EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

Integrating Interactive Jupyter Notebooks at the BNL SDCC

Ofer Rind!"*, William Strecker-Kelloggl’**, Daniel Allan!, Douglas Benjaminz, Mizuki
Karasawa', and Kristy Li!

'Brookhaven National Laboratory, Physics Dept., P.O. Box 5000, Upton, NY 11973-5000, USA
2 Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA

Abstract. At the SDCC we are deploying a Jupyterhub infrastructure to enable
scientists from multiple disciplines to access our diverse compute and storage
resources. One major design goal was to avoid rolling out yet another compute
backend, but rather to leverage our pre-existing resources via our batch sys-
tems (HTCondor and Slurm). Challenges faced include creating a frontend that
allows users to choose what HPC resources they have access to as well as se-
lecting containers or environments, delegating authentication to a MFA-enabled
proxy, and automating deployment of multiple hub instances. This paper covers
the design and features of our Jupyterhub service.

1 Introduction

The Scientific Data Center (SDCC) at Brookhaven National Laboratory serves an increas-
ingly diverse community of more than two thousand users on over twenty projects ranging
across the HEP, HENP, Photon Sciences, Astrophysics, LQCD and Condensed Matter disci-
plines. It provides a large High-Throughput Computing (HTC) farm accessed by the HTCon-
dor batch system, along with experiment-specific job management layers, as well as a set of
High-Performance Computing (HPC) clusters accessed via Slurm. Limited interactive access
to these compute resources are provided via SSH gateways.

The diversity of resources and access modes at the SDCC allows for a multiplicity of
computing modes and workflows. HTC modes rely on embarrassingly parallel processing
models to run through large data sets, while modern HPC modes require GPU accelerators
and high-speed, low-latency interconnects for parallelized approaches to a certain class of
problems. The workflows, in both cases, can be interactive (during the development phase,
for example) or can require a job workflow management interface to a batch system for full-
scale data processing. Users often face a steep learning curve while buying into a complex
workflow model that encompasses code development, compilation, data movement, small-
scale interactive runs and large-scale batch processing. This paper describes an effort to
flatten this learning curve by providing a flexible Jupyter notebook-based, interactive "Data
Analysis As a Service" (DAAS) portal to the full range of SDCC resources.

*e-mail: rind@bnl.gov
**e-mail: willsk@bnl.gov

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

2 The Jupyterhub Analysis Portal

The SDCC analysis portal (https://jupyter.sdcc.bnl.gov) is built on a set of Jupyterhub servers
configured to access the varied back-end computing resources through a unified interface.
The system has been architected to satisfy local cybersecurity constraints for interactive ac-
cess, while also providing a common interface to both HTC and HPC batch systems. The
architectural components are shown in Fig.[I] The user accesses the portal through an au-
thenticating proxy front-end via a web browser. The proxy decouples the Jupyterhub from
the SDCC cybersecurity requirements, such as multi-factor authentication, by offloading the
authentication component to the Keycloak-based facility infrastructure. The proxy also pro-
vides load-balancing across multiple Jupyterhub instances, all of which are deployed and
managed by Puppet[1]. The Jupyterhub servers themselves are able to spawn notebooks lo-
cally or via the local batch systems. A custom Slurm spawner interface was created on the
front-end to handle the account requirement specifications for job submissions on the HPC
cluster. More details about the setup are provided in the following subsections.

. = .
T jupyter
= g
.A. 7 Jupyter
Jjupyter —
\-/ jupyter

notebook-server

o,
Car Ma Authenticating
cﬁlbe Proxy
®
- 1$HEMOTEUSER
Jupyter Slurm /
\-/ HTCondor | DB)

—_—
notebook-server \ Jupyterhul (session
.v state) |

configurable-http-proxy

Figure 1. Schematic diagram of the Jupyterhub-based SDCC analysis portal architecture.

2.1 The Front-end Proxy Interface

Authentication to the analysis portal is handled by a proxy that sits in front of several differ-
ent Jupyterhub instances. Delegating authentication to a front-end is important in our case
because it allows the configuration and maintenance of a single MFA-enabled webserver and
a large number of diverse backends supporting different use-cases and user-groups. The user
is passed in a header to the back-ends, who then use it to determine the user. Most of the

EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

instances are one-to-one, but the HTC instance has several backends and a load-balancer
configured in front. The Apache server chooses one of the back-ends and assigns a cookie
that binds that client to the chosen back-end until the user selects “Log Out”. The interface
is shown in Fig. The user is able to select either HTC or HPC resources and is given
the option of spawning their session as a batch job. Spawning to the batch system provides
a ready-made and ideal mechanism for ensuring exclusive, fair access to scarce resources.
Containers can enter at the batch level to isolate external users or can be based on choice of
environment.

