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Multi-scale dataflow models have actors acting at multiple granularity levels e.g. a dataflow model of a video

processing application with operations on frame, line and pixel level. The state of the art timing analysis

methods for both static and dynamic dataflow types aggregate the behaviours across all granularity levels

into one, often large iteration, which is repeated without exploiting the structure within such an iteration.

This poses scalability issues to dataflow analysis, because behaviour of the large iteration is analysed by some

form of simulation which involves a large number of actor firings. We take a fresh perspective of what is

happening inside the large iteration. We take advantage of the fact that the iteration is a sequence of smaller

behaviours, each captured in a scenario, that are typically repeated many times. We use the (max,+) linear

model of dataflow to represent each of the scenarios with a matrix. This allows a compositional worst-case

throughput analysis of the repeated scenarios by raising the matrices to the power of the number of repetitions,

which scales logarithmically with the number of repetitions, whereas the existing throughput analysis scales

linearly. We moreover provide the first exact worst-case latency analysis for scenario-aware dataflow. This

compositional latency analysis also scales logarithmically when applied to multi-scale dataflow models. We

apply our new throughput and latency analysis to several realistic applications. The results confirm that our

approach provides a fast and accurate analysis.
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1 INTRODUCTION
Assessing time-related performance is a crucial step in the design of many real-time systems.

Throughput is often considered as one of the most important requirements when designing em-

bedded software. The worst-case latency of a computation is often also important, for example,

in control system design. Since there are usually trade-offs between such requirements and the
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Fig. 1. A 5x5 convolution filter.

amounts of resources allocated to the system, there is a need for analysis techniques that are not only

fast, to explore the trade-off spaces in a reasonable time, but also accurate to avoid over-allocation

of the resources.

Model-based timing analysis techniques are used to ensure performance for such systems. Timed

dataflow is a task-level model of computation used in a number of model-based design approaches

for real-time parallel streaming applications [4, 23]. Static dataflow such as Synchronous Dataflow

(SDF) [20] and variants of dynamic dataflow with good analysability properties such as Cyclo-Static

Dataflow (CSDF) [5] and Finite-State-Machine Scenario-Aware Dataflow (FSM-SADF) [32] are

popular among resource allocation and buffer sizing algorithms [21, 31].

Analysis methods for dataflow models often involve a simulation step where the tasks start their

execution as soon as their dependencies are met. Then the completion times of the executions are

captured for analysis. For the techniques that are based on operational semantics [15, 28, 29] the

simulation continues until the periodic phase of the dataflow behaviour is found. For the techniques

based on (max,+) algebra [2, 13] the simulation phase involves the task executions that are required

to generate the so-called timing matrix and the final analysis is a spectral analysis on the matrix.

For many practical applications, the number of task executions within the simulation is very large.

As an example, consider a convolution filter applied to frames of streaming video. The filter uses

a kernel of 5 by 5 pixels and applies padding at the border of the frame (Fig. 1). We assume that a

single frame is an image with a width ofW pixels and a height of H pixels. The video stream is

delivered to the filter pixel-by-pixel, pixels being ordered frame-by-frame, line-by-line – within a

frame, from top line to bottom line and from left pixel to right pixel. The filter produces filtered

video with pixels in the same order. The filter shows a specific pattern of data dependencies (it

needs to collect the required input data for the convolution kernel) depending on the location of

the kernel. Initially the centre of the kernel is located on the top left pixel of the frame (Fig. 1). The

kernel slides to the right, pixel by pixel, for a whole line and then starts form the left side of the

next line. This continues until the centre of the kernel reaches the bottom right pixel of the frame.

When the kernel is on the initial location, it needs to have read 9 input pixels (kernel elements with

gray colour in Fig. 1) and use border padding for the elements that fall out of the image (kernel

elements with diagonal pattern in Fig 1). Since the input data is ordered line-by-line, the filter

needs to read 2 lines and 3 pixels from the input buffer before it can carry out the first convolution

computation. Then the kernel slides one pixel to the right and it needs to read only one extra input

pixel to do the second convolution computation. We summarize the behaviour of the filter in terms

of reading input pixels and producing output pixels by the following pattern of phases.

