
Cosmos : A Unified Accounting System both for the HT-
Condor and Slurm Clusters at IHEP

Ran Du1,∗, Jingyan Shi1,∗∗, Xiaowei Jiang1,∗∗∗, and Jiaheng Zou1,∗∗∗∗

1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, CHINA, 100049

Abstract. HTCondor was adopted to manage the High Throughput Computing
(HTC) cluster at IHEP in 2016. In 2017 a Slurm cluster was set up to run High
Performance Computing (HPC) jobs. To provide accounting services for these
two clusters, we implemented a unified accounting system named Cosmos.
Multiple workloads bring different accounting requirements. Briefly speaking,
there are four types of jobs to account. First of all, 30 million single-core jobs
run in the HTCondor cluster every year. Secondly, Virtual Machine (VM) jobs
run in the legacy HTCondor VM cluster. Thirdly, parallel jobs run in the Slurm
cluster, and some of these jobs are run on the GPU worker nodes to accelerate
computing. Lastly, some selected HTC jobs are migrated from the HTCondor
cluster to the Slurm cluster for research purposes.
To satisfy all the mentioned requirements, Cosmos is implemented with four
layers: acquisition, integration, statistics and presentation. Details about the
issues and solutions of each layer will be presented in the paper. Cosmos has
run in production for two years, and the status shows that it is a well-functioning
system, also meets the requirements of the HTCondor and Slurm clusters.

1 Introduction

HTCondor was adopted to manage the High Throughput Computing (HTC) cluster at IHEP
in 2016. One year later, a Slurm cluster was established to manage High Performance Com-
puting (HPC) jobs. Although both the HTCondor and Slurm clusters provide native job
accounting services, it is still not enough to meet our demands.

There are four types of jobs to account at present. Firstly, 30 million single-core jobs per
year run in the HTCondor cluster. Secondly, Virtual Machine (VM) jobs run in the legacy
HTCondor VM cluster. Thirdly, parallel jobs run in the Slurm cluster, and some of these
jobs are run on the GPU worker nodes to accelerate computing. Lastly, some selected HTC
jobs are migrated from the HTCondor cluster to the Slurm cluster for research purposes. HT-
Condor saves accounting data in its history files, while Slurm uses a relational database to
account jobs. However, it is not fast enough to get job accounting information with history
files, neither Slurm accounts jobs in our favored way. In addition, because both the HTCon-
dor and Slurm clusters are managed by one administrator group, it would be convenient for
managing clusters if a unified accounting system was provided. Based on this background,
∗e-mail: duran@ihep.ac.cn
∗∗e-mail: shijy@ihep.ac.cn
∗∗∗e-mail: jiangxw@ihep.ac.cn
∗∗∗∗e-mail: zoujh@ihep.ac.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



HTCondor
History Files

Slurm Job
Log Files

CCS
Database

HTCondor
Accounting
Transformer

Slurm
Accounting
Transformer

CCS
Accounting
Transformer The Acquisition Layer

The cosmos_db Database The Integration Layer

Statistical Scripts The Statistical Layer

Monthly Invoices The Presentation LayerJob Query Tables Job Dashboard Plots

Figure 1: The four-layer system architecture of Cosmos.

Cosmos is implemented as a four layer system: acquisition, integration, statistics and pre-
sentation. These four layers work together to generate monthly accounting invoices for users
and groups, and to check the status of clusters for administrators.

2 Related Works

Many systems[1–5] are developed to account resource usage. These systems have similar
functional components but different implementations. This is because although they share the
same target of accounting resource usage, but they differ in infrastructure scale, accounting
metrics and the degree of system complexity.

Take CAOS[2] and GRACC[3] for instance. CAOS is developed to account cloud re-
source usage, and adopts layered architecture as well. However, different to four-layered
Cosmos, CAOS consists of three layers: the collector, the backend and the dashboard. From
the point of view of functionality, the collector layer of CAOS corresponds to the acquisi-
tion layer of Cosmos, the dashboard layer of CAOS can be mapped to the presentation layer
of Cosmos, and the backend layer of CAOS is equivalent to the integration layer plus the
statistics layer of Cosmos.

A similar situation is found with GRACC, which consists of five modules: probes, data
collection, visualization and query tools, message broker, and data sinks. Again, the func-
tionalities of these five parts are similar to the four layers of Cosmos, but with different
implementations. Take the data sink as an example. GRACC adopts ElasticSearch (ES) as
database, while Cosmos adopts MariaDB[6] to store accounting data. MariaDB is adopted
because it is lightweight enough in our situations for now. But as is mentioned by GRACC, as
the system scales up and becomes more complicated, new solutions like ES might be adopted.

