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Abstract

This article reviews the estimation of Returns To Scale (RTS) in Data envelopment analysis

(DEA), presented by Golany and Yu and proposes a new method to do this estimation. we show

that the new method does not have the shortcoming of the previous one. Furthermore, it is

able to evaluate Returns To Scale (RTS) to the right and left of the given unit in all conditions.

This method is elaborated by an illustrative example.
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1. Introduction

Data Envelopment Analysis (DEA) is a technique based on mathematical programming for

the performance assessment and the evaluation of the efficiency of a set of homogeneous Decision

Making Units (DMUs), each of which consumes multiple inputs to produce multiple outputs. The

CCR (Charnes, Cooper, Rhodes) [6] and the BCC (Banker, Charnes, Cooper) [3] models are

actually two basis DEA models. The latter is established by developing a variable RTS version of

the first one. One of the important subjects in DEA is the concept of Returns To Scale (RTS),

which is defined as the ratio of the proportional changes in outputs over the proportional changes
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in inputs. Nowadays, RTS has allocated a wide contribution of DEA literature to itself. First,

Banker [2] introduced RTS estimation (Increasing RTS (IRS), Decreasing RTS (DRS), Constant

RTS (CRS)) of the CCR model. Banker et al. [3] presented an approach, using the sign of the slope

parameter of the BCC dual. However, both of these techniques have considered the assumpation

of unique optimal solution. But in the presence of alternative optimal solutions, the characteristic

of RTS is not guaranteed to be unique. So far, some methods have been suggested to overcome

this problem. Banker and Thrall [5] presented a method by surveying all optimal solutions of BCC

and CCR models. See also Jahanshahloo and Soleimani-damaneh [11] and Zarepisheh et al. [16].

It should be noted that a related issue to RTS is the Most Productive Scale Size (MPSS) that was

first introduced by Banker [2]. Some methods have been suggested to estimate this notion [7,10].

There are a few review papers which elaborate different basic methods in the RTS literature. See

Banker et al. [4] for more details. Recently, Khodabakhshi et al. [13] examined estimating RTS in

both stochastic and fuzzy data envelopment analysis. Reviewing the customary methods, we could

find out that: a) input and output oriented models may give different results in their RTS findings;

and b) the RTS estimated by means of these methods holds only in the current position of the

under-evaluation DMU. Focusing on these two points, Golany and Yu [8] discussed the estimation

of RTS to the right and left neighborhood of the given DMU, and proposed a method based on

solving two LP models to do this task. Hadjicostas and Soteriou [9] have recently presented a more

general definition of these two concepts in RTS from scale elasticity measure point of view. Two

of the suggested approaches to estimate the right and left RTS are Jahanshahloo et al. [12] and

Zarepisheh, and Soleimani-damaneh [15]. The former one suggests an enhanced method by focusing

on Golany and Yu,s method (GY method, hereafter), and the latter presents a dual simplex-based

procedure, considering Hadjicostas and Soteriou,s definition of the right and left RTS.

This paper suggests a new method based on solving two LP models, one in input orientation

and the other in output orientation, by regarding the concept of the right and left RTS from GY

point of view. This method, unlike GY, is feasible for all DMUs and could overcome the problem

of indeterminancy of RTS for some DMUs. In other words, it,s objective is to provide an approach

which seeks the precise classification of RTS around the DMU being evaluated.

The structure of the paper is as follows:

In section 2 the GY method is reviewed, and the new method is introduced in section 3. A numer-
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ical example is presented in section 4. Finally, in section 5, some conclusions are provided.

2. GY method

Assume we have a set of n DMUs, where DMUj : j = 1, . . . , n consumes the inputs xj =

(x1j , . . . , xmj) to produce the outputs yj = (y1j , . . . , ysj), with the same m inputs and the same s

outputs in (possibly) different amounts. One of the purposes of DEA is evaluating the efficiency

of DMUs, which can be done by the CCR model or the BCC model of DEA. We present the BCC

model in the envelopment form in the input and output orientations for DMUo(o ∈ 1, . . . , n) as

follows:

(input-oriented):

z = min θ − ε(
∑m

i=1 s−i +
∑s

r=1 s+
r )

s.t.
∑n

j=1 λjxij + s−i = θxi0 i = 1, . . . ,m

∑n
j=1 λjyrj − s+

r = yr0 r = 1, . . . , s

∑n
j=1 λj = 1

(λj , s
−
i , s+

r ) ≥ 0 ∀i, r, j.

(1)

and

(output-oriented):
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z = max ϕ + ε(
∑m

i=1 t−i +
∑s

r=1 t+r )

s.t.
∑n

j=1 µjxij + t−i = xi0 i = 1, . . . ,m

∑n
j=1 µjyrj − t+r = ϕyr0 r = 1, . . . , s

∑n
j=1 µj = 1

(µj , t
−
i , t+r ) ≥ 0 ∀i, r, j.