(1) frame rush-in phase: read pixels one by one without producing any output yet for 2 lines

of the image, or 2W pixels;

(2) line rush-in phase: read two pixels without producing output;

(3) line computation phase: one pixel is read and one pixel is produced for a whole line minus

two pixels:W − 2 pixels;
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rd ii l wr
a b c d

x y z

Scenario Rates Execution Times Repetition Counts

a b c d rd ii l wr rd ii l wr

ri 1 1 0 0 2 2 1 0 1 1 1 0

cm 1 1 1 1 2 4 5 2 1 1 1 1

ro 0 0 1 1 0 3 4 2 0 1 1 1

Gri =


2 −∞ −∞

4 2 −∞

−∞ −∞ 0


Gcm =


2 −∞ −∞

6 4 −∞

13 11 2


Gro =


0 −∞ −∞

−∞ 3 −∞

−∞ 9 2


Fig. 2. SDF models and the timing matrices of the convolution filter modes.

(4) line rush-out phase: two more pixels are produced without reading new input (using

padding);

(5) repeat steps 2–4 for H − 2 lines;

(6) frame rush-out phase: produce twomore lines of output without new input (using padding):

2W pixels.

This phase pattern can be described by a repetitive sequence, composed of three different data

dependency modes. Let ri (rush-in) denote a mode in which one input pixel is read but no output

pixel is produced, cm (computation) be a mode that reads one input pixel and produces one output

pixel and finally, ro (rush-out) denote a mode in which no input is read but one output is produced.

Each of the phases in the pattern is composed of a constant repetition of one of theses modes. For

instance the frame rush-in phase is composed of 2W repetitions of mode ri. This phase can be

represented in a compact way by expression (ri)2W . By representing the rest of the phases in a

similar way, the repeated phase pattern can be described by the following expression, where ω
indicates infinite repetition corresponding to an infinite stream of input frames.(

(ri)2W
(
(ri)2(cm)W −2(ro)2

)H−2

(ro)2W
)ω

When analysing the frame-level behaviour of the convolution filter with the state of the art

CSDF [5] and FSM-SADF [13] analyses, a simulation that goes through all variations in the phase

pattern is needed to obtain the timing matrix. For a 2048 × 2048 frame, this simulation contains

1.67e+7 firings (3 firings for every pixel in the rush-in and rush-out phases and 4 firings for every

pixel in the computation phase). The run-time of a timing analysis that evokes such a simulation on

today’s computers is in the order of seconds. However, this is still too much for trade-off analysis

methods such as buffer sizing, since the timing analysis techniques might be called more than 300

thousand times during the analysis [31]. It is known that a conservative approximation can be used

to reduce the number of firings, for instance by aggregating the behaviour of multiple executions

into a single vectorized execution [25]. However, this may lead to pessimistic results. We observe

that a more efficient analysis is possible by using the mode information.

Since the modes in the convolution filter correspond to fixed data dependency relations, they

can be described using SDF graphs. For instance, we use the graph shown in Fig. 2 to describe

the modes in the filter. In this figure, nodes represent actors. The rd actor models reading of the

input pixels. The ii and l actors model the starting of the convolution computations or the initiation

interval and computation latency respectively. The wr actor models the production and writing of

the output pixels. Actor firings correspond to task executions and they take some time (which is
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shown for every mode, in the table in Fig. 2). The directed edges in the graph model channels. In

mode cm, the channel from rd to ii ensures that the convolution computations start only after the

reading is complete. In this mode, when rd completes its firing, it produces a token on this channel.

This token is then consumed by ii when it starts its firing. The number of tokens consumed and

produced by actors from channels are called actor rates. For instance, in mode cm, on the channel

from rd to ii, rd has a production rate of 1 and ii has a consumption rate of 1. The table shows the

actor rates that are different in every mode (the rest of the rates are equal to 1 in every mode).

Channels may initially contain a number of tokens. A channel from an actor to itself, i.e. a self-edge,

with an initial token on it, ensures that there will be only one execution of that actor at a time.

