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Abstract The INFN Tier-1 located at CNAF in Bologna (Italy) is a center of the                
WLCG e-Infrastructure, supporting the 4 major LHC collaborations and         
more than 30 other INFN-related experiments. 
After multiple tests towards elastic expansion of CNAF compute power via           
Cloud resources (provided by Azure, Aruba and in the framework of the            
HNSciCloud project), and building on the experience gained with the          
production quality extension of the Tier-1 farm on remote owned sites, the            
CNAF team, in collaboration with experts from the ALICE, ATLAS, CMS,           
and LHCb experiments, has been working to put in production a solution of             
an integrated HTC+HPC system with the PRACE CINECA center, located          
nearby Bologna. Such extension will be implemented on the Marconi A2           
partition, equipped with Intel Knights Landing (KNL) processors. A         
number of technical challenges were faced and solved in order to           
successfully run on low RAM nodes, as well as to overcome the closed             
environment (network, access, software distribution, … ) that HPC systems          
deploy with respect to standard GRID sites. We show preliminary results           
from a large scale integration effort, using resources secured via the           
successful PRACE grant N. 2018194658, for 30 million KNL core hours. 

1 Introduction  

Italian physicists have historically been major players in the design, construction and                       
operations of the LHC detectors, via the funding of the Istituto Nazionale di Fisica Nucleare                             
(INFN ). In particular, Italy supports LHC distributed computing infrastructure via 10                     1

WLCG[1] facilities, with a Tier-1 site in Bologna (Italy), at INFN-CNAF; currently, it                         
provides about 10% of the WLCG Tier-1 total resources, with the exact share depending on                             
the experiment. On top of that, CNAF supports non LHC computing activities linked to                           
INFN research, with computing and storage provided to more than 30 experiments. 
In the next decade the computing needs of INFN experiments, in particular those in the                             
field of High Energy Physics (HEP), are projected to increase faster than the technology                           

1 https://home.infn.it/en/ 
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can provide at fixed cost during the same period [2]. Alternative directions are explored in                             
order to overcome the resource problem; one particularly attractive requires the utilization                       
of the High Performance Computing (HPC) facilities worldwide, expected to be at the                         
Exascale (1 Exaflops = 1018 floating point operations per second) in the same time period. 
This report describes a successful integration attempt between INFN-CNAF and an HPC                       
system at CINECA (also in Bologna), underlying the challenges and the solutions deployed.                         
The paper is organized as follows. Section 2 gives an overview of the INFN-CNAF                           
computing center. Section 3 describes the Marconi A2 HPC systema at CINECA, where                         
this work was performed. Section 4 reviews the general challenges faced by the LHC                           
experiments to integrate their workflows on HPCs and more specifically on Marconi A2.                         
Section 5 gives details about the work performed in each of the four experiments, in the                               
software and computing areas. Results are given in section 6 and conclusions in Section 7. 

2 INFN-CNAF center in Bologna 

INFN-CNAF, a WLCG Tier-1 site, deploys “GRID-like” resources for a total of 30k CPU                           
cores, 38 PB of disk and 90 PB of tape storage; it supports more than 30 research activities                                   
funded by INFN. 
The facilities have been designed and deployed in order to satisfy the data intensive                           
workflows from LHC experiments, and deploys computing nodes with high bandwidth                     
connection to the local and remote storages. The center is connected via GARR/Geant to                           
peers worldwide, with a total bandwidth of 200 Gbit/s; an additional link of 20 Gbit/s is                               
provided for the general Internet. The single computing nodes are equipped with multicore                         
x86_64 CPUs, with at least 3 GB / thread memory, and rotating / memory local disks of the                                   
order of 10 GB/thread. Outgoing connectivity from the single node is permitted without                         
limitations, as needed by the workflows processing remote data via streaming protocols.                       
Since 2018, a significant fraction (45%) of the CPU power has physically been deployed at                             
CINECA (see next section), but it is logically seen as part of CNAF farm with the help of a                                     
dedicated connection realized via a pair of Infinera DCI, currently limited at 400 Gbps. 

