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Abstract. The fracture behaviour of a specific material, a semi-crystalline bio-
based polymer, was here studied. Dynamic fracture tests on strip band speci-
mens were carried out. Fracture surfaces were observed at different scales by
optical and electron microscopy to describe cracking scenarios. Crack initi-
ation, propagation and arrest zones were described. Three distinct zones are
highlighted in the initiation and propagation zone: a zone with conical mark-
ings, a mist zone and a hackle zone. The conical mark zone shows a variation
in the size and density of the conical marks along the propagation path. This is
synonymous with local speed variation. Microcracks at the origin of the conical
marks in the initiation zone seem to develop from the nucleus of the spherulites.
In the propagation zone with complex roughness, the direction of the microc-
racks and their cracking planes are highly variable. Their propagation directions
are disturbed by the heterogeneities of the material. They branch or bifurcate
at the level of the spherulites. In the arrest zone, the microcracks developed
upstream continue to propagate in different directions. The surface created is
increasingly smoother as the energy release rate decreases. It is shown that the
local velocity of the crack varies in contrast to the macroscopic speed.

1 Introduction

There are numerous studies in the literature on the fracture behaviour of materials and
structures [1] [2] [3] [4] [5] [6] [7] [8]. When a cracking mechanism is studied in the
laboratory, it is generally to describe the different mechanisms observable at different scales,
to quantify the fracture parameters that will feed predictive models or to validate a numerical
model (or method). From the micro- to the macro-scale, the description of the mechanisms
is necessary although complex. This makes it possible to rigorously evaluate and predict
the mechanisms that may lead to the collapse of a structure. Indeed, the appearance of
micro- and macro-cracks is largely correlated to the microstructure and heterogeneities of
the material, the mechanical stress or even the effects of the environment [5]. Due to its
criticality, the dynamic fracture mechanism is mainly studied in mode I (opening mode).
In dynamic regime and for most materials, the size of the fracture process zone remains
negligible compared to the crack length. The formalism of linear elastic fracture mechanics
(LEFM) can be generally used. It advises a global approach with the energy release rate
G or local with the stress intensity factor K. This can be very different for a supposedly
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ductile material when a crack propagates slowly. In this last case, the formalisms of fracture
mechanics then suggest a local approach with the contour integral J [9].

The fracture behaviour of polymeric materials has been extensively studied in the litera-
ture. Environmental effects (temperature and strain rate for example) can significantly modify
the emerging behaviour of the material [10] [11]. By increasing the strain rate, a polymer can
change from a visco-elastic plastic ductile to an elastic brittle behaviour. Studying the resis-
tance to initiation (or slow propagation) or to rapid propagation can be significantly different
for the same polymer material. The formalisms of fracture mechanics also. Homalite 100
and polymethylmethacrylate (PMMA) have regularly served as model materials for study-
ing materials with brittle linear elastic behaviour. Their fracture facies have been widely
described. Different characteristic zones exist. At crack initiation, conical markings can be
observed [12] [13] [14]. They result from the interaction between a macro crack front and
micro crack fronts that develop downstream of the main crack. The analysis of these marks
in terms of density and size makes it possible to estimate the crack velocity [15]. During the
rapid propagation of the crack, the fracture surface is known as a hackle zone. This zone is
chaotic in terms of roughness. Micro-branches, which Sharon and Fineberg [16] describe as
the origin of non-trivial roughness, develop from a critical speed. Between these two zones
(initiation and propagation) there is an intermediate zone, called mist. For homalite 100, it is
established that in the mist zone, several small cracks propagate simultaneously and the front
of the overall crack is almost straight [17]. In the hackle zone, crack growth occurs by the
same physical process as in the mist zone, except that the size scale of the microfracturing
increases. For PMMA, it has been observed that in the hackle zone, and for cracking speeds
above about 500 m/s, the fracture surface becomes very rough with periodic microbranch-
induced marks [18]. They generate arrest marks spaced about 1 mm apart, commonly called
"ribs markings" because of their geometrical shapes. The high roughness observed in the
hackle areas is generally not taken into account in the estimation of the fracture energy. It is
nevertheless admitted that the higher the energy release rate, the rougher the fracture surface
is [19] [20] [10] [11].

