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Abstract. In this project, the free plane wave conditions were imposed on the
classical S U(2) gauge field to obtain a new general Ansatz. Although after-
wards it was found that this Ansatz is similar to a special case of an existing
Ansatz[1], there are important differences. The idea of this Ansatz was later ap-
plied to the other nonlinear interaction of nature, namely gravity. However, this
effort encountered some complications, such as the lack of an exact definition
or interpretation of energy and momentum of gravitational waves.

1 Introduction

Non-Abelian Yang-Mills Theory, the cornerstone of the Standard Model, has attracted great
research interest, such as that of S. Coleman[2], to search for a plane wave solution parallel
to its Abelian counterpart, electromagnetism. The conventional approach is to first find a
mathematical solution and then to analyze, if any, its physical properties. This could be
very time consuming, as the nonlinear differential equations are highly complicated to begin
with. What further compounds the problem is that a physical interpretation might not always
exist. Therefore, we propose to consider proper physical conditions before writing down any
specific solution, but let’s first briefly review the classical S U(2) Yang-Mills Theory.

2 Non-Abelian Yang-Mills Theory
Yang-Mills theory is a gauge theory. The physical system is described by a Lagrangian
of fields, which remains unchanged under local gauge transformation of the fields.! For
instance, the Lagrangian,

L =¥y, — m)¥, where¥ = (Y1 ¥o)",
should remain in the same form under an local S U(2) transformation of the field,

¥ = SY, where S(x) = 0«12,

*e-mail: cqtlw @nus.edu.sg
ISuch a formulation is readily available in many sources, here we follow the notation in the well-known textbook
by Peskin and Schroeder([3].
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This requirement necessitates the introduction of a gauge field such that the partial deriva-
tive in the Lagrangian becomes the covariant derivative, which explicitly is

0y = D, =0, +iA,, where A, = AZO'“.

As a result, the new Lagrangian would retain the same form under the local gauge transfor-
mation.

Moreover, if this gauge field is promoted from a merely mathematical contrivance to a
meaningful physical quantity, those terms of the derivatives of the gauge field, obeying the
local gauge symmetry, should also be included in the Lagrangian, in this case, such a term
does exist and is constructed as

Fi, = 0,A% — 0,A% + £ap AVAS,.

Finally, the interaction of the system is dictated by the complete Euler-Lagrange Equation.
For the local U(1) symmetry, it leads to the famous Maxwell’s equations. As for S U(2), it
results in the following non-linear equation of motion in vacuum,

&'Fi, + eapc A" F, = 0. (D

The S U(2) classical Yang-Mills theory captures the essential non-linearity in the dynam-
ics of the interaction while remaining mathematically tractable. Therefore, the study of wave
solutions to it might shed some light on other non-linear interactions in nature, such as grav-

ity.
3 Physical Conditions and Resultant Constraints

Having obtained Eqn. 1, we then, as proposed, first considered the physical properties of a
free plane wave [2], namely a constant propagation direction, equal magnitude of the Poynt-
ing vector and energy density and energy being bounded. The last condition depends on the
specific choice of solution, while the first two could be applied in general.

Since a general ansatz is the aim, it is desirable to express the energy density and compo-
nents of the Poynting vector in terms of the gauge field,

Tou = 00AL0, A7 — 200A%07 Al + €ap ALAT DoAY
a a a a 1 a ayp
O, A AL, + AGD Dy AT, = 0P, .

The free plane wave can be taken to be travelling in the z-direction, thereby implying |T;| = O,
for i = 1,2. The second condition then leads to Tog = |T¢3|.

4 A General Free Plane Wave Ansatz

Considering the forms of Ty and Ty, it is clearer if the propagation direction is fixed, which
could be either positive or negative. Here, we took Ty + T3 = 0, which leads to

B0AL[(Do + 03)A = 207 (A§ + A) + £apc A7 (A] + A3)]
1
+0,A507 (A + A3) + Aj070,(A] + AS) + ZF;"F“W =0. 2)
Eqn. 2 makes it very suggestive to try out the following simple guess

Al +1,x,y) = A%z +1,x,y), Ay = A3 = 0. 3)
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This Ansatz indeed satisfies the two physical constraints mentioned above, but to be a valid
solution, it still has to satisfy the vacuum Yang-Mills Eqn. 1, which in this case reduces to

#0,A% + £ A (0,45 - 8,A5) = 0. )
At first glance, this new ansatz is very similar to an existing Ansatz[1],
AL = o fAU)I,U. Q)
and one immediate generalization of Ansatz 3 is
A% = f(U kyx", [h1x"Hd,U, (6)

where U = p,x*, k, and [, have vanishing temporal part and spatial parts that are mutually
orthogonal with the spatial part of p,. Although these two Ansatze might appear similar, the
latter is more general in the sense that the function f does not need to depend only on U as
the former one does, and it is narrower as it describes only free plane waves while the former
can describe spherical-fronted waves as well.