 3 Marconi A2 system at CINECA 

CINECA, a PRACE Tier-0 facility, currently hosts a system, Marconi [3], ranked no. 19 in                             
the top500.org [4]. The Marconi A2 partition, of interest in the present study, deploys 3600                             
nodes equipped with 1 Xeon Phi 7250 (KNL) at 1.4 GHz, with 96 GB of on board RAM.                                   
Each CPU has 68 physical threads, with 4-way hyperthreading. The total 244,800 cores are                           
rated at 11 PFlops as peak performance. In the standard configuration, the nodes do not                             
have user access to on board disk but are connected via Omni-Path [5] to a large GPFS                                 
storage, and do not allow routing to IPs external to CINECA. 
Resources at CINECA are partially provided within PRACE [6], via a call system which                           
grants CPU-hours after a review process. The Italian LHC Community successfully applied                       
to the “18th PRACE Project Access Call for Proposals”, and was assigned a grant of 30                           
Million CPU hours on the Marconi A2 partition. The grant was requested for specific                           
physics studies, but also for initiating an handshaking procedure with CINECA in view of                           
future larger utilization of CINECA’s systems for HEP computing. 
Indeed, the INFN-CNAF Tier-1 and the next CINECA HPC (Leonardo, a pre-exascale                       
system expected by 2021) will be partially co-located in a new facility, and any expertise                             
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acquired in running LHC workflows in the current system would be precious in planning                           
the Leonardo infrastructure.   

4 How to match a HPC system with LHC workflows 

Matching LHC workflows with HPC systems is not a trivial effort. HPC facilities usually                           
have strict site policies for security reasons and may be based on a variety of specialized                               
hardware setups, so that they are characterized by: 

● limited / absent external connectivity,  
● user policies not allowing delegation of authentication, 
● a range of architectures for CPUs (x86, ARM, Power9), GPUs or FPGAs,  
● hardware setups which may include low RAM or no local disks, 
● ad-hoc operating systems. 

On the other hand, LHC workloads are designed to run on “standard WLCG sites”, which                             
at least in the first LHC phase had: 

● uniform base architectures (x86 CPUs) and operating systems 
● abundant RAM and local disk, 
● full access to remote services like CVMFS for software installation 
● the capability to use user-level virtualization, 
● a common framework for accounting, traceability, with authentication and                 

authorization delegated to external service. 
As a consequence, integrating LHC workflows on HPC centers poses two rather distinct                         
types of challenges, in the software area (e.g. efficiently exploiting low-memory many-core                       
CPUs, or porting applications to GPUs) and in the computing area (e.g. managing job                           
scheduling and software/data distribution). It should also be noted that HPC centers provide                         
very high-speed inter-node connectivity, but most (not all) types of LHC workflows submit                         
independent jobs on the different individual nodes, i.e. they use an HPC as a large cluster of                                 
nodes. These and other issues of the WLCG strategy towards HPC have been clarified with                             
a white paper document [7], complemented with some more technical documents as in [8]. 
 
Given the unicity of HPC systems, solutions have to be found case by case, and are in                                 
general expensive in terms of operations and manpower. In the specific case under study,                           
Table 1 shows the mismatch of configurations between a Marconi A2 computing node and                           
a typical WLCG node; the color codes are according to the “severity” of the limitation as                               
detailed in [8]. 
 

Table 1.  Differences between a WLCG node and a standard Marconi A2 computing node. 

