

The Event Buffer Management for MT-SNiPER

Jiaheng Zou1,*, Tao Lin1, Weidong Li1, Xingtao Huang2, Ziyan Deng1, Guofu Cao1,
and Zhengyun You3

1Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
2Shandong University, Jinan, China
3Sun Yat-sen University, Guangzhou, China

Abstract. SNiPER is a general purpose offline software framework for
high energy physics experiment. It provides some features that are
attractive to neutrino experiments, such as the event buffer. More than one
events are available in the buffer according to a customizable time window,
so that it is easy for users to apply events correlation analysis. We also
implemented the MT-SNiPER to support multithreading computing based
on Intel TBB. In MT-SNiPER, the event loop is split into pieces, and each
piece is dispatched to a task. The global buffer, an extension and
enhancement to the event buffer, is implemented for MT-SNiPER. The
global buffer is available by all threads. It keeps all the events being
processed in memory. When there is an available task, a subset of its
events is dispatched to that task. There can be overlaps between the subsets
in different tasks due to the time window. However, it is ensured that each
event is processed only once. In the task side, the subsets of events are
locally managed by a normal event buffer. So the global buffer can be
transparent to most user algorithms. Within the global buffer, the
multithreading computing of MT-SNiPER becomes more practicable.

1 Introduction
The SNiPER [1] framework is originally developed for the offline software of Jiangmen
Underground Neutrino Observatory (JUNO) [2]. However, we have succeeded in stripping
the dependencies and promoting it as a standalone project. SNiPER is very lightweight and
easy to use. It’s attractive to those who want a rapid integration of their software with a
simple framework. Now SNiPER has been adopted by many more experiments, including
Large High Altitude Air Shower Observatory (LHAASO) [3], China Spallation Neutron
Source (CSNS) and Neutrinoless double beta decay experiment (nEXO) [4].

The data amount of our experiments will be very large in the future, which is a big
challenge for us. It’s necessary to consider any high performance computing techniques in
the data processing software. Some parallel methods concentrate on accelerating the time
consuming calculations in an application, such as NVIDIA CUDA and OpenMP. They are
strongly coupled with the final software product. Some other methods provide high level

*e-mail: zoujh@ihep.ac.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 05026 (2019)	 https://doi.org/10.1051/epjconf/201921405026
CHEP 2018

abstraction of task parallelism, which can be used in a general purpose framework.
GaudiHive [5] is a successful example in the high energy physics field.

Following the requirements and the trends in HEP software, MT-SNiPER has been
developed for multithreading computing in 2017. The multiple task feature of SNiPER
makes it easier to support multithreading without missing the simplicity. MT-SNiPER is
implemented as a non-invasive wrapper of SNiPER kernel modules. So that it is almost
transparent to most users, and the migration cost is minimized.

2 An overview of MT-SNiPER
MT-SNiPER is implemented based on Intel TBB. It is a combination of data parallelism
and task parallelism. The conception of MT-SNiPER is straightforward. It mainly consists
of 3 parts, including I/O tasks, global buffer and the Muster, as shown in Fig. 1.

Fig. 1. The schematic diagram of MT-SNiPER.

The Muster module represents the data parallelism in MT-SNiPER. In high energy
physics experiments, data consists of a serial of events. Generally events are independent to
each other, and they can be handled concurrently. It is natural to apply the data parallelism
model. At the beginning, Muster spawns a group of worker tasks and starts them in
different threads. Then events are dispatched to workers and handled simultaneously. In
each worker, it is a copy of the SNiPER kernel Task that performs like a serial job.

The I/O tasks represents the task parallelism. They are in charge of the events reading
and writing on demand. In order to mitigate the I/O competing between threads, there is a
global input task for each input stream, and a global output task for each output stream. The
input task and output task are executed in separate threads besides the worker threads. Then
the disk I/O synchronisation is much simplified in MT-SNiPER. We can directly reuse the
serial version of I/O services in the global I/O tasks.

The global buffer decouples the disk I/O and worker tasks. On the worker side, event
references are transferred via customized I/O services between global buffer and workers.
Since the reference management in memory is much faster than disk I/O, the locks for data
synchronisation can be very thin. On the I/O task side, semaphores are used to trigger the
reading or writing procedure. Events in global buffer are kept in its reading order. So the
result in global buffer can be written out directly without re-sorting.

Event level parallel computing is achieved in MT-SNiPER. The SNiPER Tasks are
simply mapped to Intel TBB tasks. This is a splendid practice of the SNiPER multiple task
feature in multithreading context.

3 The event buffer of MT-SNiPER

2

EPJ Web of Conferences 214, 05026 (2019)	 https://doi.org/10.1051/epjconf/201921405026
CHEP 2018

abstraction of task parallelism, which can be used in a general purpose framework.
GaudiHive [5] is a successful example in the high energy physics field.

Following the requirements and the trends in HEP software, MT-SNiPER has been
developed for multithreading computing in 2017. The multiple task feature of SNiPER
makes it easier to support multithreading without missing the simplicity. MT-SNiPER is
implemented as a non-invasive wrapper of SNiPER kernel modules. So that it is almost
transparent to most users, and the migration cost is minimized.

2 An overview of MT-SNiPER
MT-SNiPER is implemented based on Intel TBB. It is a combination of data parallelism
and task parallelism. The conception of MT-SNiPER is straightforward. It mainly consists
of 3 parts, including I/O tasks, global buffer and the Muster, as shown in Fig. 1.

Fig. 1. The schematic diagram of MT-SNiPER.