(2)

Where t−i and t+r are input and output slacks and 0 is a vector with all components equal to

zero. The term ε > 0 is also a non-Archimedean infinitesimal which is smaller than any positive

real number. (To determine an assurance value for ε > 0 see the approach suggested in [1,14]).

DMU0 is an efficient DMU if z=1 and the slacks are zero in all optimal solutions in each of the

above models.

The point which is emphasized in Golany and Yu [8] is the fact that the RTS is a local feature,

while it has been left unnoticed in most of the previous studies on DEA-based RTS. So, they inves-

tigate the identification of RTS, based on the existence of solutions in the four regions determined

in the neighborhood of the unit under evaluation. They proposed the two following models to do

this task:
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min β − ε(
∑m

i=1 s−i +
∑s

r=1 s+
r )

s.t.
∑n

j=1 λjxij + s−i = βxi0 i = 1, . . . ,m (3a)

∑n
j=1 λjyrj − s+

r = (1 + δ)yr0 r = 1, . . . , s (3b)

∑n
j=1 λj = 1 (3c)

(λj , s
−
i , s+

r ) ≥ 0 ∀i, r, j.

(3)

and

max α + ε(
∑m

i=1 s−i +
∑s

r=1 s+
r )

s.t.
∑n

j=1 λjxij + s−i = (1− η)xi0 i = 1, . . . ,m

∑n
j=1 λjyrj − s+

r = αyr0 r = 1, . . . , s

∑n
j=1 λj = 1

(λj , s
−
i , s+

r ) ≥ 0 ∀i, r, j.

(4)

where δ and η assume a positive small arbitrary value. From now on, the superscript ” ∗ ”

indicates the optimal value.

(GY algorithm):

Step 1: Solve (3) to determine the RTS to the right of DMU0:

1i. (1 + δ) > β∗ > 1 =⇒ increasing RTS.

1ii. β∗ ≤ 1 =⇒ DMU0 is BCC-inefficient.

1iii. (1 + δ) = β∗ =⇒ constant RTS.
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1iv. (1 + δ) < β∗ =⇒ decreasing RTS.

1v. No feasible solution =⇒ there is no data to determine the RTS to the right of DMU0.

Step 2: Solve (4) to determine the RTS to the left of DMU0:

2i. 1 > α∗ > (1− η) =⇒ decreasing RTS.

2ii. α∗ ≥ 1 =⇒ DMU0 is BCC-inefficiency.

2iii. (1− η) = α∗ =⇒ constant RTS.

2iv. α∗ < (1− η) =⇒ increasing RTS.

2v. No feasible solution =⇒ there is no data to determine the RTS to the left of DMU0.

In fact, by solving Models (3) and (4), we reach some projection in the immediate neighborhood

to the right and left of DMU0.

In order to comprehend this issue, consider a set of 6 hypothetical DMUs in Fig. 1. As an

example, after solving Models (3) and (4) for DMUC we reach the points (β∗xc, (1 + δ)yc) and

((1 − η)xc, α
∗yc) in the right and left neighborhood of DMUC , respectively (It is shown with el-

lipsis). As it is clear in Figures 1 and 3, the paths followed by GY models lie outside the PPS.

This property causes GY method to fail for some frontier DMUs. To get the point better, the

infeasibility of Models (3) and (4) have been shown in Fig. 3 for DMUD and DMUA, respectively.

4. The new method

As noted in GY method, in order to estimate RTS more precisely, it is fair to be examined

locally. For doing so, we find some certain points along the frontier in the neighboring areas around

the DMU; and then, comparing the performance of these obtained points to that of the DMU, we

will be able to determine the RTS on its right and left sides. In this section we try a new method,

based on solving two LP models, in order to reach the above-mentioned goal.

In our proposed approach, the two following models are used to estimate the right and left RTS,

respectively:
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max β̂ + ε(
∑m

i=1 s−i +
∑s

r=1 s+
r )

s.t.
∑n

j=1 λjxij + s−i = (1 + δ̂)xi0 i = 1, . . . ,m

∑n
j=1 λjyrj − s+

r = β̂yr0 r = 1, . . . , s

∑n
j=1 λj = 1

(λj , s
−
i , s+

r ) ≥ 0 ∀i, r, j.

(5)

and

min α̂− ε(
∑m

i=1 s−i +
∑s

r=1 s+
r )

s.t.
∑n

j=1 λjxij + s−i = α̂xi0 i = 1, . . . ,m

∑n
j=1 λjyrj − s+

r = (1− η̂)yr0 r = 1, . . . , s

∑n
j=1 λj = 1

(λj , s
−
i , s+

r ) ≥ 0 ∀i, r, j.