A typical standard Marconi A2 node is 
configured with  

A typical WLCG node has 

A KNL CPU: 68 or 272(HT) cores, x86_64, rated at 
~¼ the HS06 of a typical Xeon 

1/2 Xeon-level x86_64 CPUs: typically 32-64 cores, 
O(10 HS06/thread) with HT on 

96 GB RAM, with ~10 to be reserved for the OS: only 
0.3 GB/thread if all 272 HT threads are used 

2GB/thread, even if setups with 3 or 4 are more and 
more typical 

No external connectivity Full outbound external connectivity, with remote sw 
accessed via CVMFS mounts 

No local disk (large scratch areas via GPFS/Omnipath) O(20) GB/thread local scratch space 
Access to batch nodes via SLURM; Only Whole nodes 
can be provisioned, with 24 h lease time 

Access via a CE. Single thread and 8 thread slots are 
the most typical; 48+ hours lease time 
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Access granted to individuals Access via pilots and late binding; VOMS AAI for 
end-user access 

 
In order to overcome the technical difficulties, several meetings were organized between                       
LHC experiments’ computing experts and CINECA management and sysadmins, where                   
solutions were discussed, deployed and eventually tested. 
In particular, the Marconi A2 node configuration was updated with: 

● CVMFS mounts, which turned out to be useful also outside the HEP community,                         
and were already considered by CINECA. Squids in order to lower the external                         
traffic have been deployed by CINECA on edge nodes; 

● external outbound networking was partially opened, with routing active to CERN                     
and CNAF IP ranges; 

● the singularity [9] virtualization tool was audited by CINECA, and green-lighted                     
for deployment; 

● a HTCondorCE was allowed on a CINECA edge node, with access to the external                           
IP ranges as above, and the ability to submit to the internal SLURM[10] batch                           
system connected to Marconi A2; 

● (still to be commissioned) in order not to overload CINECA’s GPN, a partial 40                           
Gbit/s connection was established on the Infinera private link. 

 
In such conditions, all the experiments were able to prove basic processing functionalities,                         
as necessary for the Grant application. 
 
Pilots reach the HTCondorCE [11] via its public interface, and are submitted to the KNL                             
nodes via SLURM. They call back the Experiments Workload Management Systems and                       
receive payloads, which are executed inside a singularity sandbox, with a OS image                         
available via CVMFS.  
The software and calibrations needed to execute each payload are accessed via CVMFS,                         
without an explicit local installation at CINECA.  
Input and Output data follows different paths. Input data (if needed) are accessed directly                           
using the Xrootd protocol if on CNAF storage; for other sources, not reachable due to the                               
routing limitations, an Xrootd proxy has been deployed at CNAF to buffer the input files                             
and then serve the executing processes. This was done in collaboration with the XDC EU                             
Project [12]. Effectively, all remote files were accessible by the KNL nodes via the cache or                               
directly. Output files were shipped to the CNAF storage system via SRM/Xrootd protocols,                         
and as such registered in the Experiments’ Data Management Systems. 
With this strategy, the payloads can effectively access all the files in the LHC data                             
federations, albeit with low bandwidth. In order to be able to compute at high CPU                             
efficiency, low IO workloads must be carefully selected, via means specific to the single                           
Experiments. 

 5 Workflows of LHC experiments on Marconi A2 

5.1 ALICE  

Usually, ALICE production pilot jobs are submitted to the GRID using an automatic                         
procedure running on a dedicated user interface (vobox) installed in each site. The ALICE                           
access to Marconi A2 resources is realized with a submission procedure customized for this                           
test and based on HTCondor. In this specific case one of the CNAF voboxes, configured for                               
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HTCondor submission, is used to perform a manual submission of simulation jobs with the                           
new O2 software framework [12] developed for ALICE Run-3. There are two reasons why                           
we are not using production jobs:  

1. the O2 software is not yet used in the current GRID workflow; 
2. some specific configurations, not yet implemented, are required to run with full                       

external connectivity. 
It is worth noting that the result of this test is very relevant not only for testing HPC                                   
systems but also for the validation of O2 simulations. 
The main features of the submitted jobs are: 

● they are dispatched to WNs each one providing 68 physical cores (hyperthreading                       
x4) and 86 GB RAM; 

● input and output are read/written on CNAF ALICE storage via Xrootd; 
● ALICE O2 software is available via CVMFS and run with singularity; 
● simulations are performed with pythia8 with Pb-Pb collisions at 5.5 TeV per                       

nucleon pair and using GEANT4 [14] as particle propagator in the detector                       
material. 