We observe that a simulation that involves 10 actor firings suffices to analyse the timing of all

modes in the filter. Every mode in the filter defines a set of actor firings in the SDF graph depending

on the behaviour it represents. For instance, mode cm involves one firing from every actor in the

graph, as it represents reading an input, performing a computation and, writing an output. The

table in Fig. 2, shows the number of firings (repetition counts) of every actor in every mode. The

essential timing information of each mode can be captured by simulating the execution of the mode,

i.e., by simulating all actor firings in the mode. During the simulation, the tokens are assigned with

time-stamps that indicate their earliest availability times on the channels. After a mode executes,

the tokens that are left on the channels are called final tokens. In the filter, execution of every mode

leaves one token on every self-edge in the graph.

The timing matrix [13] of a mode captures the essential timing relations between the time-stamps

of initial and final tokens. To specify theses relations, let x , y and z label the initial and final tokens

on the self-edges of actors rd, ii and wr, respectively. The timing matrix of every mode is shown in

Fig 2. In these matrices, the timing relations of tokens labelled x , y and z are captured in the first,

second and third column/row of the matrices, respectively. For example, for cm, the third row of the

matrix indicates that there are at least 13, 11 and 2 time units difference between the time-stamps

of initial tokens x , y and z and the time-stamp of final token z after cm is executed. −∞ indicates

that there is no dependency relation. In a similar way, the timing information of modes ri and ro is

captured after 3 actor firings each (modes ri and ro exclude the firing of wr and rd, respectively).

Using the timing matrices, the frame-level behaviour that is described as the above repetitive

pattern of modes can be compositionally analysed. Given the time-stamps of the initial tokens in a

mode, we can compute the time-stamps of the final tokens using a matrix-vector multiplication

in (max,+) algebra. In this algebra, addition and max operator respectively take the role of multi-

plication and addition of traditional linear algebra. In the filter, if we collect the time-stamps of

the initial tokens of a modem in a vector γ = [ tx ty tz ]T , a vector that corresponds to the

time-stamps of the final tokens is computed as Gmγ .
The throughput of the filter can be obtained by analysing the growth rate of the time-stamp

vector after execution of every frame. Given the initial time-stamp vector in the first mode of the

pattern, it is multiplied by its matrix to compute the time-stamp vector of the final tokens in the

first mode. Then the computed time-stamp vector is used as the initial time-stamp vector in the

second mode of the pattern. Thus, it is multiplied by the matrix of the second mode to compute

the initial time-stamp vector of the third mode and so on. This way, the time-stamp vector after

execution of every frame can be computed and its growth rate can be analysed.

Alternatively, we can define a matrix that abstracts the execution of the model for production

of a full frame. This matrix, called the frame-level matrix, abstracts all actor firings during the

production of every individual pixel of the frame, in the relation between the time-stamps of the

initial tokens in the first mode of the pattern and the final tokens in the last mode of the frame

pattern. The frame level-matrix can be used for analysis. For example, throughput is obtained

through the standard spectral analysis on this matrix. The frame-level matrix can be computed by
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Fig. 3. Execution of the convolution filter on a 9 × 11 frame.

multiplying the matrices of modes in the order that is the reverse of the appearance order of their

corresponding modes in the frame pattern. Let’s consider a small 9 × 11 frame (W = 9,H = 11) to

be able to show the execution traces of the filter. The frame-level matrix is defined as follows.

Gframe = G2W
ro

(
G2

ro
GW −2

cm
G2

ri

)H−2

G2W
ri
= G18

ro

(
G2

ro
G7

cm
G2

ri

)
9 G18

ri
=


198 −∞ −∞

434 432 −∞

440 438 198

 .
Spectral analysis on this matrix reveals that the growth rate of the time-stamp vectors produced by

indefinite repetition of the frame pattern is 432 time units per frame and it has a critical dependency

on the second column of the second row of Gframe . This element corresponds to the time difference

between the availability time of the token on the self-edge of actor ii before and after the production

of a frame. This critical dependency is also observed in the execution trace of the filter in Fig. 3.

