

and the proof is complete.

Theorem 16. Let D be a digraph of order n and $\delta^{-}(D) \geq k - 1 \geq 0$. Then $\gamma_{kS}(D) \cdot d_{kS}(D) \leq n$. Moreover if $\gamma_{kS}(D)\cdot d_{kS}(D) = n$, then for each $d = d_{kS}(D)$ -family $\{f_1, f_2, \cdots, f_d\}$ of D each function f_i is a $\gamma_{kS}(D)$ -function and $\sum_{i=1}^d f_i(v) = 1$ for all $v \in V$.

 \Box

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family of D such that $d = d_{kS}(D)$ and let $v \in V$. Then

$$
d \cdot \gamma_{kS}(D) = \sum_{i=1}^{d} \gamma_{kS}(D)
$$

\n
$$
\leq \sum_{i=1}^{d} \sum_{v \in V} f_i(v)
$$

\n
$$
= \sum_{v \in V} \sum_{i=1}^{d} f_i(v)
$$

\n
$$
\leq \sum_{v \in V} 1
$$

\n
$$
= n.
$$

If $\gamma_{kS}(D) \cdot d_{kS}(D) = n$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{kS}(D)$ -family $\{f_1, f_2, \cdots, f_d\}$ of D and for each i , $\sum_{v \in V} f_i(v) = \gamma_{kS}(D)$, thus each function f_i is a $\gamma_{kS}(D)$ -function, and $\sum_{i=1}^d f_i(v) = 1$ for all v.

Corollary 17 is a consequence of Theorem 16 and Observation 5 and improves Observation 2.

Corollary 17. If $\gamma_{kS}(D) > \frac{n}{3}$, then $d_{kS}(D) = 1$.

Corollary 18. If D is a digraph of order n, then $\gamma_{kS}(D) + d_{kS}(D) \leq n + 1$.

Proof. By Theorem 16,

$$
\gamma_{kS}(D) + d_{kS}(D) \le d_{kS}(D) + \frac{n}{d_{kS}(D)}.\tag{3}
$$

Using the fact that the function $g(x) = x + n/x$ is decreasing for $1 \le x \le \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$, this inequality leads to the desired bound immediately. \Box

Corollary 19. Let D be a digraph of order $n \geq 3$. If $2 \leq \gamma_{kS}(D) \leq n-1$, then

$$
\gamma_{kS}(D) + d_{kS}(D) \leq n.
$$

Proof. Theorem 16 implies that

$$
\gamma_{kS}(D) + d_{kS}(D) \le \gamma_{kS}(D) + \frac{n}{\gamma_{kS}(D)}.\tag{4}
$$

.

If we define $x = \gamma_{kS}(D)$ and $g(x) = x + n/x$ for $x > 0$, then because $2 \leq \gamma_{kS}(D) \leq n-1$, we have to determine the maximum of the function g on the interval $I: 2 \leq x \leq n-1$. It is easy to see that

$$
\max_{x \in I} \{g(x)\} = \max \{g(2), g(n-1)\}
$$

=
$$
\max \{2 + \frac{n}{2}, n - 1 + \frac{n}{n-1}\}
$$

=
$$
n - 1 + \frac{n}{n-1} < n + 1,
$$

and we obtain $\gamma_{kS}(D) + d_{kS}(D) \leq n$. This completes the proof.

Corollary 20. Let D be a digraph of order n, and let $k \ge 1$ be an integer. If $\min\{\gamma_{kS}(D), d_{kS}(D)\}$ $a \geq 2$, then

$$
\gamma_{kS}(D) + d_{kS}(D) \le a + \frac{n}{a}.
$$

Proof. Since $\min\{\gamma_{kS}(D), d_{kS}(D)\}\geq a\geq 2$, it follows from Theorem 16 that $a\leq d_{ks}(D)\leq \frac{n}{s}$ $\frac{a}{a}$. If we define $x = d_{kS}(D)$ and $g(x) = x + n/x$ for $x > 0$, then we deduce from inequality (3) that