In this work, dynamic fracture tests were performed on strip band specimens (SBS) of a
bio-based semicrystalline polymer. The material under investigation is relatively undescribed
in the literature in terms of the fracture mechanism and especially in dynamic. More gener-
ally, the link between the specific microstructure of semi-crystalline polymers and cracking
mechanisms at micro-scale is poorly referenced. The fracture surface were analyzed by op-
tical and electron microscopy in different zones (initiation - propagation - arrest) in order
to propose cracking scenarios related to the microstructure of semicrystalline polymer. The
link between the mechanisms observed at different scales with the local and global cracking
velocity and the fracture energy is discussed.

2 Material and methods
2.1 Material

The material studied is polyamide 11 (PA11), the Rilsan BESNO TL grade supplied by
Arkema. The strip band specimens were machined from pre-injected plates. The dynamic
modulus E; was obtained by measuring the average ultrasonic velocity in the material < v, >
which is equal to 2100446 m s~'. As a dynamic modulus, it can be also taken as the ’relaxed’
modulus of the material which avoid viscous effect in the estimation of the internal energy
(see equation (2)). The value E; = 1620+82 MPa is obtained from the equation (1), where
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v=0.43 and p=1040 kg m~>. For the estimation of the fracture energy in dynamic propagation
regime, only E; and v will be considered to describe the behaviour of the material [21].
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2.2 Dynamic fracture test

The strip band specimen (SBS) geometry [10, 22, 23] is used to study rapid crack propagation
(RCP) and crack arrest in PA11 plates. This geometry allows precise control of the boundary
conditions during propagation. It generates very few inertia effects induced by rapid crack
propagation. An experimental device based on these studies [10, 19, 20] has been designed.

Two notched head-to-tail plates are prestressed (see Fig. 1). One plate is cracked (the
plate 1). The second one ensures the symmetry of the load during propagation. The speci-
mens are initially uniaxially prestressed to a constant deformation using a universal tensile-
compression machine. The loading is imposed by moving the crosshead. Once the prestress
is reached, the displacement is maintained. The system is then locked by means of nuts
mounted on 4 threaded rods. The rods pass through the jaws. The nuts stop the jaws to block
the movement in the axis of the rods. The flexibility of the system is then limited. The stop of
the crack is generated on the plate 1. This plate is deliberately longer than the jaw such that
an unloaded zone exists. The energy release rate is almost nil and therefore very significantly
lower than the fracture energy of the material. The crack is stopping at this zone and to access
this arrest zone, the plate was cut with a band saw.

Crack arrest
zone

Figure 1. Strip band specimen loading system.

Crack initiation is generated by the impact of a mass on a razor blade in contact with the
tip of the crack. The test is carried out at ambient temperature. Six polyamide plates were
cracked. The dimension of the plates is: L=300 mm (length), H=80 mm (height), b=4 mm
(thickness) and /,=120 mm (notch length). A single crack propagation perpendicular to the
loading axis is shown in Fig. 2. The quasi-static energy release rate in mode I, noted Gy, is
defined as a function of the stress o, (z is the direction of transverse crack propagation) by
considering a plane stress state and the propagation of a single longitudinal crack (see Eq. 2).

Hox(1 —v?)
G = ——— @)

A dynamic correction must be considered to estimate the energy release rate in dynamic
regime, noted G;p. The average crack velocity is required. A fast camera or a conductive
coating [19, 24] can be used to access the spatio-temporal data of the crack tip during prop-
agation. The average velocity of the crack tip for this polymer is approximately 400 ms™'
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~ 0.6cg. The Rayleigh wave velocity (cg) in PA11 is about 698 ms~! [11]. It is known that
the dynamic correction classically used for fast propagation which gives the factor k = 1 — i,
is unsatisfactory in the case of a SBS [3] test. A numerical model adapted to this specimen
geometry has been implemented in [19] which gives a small dynamic correction of 10 %
which must be considered at 0.6cg.