Hence, the throughout is equal to 99/432 pixels per time unit or 1/432 frames per time unit.

The matrix Gframe can be efficiently computed. If a mode (or a pattern of modes) corresponds to

a matrix G, then n repetitions of that mode correspond to the matrix Gn
, which can be computed

from G, in O(logn) time. Observe that, this way, we can analyse a fixed number of repetitions of a

mode in time logarithmic in the number of repetitions (instead of linear in the number of actor

firings as in the state of the art exact methods).

The convolution filter is an example of a multi-scale application for which the behaviour under

analysis involves different sub-behaviours that occur at multiple granularity levels. This can be

recognized in many other real-life examples, such as applications that include memory transactions

with large blocks of memory that are communicated through a network-on-chip that operates at

the level of much smaller individual flits [24]. An H.263 decoder is another example. A dataflow

model of this application is provided in [28]. The decoder accepts video streams of frames as inputs,

decomposes them into small blocks of data items called macro blocks and finally, reconstructs the

decoded frame from macro blocks. As a result, the behaviour of the decoder involves few task

executions at the frame level but many task executions at the macro block level.

The contribution of this work is threefold. The first novelty is the representation of the multi-

scale behaviour of a dataflow application as a regular expression built from execution modes, as

illustrated above. This results in an FSM-SADF model in which each mode is represented by a

scenario SDF model and the regular language of mode sequences is represented as an ω-regular
expression, which enables efficient timing analysis.

As the second contribution, we provide an algorithm for exact worst-case throughput analysis

of FSM-SADF where the scenario sequences are given by a regular expression. Given such an FSM-

SADF, the algorithm first tries to transform it into a new FSM-SADF with fewer Finite State Machine

(FSM) states. This is done by finding sub-expressions formalizing sets of scenario sequences, the

behaviour of which can be abstracted by timing matrices in line with the convolution example.

Without losing accuracy, the scenarios of the resultant FSM-SADF are defined to abstract these sets
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of scenario sequences and a new regular expression is constructed using the defined scenarios. The

final analysis invokes the existing FSM-SADF analysis [11] with a compact FSM that recognizes the

language formalized by the new expression. We prove that the resultant FSM-SADF has the same

worst-case throughput as the original FSM-SADF. For an SDF or a CSDF model that is represented

by an indefinite repetition of a sequence of scenarios, our throughput analysis scales linearly in the

length of the representation of the sequence as a regular expression (instead of the length of the

sequence itself). Moreover, for an important class of general FSM-SADF (i.e. when the expression

recognizes a set of scenario sequences instead of a single sequence), the throughput analysis is

polynomial in the length of the expression.

As the final contribution, we provide an algorithm to compute the exact latency of an FSM-SADF

with a given regular expression. The algorithm computes a vector that expresses the worst-case

timing relations between the time-stamps of initial tokens and latencies of outputs among all

possible scenario sequences. The algorithm computes this vector in a recursive fashion following

the regular expression by analysing every type of syntactic composition. The latency is equal to the

inner product of this vector and the vector that contains the time-stamps of initial tokens. We show

that the latency vector computation time scales linearly in the length of the regular expression.

The overview of the paper is as follows. Section 2 discusses the works related to the throughput

and latency analysis of dataflow graphs. Section 3 summarizes the necessary (max,+) and dataflow
background. Our throughput and latency analysis methods are explained in Sections 4 and 5.

Section 6 presents experiments and provides a discussion on the results. Section 7 concludes.

2 RELATEDWORK
The prime performance property of interest for dataflow models of computation is throughput.

The earliest works on throughput analysis of SDF [20, 27] use a conversion of the graph to its

equivalent Homogeneous Synchronous Dataflow (HSDF) graph. HSDF is the single-rate version of

SDF. This enables the use of Maximum Cycle Mean (MCM) or Maximum Cycle Ratio (MCR) [16]

analysis techniques to obtain the throughput of the graph. This method can also be applied to CSDF

by first using a conversion to HSDF [8]. Apart from the fact that the conversion step itself is time

consuming, such conversions often result in a very large HSDF (especially for CSDF graphs) which

poses scalability issues even for efficient MCM analysis techniques such as Karp’s algorithm [18].