$$
\gamma_{kS}(D) + d_{kS}(D) \leq d_{kS}(D) + \frac{n}{d_{kS}(D)}
$$

$$
\leq \max\{g(a), g(n/a)\} = a + \frac{n}{a}
$$

 \Box

3 Signed k-domatic number of graphs

The signed k-dominating function of a graph G is defined in [15] as a function $f: V(G) \longrightarrow \{-1, 1\}$ such that $\sum_{x \in N_G[v]} f(x) \geq k$ for all $v \in V(G)$. The sum $\sum_{x \in V(G)} f(x)$ is the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed k-dominating functions f on G is called the signed k-domination number of G, denoted by $\gamma_{kS}(G)$. In the special case when $k = 1$, $\gamma_{kS}(G)$ is the signed domination number investigated in [3] and has been studied by several authors (see for example $[2, 4]$.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed k-dominating functions on G with the property that $\sum_{i=1}^{d} f_i(v) \leq 1$ for each $v \in V(G)$, is called a *signed k-dominating family* on G. The maximum number of functions in a signed k-dominating family on G is the *signed k-domatic number* of G , denoted by $d_{kS}(G)$. This parameter was introduced by Favaron, Sheikholeslami and Volkmann in [5]. In the case $k = 1$, we write $d_S(G)$ instead of $d_{1S}(G)$ which was introduced by Volkmann and Zelinka $[14]$ and has been studied in $[10, 11, 12]$.

The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^-(v) = N_G(v)$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 21. If $D(G)$ is the associated digraph of a graph G, then $\gamma_{kS}(D(G)) = \gamma_{kS}(G)$ and $d_{kS}(D(G)) = d_{kS}(D).$

There are a lot of interesting applications of Observation 21, as for example the following results. Using Observation 5, we obtain the first one.

Corollary 22. (Volkmann and Zelinka [14]) The signed domatic number $d_S(G)$ of a graph G is an odd integer.

Since $\delta^{-}(D(G)) = \delta(G)$, the next result follows from Observation 21 and Corollary 8.

Corollary 23. (Favaron, Sheikholeslami and Volkmann [5]) If G is a graph with minimum degree $\delta(G) \geq k-1$, then

$$
d_{kS}(G) \le \begin{cases} \frac{\delta(G)+1}{k+1} & \text{if } \delta(G) \equiv k \pmod{2} \\ \frac{\delta(G)+1}{k} & \text{if } \delta(G) \equiv k+1 \pmod{2}. \end{cases}
$$

The case $k = 1$ in Corollary 23 can be found in [14].

In view of Observation 21 and Corollary 18, we obtain the next result immediately.

Corollary 24. (Favaron, Sheikholeslami and Volkmann [5]) If G is a graph of order n and minimum degree $\delta(G) \geq k-1$, then

$$
\gamma_{kS}(G) + d_{kS}(G) \le n + 1.
$$

References

- [1] M. Atapour, R. Hajypory, S.M. Sheikholeslami and L. Volkmann, The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048-1057.
- [2] E.J. Cockayne, C.M. Mynhardt, On a generalisation of signed dominating functions of a graph, Ars Combin. 43 (1996), 235–245.
- [3] J. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics, and Applications, Vol. 1, Wiley, New York, 1995, 311–322.
- [4] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287–293.
- [5] O. Favaron, S.M. Sheikholeslami and L. Volkmann, Signed k-domatic numbers of graphs, Ars Combin. (to appear).
- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).
- [8] H. Karami, A. Khodkar and S.M. Sheikholeslami, Lower bounds on signed domination number of a digraph, Discrete Math. 309 (2009), 2567–2570.
- [9] S.M. Sheikholeslami and L. Volkmann, Signed domatic number of directed graphs, submitted.
- [10] D. Meierling, L. Volkmann and S. Zitzen, The signed domatic number of some regular graphs, Discrete Appl. Math. 157 (2009), 1905–1912.
- [11] L. Volkmann, Signed domatic numbers of the complete bipartite graphs, Util. Math. 68 (2005), 71–77.
- [12] L. Volkmann, Some remarks on the signed domatic number of graphs with small minimum degree, Applied Math. Lett. 22 (2009), 1166–1169.
- [13] L. Volkmann, Signed domination and signed domatic numbers of digraphs, Discuss. Math. Graph Theory (to appear).
- [14] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Appl. Math. 150 (2005), 261–267.
- [15] C.P. Wang, The signed k-domination numbers in graphs, Ars Combin. (to appear).
- [16] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55 (2005), 479–482.