EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjconf/201921402008
CHEP 2018

Status of the parallelized JUNO simulation software

Tao Lin'*, Jiaheng Zou'**, Weidong 1i'?, Ziyan Deng'?, Guofu Cao'?, Xingtao Huang?,
and Zhengyun You*(on behalf of JUNO collaboration)

'Institute of High Energy Physics, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3Shandong University, Jinan, China

4Sun Yat-Sen University, Guangzhou, China

Abstract. The Jiangmen Underground Neutrino Observatory (JUNO) is a
multi-purpose neutrino experiment. It consists of a central detector, a water
pool and a tracker placed on top. The central detector, which is used for neu-
trino detection, consists of a 20 kt liquid scintillator target and about 18,000
20-inch photomultiplier tubes (PMTs) to detect scintillation photons.
Simulation software is an important part of the JUNO offline software. To
speed up the simulation, a parallelized simulation framework has been devel-
oped based on the SNiPER framework and Geant4 version 10. The SNiPER
task components are in charge of the event loop, which can run in sequential
mode, Intel TBB mode and other modes. Based on SNiPER, the simulation
framework and its underlying parallel libraries have been decoupled. However,
parallelized simulation of correlated events is a challenge. In order to keep the
correct event order, a component called global buffer is developed in SNiPER.
In this paper, an overview of the parallelized JUNO simulation framework is
presented. The global buffer is used in the parallelized event correlation simu-
lation. An event generator produces events with timestamps in sequential mode.
These events are put into the global buffer and processed by the detector simu-
lation algorithms in different tasks. After simulation, the events are saved into
ROOT files with a ROOT I/O service running in a dedicated thread. Finally, the
software performance is presented.

1 Introduction

The JUNO [1, 2] experiment, located in southern China, aims to determine the neutrino mass
hierarchy. It is about 53 km away from the Yangjiang and Taishan nuclear power plants. To
detect neutrinos, a central detector is filled with 20 kt liquid scintillator (LS) target. When a
neutrino interacts with LS, it is captured by a proton and then a positron (e*) and a neutron (n)
are produced, which is called inverse-beta decay (IBD). Then the positron and the neutron
deposit energy in the LS and scintillation photons are produced. These photons propagate
in the LS and are collected by the surrounding photomultiplier tubes (PMTs) in the water.
Figure 1 shows the schematic view of the JUNO detector, where the innermost part is the
central detector which is surrounded by a water Cerenkov detector. The water is used to

*e-mail: lintao@ihep.ac.cn
**e-mail: zoujh@ihep.ac.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjcont/201921402008
CHEP 2018

suppress radioactivity backgrounds from PMTs, rocks and so on. Equipped with PMTs,
the water Cerenkov detector can also measure cosmic ray muons. On the top of the water
Cerenkov detector, there is a detector called the top tracker, which can also detect muons.

Calibration

Electronics
Top Tracker «—— |

Water Cerenkov .
~2000 20" PMT

Figure 1. Schematic view of the JUNO detector.

As part of the offline JUNO software [3], the detector simulation software is important
for detector design, reconstruction algorithm development and physics studies. To fulfill
the requirements of Monte Carlo (MC) production, a detector simulation framework [4] is
developed based on SNIiPER [5] and Geant4 [6, 7]. The framework can support different types
of physics generators by converting the output into a HepMC [8] based event data model.
Then the framework loads the HepMC event object and converts it to a Geant4 object, so that
Geant4 can start the simulation. A ROOT [9] based event data model, called SimEvent, is
created and filled with hit objects and then put into an event data buffer. The framework saves
the event objects into a ROOT file automatically [10].

In recent years, a multi-threading model has been adopted by several data processing
frameworks and libraries, such as Gaudi [11], Geant4 [12] and ROOT. The LHC experi-
ments such as ATLAS and CMS experiments adopt this model [13—17]. One benefit of a
multi-threading model compared with a multi-processing model is the shared memory. For
example, the full geometry of JUNO detector is complicated, requiring several hundred MB
of physical memory. If the geometry object is shared by multiple threads, the memory usage
is reduced significantly. Hence a parallelized detector simulation framework for JUNO was
designed and a prototype was implemented based on SNiPER-MT [18].