Approaches to provide an accurate but more scalable throughput analysis for SDF and CSDF are

provided by Ghamarian et al. and Stuijk et al., respectively [14, 31]. In both cases, the analysis can

be directly applied to the original graph, which removes the costly conversion step of the earlier

works. They both include a simulation phase based on the operational semantics of dataflow. It still

simulates all actor firings in each iteration, but stores only one state per iteration. The algorithm

builds a global state-space representation of the self-timed execution of the dataflow graph by the

simulation. It is known that the self-timed execution of a consistent and strongly-connected (C)SDF

consists of a transient phase followed by a periodic phase in which actors fire in a periodic fashion.

Throughput is extracted from the periodic phase of the self-timed execution–the transient phase is

often very short in practice, but can be arbitrarily large in the worst case.

Theelen et al. provide a throughput analysis for Scenario-Aware Dataflow (SADF) [33]. The

analysis is built upon a state-space representation of the graph. The state-space representation

captures the behaviour of the graph across sequences of scenarios. Since transitions are at the level

of individual firings of actors, the resulting state space becomes very large with larger models and

leads to tractability issues. The FSM-SADF analysis [11, 13] uses a symbolic simulation method

to get the (max,+) representation of each scenario. This representation abstracts the actor firing

dependencies within the scenarios. Then such a representation together with the FSM is used to

generate either a state-space of all reachable states (time-stamp vectors) or a (max,+) automaton.
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In the analysis techniques for FSM-SADF, a (partial) iteration of the graph in a particular scenario

is captured in a single transition of the state-space or automaton, instead of the individual actor

firings. This leads to improved scalability. The analysis is ultimately mapped on a MCR analysis on a

directed graph of the state-space or directly on the automaton. Irrespective of the size of the resulting

directed graph or the automaton and the complexity of the final MCR analysis, the process of

generating the state space of the time-stamp vectors or the automaton scales linearly in the number

of FSM states. We use the same symbolic simulation method to obtain (max,+) representations for

scenarios as Geilen et al. [12, 13]. Then we use a transformation on the given FSM-SADF to generate

a new FSM-SADF with fewer number of FSM states, leading to further scalability improvements

for multi-scale dataflow models compared to the analyses of Geilen et al. [12, 13].

Besides exact throughput analysis, it is possible to approximate throughput. An approximate

conversion method [8] can be used to generate pessimistic and optimistic HSDF abstractions of an

SDF, but with the same size as the original graph, the same number of actors and edges. Throughput

analysis over the approximate HSDF is done for the sake of shorter analysis run-time. We compare

our technique to the conservative approximate method of De Groote et al. [8] in Section 6. Our

technique turns out to be better scalable, despite being exact.

A second performance property of interest is latency. Geilen et al. provide a definition for latency

which we also use as a basis in this paper (where it is in fact generalized) [13]. They sketch a possible

way to compute the latency for FSM-SADF without providing an algorithm. The proposed approach

requires the generation of the state-space which scales linearly in the number of FSM states.

Moreira et al. [22] use the same latency notion as Geilen et al. [13]. They provide an algorithm to

compute the latency. Their approach promotes the use of static periodic schedules as a conservative

approximation of self-timed schedules. Therefore, the analysis gives an upper bound on the latency.

Moreover, it can only be applied to SDF, CSDF, i.e., the deterministic cases of FSM-SADF where the

FSM accepts one scenario sequence. We provide an algorithm for latency analysis of an arbitrary

FSM-SADF model. We show that when we represent the set of possible scenario sequences of an

FSM-SADF with a regular expression, the latency computation time using our algorithm scales

linearly in the length of the expression.