The use of Pb-Pb simulations allows to test all the functionalities of the O2 software and, in                                 
particular, the parallel propagation of particles in the same event with multi-thread                       
processes (to reduce RAM usage). 
In order to guarantee a reasonable time per job (within 12 hours), we limited the number of                                 
simulated events to 160. Simulation workflows are performed via different configurations,                     
by varying the number of simultaneous independent processes (instances) and the number                       
of parallel threads per instance (workers). Performances are characterized using metrics                     
collected during the execution of each job by a dedicated script: wall time, output size,                             
RAM usage peak. 
The metrics collected so far show very good scalability of the simulation jobs up to a                               
number of threads of the order of physical cores, O(68). Indeed, the number of simulated                             
events per second increases linearly with the number of threads. Above that threshold,                         
hyper threading kicks in, and we didn't observe any significant gain (see Figure 1). This                             
may be related to the nature of jobs which are intrinsically high CPU consuming. 
The splitting of threads over many independent instances/jobs doesn’t change the                     
performances, the time to simulate one event is depending only on the overall number of                             
effective threads used. However, the usage of memory is sensitive to the number of                           
independent jobs running on the machine. As expected the RAM required by the jobs                           
increases both with the number of overall threads and the number of instances used. For                             
example, a simulation (160 Pb-Pb events) performed with 64 workers/threads requires                     
about 15 GB if the threads belong to a single job, or about 45 GB if threads are splitted in                                       
16 independent jobs (4 threads each). 
The actual conclusion at the end of this first exercise is the demonstration that ALICE is                               
able to run Run-3 simulation jobs in a HPC system if well defined requirements are                             
satisfied, as provided in our case both from the CINECA and CNAF staffs. 
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Fig. 1. Performance (as events produced per unit time) of a KNL node as a function of the number of 
threads.. 

5.2 ATLAS 

The ATLAS Experiment uses the Production and Distributed Analysis (PanDA) system                     
[15] to manage production and analysis tasks. The system is designed to fulfil the                           
requirements of a data-driven workload management system, capable of operating at LHC                       
data processing scale. PanDA is able to submit jobs to the sites, thus to the underlying                               
resources, in a fully transparent way for the users, so is able to connect to different types of                                   
resources, including Grid, HPC and Cloud sites. 
The CINECA HPC resources are seen by ATLAS as a standard HPC queue defined in                             
PanDA, thus the central system sends pilots directly to the HTCondor Computing Elements                         
(CE) available in the facility. The parameters of the queues, needed to identify and shape                             
the task requirements, are defined in the ATLAS Grid Information System (AGIS) [16]. 
Once the pilots are running in the CINECA nodes, they contact the central PanDA Servers                             
to gather the definitions of the jobs assigned to the specific queues, and execute the                             
payloads. 
Since the nodes in CINECA have 96 GB of RAM (with 86 usable by user processes), in                                 
order to avoid out-of-memory conditions, following the requirements of the software, only                       
multicore jobs with 48 threads are allowed, and only simulations jobs are accepted by the                             
queues, in order to avoid waste of resources or inefficiencies. The definition of the tasks                             
that are allowed to run on the CINECA queues is also defined in AGIS. 
ATLAS is using a model where both Multi-Processing (fork) and Multi-Threading (threads)                       
are allowed, but the fully threaded option is still experimental, so it was not yet used in                                 
CINECA. The situation on the amount of used memory, so the maximum number of threads                             
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in use at the same time, will improve when the fully threaded infrastructure will be                             
completed and validated. 
Tests showed that ATLAS is actually able to run up to 128 processes in the current                               
configuration, with low-memory simulation tasks, although in such cases the efficiency                     
drops to ~80%, while with 48 threads the efficiency has been measured to be almost the                               
same with respect to standard jobs running on ordinary Intel or AMD processors. A typical                             
evolution with the multiprocess size is shown in Figure 2 (left). 

