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Abstract. Software quality monitoring and analysis are among the most pro-
ductive topics in software engineering research. Their results may be effectively
employed by engineers during software development life cycle. Open source
software constitutes a valid test case for the assessment of software charac-
teristics. The data mining approach has been proposed in literature to extract
software characteristics from software engineering data.
This paper aims at comparing diverse data mining techniques (e.g., derived from
machine learning) for developing effective software quality prediction models.
To achieve this goal, we tackled various issues, such as the collection of soft-
ware metrics from open source repositories, the assessment of prediction mod-
els to detect software issues and the adoption of statistical methods to evaluate
data mining techniques. The results of this study aspire to identify the data min-
ing techniques that perform better amongst all the ones used in this paper for
software quality prediction models.

1 Introduction

The software used in scientific environment (e.g. the HEP software) is a rich mixture of
in-house software and software taken from the large open source community [1]. Computer
scientists are therefore striving to produce and employ high quality software that, at the same
time, has been increasing in size and complexity. In order to produce high quality software
and save effort, scientists need to know which software modules are defective [2].

Data mining is the process of discovering interesting patterns and knowledge from large
amounts of data [3]. Figure 1 shows the transformation from static software engineering data
to active data, performed by data mining. In regards to software engineering data, there are
two important types of data sources: the former is the revision control systems (such as CVS,
Subversion and Git) that manage the ongoing status of development, the latter is the defects
tracking software (such as BugZilla and JIRA) [4]. The aforementioned data constitute the
input of one or more data mining techniques (such as Random Forest, Bagging and Support
Vector Machine). The output of these techniques help software engineers to mine patterns
and detect violation of patterns, which are likely to be defects. Through data mining, data are
converted into knowledge that can help in conducting the most common software engineering
tasks: programming, defect detection, testing and maintenance [5].
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Figure 1. Data Mining and Software Engineering Data

In literature, there are many different studies that deal with software quality prediction and
data mining techniques. However, to the best of our knowledge, there is no a comprehensive
study that explains the practical aspects of software analytics models [6]. This study aims at
providing an initial comparative performance analysis of different data mining techniques for
software quality prediction through a well-documented methodology. Due to the amount of
data, this paper provides a subset of results, whose discussion is going to be published in a
forthcoming paper.

The remainder of this paper is structured as follows. Section 2 summarizes our research
methodology; section 3 describes the study setup; section 4 provides some of the collected
results with a brief discussion; finally section 5 draws our conclusions.

2 Research Methodology

Our approach is composed of two steps. In the first step, we have conducted a research in
the field of data mining for software engineering issues and, more in detail, about software
quality prediction to identify defect-prone software modules. In the second step, we have
attempted to reproduce and expand previous studies on data mining techniques comparison
by selecting a subset of software metrics, online datasets, data mining techniques, free data
mining tools and packages, and performance criteria.

We collected the most used data mining techniques and metrics by leveraging existing
literature.
Support Vector Machine (e.g. SMO): is a supervised techniques that searches for the op-
timal hyperplane to separate training data. The hyperplane found is intuitive: it is the one
which is maximally distant from the two classes of labelled points located in each side [7, 8].
Decision Tree (e.g. J48): is a flow-chart like tree structure. It is composed of: nodes which
represent a test on a attribute value; branches which show the outcome of the tests; leaves,
that indicate the resulting classes [3].
Naive Bayes: relies on the Bayesian rule of conditional probability. It assumes that all the
attributes are independent and analyses each of them individually [9].
Ensemble Classifier (e.g. Random Forest): consists of training multiple classifiers and then
combining their predictions [10]. This technique leads to a generalized improvement of the
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ability of each classifier [11]. According to the way the component classifiers are trained,
parallel or sequential, we can distinguish two different categories of ensemble. Bagging [12]
and Random Forest [13] are both parallel classifiers. Bagging creates multiple version of
the classifier by replicating the learning set in parallel from the original on and the final
decision is made by majority voting strategy. Random Forest adopts a combination of tree
predictors, each depending on the values of a random vector sampled independently and with
the same distribution for all trees in the forest. Adaboost [14] is an example of a sequential
classifier since each classifier of this technique is applied sequentially on the training samples
misclassified by the previous one.
Deep Learning: is applied to feature hierarchy where features of higher levels are formed by
the composition of lower level ones. Deep learning techniques leverage learning intermediate
representations that can be shared across tasks and, as a consequence, they can exploit unsu-
pervised data and data from similar tasks to improve performance on problems characterised
by scarcity of labelled data [15–17].

As concerns metrics we collected all the metrics used in literature over time, some of
them are:
McCabe (e.g. Cyclomatic Complexity, Essential Complexity): is used to evaluate the com-
plexity of a software program. It is derived from a flow graph and is mathematically computed
using graph theory. Basically, it is determined by counting the number of decision statements
in a program [18, 19].
Halstead (e.g. Base Measures, Derived Measures): is used to measure some characteristics
of a program module - such as the "Length", the "Potential Volume", "Difficulty", the "Pro-
gramming Time" - by employing some basic metrics like number of unique operators, number
of unique operands, total occurrences of operators, total occurrences of operands [20, 21].
Size (e.g. Lines of Code, Comment Lines of Code): the Lines of Code (LOC) is used to
measure a software module and the accumulated LOC of all the modules for measuring a
program [22].
Chidamber and Kemerer (e.g. Number of Children, Depth of Inheritance): is used for
object-oriented programs and is the most popular for performing software analysis and pre-
diction. It has been adopted by many software tool vendors and computer scientists [23, 24].
Some metrics of the suite are: Weighted Method Per Class, which measures the number of
methods which is in each class; Depth of Inheritance Tree, which measures the distance of
the longest path from a class to the root in the inheritance tree; Number Of Children, which
measures the number of classes that are direct descendants of each class.