) ® } ® -.
~Jupyterhub " jupyterhub
sDcC o HTC sDCC ¢ HPC

Access to Condor queues and HTC computing resources via SDCC Access to Slurm scheduling and GPU computing resources on the
JupyterHub. Requires a valid SDCC account and corresponding IC and KNL clusters via JupyterHub. Requires a valid SDCC account
experiment affiliation. and cemputing resource allocation.

SDEC HPE JH

Figure 2. SDCC Analysis Portal front-end interface to load-balancing proxy, showing HTC and HPC
options.

2.2 Multi-factor Authentication

The SDCC requires two-factor authentication for interactive access to its compute resources.
This requirement is fulfilled for the analysis portal by the front-end proxy interface to the
Keycloak-based SDCC authentication infrastructure[2]]. After the user authenticates with
userid and password, the second factor is provided by a one-time challenge code via Google
Authenticator or FreeOTP. Once authenticated, the user is provided a token by Keycloak. The
initial setup is a simple process using a generated QR code.

2.3 Custom Slurm Spawner

A unique feature of the SDCC analysis portal is its Slurm spawner interface. This custom
interface presents a form upon login, allowing the user to choose, based on the contents of
the form, which spawner class to launch (Slurm, HTCondor, Local, etc...). The software is a

EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

m FreeOTP -
d 522944

Company VPN
doc@eompany.com

Figure 3. Illustration of the multi-factor authentication process for accessing the SDCC analysis portal.

class framework from which users must derive their own classes with a method that takes the
form parameters as input and outputs a spawner class to use (for example in our setup if a user
selects a "Run Locally" checkbox the logic will return a LocalProcessSpawner, otherwise it
returns a SlurmSpawner).

Our implementation of a custom form (see FigH) sits in front of our HPC system and
allows users to either submit the notebook session as a Slurm job or to run on the cluster’s
head node to allow, for example, a parallel scheduler like Dask to orchestrate jobs. The inter-
face is dynamic, examining which accounts and partitions the user can access and providing
dropdowns with only those options available. The code for this form is available at [3]].

Spawner Options

Please choose your parameters to run on a node with a GPU or select to run
locally on the submit node.

Select Partition Select Account Qos GPU Runtime (min)

usatlas - tier3 - usatlas ~| any - 630 =
~0fr ~

Run Locally?

Figure 4. Example of the custom Slurm spawner interface. The user can request to run locally or on
the GPU-based HPC cluster. The form only provides options that are available to the given user.

EPJ Web of Conferences 245, 07054 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507054

2.4 Orchestration

One of the most efficient use cases for Jupyter at the SDCC will be to act as a type of workflow
management interface to the batch resources, replacing the typical array of shell scripts users
employ to generate batch-job descriptions. To this end, we developed a proof-of-concept
library that then inspired the HTMap Condor Library[4]. Using this library, the standard
function map() — htmap(), which takes a list of inputs and breaks down each execution over
that list into a separate Condor job, runs them on a cluster, and gathers the results into a list
that is then available within the notebook (it serializes the entire state of the application and
sends copies to each job).

Another popular interface is Dask, for which Slurm and HTCondor drivers exist[3], al-
lowing an HPC or HTC cluster to be leveraged in this way from a notebook. The goal of
these ongoing efforts, in essence, is to abstract away the fact that you are using a batch sys-
tem at all, thus potentially lowering the bar for user adoption significantly. Dask integration
is well-tested and fully functional with Slurm, and currently in beta stage with HTCondor,
where it has been tested with simple workflows.

2.5 Notebook Sharing

Another highly-desired feature for Jupyterhub is the ability to share notebooks. A low-effort,
short-term notebook sharing plugin, developed by D. Allan[6]], enables users to generate a
shareable link that allows other users on the same hub to import a copy of the last saved
version of a notebook into their sessions. This link encodes the notebook options, such as
kernel selection or container, in order to ensure a compatible software environment. Although
the link does not bring active state with it, it can be refreshed to reflect the sender’s saved
updates during the link’s period of validity. The link is set to expire after a predetermined
time interval. More information on this plugin is available at [6]. See Fig.[5|for an example
of its usage.