(6)

where δ̂ and η̂ assume a positive small arbitrary value. Now, by using β̂ ∗ and α̂ ∗ as the opti-

mal values of objective function of (5) and (6) respectively, we present the following procedure to

estimate RTS of all BCC-efficient DMUs.
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(The procedure)

Step 1. Solve (5) to estimate right RTS of DM0:

1-1). If (1 + δ̂) > β̂∗ ≥ 1 =⇒ decreasing RTS.

1-2). If (1 + δ̂) < β̂∗ =⇒ increasing RTS .

1-3). If (1 + δ̂) = β̂∗ =⇒ constant RTS.

Step 2. Solve (6) to estimate left RTS of DMU0:

2-1). If (1− η̂) > α̂ ∗ =⇒ decreasing RTS.

2-2). If (1− η̂) < α̂ ∗ ≤ 1 =⇒ increasing RTS.

2-3). If (1− η̂) = α̂ ∗ =⇒ constant RTS.

In Fig. 2 the paths taken by Models (5) and (6) are indicated on the diagram. For example by

solving model (5), the projection of the point ((1 + δ̂)Xc, Yc) is obtained on the frontier, which is

actually the optimal solution to this model ( the point ((1 + δ̂)Xc, β̂ ∗Yc) ).

Lemma 1. Models (5) and (6) are always feasible.

In what follows in this part, we prove that where GY models are feasible, the solution offered by

GY is also accessible to our method; and where ever GY method fails, by solving the new method,

we can reach the certain neighboring points. So the problem of indeterminancy of RTS for these

DMUs is dealt with.

Theorem 1. The optimal solution of Model (3) and Model (4) is an optimal solution for Model

(5) and Model (6) respectively and vice versa.

Proof. We just prove that the optimal solution of Model (3) is an optimal solution for Model

(5); the other cases can be proved similarly.

Suppose, we solve Model (3) for DMUo, considering the arbitrary small positive value assigned to

δ and obtain the optimal solution (β∗, δ, s−∗i , s+∗
r , λ∗j ). By putting this solution in (3a) and (3b) we

have:
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∑n
j=1 λ∗jxij + s−∗i = β∗xi0 i = 1, . . . ,m (I)

∑n
j=1 λ∗jyrj − s+∗

r = (1 + δ)yr0 r = 1, . . . , s (II)

Considering β∗ > 1 , (1 + δ) ≥ 1 and (s−∗i , s+∗
r , λ∗j ) ≥ 0 , the point (β∗, δ, s−∗i , s+∗

r , λ∗j ) can be a

feasible solution for Model (5) , in which β∗ plays the role of (1 + δ̂) and (1 + δ) plays the role of β̂

in this model. By contradiction, we suppose that the above-mentioned solution is not an optimal

solution for Model (5), so:

∃β̃ ≥ 1 s.t. β̃ > β̂ = (1 + δ)

and, in (II) we have:∑n
j=1 λ∗jyrj + s+∗

r = (1 + δ)yr0 < β̃yr0 r = 1, . . . , s

=⇒
∑n

j=1 λ∗jyrj + s+∗
r + s̃+

r = β̃yr0 r = 1, . . . , s

Therefore, the solution (β̃, δ, s−∗i , s+∗
r + s̃+

r , λ∗j ) is a feasible solution for Model (3) , and after

putting this solution in the objective function we have:

β∗ − ε(
∑m

i=1 s−∗i +
∑s

r=1 s+∗
r ) > β∗ − ε(

∑m
i=1 s−∗i +

∑s
r=1(s

+∗
r + s̃+

r ))

which contradicts the assumption.

Theorem 2. Assume that GY models are feasible for DMU0, then the type of RTS estimated

by GY method for DMU0 is the same as that estimated by the new method.

Proof. Here, we prove one of the cases, and the others can be similarly proved.

Suppose that by using GY method, DMU0 has right IRS and (β∗, δ, s−∗i , s+∗
r , λ∗j ) is the optimal

solution for Model (3); so, considering GY algorithm, we have (1 + δ) > β∗ > 1. By contradiction,

we suppose that DMU0 has right NIRS by the new method. According to the above theorem, this

point is an optimal solution for Model (5) and, according to the procedure in section 4, we have

(1 + δ) ≤ β∗ , which contradicts the assumption and completes the proof.