3 DATAFLOW AND (MAX,+) PRELIMINARIES
3.1 Synchronous Dataflow
In SDF models, tasks are abstracted by actors. Applications are modelled by graphs, where the nodes

are the actors. Fig. 4a shows an example SDF graph. A channel from actor P to actor Q models

a firing dependency of Q on P. The dependencies between actor firings are captured by a token

consumption and production mechanism. When all input channels of an actor contain sufficient

tokens, an actor is enabled and may fire (execute). Actor firings produce tokens on the channels;

tokens produced by actor firings are consumed by (other) actors that become enabled; the enabled

actors fire and produce new tokens and so on. This way compact dataflow models can capture

complex task dependencies. Channels may have initial tokens, indicated by black dots near channels

in the graph. The tokens in Fig. 4a are labelled (w, x,y, z) for the purpose of referencing. In SDF

actors consume and produce a constant integer number of tokens from their input channels and

output channels respectively, which are determined by the actor rates on the channels. Channel

(P,Q) in Fig. 4a has rates a and b, for example. Rates equal to 1 are not shown in SDF graphs.

Executing actors typically takes time. In SDF, the execution time of an actor is constant for all its

firings. An execution of an SDF graph is a finite or infinite sequence of actor firings. In a self-timed

execution, actors fire as soon as they are enabled.
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Scenario Rates Exe. Times Rep. Counts No. I. and F. Tokens Output

a b c d P Q R P Q R (P, P) (P,Q) (Q,R) (R,Q) (R,R)

ϕ 1 1 2 2 4 2 2 1 1 2 1,1 0,0 1,1 1,1 1,1 R

χ 0 0 1 1 0 1 4 0 1 1 1,1 0,0 1,1 1,1 1,1 R

ψ 0 0 0 0 2 0 0 1 0 0 1,1 0,0 1,1 1,1 1,1 R

Fig. 4. An example FSM-SADF.

3.2 Synchronous Dataflow Scenarios
SADF is a variant of dataflow that introduces a form of dynamism in dataflow behaviour. It defines

a set of SDF scenarios and a suitable formalism to express possible sequences of scenarios. An SDF

scenario defines a finite non-empty set of actor firings. The set is specified by the exact number

of times that each actor in the graph fires (also called the actor repetition counts). A scenario is

typically defined by means of an SDF graph. There are three example scenarios in Fig. 4 namely

ϕ, χ andψ . All example scenarios have the same SDF graph structure in this example, but different

parameters i.e. actor rates and execution times. The table beneath the SDF graph contains the graph

parameters and repetition counts for all scenarios.

A scenario execution refers to the execution of all actor firings specified by the scenario. Execution

of a scenario may leave a number of tokens on the channels, called final tokens. An SADF executes

scenarios one after another. To express task dependencies among scenario executions, a scenario

labels a number of its initial and final tokens. In an SADF, the timing information from one scenario

to the next is conveyed from the labelled final tokens in the scenario to the initial tokens with the

same labels in the next scenario. The table in Fig. 4 contains the number and location (the channel)

of the initial and final tokens for every scenario. Lettersw, x,y and z are used to label initial and

final tokens in all of the three scenarios as shown in the SDF graph structure (Fig. 4a). A transition

from scenario χ to ψ is consistent, for example, since the number of final tokens in χ and their

labels match the number of initial tokens and their labels inψ .
SADF are often analysed to provide performance guarantees on non-terminating runs of the

applications. For example, when used to model streaming applications, the analysis is done for

an infinite stream of data. Therefore the timing behaviour of an SADF is defined for an infinite

sequence of scenarios, assuming that all scenario transitions in the sequence are consistent. In

general SADF allows for non-deterministic scenario transitions, leading to an infinite number of

possible scenario sequences. For instance, for an FSM-SADF, scenario transitions are captured by

an FSM. Fig. 4b shows an example FSM, where the transitions are labelled with scenarios except for

the ϵ-transition, which denotes an empty transition (as standard in non-deterministic automata).