One challenge for the framework is handling events with time correlation. The order
should be preserved for these physics events. For example, a physics generator simulating a
supernova burst will generate a series of events with time correlation. When simulating these
events using the multi-threading model, the order of events should be kept the same. The
supernova burst can be simulated in a dedicated thread, however, the number of events for
each supernova burst may differ. The multi-threaded job will finish only when the last event
is done, which causes other CPUs to idle. To improve the CPU utilization of one job, a lock-

2



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjconf/201921402008
CHEP 2018

free global buffer is introduced in SNiPER-MT. Using the global buffer, the physics generator
produces HepMC objects on demand for Geant4 to later retrieve and simulate events using
different threads.

This section introduces the motivation and challenge of the parallelized simulation for
the JUNO experiment. The remainder of this paper is as follows, section 2 presents the de-
sign and implementation of the parallelized simulation framework to handle time correlation
events. The performance measurement and conclusion are shown in section 3 and section 4
respectively.

2 Parallelized simulation software

The SNiPER framework adopts Intel Threading Building Blocks (TBB) [19] to implement a
parallelized version, which is called SNiPER Muster (Multiple SNiPER Task Scheduler) [20].
SNiPER Muster controls the mapping a SNiPER Task component to an Intel TBB worker. A
SNiPER Task component is a lightweight manager of algorithms, services and tools. When
a SNiPER Task component is dispatched to an Intel TBB worker, the algorithms registered
in the Task component are executed. By default, each SNiPER Task component can be
configured with its own local buffer and corresponding input and output services. Therefore
most of the user code is not affected when migrating from a serial version to a parallelized
version.

In order to keep most of the Geant4 user code unchanged during parallelization, the simu-
lation framework retains the same interfaces. These interfaces are divided into two categories:
one for initialization and another for event simulation. The design of the simulation software
framework is shown in figure 2. A global task is invoked during initialization to control the
detector construction and physics list. The global task is then shared by other workers, so
that a slave run manager can access detector geometries managed by the master run man-
ager. Then the worker tasks start to simulate events in parallel. Each worker task has its own
instances of Geant4 user actions, such as event action, tracking action and stepping action,
which are user hooks to collect data from Geant4 during event processing.

Global Task Worker Task
Master SimAlg
RunMgrSvc
Slave
RunMgrSvc
Master P S —
RunMgr aveRunMgr

1
Detector Event
L| Construction Actions

Geant4 user classes

Figure 2. Components of the simulation software.



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjcont/201921402008
CHEP 2018

For each worker task, a physics generator algorithm, a detector simulation algorithm
and a ROOT I/O service are registered. An event object is created by the physics generator
algorithm and then put into the local buffer of the task. The local buffer is shared by the
components registered in the task, so the detector simulation algorithm and the ROOT I/O
service can access the events. After converting the HepMC object to the Geant4 object, the
detector simulation algorithm simulates the event using Geant4 and generates a collection of
hit objects for the PMTs. Then the ROOT I/O service saves the event into a ROOT file. These
algorithms and services are all thread-safe. Each worker task has its own copies of these
algorithms and services, as shown in figure 3. The events in the different local buffers are not
shared.

Physics
|:> ‘ Event ‘ Event ‘ ’ Event ‘
Thread #1 (N 2oy b e A I SimAlg
rooTi/0 | <3 Local buffer

Physics :>
Event Event Event
Thread #2 IM, \ 1 ‘ 2 ‘ 3 ‘
——————————————————— SimAl
RoOTI/O | {—= Local buffer g

Figure 3. Parallelized simulation using local buffers.

Since the worker tasks are configured with their own ROOT I/O services, these events
are not saved into the same file. Even though there are different copies of ROOT TFile
and TTree objects, using ROOT 5 will crash the software during simulation. Several locks
are needed to protect these objects. To avoid locking explicitly, ROOT 6 is then used in
the simulation software. In order to enable thread safety in ROOT 6, a method called
ROOT: :EnableThreadSafety () is invoked during initialization of the global task.