+ & c 2 Launcher

LI B+ XMDOMO » = C Code v 0
Name = Last Modifed

X PonBenchipy e
Python3 O

O - % & o &)
|]
3
H

Do

3years ago
16 days ago

[11: dmport sysconfig, pprint, sys, os, tine

it(sys.executable)

tebook/bin/python’

Python3 (ours): CONFIGAGS:
"'~ -prefix=/udb/sof tware/jupyter/python/3.6.8' -~
enable-ipv6' *

e
of PythonBench ipynb.

willbe able to fetch a copy of your ltest s

% disk_sentrypy.
@ dstapy

[foldingathome simg
D globallock

[ipmiprintsh
D keygensh

D launchsh

D logix

[memwalchsh
D PATH

@ programpy

Figure 5. A temporary notebook share link is generated by right-clicking in the browser.

2.6 Usage

The SDCC analysis portal is being used by a growing number of facilities and experimen-
tal collaborations, including NSLS-II, US ATLAS, Belle II, and various supported Nuclear

T
impor

e 1
int(1000 * 1000 * 12.5)

m=int()

m2 = int(0)

p=0

n extra to allow CPUS with variable speed
ons):

EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

nClusterEnergyFit->Draw("same”);
V7 gPhiDistortion->Draw("p"):

TLegend *leg = new TLegend(.4, .7, .95, .9, + "Cluster Energy on g

leg->AddEntry(hClusterEnergy, TString(“Data: ") + description, "1")
leg->AddEntry(hClusterEnergyFit,

Form("Langdau * Gauss Fit, #mu= §.0f ADU", hClusterEner
leg->Draw();

cl->Draw();
SaveCanvas(cl,
TString(_file0->GetName()) + TString(cl->GetName()), KFALS

Minimizer is Minuit2
chi2 = 403.493

Npf - 164
Edm = 2.69546e-08
NCalls - 193
width - 66.7173 4/- 1.25122 (limit
up 423.708 4/~ 2.08786 (limit
Area = 276531 4/~ 2386.94 (limit
csigma - 89.174 4/~ 2.32025 (limit

Info in <ICanvas::Print>: png file scan2/tpc_beam ALL-D000.evt_TpcProto

Ghsier Energy o good back

Count / bin

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cluster Energy on good track [ADU]

Figure 6. Example sSPHENIX ROOT analysis on the SDCC analysis portal (Courtesy J. Huang)

Physics experiments. Fig. [f] illustrates just one example from a recent SPHENIX software
tutorial.

3 Conclusions and Outlook

The BNL SDCC provides an easy-to-use Jupyterhub-based analysis portal enabling scien-
tists from multiple disciplines to access its diverse HTC and HPC computing resources. The
service is designed to meet facility requirements with minimal impact on the back-end in-
frastructure. It provides built-in support for experiment-based computing environments with
a number of flexible access modes and workflows. The facility is continuing to develop and
build upon this system in order to provide new capabilities for user collaboration.

References

[1] J.A. Smith, J.S.D.S. Jr, J. Fetzko, C. Hollowell, H. Ito, M. Karasawa, J. Pryor, T. Rao,W.
Strecker-Kellogg, Journal of Physics: Conference Series 396, 042056 (2012)

[2] S. Misawa, M. Karasawa, J. Hover, "Federated User Account Management," presented at
24th International Conference on Computing in High Energy and Nuclear Physics. Avail-
able from https://indico.cern.ch/event/773049/contributions/3473844

[3] W. Strecker-Kellogg, "sdcc_jupyter_spawners" [software]. Available from
https://github.com/fubarwrangler/sdcc_jupyter [accessed 2020-03-14]

[4] J. Karpel, S. Sievert, "HTMap" [software], version 0.5.1. Available from
https://github.com/htcondor/htmap [accessed 2020-03-14]

EPJ Web of Conferences 245, 07054 (2020) https://doi.org/10.1051/epjconf/202024507054
CHEP 2019

[5] Dask-Jobqueue project, "Deploy Dask on Job Queueing systems" [software], version
0.7.0. Available from https://github.com/dask/dask-jobqueue [accessed 2020-03-14]

[6] D. Allan, "JupyterHub Share Link" [software], version 0.1.1. Available from
https://github.com/danielballan/jupyterhub-share-link [accessed 2020-03-14]

	Introduction
	The Jupyterhub Analysis Portal
	The Front-end Proxy Interface
	Multi-factor Authentication
	Custom Slurm Spawner
	Orchestration
	Notebook Sharing
	Usage

	Conclusions and Outlook