Crack propagation direction

Figure 2. Fast camera images obtained with a sampling rate of 10* frames per second to visualize the
rapid propagation of cracks in a PA11 strip specimen. The time #; is chosen as the reference point where
the crack starts to propagate in dynamic regime. The time between two images is 107 s.

2.3 Fracture surface analysis

An optical microscope and a scanning electron microscope (SEM) are used to observe the
fracture surfaces of the samples. Samples are taken from the cracked plates. They are em-
bedded in acrylic resin and metallized in order to visualize them with the SEM. The apparatus
used for metallization is a Cressington 108 auto. The gold layer is assumed to be of constant
thickness on the surface of the sample. The optical microscope used is a Keyence VHX1000.
The samples were then observed using a SEM (Zeiss EVOHD 15). An accelerated voltage of
10 keV is used with a current of 200 pA.

3 Results

A fracture surface was reconstructed using several observations by light microscopy (see
Fig. 3). A long length of cracking in sample B3 was analysed. One can observe in Table 1
some information on the tests carried out on the specimens. Different zones can be distin-
guished. From left to right, one can observe a zone where the razor blade has penetrated, a
so-called initiation zone (zone 1) and a propagation zone. These different zones as well as
a crack arrest zone were analyzed to qualitatively describe the majority of the mechanisms
observed on a microscopic scale.

3.1 Crack initiation

The energy brought to the system allowing the crack initiation is composed of the elastic
energy stored in the plate and the kinetic energy generated by the impact of the mass on the
razor blade. The objective of the dynamic fracture test is to establish as quickly as possible a
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Figure 3. Observation by light microscopy of the fracture surface of sample B3. Zone 1 represents the
crack initiation zone. The arrow indicates the direction of propagation.

stable state of propagation characterised by a constant energy release rate during propagation.
From the point of view of crack length, this transition zone between initiation and propagation
is negligible. This is the interest of a rapid propagation (i.e. dynamic fracture) test, to be able
to free oneself from the crack initiation. Nevertheless, on a microscopic scale, the fracture
surface reflects this abrupt transition. Several characteristic areas can be observed in Fig.
4. From left to right, we find the zone of penetration of the blade, the zone where conical
marks can be observed, an intermediate zone called "mist zone" and a chaotic zone from the
point of view of roughness called "hackle zone" [25] [26]. The area of conical markings
and the hackle zone are considered to be associated with crack initiation and propagation,
respectively. In the mist zone (see Fig. 5), plastic deformation of the resin is noticeable. This
suggests that the material was stressed "slowly" and at a high level of deformation.

Razor blade limit

)

Conic marks

/
S5hsd,

Figure 4. Several zones can be identified (from left to right): the razor blade penetration zone - the
conical mark zone - the intermediate "mist" zone - the chaotic "hackle" zone. The arrow indicates the
direction of propagation.

The additional energy generated by the impact of a mass on a razor blade allows the
transition of the crack into a rapid propagation regime where the fracture surface is more
chaotic. At this instant, the energy release rate is higher than the critical energy release rate
associated with crack propagation in dynamic regime (G; > Gyp.).

3.2 Crack propagation

The analysis of crack propagation is relatively simple from the point of view of external
loading and space-time data of the crack tip. The energy release rate is assumed to be constant
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Figure 5. Observation by electron microscopy of the mist zone of the fracture surface of sample B4.
Several zones can be identified (from top to bottom): the smooth zone with the appearance of spherulites
(end of the zone of conical marks) - the mist zone with plastic deformation of the resin - a stop mark of
the macro-crack in dotted line - the hackle zone. The long arrow on the left indicates the direction of
propagation.

over almost the entire length of the crack. The crack is in a quasi-permanent regime of rapid
propagation. Analysis of the fracture surface is more complex. This makes the estimation of
the fracture energy hazardous.