Due to multiple output files per job, a TChain object is used to load them for analysis.
However, it becomes difficult to manage files if each thread has its own output. An experi-
mental ROOT component called TBufferMerger is used to merge output files automatically
to reduce the number of files. This feature is used in events without correlation, such as
events generating using particle guns. For events with correlation, a SNiPER component
called global buffer is used.

Thread #input

Event

Generator Event Event Event
(one instance) ‘ 1 ‘ ’ 2 ‘ 3 Thread #1
: T -
Local buffer
FIFO queue]|
__ —
Thread #output : '
read #outpu Event Event Event
SN N Thread #2
ROOT I/0 4 e -= SimAlg
(one instance) <:| Local buffer

Global buffer

Figure 4. Schematic view of the parallelized simulation using global buffer.

As shown in Figure 4, two additional threads are created: one for generating events and
another for saving events. The global buffer is a FIFO queue, whose capacity is configurable.

4



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjconf/201921402008
CHEP 2018

The events with timestamps are produced by the physics generator and then filled into the
global buffer. If the buffer is full, the physics generator is blocked until there is free space.
For the worker task, only a detector simulation algorithm and a local buffer are configured
and registered. The local buffer asks the global buffer to return event objects, which are not
simulated yet. Then the simulation algorithm loads an event from the local buffer and starts
simulation of this event. After event generation, the ROOT I/O service saves the events in
the same order. A flag is used to indicate whether the event is finished or not. The ROOT
I/O service can only get an event from the global buffer when it is finished. If the event is
not ready, the thread with the ROOT I/O service is suspended. If the event is ready, then the
thread is woken up and the ROOT I/O service saves the event.

Using the global buffer, the parallelized simulation of a supernova burst is possible. The
supernova physics generator produces events in order and pushes them into the global buffer.
When the global buffer is full, the generation is suspended. All the worker threads retrieve
their own events and do the detector simulation. Then the events are marked as done and
saved by the ROOT I/O service. It reduces the time to simulate a supernova burst, while only
one ROOT file is generated with correct event order.

3 Performance

The performance measurements are run on a blade server with Intel Xeon CPU E5-2680 v3
@ 2.5 GHz and 64 GB of memory. The Geant4 version is 10.04.p02, which fixed the mutex
used in the material property tables of Geant4. The ROOT version is 6.12.06, which enables
thread safe support. Each job is configured with 1000 events of 2.2 MeV ys, generated at
the detector center. Jobs are repeated three times for each measurement and the average
timing for the simulation is calculated. The initialization time is not included. The studies of
performance measurements include two parts: one is simulation with local buffers only and
another is simulation with a global buffer.

24 [ eeeenns ideal

20 —e—noi/o

—e—i/0 /tmp

speedup factor

16
i/o /junofs

12

0 4 8 12 16 20 24
number of threads

Figure 5. Performance of simulation all using local buffers. “/tmp” is a local file system and “/junofs”
is a network shared file system.

Figure 5 shows the performances, where the simulation software is configured without
any global buffer. Three cases are considered. The first case is using local buffers without
any I/O, which can eliminate I/O interference. The second case is using local buffers with



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjconf/201921402008
CHEP 2018

I/O, where the output is saved on the local disk of the blade server. The third case is same
as the second one, but the output is saved into a network file system. As expected, there is
an impact on the speedup when the I/O is considered. Comparing between the local disk and
the network disk, it is also expected that the better performance of the file system, the better
speedup.

24

without global buffer

20
with global buffer

Speedup factor

16

12

0 4 8 12 16 20 24
number of worker threads

Figure 6. Performance of simulation using a global buffer.

As shown in figure 6, the performance of the simulation with a global buffer is close
to linear speedup. The extra two threads are not included in the number of worker tasks.
As a comparison, the third case without the global buffer is also shown. The global buffer
and a dedicated thread with a ROOT /O service does not affect the simulation timing. The
performance of the lock free global buffer is as expected. Due to two dedicated threads for
event generation and output, the speedup drops a little when all of the cores are occupied by
worker tasks.