Further analysis, omitted here due to length limit, also shows that the two solutions,
namely one plane wave solution and one spherical fronted wave solution, based on Ansatz 5
have different colour transport properties, the former does not exchange colour with sur-
roundings while the latter does. This difference could only be attributed to the specifically
mathematical decisions made to construct the solution from Ansatz 5. Meanwhile, all pos-
sible solutions built from Ansatz 6 do not exchange colour with the environment. In fact, a
closer scrutiny of the plane wave solution based on Ansatz 5 could actually be expressed in
the form of the general free plane wave Ansatz 6 while the spherical fronted solution could
not. This solves the mystery and illustrates the advantage of associating physical interpre-
tation with the entire class of Ansatz as compared to the rather arbitrary search for specific
mathematical solutions.

One particularly simple solution could be obtained immediately if all components of A,
are taken to be the same and hence the term with g, in Eqn. 4 drops out, giving

89,A = 0.

Note that the resultant equation might seem to admit linear solutions as it only contains
a second order derivative operator. However, this much simplified result depends on the
propagation direction incorporated into Ansatz 6, namely the vector p,. Hence, two solutions
with different propagation directions cannot be linearly combined to generate a new solution,
thereby demonstrating the non-linearity of the described system.

5 On Gravity

Having successfully obtained a general Ansatz for the classical S U(2) Yang-Mills theory, we

wanted to apply the same strategy to gravity to see if we could obtain a general wave Ansatz,

which might help extracting more information from the recent gravitational wave detection.
Similar to Eqn. 1, gravity is described by Einstein’s Equation[4],

1
Ry — EgHVR = 8nGT,y,

which in vacuum is explicitly,

1
Rgy = 59" OpOuGav + 0udv9pn = Op0vGoy — 0adugpy) + I, -To g, =0. (D)
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The inspiration drawn from the previous Ansatz regarding a free plane wave of a non-
linear system is that the propagating field has a part, namely the 6, U term, that describes the
propagation while the magnitude can have more freedom. Hence, one analogous Ansatz for
gravity is

Guvel03) = Gure03)(Z +1)s Guve(1.2) = Guve(1. 21X, ) (®)

and other terms of g,,, vanish. As a result of this simplifying Ansatz, the second order differ-
ential terms involving z and ¢ indeed reduce to a much simpler form,

20003903 — 0000933 — 9393900 = 0. &)

However, to study the nonlinear nature of gravity analytically, an exact solution to Einstein’s
equation is needed, so the I'T" terms should also vanish. Ansatz 8 does also simplify the
IT terms, but when combined with Eqn. 7, it is still rather complicated. When we tried to
carry over the energy momentum consideration in the Yang-Mills case to further simplify
the problem, we realized that the exact energy momentum of a gravitational wave is not so
straight forward. Unlike the Yang-Mills waves, the source of which is the "color charge",
the source for gravitational waves is exactly the energy momentum tensor itself. Hence, it
is inevitable that an exact vacuum, or "wave", solution to Einstein’s equation would have a
vanishing energy momentum tensor. However, a propagating wave should possess energy and
momentum. This irreconcilable paradox requires deeper thinking and further studies. If this
contradiction is not resolved, it would be impossible to obtain an exact vacuum solution that
has a clear physical interpretation. Therefore, it is more pressing to address this contradiction
than to obtain an exact mathematical solution to Eqn. 9.

6 Conclusion and Future Research Direction

Based on the above analysis, it is clearly advantageous to construct Ansatz based on physical
considerations as it would be time-consuming to understand mathematical solutions whose
physical interpretation is still obscure. Similar strategy has been used to study gravity. How-
ever, the fundamental difficulty with a proper definition of energy and momentum of a grav-
itational wave complicates this application. In the future, it could be worthwhile to look for
wave properties in solutions resulted from a non-vanishing source, or perhaps to think about
possible modifications to the right hand side of Einstein’s equation.
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