The zone of propagation of the fracture surface of sample B5 is shown in Fig. 6. The main
direction of the macrocrack front is indicated by the large white arrow at the top of the fig-
ure. The three small white arrows indicate the propagation directions of several microcracks.
Characteristic river patterns in polymer resin composites can be seen in [27].

The description of crack propagation through a macro-front no longer seems at all rel-
evant at this scale. Micro-cracks seem to propagate in different directions and planes. The
interaction of several micro-cracks in planes at different altitudes seems to be at the origin
of the river markings. Micro branches generating arrest marks are visible. This can be inter-
preted as a local stick slip phenomenon (see Fig. 7).

3.3 Estimation of the fracture energy

The fracture energy was estimated for 6 specimens (see Tab.1). For a macroscopic velocity
of the order of 0.6¢cg, the fracture energy is not unique and varies from 9.4 to 15.6 kJm™2.
This can be explained by not taking into account the amount of surface area created by the
crack in the fracture energy estimate. Only the amount of projected surface area (crack length
multiplied by the thickness of the specimen) is considered.

3.4 Crack arrest

Fig. 8 shows a crack arrest. The large white arrow at the top indicates the main direction of
propagation of the macrocrack front. The five small black arrows indicate the propagation
directions of several micro-cracks. The dashed line indicates the area of crack arrest. To the
right of the specimen, there is an area where the material has been plastically deformed due

6
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Figure 6. Observation by electron microscopy of the propagation zone of the fracture surface of sample
BS. The large white arrow at the top indicates the main direction of propagation of the macrocrack front.
The three small white arrows indicate the propagation directions of several microcracks. Characteristic
river patterns in multi-phase polymers with high heterogeneity can be observed.

WD=19.0mm EHT=15.00kV Grand.= 828X Signal A=SE1 AV

Figure 7. Observation by electron microscopy of the microcracks in the propagation zone of the fracture
surface of sample B5. The arrow indicates the direction of propagation of the microcrack front. Several
parabolic arrest marks of the micro-crack can be observed. The dashed line indicates the boundary
between two crack planes at two different altitudes.

to the self-heating induced by the cutting of the specimen. The microcracks described in the
previous section continue to propagate in different directions. However, they are less and less
numerous as they approach the arrest zone. The surface is smoother than during propagation.
Nevertheless, cracking planes are still present at different altitudes. Crack arrest is abrupt.
The macrocrack front is no longer parabolic. Conventional rib marking known for PMMA
cannot be identified.
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Sample 1 T a L'l/CR G]() G]D
B3 2 | 1939 | 055|104 | 94
B4 2 | 19420 060 | 10.1 | 9.1
BS5 23120 | 400 | 0.57 | 12.2 | 11.0
B6 25|21 | 410 | 0.59 | 155 | 140
B7 25120 | 380 | 054 | 162 | 14.6
B8 27123139 | 055 | 17.3 | 156

Table 1. Estimation of the fracture energy G, (kJm™2), the quasi-static energy release rate G,
(kJm~2) as a function of the crack velocity & ((ms™")), the temperature 7 (°C) and the displacement &
(mm) imposed during pre-loading.

|I mm ( WD=265mm EHT=1500kV Grand.= 26X  Signal A=SE1 4@ fHémess

Figure 8. Observation by electron microscopy of the arrest zone of a crack on the fracture surface
of sample B7. The large white arrow at the top indicates the main direction of propagation of the
macrocrack front. The five small black arrows indicate the directions of propagation of several micro-
cracks. The dashed line indicates the arrest zone of the crack. To the right of the specimen is an area
where the material has been plastically deformed as a result of cutting the specimen.