4 Conclusion

In this paper, the handling of events with correlation in the parallelized JUNO simulation
software is shown. By using the new SNiPER component global buffer, events are generated
using a dedicated thread with a physics generator algorithm and then put into the global buffer
and simulated by the parallelized detector simulation algorithms. These events are saved into
ROOT files using an extra thread with a ROOT I/O service. The result shows an almost linear
speedup with respect to the number of worker threads.

In the current parallelized simulation, the global buffer will block the output service when
the current event is not done. One possible problem is that it will block the whole buffer if
only this event is not completed. The physics generator is blocked and the worker tasks are
all idle. Currently, simulating events in the same energy ranges can avoid such problems.
In the future, a global buffer which can be dynamically expanded will be implemented. If
the buffer is full and the first event is not finished, the software will detect the problem and
expand the capacity, so the physics generator and the worker tasks can continue.

This work is supported by Joint Large-Scale Scientific Facility Funds of the NSFC and CAS
(U1532258), the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No.
XDA10010900, National Natural Science Foundation of China (11575224, 11675275, 11805223).

6



EPJ Web of Conferences 214, 02008 (2019) https://doi.org/10.1051/epjconf/201921402008
CHEP 2018

References

[1] Z. Djurcic et al. JUNO) (2015), 1508.07166
[2] F. Anet al. JUNO), J. Phys. G43, 030401 (2016), 1507.05613
[3] X.T. Huang, T. Li, J.H. Zou, T. Lin, W.D. Li, Z.Y. Deng, G.F. Cao, PoS ICHEP2016,
1051 (2016)
[4] T. Lin, J. Zou, W. Li, Z. Deng, X. Fang, G. Cao, X. Huang, Z. You (JUNO), J. Phys.
Conf. Ser. 898, 042029 (2017), 1702.05275
[5] J.H. Zou, X.T. Huang, W.D. Li, T. Lin, T. Li, K. Zhang, Z.Y. Deng, G.F. Cao, J. Phys.
Conf. Ser. 664, 072053 (2015)
[6] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A506, 250 (2003)
[7] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)
[8] M. Dobbs, J.B. Hansen, Comput. Phys. Commun. 134, 41 (2001)
[9] R. Brun, F. Rademakers, Nucl. Instrum. Meth. A389, 81 (1997)
[10] T. Li, X. Xia, X. Huang, J. Zou, W. Li, T. Lin, K. Zhang, Z. Deng, Chin. Phys. C41,
066201 (2017), 1702.04100
[11] M. Clemencic, B. Hegner, C. Leggett, J. Phys. Conf. Ser. 898, 042044 (2017)
[12] A. Dotti, M. Asai, G. Barrand, I. Hrivnacova, K. Murakami, pp. 1-2 (2015),
1605.01792
[13] S. Farrell, P. Calafiura, C. Leggett, V. Tsulaia, A. Dotti (ATLAS), J. Phys. Conf. Ser.
898, 042012 (2017)
[14] P.Calafiura, W. Lampl, C. Leggett, D. Malon, G. Stewart, B. Wynne, J. Phys. Conf. Ser.
664, 072031 (2015)
[15] G.A. Stewart et al. (ATLAS), J. Phys. Conf. Ser. 762, 012024 (2016)
[16] E. Sexton-Kennedy, P. Gartung, C.D. Jones, D. Lange, J. Phys. Conf. Ser. 608, 012034
(2015)
[17] P. van Gemmeren, S. Binet, P. Calafiura, W. Lavrijsen, D. Malon, V. Tsulaia (ATLAS),
J. Phys. Conf. Ser. 396, 022054 (2012)
[18] T. Lin, J. Zou, W. Li, Z. Deng, G. Cao, X. Huang, Z. You (JUNO), J. Phys. Conf. Ser.
1085, 032048 (2018), 1710.07150
[19] Intel threading building blocks, https://www.threadingbuildingblocks.org/, [Online; ac-
cessed 19-March-2018]
[20] J.H. Zou, T. Lin, W.D. Li, X.T. Huang, T. Li, Z.Y. Deng, G.F. Cao, Z.Y. You, J. Phys.
Conf. Ser. 1085, 032009 (2018)