As mentioned in GY algorithm, for a special DMUs, at least one of the GY models could be
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infeasible, which causes the GY method to fail, and not to be capable of providing precise infor-

mation about RTS behaviour. It should be noted that, Jahanshahloo et al [12], by focusing on

the point that feasibility or infeasibility of GY models depend on the values assigned to δ and η,

present a method to restrict the values of these two parameters. Their enhanced algorithm requires

to determine an assurance interval for the feasibility of GY models, a task which is done by solving

two auxiliary LP models for each DMU. Both of the new method and enhanced approach provide

a remedy to the infeasibility problem of GY models for some efficient DMUs. However, the latter

method is only able to determine the general RTS for these DMUs, while by using the new method

not only could we overcome the disadvantages of GY method, but we will be also able to determine

the type of the right and left RTS for each DMU particularly.

5. Illustrative example

In this part, we consider an example that has been presented by Jahanshahloo et al [12]; but

before doing so, we have the following definition.

Definition. The general RTS of a DMU is DRS (IRS) if both RTS to the left and RTS to

the right are DRS (IRS). Otherwise, its general RTS is CRS.

Example. We consider a group of 12 DMUs, with two inputs and two outputs. The data for

these DMUs are given in Table 1. The results obtained from GY method and the new method are

given in Table 2 and Table 3, respectively.

Table 1. Data

DMU A B C D E F G H I J K L

Input 6 7 6 7 5 4 5 6 6 8 5 9

4 5 5 4 5 6 8 7 6 8 7 6

Output 6 4 3 5 3 3 5 3 4 6 5 9

2 3 3 4 2 3 6 5 5 6 5 3
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Table 2. Results obtained after using the GY method with ε = δ = η = 0.001.

DMU β∗ rightRTS α∗ leftRTS

A 1.0010 CRS Infeas ?

B 0.8680 Ineff 1.4011 Ineff

C 0.9389 Ineff 1.3297 Ineff

D 1.0027 DRS Infeas ?

E 1.0000 Ineff Infeas ?

F 1.0004 IRS Infeas ?

G Infeas ? 0.0975 IRS

H 0.9235 Ineff 0.0993 Ineff

I 1.0002 DRS 0.9976 IRS

J Infeas ? 0.9993 DRS

K 1.0010 CRS 0.9976 IRS

L Infeas ? 0.9990 CRS
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Table 3. Results obtained after using the new method with ε = 0.001.

DMU β̂∗ rightRTS α̂∗ leftRTS

A 1.0010 CRS 1.0000 IRS

B 1.4028 Ineff 0.8678 Ineff

C 1.3370 Ineff 0.9387 Ineff

D 1.0004 DRS 1.0000 IRS

E 1.2613 Ineff 1.0000 IRS

F 1.0027 IRS 1.0000 IRS

G 1.0000 DRS 0.9996 IRS

H 1.1007 Ineff 0.9227 Ineff

I 1.0006 DRS 0.9996 IRS

J 1.0000 DRS 0.9985 DRS

K 1.0010 CRS 0.9996 IRS

L 1.0000 DRS 0.9990 CRS

In Table 4, we just show results (right RTS (RRTS), left RTS (LRTS), general RTS (GRTS))

obtained after using GY method, the enhanced procedure (Jahanshahloo et al [11]) and our method

for efficient DMUs .
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Table 4. Results obtained after using different methods for efficient DMUs.

GY method the enhanced procedure the new method

DMU RRTS LRTS GRTS RRTS LRTS GRTS RRTS LRTS GRTS

A CRS ? ? CRS ? CRS CRS IRS CRS

D DRS ? ? DRS ? CRS DRS IRS CRS

F IRS ? ? IRS IRS IRS IRS IRS IRS

G ? IRS ? ? IRS CRS DRS IRS CRS

I DRS IRS CRS DRS IRS CRS DRS IRS CRS

J ? DRS ? DRS DRS DRS DRS DRS DRS

K CRS IRS CRS CRS IRS CRS CRS IRS CRS

L ? CRS ? ? CRS CRS DRS CRS CRS

As it can been seen in Table 2, the Model (3) and (4) are infeasible for DMUs G, J, L and

DMUs A, D, E, respectively. In Table 4, the enhanced procedure determines only the general RTS

for these DMUs, while by using the new method, we will be able to eliminate the indeterminancy

of RTS and determine RTS for all efficient DMUs particularly.

6. Conclusion

Determining the identification of RTS for a DMU can be used to recognize the optimal size of

the unit. For this, we need precise information. So Golany and Yu introduced the concept of the

right and left RTS, and suggested an algorithm to estimate these two concepts based on solving two

LP models. An important advantage of their method is that RTS behavior is investigated locally.

However, this method fails when at least one of the models is infeasible. Here in this paper, we

present a new algorithm based on two LP models in input and output orientations. In fact GY

and the new method use different processes to reach the same gold, which is to observe the RTS

behavior in two specified directions around the DMU under evaluation. The superiority of the new

method compared to the previous one is that its models are always feasible for all DMUs. This

advantage derives from the property of paths followed by the models used in the new method.
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