4 Discussion

The initiation areas of the fracture surfaces were analyzed. They confirm three distinct zones:
a zone with conical markings, an intermediate zone (mist) and a chaotic zone (hackle). During
the static pre-stressing of the sample, micro-cracks seem to develop from the nuclei of the
spherulites. This (crystalline) phase of the material is assumed to be brittle. In contrast
to the amorphous phase which brings ductility to the material when it is stressed relatively
"slowly". These micro-cracks coalesce and interfere with a macro-front to generate conical
marks which have been observed. The appearance of these micro-cracks, often associated
with cavities, is described in the literature [28, 29]. The amorphous intra-spherolitic phase
cavitates (or micro-crack) [30]. When the density of micro-cracks is critical, a macro-crack
is created [31] [32]. This crack of a few mm ends up stopping in the mist zone, where plastic
deformation of the matrix is found. The ductility of the amorphous phase eventually takes
over the brittle (crystalline) phase of the material. This can be explained by the (quasi-static)
strain rate and the degree of crystallinity (about 20 %). At this moment the energy release rate
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is lower than the critical energy release rate allowing crack initiation (G; < Gy.). The polymer
is therefore ductile under quasi-static regime. The external impact on the razor blade will
provide the energy (and instability) necessary to initiate the crack in a dynamic propagation
regime. This is evidenced by the observation of a chaotic zone in the surface roughness. The
local strain rate induced by the rapid crack propagation probably causes a significant drop in
the ductility of the amorphous phase. The amorphous and crystalline phases are then brittle.
The energy release rate is this time higher than the critical energy release rate allowing the
rapid propagation of the crack (G; > Gp.).

The difference in behaviour between crack initiation and rapid crack propagation for this
type of material is considerable. Initiating a crack requires an energy release rate that is often
very high compared to that which the material would require to sustain rapid crack prop-
agation. This is due to a significant difference between the resistance to slow propagation
(initiation) and rapid propagation of the material: G;. > Gyp.. These significant differences
have been reported for other industrial materials [10]. In the area of rapid propagation, the
propagation velocity of the macrocrack front is relatively constant (@ ~0.6cg). This critical
velocity is a priori the limit at which the crack branches due to inertia effects [2]. The spec-
imens studied show a longitudinal crack. Analysis of the fracture surface reveals a complex
roughness. Numerous micro-cracks, micro-branches and arrest marks are observed. They
appear in different crack planes. A single macro-crack front seems to be no longer identifi-
able. The material seeks to dissipate a significant amount of energy (G; >> Gjp,) by cracking
mostly in the amorphous phase. Spherulites, i.e. the crystalline phase, are heterogeneities that
disturb the local stress field of the micro-crack tips. This induces micro-branches and micro-
cracking phenomena in different planes in large numbers. This allows the material (i.e. the
individual cracks) to dissipate in fine a large amount of energy. One could postulate that the
material dissipates as much or more energy with a single crack with many micro-cracks and
micro-branches than with macro-branches. This is probably why a longitudinal macro-crack
could be generated in several samples despite G; >> Gjp.. When the energy release rate
is limited (in the crack arrest zones), the surfaces observed on a macroscopic scale become
smooth.

5 Conclusions

The work described in this article focuses on the qualitative analysis of fracture surface. The
cracks were generated by a dynamic fracture test. Strip band specimens known to gener-
ate very few inertia effects were used. The material studied is a semi-crystalline industrial
biobased polymer: PA11. Its complex fracture behaviour ultimately resembles that of a large
number of polymers used in industry. There is a significant difference in fracture behaviour
between initiation and rapid propagation. This was evidenced by the analysis of the fracture
surfaces. The mechanisms observed in the initiation and propagation zones are relatively well
known. The influence of the highly heterogeneous microstructure of a semi-crystalline and
the cracking regime induces a signature different from those described for the well-known
homalite 100 and PMMA. The random organization of spherulites in the material confers
relatively singular small-scale fracture mechanisms.
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