5.3 CMS  

The CMS Experiment uses a Workload Management System based on HTCondor, with                       
workload submission divided into two steps. 
As a first step, a GlideinWMS Factory [17] submits “pilots” to the Computing Elements                           
(CE) at the facilities. These are converted into batch jobs with the site-specific technology                           
(SLURM at CINECA), and are started according to site policies and resources shares. 
The pilots, once executed, call back the CMS Global Pool [18], and register as available                             
resources. In the case under study, the Marconi A2 nodes were registered as standard                           
CNAF nodes, and workload were proposed matching generic CNAF requirements.  
An R&D within CMS allowed to fine tune the matching system, via a cherry-picking                           
method. The Marconi resources, when joining the CMS Global Pool, specify additional                       
requests with respect to CNAF nodes, and in particular: 

● ask for low memory jobs, since the standard RAM/thread is lower on KNL than on                             
Xeon nodes at CNAF; 

● ask for workload types (“Subtask names”) known to need low IO (simulation and                         
generation); 

● ask for jobs non manipulated by “cmsunified” (a CMS internal flag needed to trust                           
the workload description); 

● end user analysis jobs have been vetoed; they are typically more complex to                         
control for what concerns memory, io and time utilization; 

● ask for resizeable jobs, which are explicitly allowed to be run in a range of thread                               
configurations. This has been chosen in view of further manipulating the payloads,                       
as explained later. 

The current regular expression used to cherry-pick among CNAF-directed jobs is 
 

(regexp("^(?!.*cmsunified).*$",WMAgent_SubtaskName) && 

regexp("wmLHEGS-[^/]*$",WMAgent_SubtaskName) && (WMCore_ResizeJob == True 

|| RequestMemory/RequestCPUs < 2000)) || 

(regexp("^(?!.*cmsunified).*$",WMAgent_SubtaskName) && 

regexp("wmLHEGEN-[^/]*$",WMAgent_SubtaskName)) 

 

The CMS Software Framework (CMSSW) has been in production with multi-threaded                     
processes since 2015, using Intel TBB [19] as threading engine. 
The capability to increase the number of threads in a wide range (from 1 to 8 threads are                                   
generally used in production, with an higher thread count avoided just not to be too                             
impacted by the Amdahl’s law [20]); in the KNL case, this is usable in two ways: 

● to decrease the memory/node needs: a KNL noda has < 1.5 GB/core or even < 0.5                               
GB/thread if hyperthreading is on. Massively multithreaded processes are able to                     
fit even this pressing requirement. 

● to decrease process run time. CMS payloads are tuned to execute in 8 hours on                             
standard Xeon-like systems. A KNL core is 3x-4x slower, and hence the jobs                         
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would exceed the 24 h slot time in SLURM. An increase in process thread count                             
allows to shorten the run times. 

Tests at the project submission have shown that, by increasing 4x the thread count per                             
process (from 8 to 32), timing was similar to Xeon nodes, memory was well fitting the 96                                 
GB. The performance hit caused by the increased multithreading was evaluated as 20%,                         
measured as events per second per node in the two 8 and 32 threads configurations. 
Test working points with different settings for (# of Threads per Process, # of Processes                             
per node) are shown in Figure 2 (right), together with the impact on throughput (y-axis) and                               
memory utilization (x-axis). 

Fig. 2. Left: event/s from ATLAS MP simulation on KNL, up to HT4x; Right: throughput and 
memory utilization (Minimum Bias events) with varying configurations in ((# of Threads per 

Process, # of Processes per node). 

