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Abstract. Several years ago, the modern silicon-based nanoelectronics came to the limits
of its miniaturization. Its advancement into the range of 10 nm and less faces enormous
challenges. A breakthrough in further miniaturization of electronic devices can be real-
ized only on the basis of new approaches of which nanobioelectronics seems to be the
most promising.

1 Introduction. DNA is a basis for the construction of electronic devices
Nanobioelectronics relies on the use of charge transfer processes in biomacromolecules and molecular
structures of nanometer size based thereon.

The main areas of nanobioelectronics are development of biosensors, complex nanoelectronic
DNA-based schemes, construction of nanobiotransistors, nanomotors, nanorobots, etc.

This review presents theoretical and practical approaches to the development of the "hardware
components" of bionanoelectronics – DNA-based nanowires, electronic sensors, memory devices,
and logical elements. DNA is the only molecule which can reproduce itself. DNA can be used for
creating complex structures and chains out of which nanobioelectronic devices can be constructed
[1–3].

One can insert various complexes and clusters into the spatial nanoconstructions obtained so that
they be arranged at strictly fixed distances from one another. In such a way one can crystallize there
such compounds which are not crystallized in normal conditions.

Complex structures produced from DNA can be selectively metallized. This can be achieved
by adding special enzymes into a solution. These enzymes identify special sequences of bases and
attach themselves to them, thus shielding these regions from metallization by metal ions in a solution.
On completing the metallization procedure enzymes can be separated from DNA by biochemical
methods. In this way one gets predetermined metallized and nonmetallized regions of complex DNA
structures [4]. A great impetus for constructing DNA-based electronic devices was the discovery that
DNA has conductive properties.

In section 2 we will give a short review of the main experiments on the charge transfer and
DNA conducting properties. In section 3 we will deal with the methods of constructing DNA-based
nanowires. In section 4 we discuss the polaron mechanism of charge transfer in DNA. In section 5
we discuss a possibility of creating nanobiochips which use unique conducting properties of DNA.
Section 6 is devoted to DNA-based electronic memory devices. In conclusion, in section 7 we deal
with the challenges to be overcome for successful development of nanobioelectronics.
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2 Conducting properties of DNA

The idea that DNA can possess conducting properties was first introduced by Eley and Spivey as early
as in 1962 [5]. Even the first experiments on charge transfer in DNA revealed a great variability in
the transfer rate. A decisive role in determining the regularities of charge transfer in DNA belongs to
the experiments by Giese et al. [6–10]. They demonstrated that current carriers arising in a nucleotide
sequence as a result of photoexcitation are holes which hop over guanine bases since the latter have
the lowest oxidation potential. For this reason, of special interest for nanoelectronics is the charge
transfer in homogeneous or regular nucleotide sequences consisting of G-C nucleotide pairs.

The current voltage characteristic of the conductivity of a homogeneous guanine-cytosine chain
was first directly measured in [11]. The authors investigated the electron transport along a Poly G/
Poly C chain of 10.4 nm length (30 nucleotide pairs) fastened between two electrodes. The measure-
ments were made in the temperature range from room temperature to 4 K. The electric current was
detected when the threshold value of the potential difference at the electrodes exceeded 0.5÷1 V. This
experiment convincingly demonstrated that short homogeneous chains the length of which is less than
10 nm can carry electrical current.

In paper [12] the capacity of DNA to transfer a charge over a distance of up to 600 nm was
demonstrated. Ohmic behavior of λ-DNA was also detected in experimental study [13]. In that
experiment use was made of a planar geometry in which a DNA molecule was placed onto a mica
surface and attached to rhenium-carbon electrodes. The ohmic dependence of the current on the
voltage was observed in the range from room temperatures to 1 K. At a temperature below 1K an
unexpected result was obtained – induced superconductivity arose in DNA.

Numerous experiments on direct measurement of DNA electric conductivity make it clear that
DNA has conducting properties.

3 DNA-based nanowires

There are different ways to construct nanowires on the basis of DNA. In [14] a technology of creat-
ing nanowires from silver was developed in which DNA serves as a scaffold for producing a metal
nanowire.

This approach was further developed: the use of DNA as a scaffold enabled one to obtain metal
nanowires from Pd, Pt, Cu, Au. A review of recent achievements in this field is given in [15].

Another way to produce nanowires from DNA is to transform DNA from B-form to M-DNA by
introducing additional bivalent metals (Zn+2, Co+2, Ni+2) for PH > 8.5 [16, 17]. It is believed that
in the M-DNA metal the ions replace amino-protons of guanines and thymines in each base pair,
but the structure can be transformed back to B-DNA by restoring the initial PH level. Recent direct
measurements confirmed that M-DNA demonstrates conductivity of metal type and electron transfer
is observed in duplexes consisting of 500 base pairs [18]. Apart from ample opportunities of using
M-DNA as a nanowire, DNA can be used for constructing biosensors, since it enables one to read out
the DNA electron state directly.