3 Design and Implementation

Cosmos is implemented as a four-layer system: acquisition, integration, statistics and pre-
sentation. Accounting data are collected and transformed by the acquisition layer. Later
the integration layer is responsible for transferring and storing the transformed data, which
makes it easier for the statistics layer to generate job accounting statistics. Finally, users get
detailed job information through the interfaces provided by the presentation layer. Figure 1
shows the four-layer system architecture of Cosmos.

2

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



3.1 The Acquisition Layer

The acquisition layer is responsible for collecting data for later accounting. Collected data
are classified into three categories. The first category includes data about users, groups and
experiments, the second category consists of hosts and hardware descriptions, and the third
category are job metrics. Table 1 lists the data categories collected and transformed by the
acquisition layer.

The first two categories are stored in a MySOL database called CCS that is easy to ac-
cess, however, there are other issues to resolve. First of all, metrics stored in CCS have to
get tailored for Cosmos usage. To solve this issue, we implemented several Python scripts
to filter necessary metrics from CCS, and the filtered metrics are synchronized in intervals.
Second, CCS is working as a data layer for other systems at the same time. In order not to
interfere with other systems, the synchronization interval is set to 24 hours at present.Third,
as administrators could update CCS database at anytime, with the low frequency of data syn-
chronization, there could be data inconsistency. To make the accounting correct, the trans-
formers in the integration layer (Sect. 3.2) treat the synchronized data as a cache: if data is
missing, CCS would be queried instead to get the most up-to-date information.

Job metrics, the third category of data to collect, is more complicated to get. As men-
tioned in Sect. 1, there are four types of jobs, as a result, multiple workloads bring different
accounting requirements.

Firstly, HTCondor and Slurm save job data in different ways. HTCondor saves detailed
job information in history files[7], while Slurm adopts a database[8] to store jobs detailed
information. However, after reviewing the Slurm job tables, it is found that job resource al-
location is recorded in a node list way, but not by how-many-cores-per-node. Fortunately,
Slurm provides a scontrol show command. With this command executed, detailed job infor-
mation could be written into log files. As a result, both HTCondor and Slurm job information
are collected from files. These two data transformers are implemented by the integration
layer (Sect. 3.2) to extract job metrics from the files.

Secondly, it is normal that Slurm jobs may run more than one month since most Slurm
jobs are multi-core parallel jobs. Because Cosmos is responsible to provide monthly account-
ing invoices for experiments, unfinished long jobs must be accounted as well. To solve this
issue, Slurm prolog scripts are written to log unfinished jobs, and epilog scripts are used to
log finished jobs. When the job transformers extract metrics from the log files, metrics of un-
finished and finished jobs are saved in independent tables, and different accounting methods
are imposed on these tables to generate monthly invoices.

Thirdly, HTCondor history files will get removed one week after file creation. Besides,
history files are saved by the schedd server which is busy scheduling jobs. In order not to
over-burden the schedd server, also not to miss any history files before file removal, finished
job metrics are extracted every day.

Lastly, a Virtual Machine (VM) pool was added to the HTCondor cluster in 2019, which
means the VM jobs have to be accounted as well. The accounting difference between the
VM jobs and HTCondor jobs lies in the hostname mappings. To map the VM hostname and
the physical hostname, a mapping interface is implemented. With the timestamp and the VM
hostname, a physical hostname is returned if successfully matched.

3.2 The Integration Layer

Accounting related data are collected by the accquisition layer (Sec 3.1), later these data
are transferred and stored in the integration layer. To make accounting easier, data are
integrated and saved in a MariaDB database named cosmos_db. To allow Cosmos to scale-up

3

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



Table 1: Data categories collected by the acquisition layer.

Category Data Description Data Source
1 users, groups, experiments the CCS database
2 hosts, hardware the CCS database
3 job metrics HTCondor and Slurm job log files

Figure 2: The schema design of the cosmos_db database.

and incorporate other clusters, tables of schedulers, clusters, and sites are established as well.
Figure 2 shows the schema design of the cosmos_db database.

3.3 The Statistical Layer

The statistical layer has two functionalities. (1) To generate job monthly invoices for exper-
iments and groups. (2) To implement statistical methods called by the job query interfaces in
the presentation layer (Sect. 3.4).

To generate job monthly invoices, a Python package named monthly_invoice is imple-
mented. The monthly_invoice package provides multiple command line options. With these
options, administrators are able to generate monthly invoices of HTCondor jobs, VM jobs,
and Slurm jobs respectively, or make a customized combination based on options. Besides,
there are two ways to generate invoices: one is with REST APIs, the other is in csv files. In-
voices generated with the REST APIs are uploaded to another support system named service,
where experiment and group administrators browse monthly invoices. On the other hand, the
csv output files are used to debug invoice generation or to import into another database for
further development. Figure 3 shows the service system interface.