The Muster module represents the data parallelism in MT-SNiPER. In high energy
physics experiments, data consists of a serial of events. Generally events are independent to
each other, and they can be handled concurrently. It is natural to apply the data parallelism
model. At the beginning, Muster spawns a group of worker tasks and starts them in
different threads. Then events are dispatched to workers and handled simultaneously. In
each worker, it is a copy of the SNiPER kernel Task that performs like a serial job.

The I/O tasks represents the task parallelism. They are in charge of the events reading
and writing on demand. In order to mitigate the I/O competing between threads, there is a
global input task for each input stream, and a global output task for each output stream. The
input task and output task are executed in separate threads besides the worker threads. Then
the disk I/O synchronisation is much simplified in MT-SNiPER. We can directly reuse the
serial version of I/O services in the global I/O tasks.

The global buffer decouples the disk I/O and worker tasks. On the worker side, event
references are transferred via customized I/O services between global buffer and workers.
Since the reference management in memory is much faster than disk I/O, the locks for data
synchronisation can be very thin. On the I/O task side, semaphores are used to trigger the
reading or writing procedure. Events in global buffer are kept in its reading order. So the
result in global buffer can be written out directly without re-sorting.

Event level parallel computing is achieved in MT-SNiPER. The SNiPER Tasks are
simply mapped to Intel TBB tasks. This is a splendid practice of the SNiPER multiple task
feature in multithreading context.

3 The event buffer of MT-SNiPER

The event management in memory is an important part of MT-SNiPER. It is the key of
synchronisation between threads. And it became more complicated when we introduced
support for events correlations for neutrino experiments.

3.1 Global buffer

The global buffer is indeed a FIFO queue. Events are read into the buffer serially, and
wrote out in the same order after processing. It interacts with all the I/O tasks and workers.
Thread safety should be managed carefully. It is implemented as a ring for simplicity and
better performance, as shown in Fig. 2.

Fig. 2. The global buffer ring in MT-SNiPER.

There are 3 pointers associated with the global buffer ring. The pointers are respectively
accessed by the input task, the workers and the output task.

The 1st pointer indicates the end of the event queue. When an event is read, it is filled in
the position of this pointer. Then the pointer moves to the next position, and a waiting
worker is notified. The input task will be paused when the ring buffer is full.

The 2nd pointer indicates the next event to be dispatched to a worker. Workers will be
paused when this pointer catch up with the 1st one in the ring. The output task is notified
when an event is processed. We have to prevent concurrent accessing of the pointer by
different workers.

The 3rd pointer indicates the beginning of the event queue. When the first event is
processed, it is sent to the output task for writing and removed from the queue. The input
task is notified when the number of empty slots in the buffer is greater than a safety value.
This procedure is paused until the first event processing hasn’t been finished.

The capacity and safety value of the ring buffer can be configured at the beginning of a
job. For different type of jobs, it should be optimized according to the memory usage and
threads competing.

3.2 Local buffer in a worker

Customized I/O services are implemented for MT-SNiPER workers. The input service gets
event references from the global buffer instead of reading files. The output service sets a
state to the processed events instead of writing them out. Each worker is limited to the
scope of a SNiPER Task. It is the same as a serial SNiPER job in most cases.

However, it is a little difference when there are events correlations. In this case, a group
of continuous events are dispatched to a worker each time. There can be overlaps between
event groups. Additional event state is used to ensure each event is processed only once.

3

EPJ Web of Conferences 214, 05026 (2019)	 https://doi.org/10.1051/epjconf/201921405026
CHEP 2018

4 Performance measurement
We took a preliminary measurement to estimate the performance of the global buffer in
MT-SNiPER. Following are the execution environment and testing case,

- A node with 32 CPU cores
- An algorithm that takes an average of 0.01 second per event

The speedup ratio is very close to the ideal value when we use no more than 20 worker
threads, as shown in Fig. 3.

Fig. 3. A preliminary result for the speedup radio of MT-SNiPER

5 Conclusions
SNiPER is a simple and lightweight software framework which has been used by several
experiments. It is enhanced by MT-SNiPER for multithreading computing. In MT-SNiPER,
a global buffer is implemented to decouple the disk I/O and workers. Event references are
mapped into workers’ local buffer and handled concurrently. There is only a few thin locks
in the optimized global buffer. A preliminary testing shows that the overhead is very small.
The hierarchic buffer architecture is an effective solution in MT-SNiPER.

This work is supported by Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (Grant
No. U1532258), the Youth Innovation Promotion Association of Chinese Academy of Sciences
(Grant No. 2017021), the National Natural Science Foundation of China (Grant No. 11605221) and
the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.
XDA10010900).

References
1. Zou J H, Huang X T, Li W D, Lin T, Li T, Zhang K, Deng Z Y and Cao G F 2015 J.

Phys.: Conf. Ser. 664 072053. See also ”SNiPER” [software], version 1.0, Available
from https://github.com/SNiPER-Framework/sniper/releases/tag/v1.0 [accessed 2018-
03-20]

2. An F et al. (JUNO) J. Phys. G43 030401 (2016)
3. Cao Zhen et al. A future project at tibet: the large high altitude air shower observatory

(LHAASO) Chinese Phys. C 34 249 (2010)
4. The nEXO Collaboration, nEXO Pre-Conceptual Design Report, arXiv:1805.11142v2

[physics.ins-det] (2018)
5. M. Clemencic et al. J. Phys.: Conf. Ser. 513 022013 (2014)

4

EPJ Web of Conferences 214, 05026 (2019)	 https://doi.org/10.1051/epjconf/201921405026
CHEP 2018