4 Mobility of charge carriers in DNA

The mobility of the charges in a DNA solution is rather small and corresponds to the case of a small-
radius polaron (SRP). In the case of SRP when almost all the charge is localized at one site of the
chain, use can be made of the Hamiltonian:
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in which the kinetic energy of the sites can be neglected. Here αi is the energy of a charge at the
i-th site, νi, j is the matrix element of the transition from the i-th site to the j-th one, ki is an elastic
constant, ui is the displacement of the i-th site from the equilibrium position. It is assumed that the
charge energy at the site depends linearly on ui:

αi = α
0
i + α

′
iui. (2)

Let us first consider a homogeneous chain: αi = 0, α′i = α, ki = k in the approximation of the nearest
neighbors νi, j = ν, for i = j± 1 and νi, j = 0, if i � j± 1. A small-radius polaron is formed when either
the interaction constant α′ is large, or the matrix elements of the transition ν are small. In this case the
total energy of a charge at a site is Ei = α

′ui+1/2ku2
i and its minimum is reached for u0

i = −α′/k. Then
the potential energy of the charge at the site U0

i is equal to U0
i = α

′2/2k, accordingly, the interaction
energy is V0

int,i = α
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i = −α′2/k. Hence, the virial theorem for SRP has the form:
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SRP can tunnel to a neighboring site only if the energies and displacements at these sites are equal:

Ei = Ei+1, ui = ui+1. (3)

Equations (3) have a solution:

ui = −
α′

2k
=
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i

2
. (4)

With the use of (4) we can find the activation energy ∆E of a charge transition to a neighboring site:

∆E = Ei(ui) + Ei+1(ui+1) − Ei(u0
i ) =

α′2

4k
=
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2
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The SRP mobility can be found using Einstein relation which relates the value of mobility µ with the
diffusion coefficient D:

µ =
eD
T
, D = L2kt , (6)

where e is the electron charge, T is the temperature, L is the diffusion length, kt is the mean time of
the charge occurrence at the site. The expression for kt was obtained by Markus [19], who considered
the charge transfer from one site to another as a chemical reaction:

kt =
|ν|2
�

√
π

ErT
e−Er/4T , (7)

where Er is the so-called reorganization energy which in our model has a simple form: Er = 4∆E.
In the case of an inhomogeneous chain, formula (7) can easily be modified. For example,

when there is a donor and an acceptor joined by a bridge, as in the case of a polynucleotide chain
Poly GA1 . . . Ak−1G/Poly CT1 . . . Tk−1C with k > 2, in formula (7) we should use instead of ν its value
obtained in the super exchange theory:

ν =
νGAνAG

∆EAG

(
νAA

∆EAG

)k−2

, (8)

where νGA and νAG are matrix elements of the transition from guanine to adenine and from adenine
to guanine, respectively, νAA is the matrix element of the transition between adenines, EAG is the
difference of energies on the adenine and guanine.
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As shown in [20], for the DNA parameters used in this work which correspond to an intermediate
coupling, an increase in the hole mobility which takes place when the temperature decreases, will be
replaced by its decrease according to formulas (6)–(7).

The obtained results can be generalized to the case of variable range hopping when electron trans-
fers from i-th to i+R site. In this case ν ≈ exp(αR), where α-is the constant which defines the wave
function overlapping between i-th and (i + R)-th site. It follows from (6), (7) that:

µ ≈ exp
(
−2αR − Er

4T

)
.

According to Mott:
Er �

c
RNF

and the optimal R will be equal to: R =
√

c/8αNFT , i.e., immediately lead us to the expression:
µ ≈ exp[−(T1/T )1/2], where T1 = 2c/NFα.

5 Electronic nanobiochip

One of the actively progressing areas concerned with DNA/RNA analysis is the development of DNA-
bases biochips. Since the time of creation of first DNA-based chips [21] they have became a powerful
tool for the investigation of the living systems. The overwhelming majority of DNA-based biochips
are optical chips. Recently, however, increasing attention has been given to electronic biochips which
require no special marking. These biochips measure the electric current induced by the presence
of a biomacromolecule being detected [22]. Such great attention to nanobiochips is due to the huge
potential advantages which they can offer: diminutiveness (up to nano size scales), small time required
for the detection, lack of necessity to use markers, low price, etc.

Though the development of such chips is in its initial stage it is expected that they will be able to
detect even trace concentrations of biomolecular targets, up to single molecules.