4

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



Figure 3: Monthly invoices on the service system web page.

Job query and statistical requirements come from the HTCondor and Slurm administra-
tors. To meet these requirements, the query and statistical methods are implemented in the
statistical layer with the Python packages pandas[9] and plotly[10] . Pandas is used to format
data stored in cosmos_db into dataframes, and dataframes can be turned into HTML tables
directly in the presentation layer (Sect. 3.4). In addition, plotly takes dataframes as input
to generate JavaScript statistical plots which are displayed by the presentation layer (Sect.
3.4).

3.4 The Presentation Layer

As mentioned in Sect. 3.3, job query and statistical methods are implemented in the statisti-
cal layer, and the presentation layer is the very place to display the statistical results.

Two presentation types are supported, one is tables, the other is plots. Tables and plots
are presented on web pages, and the Python package flask[11] is adopted to implement the
web interface. With flask extensions, it is easy to present query and statistical results, also
straight-forward to add more functionalities if additional requirements are proposed in future.
Figure 4 and Figure 5 show the web interface.

4 System Status

Cosmos has been in production for two years. It is implemented to provide unified account-
ing services both for the HTCondor and Slurm clusters. As time goes by, more accounting
requirements are proposed. As a result, Cosmos is always in the status of alpha-beta. To
deal with additional requirements, git branches are used to modify Cosmos layers, and new

5

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



Figure 4: The job query table interface of Cosmos.

branches will be merged to the production version after careful tests. With the four-layer
architecture, it is straight-forward to adapt to new requirements.

Cosmos is going to upgrade in the near future. Some remote sites have joined the HTCon-
dor cluster at IHEP, so that accounting jobs run on these remote sites is becoming necessary.
Slurm is going to upgrade to a new version in the summer of 2020, new metrics will be added
to the accounting.

5 Conclusion

This paper presents a unified accounting system Cosmos. Cosmos is designed to account jobs
both from the HTCondor and Slurm clusters at IHEP. To satisfy requirements of multiple
workloads, Cosmos is implemented as a four-layer system: acquisition, integration, statistics
and presentation. Each layer implements its core functionalities, also works together to gen-
erate monthly invoices and job statistics. Cosmos has been in production for two years, and
provides solid accounting supports both for the HTCondor and Slurm clusters. And with the
four-layer architecture, Cosmos is easy to adapt to new requirements.

6

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



Figure 5: The job dashboard plots of Cosmos.

6 Acknowledgements

We wish to thank all the colleagues who contributed to this paper. The work presented is sup-
ported by the National Natural Science Foundation of China "The Two-staged Job Scheduling
Algorithms and Resource Management Research about Workload Integration between HTC
Cluster and HPC cluster" (No. 11805225), the National Natural Science Foundation of China
"Container Virtualization Applied to High Energy Physics Computing" (No. 11775250), and
the Youth Innovation Promotion Association of Chinese Academy of Sciences.

References

[1] K. Retzke, D. Weitzel, S. Bhat, T. Levshina, F. Wuerthwein, GRACC: New generation
of the OSG accounting, in Journal of Physics Conference Series (2017), Vol. 898, p.
092044

[2] P. Andreetto, F. Chiarello, S. Traldi, CAOS: a tool for OpenStack accounting manage-
ment, in EPJ Web of Conferences (EDP Sciences, 2019), Vol. 214, p. 07006

[3] D. Weitzel, B. Bockelman, M. Zvada, K. Retzke, S. Bhat, GRACC: GRid Accounting
Collector, in EPJ Web of Conferences (EDP Sciences, 2019), Vol. 214, p. 03032

[4] A. Coveney, G. Corbett, EGI Dataset Accounting and the WLCG, in EPJ Web of Con-
ferences (EDP Sciences, 2019), Vol. 214, p. 03028

7

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060



[5] J. Andreeva, D. Christidis, A. Di Girolamo, O. Keeble, WLCG space accounting in the
SRM-less world, in EPJ Web of Conferences (EDP Sciences, 2019), Vol. 214, p. 04021

[6] Mairadb, https://mariadb.org/, online, accessed on 10-Mar-2020
[7] Htcondor history log files, https://htcondor.readthedocs.io/en/stable/misc-

concepts/logging.html, online, accessed on 10-Mar-2020
[8] Slurmdbd service, https://slurm.schedmd.com/slurmdbd.html, online, accessed 10-Mar-

2020
[9] Pandas, https://pandas.pydata.org/, online, accessed on 10-Mar-2020

[10] Plotly, https://plot.ly/, online, accessed on 10-Mar-2020
[11] Flask, https://palletsprojects.com/p/flask/, online, accessed on 10-Mar-2020

8

EPJ Web of Conferences 245, 07060 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507060