In a consistent FSM-SADF, all scenario transitions in all scenario sequences accepted by the FSM

are consistent. For analysis purposes, we associate output with some actor firings in a scenario. In

the example FSM-SADF, we associate output with firing of actor R in all scenario graphs (Output

in the table of Fig. 4). For instance ϕ produces two outputs during execution, since there are two

firings of R in that scenario.
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3.3 (max,+) Representation of Scenarios
We first introduce (max,+) algebra notations (See [3] for background on (max,+) algebra). The
(max,+) algebraic addition and multiplication are denoted by ⊕ and ⊗ respectively: a ⊕ b =
max{a,b} and a ⊗ b = a + b for a,b ∈ IR−∞ ::= IR ∪ {−∞}. This algebra operates on real-valued

numbers extended with −∞. Multiplication and addition on matrices, matrix-vector multiplication

and inner product of vectors have the same concepts as their counterparts in ordinary algebra,

but with the use of (max,+) algebraic operations. Let A,B and v be two matrices and a vector

respectively. For readability we write AB and Av instead of A ⊗ B and A ⊗ v . Let n ∈ IN ∪ {0}.

An
denotes raising A to the power of n. A0 = I. I is the identity matrix in (max,+) algebra (the

diagonal elements are 0 and the other elements are −∞). 0 denotes a column vector of appropriate

size in which all entities are 0.

⊕
is the summation quantifier in (max,+) algebra. Summation

over an empty set equals −∞. The star closure of a square matrixM is a matrixM∗ =
⊕

k≥0
Mk

.

Operation ⊕ on matrices corresponds to point wise ⊕ operations between the corresponding

elements of the matrices.M∗
exists if and only if there are no positive cycles in the adjacency graph

ofM i.e. ifM has no positive eigenvalues. Subtraction of a scalar c from a matrixM, i.e.M − c or
M ⊗ (−c), is to subtract c from all elements of M. The norm of a matrix ∥M∥ or a vector ∥v ∥ is

equal to the maximum entry in the matrix or the vector. Ifv is a vector,vk denotes the k th element

of the vector. Let A = [ai j ] and B = [bi j ] be matrices of the same size, where ai j and bi j denote
the element on row i , column j of their corresponding matrices. We write A ≤ B to denote that

for every i and j, ai j ≤ bi j . Let C be a matrix of appropriate size, A ≤ B implies that AC ≤ BC,
CA ≤ CB and A ⊕ C ≤ B ⊕ C.

The (max,+) representation of a scenario is a mathematical expression of the relation between

the production times of the labelled final tokens and the availability times of the labelled initial

tokens in the self-timed execution of the scenario. For a scenario s , if we collect the availability
times of the labelled initial tokens in vector γ and the production times of the labelled final tokens

in vector γ ′
, this relation can be expressed as the following equation in (max,+) algebra [13].

γ ′ = Gsγ (1)

Eq. 1 is in fact a compact form of a set of linear equations in (max,+) algebra. We refer to Gs as

the state matrix (also called scenario matrix) of s and γ is the state vector (also called dater function

or time-stamp vector). For instance, in Fig. 4, we can collect the time-stamps of the labelled initial

tokens in vector γ = [ tw tx ty tz ]T and final tokens in vector γ ′ = [ t ′w t ′x t ′y t ′z ]T

and describe scenario ϕ by the following matrix. A systematic way of generating (max,+) repre-
sentations of dataflow scenarios can be found in [26].

Gϕ =


4 −∞ −∞ −∞

6 4 2 4

8 6 4 6

8 6 4 6


An entry t at column k and rowm in Gs specifies that there is at least a time difference of t time

units between the availability of token k before the execution of s and the production of tokenm
after s is executed. For instance the entry 6 on the first column of the second row of Gϕ implies

that the production of final token x happens at least 6 time units after initial token w becomes

available. This is a valid statement since the dependency path fromw to x goes through one firing

of P (with execution time of 4) and one firing of Q (with execution time of 2); therefore there is

at least 4 + 2 = 6 time units difference between the availability ofw and the production of x . An
entry −∞ implies that there is no dependency relation.
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Fig. 5. Self-timed execution of scenario sequence ϕω in Fig. 4.

We can use Gs to determine the evolution of state vectors for any given scenario sequence.