Leaving aside construction details, in terms of the principle of detecting, most of the biochips can
be divided into optical and electrical.

The principle scheme of the design and operation of an optical biochip is as follows. On a template
(which may be glassy, plastic, silicon, etc.) single-strand oligonucleotides of a special type (i.e. with
a known nucleotide sequence) are tied up as individual spots. Each spot contains oligonucleotides of
only one type. The size of a spot is from 20 µm to 100 µm. The number of spots on a template may
be as great as tens of thousands, i.e. one chip can perform diagnosis of tens of thousands of genes at
a time.

For the optical biochips, there is a physical limitation on the number of spots on a chip because
the size of one spot must be not less than the wavelength of the light, i.e. ≈ 1 µm. Passing on from
optical methods to electrical ones in this case is caused by simplification, quickness, low cost, etc. of
diagnostics in the latter case [23–27].

6 Electronic memory devices

The progress in nanoelectronics has led to the development of actual molecular memory devices.
Thus, in papers [28, 29] an actual chip of operative memory with a density of 7 · 109 bit /cm2, is
developed which is formed by blocks of 64 bits with a density of 5 · 1011 bit /cm2 in the block on
the basis of rotaxane molecules. These molecules are constructed from fragments devoid of chemical
bonds and capable of moving relative to one another. The rotaxane molecules have two stable states
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which can alternate between each other when placed in an electric field. A matrix architecture was
used with a system of parallel metal electrodes ≈ 10 nm in thickness placed onto the template. A
monolayer of rotaxane molecules was formed on these electrodes. The upper part of the rotaxane
molecules was attached to the upper part of metal electrodes arranged perpendicularly to the lower
ones. It should be noted that the storage density on the rotaxanes is nearly two orders of magnitude
higher than the density in currently produced devices (≈ 108 bit /cm2).

In [28], an electronic memory was developed on the basis of the tobacco mosaic virus. For this
purpose the authors also used a matrix architecture with the diameter of aluminium nanowires ≈ 30
nm. At the nodes of these nanowires tobacco mosaic viruses covered by platinum nanoparticles ≈ 10
nm in diameter were placed. In view of the fact that the viruses were dispersed chaotically into a
polyvinyl spirit matrix which formed a sandwich structure between the electrodes, the nodes con-
nected by hybrid platinum-virus electrodes were also arranged chaotically. For storage, use was made
of the hysteresis in the current-voltage characteristic of viruses modified by platinum nanoparticles.
The memory device obtained is actually the first hybrid biomolecular device of nanometer size.

The presumed DNA-based electronic memory is similar in its arrangement to the memory on the
basis of rotaxanes or tobacco mosaic viruses [30]. The principle of operation of such a memory is
based on hysteresis of the conducting properties of short DNA duplexes depending on the electric
field value [11]. Address encoding and decoding of information is realized by matrix way. As distinct
from a biochip, in creating a memory device use is made not of single-strand oligonucleotides, but of
their duplexes. The storage density in such a memory can be 106 ÷ 109 times larger than in modern
integrated circuits.

7 Conclusions

Different instances of the use of DNA in nanoelectronics have been considered. Some of the described
devices are already realized as pilot samples, others can be developed in the near future. The exam-
ples given convincingly demonstrate the possibility to create the analog of any solid-state electronic
device on the basis of biomacromolecules. The advantages of biomacromolecules in the nanometer
size range are obvious. One of the main requirements of the modern electronics is the copying ability,
i.e., the development of a huge number of similar elements. This requirement will hardly be met at the
nanometer scale. For example, for such a promising material as nanotubes, it is difficult to copy ex-
actly their size and chirality, which determine their intrinsic electronic properties. Another challenge
is the development of heterostructures to be used in nanodevices which would contain nanotubes as
their elements.

The main difficulty of the use of biomacromolecules in nanoelectronics is the absence of a tech-
nology comparable in efficiency to that used in producing solid-state electronic devices. Actually,
the first steps towards the development of such a technology are being taken. For this reason for the
development of nanobiochips and, more broadly, for the development of nanobioelectronics, what is
needed above all is the conduction of experiments at the molecular level, construction at a molecu-
lar level, manipulation by individual molecules. Without developing a technology of manipulation
at a molecular level one cannot construct electronic devices of molecular scale. These technologies
are not straightforwardly associated with the construction of any particular device – development of
such technologies should acquire the status of applications. An important role in the development
of nanobioelectronics and construction of nanobiochips should belong to theoretical investigations.
Such investigations always precede the construction of a device in practice. They should be focused
on the problems without which creation of a molecular electronic device is practically impossible.
Construction of nanobiochips and nanobioelectronic devices on the basis of theoretical calculations
and experimentally developed methods is the main aim of nanobioelectronics.
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