5.4 LHCb  

In LHCb, Monte Carlo (MC) simulation jobs, which include both event generation and                         
detector simulation, are by far the largest consumers of the experiment's share of WLCG                           
compute resources (they will be over 90% in Run3). The LHCb strategy for exploiting any                             
newly available compute resources is, therefore, to use them for MC simulation.  
The integration of new compute resources into the LHCb distributed computing framework,                       
based on DIRAC [21], is generally an easy task when: 

● worker nodes (WNs) have outbound network connectivity; 
● the LHCb CVMFS endpoints are mounted on the WNs; 
● the WN O/S is an SLC6 or CC7 compatible flavor, or Singularity containers are                           

available.  
All these three conditions were met on Marconi A2. 
The main problem that had to be addressed to submit LHCb jobs on Marconi A2, however,                               
is the fact that this system uses many-core KNL processors with a very limited amount of                               
memory per hardware thread (300 MB if 4 threads are used per physical core, or 600 MB if                                   
only 2 threads are used per physical core). This required significant integration efforts, both                           
on the software and on the computing side (more details about this work were given in an                                 
LHCb presentation [22] at this conference). Until recently, in fact, all of the LHCb software                             
workflows submitted to distributed compute resources, including MC simulation, only                   
consisted of single-process (SP), single-threaded (ST) applications. These workflows are                   
very inefficient on KNL, because they have a much larger memory footprint                       
(approximately 1 GB per thread), and on the software side it was therefore necessary to                             
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re-engineer the LHCb simulation software to use multi-processing (MP), or multi-threading                     
(MT). In addition, since this is the first time MP or MT applications are used by LHCb on                                   
distributed resources, on the computing side the LHCb DIRAC framework had to be                         
adapted to be able to manage the scheduling of jobs using more than one hardware thread. 
More in detail, the software work targeting the Marconi A2 timescales focused on the test                             
and commissioning of a multi-processing based version (GaussMP) of the LHCb simulation                       
framework (Gauss). This leveraged on a multi-processing version (GaudiMP) of the LHCb                       
event processing framework Gaudi, already existing but never used in production.                     
Extensive testing and bug-fixing was therefore required, including a validation of results                       
requiring identical results in the SP and MP versions of Gauss when simulating the same set                               
of events starting from the same random number seeds. Standalone performance tests on the                           
Marconi A2 KNL nodes showed that the overall throughput of events processed per unit                           
time on one node is highest when 8 GaussMP jobs are executed in parallel, each using 17                                 
processes. This corresponds to using 2 hardware threads per KNL core (i.e. 136 in total): no                               
increase in throughput was observed when trying to use 4 threads per KNL core (i.e. 272 in                                 
total), and many failures were actually observed in this configuration. If SP Gauss is used,                             
the maximum throughput was achieved when using only 85 processes (i.e. 85 hardware                         
threads). The best GaussMP throughput is only moderately higher (15%) than that achieved                         
using SP Gauss, because the forking strategy used has not yet been optimized. Looking                           
forward, however, LHCb software efforts in the simulation area will focus not on GaussMP                           
but rather on a MT based solution, Gaussino [23], which will ensure a much lower memory                               
footprint per thread. Gaussino was not ready in time for production use on Marconi A2, but                               
has significantly progressed since CHEP2019 and LHCb plans to test it on the remaining                           
time available on Marconi A2 in 2020. 
On the computing side, the main challenge LHCb had to address was that each job slot                               
provided by the HTCondor CE represents a whole KNL node from the A2 partition, with 68                               
physical cores and up to 4 hardware threads per core. The decision on how to subdivide this                                 
allocation between several applications is delegated to each experiment's framework,                   
specifically to DIRAC in the case of LHCb. Rather than implementing a quick ad-hoc                           
solution for Marconi A2, this was addressed in DIRAC by implementing a very generic                           
mechanism for managing "fat nodes", which keeps into account the possibility that a variety                           
of SP/ST jobs using only one hardware thread, and of MP or MT jobs using more than one                                   
thread, may coexist simultaneously on the same node. This new functionality has been                         
successfully tested in a dedicated certification environment, but at the time of writing it has                             
not yet been deployed in production for LHCb, because of the timescales involved in the                             
experiment's software release process. This is the reason why no results of production use                           
of Marconi A2 by LHCb are shown in section 6 of this paper. LHCb plans to submit its first                                     
production of MC simulation jobs on Marconi A2 as soon as the new LHCb DIRAC is                               
released, using software workloads based on GaussMP, or possibly Gaussino if available. 

