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Abstract. An analysis of the generalized multiplicity distribution, (GMD),

has been made in high energy pp collisions. An attempt is made to reconcile the

generating function of GMD with Tsallis statistics in order to find an interpreta-

tion of Tsallis parameter, (q). The modified combinants, (C j’s), for both GMD

and NBD are obtained using the generating functions of these distributions. Our

results show that single NBD does not lead to the oscillatory behaviour of the

observed C j. However, for GMD the corresponding C j not only oscillate but

also show the fading-down feature of the experimentally observed C j. This

could help in future to analyse the physical process which is responsible for

these oscillations.

1 Introduction
Long range interactions make standard statistical mechanics non-extensive. After the work

of Bediaga et al. [1] and Beck [2], Tsallis statistics extension to hadronic collisions become

in use as it gave the good fit for the hadronic productions in e+e− annihilation. We can cast

the lowest order hard-scattering integral of transverse momentum spectra in high-energy pp

collisions in the Tsallis non-extensive form as [5].

dσ

dydpT

∣

∣

∣

∣

∣

∣

y∼0

=
1

2πpT

dσ

dydpT

∣

∣

∣

∣

∣

y∼0

= Ae
− ET

T
q , (1)

where

e
− ET

T
q ≡

[

1 − (1 − q)
ET

T

]

1
(1−q)

, (2)

Here ET =

√

m2 + p2
T

and m can be taken as pion mass mπ. The parameter q is the Tsallis

parameter and is related to the power index n of the spectrum while the parameter T is related

to the average transverse momentum, (pT ). The parameter A is related to the multiplicity (per

unit rapidity) after integration over pT .

The Tsallis nonextensive distribution has been used for the description of transverse mo-

menta of secondary particles produced in pp collisions and gives excellent fits to the trans-

verse momentum distributions by various collaborations at the LHC as shown in Fig. 1 [5].

∗e-mail: mahumm_ghaffar@yahoo.com
∗∗e-mail: ang.h.w@u.nus.edu
∗∗∗e-mail: phycahp@nus.edu.sg

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 206, 09008 (2019) https://doi.org/10.1051/epjconf/201920609008
ISMD 2018



Figure 1. Comparison of Eq. (1) with the experimental transverse momentum distribution of hadrons

in pp collisions at central rapidity y. The corresponding Boltzmann-Gibbs distribution is shown as a

dashed curve. The data/fit ratios are shown at the bottom where a log-periodic behaviour is observed

on top of the q-exponential one [5].

2 Connection between Tsallis approach and GMD
Tsallis statistics was initially derived as a generalization of the Boltzmann-Gibbs statistics [3].

The application of Tsallis statistics to the study of multiparticle production was inspired by

Aguiar and Kodama [4], where the generating function of the NBD was cast in the form rem-

iniscent of that used by Tsallis. In a similar spirit, an attempt was made to cast the generating

function of GMD in an attempt to reconcile it with Tsallis statistics, and to hypothesize on

the physical interpretation of the q-parameter in this specific context.

GMD is derived from a parton branching model that describes the dynamics of quark-

gluon production thus providing a more physical description of the events during colli-

sions [6–8]. When k′ parameter goes to zero, GMD reduces to NBD and this relation offers a

parton branching description to NBD [8]. The probability distribution function of GMD and

its corresponding generating function is given as:

Pn(GMD) =
Γ(n + k)

Γ(n − k′ + 1)Γ(k′ + k)

(
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fGMD(s) = exp
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where Γ is the usual gamma function, n̄ is the average number of particles, k and k′ corre-

sponds to initial number of quarks and gluons respectively and k + k′ = 1
q−1

.

2.1 Results for GMD fits at different centre of mass energies

The graphs for GMD fits along with data to fit ratios are shown in Fig. 2a, 2b, 2c and 2d:

3 Modified Combinants and comparison between NBD and GMD
Modified combinants, (C′

j
s) are defined in terms of generating functions of a given distribu-

tion i.e.,
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Figure 2. (a) Data to GMD fit ratio corresponding to multiplicity at
√

s = 0.2 TeV with GMD parame-

ters k = 1.67, k′ = 1 and n̄ = 14.36. (b) Data to GMD fit ratio corresponding to multiplicity at
√

s = 7

TeV with pseudorapidity range |η| < 2 and GMD parameters k = 1.41, k′ = 0 and n̄ = 31. (c) Comparison

between data (circles) and GMD fit (line) at
√

s = 0.2 TeV for pp̄ collisions with GMD parameters k =

1.67, k′ = 1 and n̄ = 14.36. (d) Comparison between data (circles) and GMD fit (line) at
√

s = 7 TeV

and pseudorapidity range |η| < 2 for pp collisions with GMD parameters k = 1.41, k′ = 0 and n̄ = 31.

By taking data to fit ratio, a wiggly structure as shown in Figs. 2a and 2b is obtained suggest-

ing some additional information hidden in P(n) and C′
j
s may provide a way to retrieve this

information [9]. The generating functions G(z) of NBD and GMD and their corresponding

C′
j
s are given as:

G(z)NBD =

(

1 − p

1 − zp

)k

, (6)

C j(NBD) =
k

〈N〉
p j+1
. (7)

G(t, z)GMD =
zk′e−(k+k′)At

[1 − z(1 − e−At)](k+k′)
, (8)

where A is the average probability of parton branching process via gluon fission.

C j(GMD) =
(−1) j+1
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where z = 1
1+C

and C is a constant of integration. The graphical representation of C′
j
s of both

NBD and GMD are shown in Fig. 3a and 3b:
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Figure 3. (a) C j plot for NBD at
√

s = 7 TeV for pp collisions by taking p = 0.48, n̄ = 25.5 and k =

1.45. This plot is clearly non-oscillating.(b) C j plot for GMD at
√

s = 30.4 GeV for pp collisions by

taking z = 3, n̄ = 10.54, k = 4.78 and k′ = 1.69. This plot clearly shows the oscillatory C′j s of GMD.

4 Remarks
When GMD is cast in the same form as Tsallis statistics, we see that the q-parameter takes

an inverse relationship with the sum of k and k′, interpreted as the average number of quarks

and gluons respectively. Although it is unclear why this form of functional reltionship exists,

this work narrows down on the parameters that q is a function of.

GMD is a good alternative to NBD as it offers a parton branching description to NBD

which otherwise remains as a statistical distribution equation. The combinants (C′
j
s) of GMD

show an oscillatory behaviour which appear to be dependent on k′ parameter. The oscillatory

C′
j
s have been discussed and verified experimentally [9]. However using a single NBD does

not allow us to get this oscillatory behaviour. In future the oscillatory C′
j
s of GMD can be

studied in more detail at different centre of mass energies. This would allow for a better

quantitative research of the multiparticle production processes.
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