3 Study Setup

Unlike previous literature, we also consider Deep Learning techniques [15, 25], which have
gained importance in recent years. In the past, their employment have mainly been on Com-
puter Vision, Natural Language Processing and Speech Recognition [26].

In the past, authors have focused their attention mainly on the NASA Defect Dataset [27–
32] that can be found in online repositories [33, 34]. On the other hand, we have decided to
widen our scope by including some datasets related to open source projects such as Eclipse
[35], Android and Elastic Search [36]. Table 1 shows a summary of the most important char-
acteristics of these datasets in terms of number of projects, metrics, modules and percentage
of defective modules per projects, reporting their range whenever possible. We have collected
the performance criteria used by previous literature. All the definitions below (see Eqs. 1,
2, 3, 4) are based on the confusion matrix shown in Table 2. Accuracy (see Eq. 1) is the
percentage of modules correctly classified as either faulty or non-faulty. Precision (see Eq. 2)
is the percentage of modules classified as faulty that are actually faulty. Recall (see Eq. 3) or
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Table 1. Summary of the datasets employed

Repository #Projects #Metrics #Modules %Defective Modules

NASA Defect Datasets 11 [30,41] [101, 5589] [0.41, 48.80]%
Eclipse Datasets 5 17 each [324, 1863] [9.26, 39.81]%

Android Datasets 6 102 each [74, 124] [0, 27.02]%
Elastic Search Datasets 12 102 each [1860, 7263] [0.16, 11.47]%

Table 2. Confusion Matrix

Actual
value

Predicted by model
+ -

+ True
Positive (TP)

False
Negative
(FN)

- False
Positive (FP)

True
Negative
(TN)

Completeness is the percentage of faulty modules that are predicted as faulty. Mean Absolute
Error determines how close the values of predicted and actual fault rate differ. F-measure (see
Eq. 4) is a combined measure of recall and precision, the higher value of this indicator the
better is the quality of the learning method for software prediction.

Accuracy =
T P + T N

T P + T N + FP + FN
(1) Precision =

T P
FP + T P

(2)

Recall =
T P

T P + FN
(3) F − measure =

2 × Recall × Precision
Precision + Recall

(4)

In this paper, we have provided results for the only accuracy performance indicator. A
more extensive analysis is going to be included in a forthcoming paper.

Figure 2 describes our solution workflow. We have selected some online datasets (i.e.,
NASA, Eclipse, Android and Elastic Search), including all the metrics contained in those
repositories. We have performed some cleaning operations when needed, replacing missing
values with the mean of the other values related to the same metric [27]. The obtained data
have been used as input of many data mining techniques (both supervised and unsupervised)
by employing three different free open source tools: Weka [37], scikit learn [38] and R [39].
We have collected the output of all the executions of the algorithms and we have compared
their values according to the performance indicators.

4 Initial Assessment

The histograms show the average accuracy computed for the considered datasets of the data
mining techniques taken into account. Each value has been obtained by computing the accu-
racy of each dataset. The compared data mining techniques are: Naive Bayes, Multi Layer
Perceptor, Support Vector Machine, AdaBoost, Bagging, Random Forest, J48, K-Nearest
Neighbor, RBF Neural Network, DeepLearning4j.
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Figure 2. Solution Workflow

Figures 3 shows the values of accuracy obtained by exploiting the NASA dataset (on the
left) and the Eclipse dataset (on the right). Bagging and Random Forest are the techniques
that have performed the best for the first dataset, while the SVM technique has performed
better in the other case. Figure 4 shows the values of accuracy obtained by exploiting the

Figure 3. Average Accuracy for the NASA and Eclipse datasets

Android dataset (on the left) and Elastic Search dataset (on the right). The techniques that
have performed the best are Random Forest and Bagging. In conclusion, we have noticed
that in 3 cases out of 4 the techniques that have got the best score are the ones belonging
to the ensemble learning category. This is consistent with literature, i.e. ensemble learning
algorithms, by integrating more classifiers to build a classification model, improve defect
prediction. Interestingly, deep learning techniques have obtained good results, but never the
best score.

5 Conclusion

In this study, we have shown an initial comparison of data mining techniques in the context
of software defect prediction. To achieve this goal, we have leveraged existing literature to
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Figure 4. Average Accuracy for the Android and ElasticSearch datasets

collect online dataset, used techniques and performance criteria. Unlike previous studies,
we have paid more attention to dataset related to open source projects and to Deep Learning
techniques. By analysing the results, we can conclude that Bagging and Random Forest have
achieved the best average accuracy over all the datasets. We have also shown that data mining
can constitute a valid helping hand in determining and predicting software quality, and can
be used together with statistical analysis.

Currently, we are experimenting using the same techniques on software used in HEP.

This research was supported by INFN CNAF.

Appendix

A Glossary

Software Quality, according to IEEE, is the degree to which a system meets specified re-
quirements or customer or user’s needs or expectations. According to ISO, quality is the
degree to which a set of inherent characteristics fulfils requirements.
Data Mining is the process of discovering interesting patterns and knowledge from large
amount of data contained in datasets.
Defect is an imperfection or deficiency in a work product where that work product does not
meet its requirements or specifications and needs to be repaired or replaced.

B Datasets

Table 3 shows details of the datasets: AR1 and AR6 [34]; CM1, KC3, KC4, MC2, MW1,
PC1, PC2, PC3 and PC4 [33]; Eclipse [35] and Android [36].

References

[1] T. Wenaus, J. Phys.: Conf. Ser. 898, 1 (2017)
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