6 Results 
At the time of writing, only the CMS experiment has been able to execute workflows in                               
production. Results are shown from the first period (mid Dec19 - mid Jan20), and have                             
been limited to 150 simultaneous nodes; in the same period, in order to avoid stressing the                               
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storage system, the number of used cores has been limited to 64, without hyperthreading .                           
2

Hence, a total of 150x64 = 9600 threads have been accessible. 
Figure 3 shows that the system has been able to sustain processing at 9600 threads for                               
(many) days; the moments without jobs were either due to site problems, or to scarcity of                               
compatible payloads in the CMS queues. 
 

 

Fig. 3. Number of cores running for CMS in the period Dec19-Jan20. 

Figure 4 shows in a pie chart the success rate of such jobs from CMS monitoring.  

 

Fig. 4. Exit code for CMS jobs running at CINECA. 

The overall result (92% of successful jobs) is compatible with what CMS sees at more                             
standard sites. In all the periods, thanks to the precise cherry picking of jobs with specific                               
needs, CINECA general network has not suffered from the additional traffic. 
Figure 5 shows a view of the CNAF facility from the point of view of CMS. Since                                 
CINECA’s resources have been added to standard ones, CMS sees CNAF as a processing                           
site able to serve > 17k threads (~7k at CNAF and 10k at CINECA). 

2 In a realistic production, it was seen that the help of multithreading was much lower than 
in the initial test case. 
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Fig. 5. CMS view of CNAF facility. Since the integration of CINECA has happened as an extension 
of CNAF, the total number of slots is reported. The violet peaks, with the total number of cores 

exceeding 15k, are mostly coming from CINECA slots. 

 

7 Future directions and conclusions 

At the time of writing, the Marconi A2 system is off. Our project has currently used 20% of                                   
the grant hours, and a restart of the operations is expected around April 2020.  
It should be noted that, in recent months, most of Marconi A2 has been switched off, as a                                   
significant fraction of the compute capacity has been moved from KNLs in Marconi A2 to                             
GPUs in a new Marconi100 partition. This is a move which could have had a large impact                                 
on our work if all KNL nodes had been switched off, as none of the software workflows                                 
described in this paper by any of the four LHC experiments has yet been ported to GPUs                                 
and/or validated for production use on a GPU-based computing system. Software                     
development work on GPUs is currently very active in all experiments and in common                           
software projects, but it may still take months, or years, before large-scale use of GPU                             
compute resources by the LHC experiments is possible. This should also be taken into                           
account in the planning of future facilities. 
Our plans are to conclude the grant utilization on Marconi A2's remaining KNL nodes,                           
putting in production also the other LHC experiments, and to learn more on aspects like                             
data caching at the CNAF site, also in collaboration with the efforts from the ESCAPE EU                               
Project and the definition of a data lake testbed. 
 
The collaboration with CINECA has been very fruitful for the LHC experiments, since it                           
has driven a number of R&D needed in order to optimally utilize such a non standard                               
machine. At the same time, we think it will be even more essential in the design phase of                                   
the next CINECA HPC, Leonardo, which will have LHC Experiments between its target                         
use cases from day one. 
 
The present work is a continuation of a series of integration efforts, as reported in [24],                               
[25], [26].  
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