For instance, assuming that the initial tokens are available at time-stamp γ0 = 0, we can find the

production times of final tokens after the execution of ϕ as:

γ1 =


4 −∞ −∞ −∞

6 4 2 4

8 6 4 6

8 6 4 6




0

0

0

0

 =


4 ⊗ 0 ⊕ −∞ ⊗ 0 ⊕ −∞ ⊗ 0 ⊕ −∞ ⊗ 0

6 ⊗ 0 ⊕ 4 ⊗ 0 ⊕ 2 ⊗ 0 ⊕ 4 ⊗ 0

8 ⊗ 0 ⊕ 6 ⊗ 0 ⊕ 4 ⊗ 0 ⊕ 6 ⊗ 0

8 ⊗ 0 ⊕ 6 ⊗ 0 ⊕ 4 ⊗ 0 ⊕ 6 ⊗ 0

 =


4

6

8

8

 .
The new state vector γ1 signifies that during the execution of scenario ϕ (perhaps as the first

scenario in a scenario sequence), the final tokens will be produced at times [4,6,8,8]. Let ϕω denote

indefinite repetition of scenario ϕ. Fig. 5 shows the self-timed execution of ϕω . The initial tokens are
shown by the big nodes with label zero. Number k inside the other big nodes shows the production

of final tokens after the execution of the k th scenario in the sequence. Note that these tokens are

also the initial tokens for the next scenario in the sequence and the state vectorγ2 can be computed

from the state matrix of the next scenario by using Eq. 1 when γ is substituted by γ1 and so on. For

example for ϕω we can compute the k th state vector using the equation below.

γk = Gϕγk−1 = Gk
ϕγ0.

For analysis purposes, we need to capture the production times of outputs produced during

a sequence of scenarios. The output production times might be directly accessible through the

state vectors. For example in Fig. 5 it is observed that the production of every other output is

synchronized with the production of the final tokensy and z i.e. it is reflected in the third and fourth

elements of state vectors. However, this is not always the case. In general, given a state vector γ ,
the output production times in a scenario s can be obtained using a matrix-vector multiplication

Hsγ , similar to the one introduced in [1]. We refer to Hs as the output matrix of the scenario s . It
has as many rows as there are outputs in s . Each row of this matrix expresses the relation between

the state vector and the production time of an output in s as the inner product of each row and the

state vector. We assume the rows are ordered such that the first row corresponds to the first output.

For scenario ϕ, the output matrix is defined as follows.

Hϕ =

[
−∞ 2 −∞ 2

8 6 4 6

]
.

For example, using Hϕ the output production times for ϕω can be computed as follows.[
p2k p2k+1

]T
= Hϕγk = HϕGk

ϕγ0.
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pk is the time instance at which the k th output is produced. In Fig. 5 the production time of outputs

are shown by small nodes labelled with k .

3.4 FSM-SADF
This section provides a formal definition of FSM-SADF and defines the performance metrics we

provide analysis for. The definition of FSM-SADF is adapted from the definition provided by

Geilen et al. [11]. An FSM-SADF is defined by a tuple (S,д, r , i, f ,o, L). The set S contains a finite

number of scenarios. Every scenario s ∈ S has an associated SDF graph д(s) and a vector r (s)
of actor repetition counts. The function r (s) maps every actor of д(s) to a non-negative number.

The graph д(s) has a number of initial tokens i(s) ∈ IN distributed over its edges. After scenario s
executes, it leaves a number of final tokens f (s) ∈ IN on some edges of д(s). We assume initial and

final tokens with the same label to be coupled. For every graph д(s), we can construct the state

matrix Gs ∈ IR
f (s)×i(s)
−∞ . The language L describes a set of infinite scenario sequences. We use L in

the definition of FSM-SADF instead of using a specific representation of it such as an FSM, since

we use different representations of the language in this paper, FSMs and regular expressions.

The throughput of dataflow models is determined by how often an actor fires or how often an

actor produces tokens during an infinite execution of the model. We quantify the throughput of

a given scenario sequence of an SADF by the average number of outputs produced per time unit

during the execution of that sequence. The function o : s → IN ∪ {0} maps each scenario to a

non-negative number that corresponds to the number of outputs produced in that scenario. Recall

that in Fig. 4 we associated output with firing of R. That is, we have o(ψ ) = 0, o(χ ) = 1 and o(ϕ) = 2.

A formal definition for the throughput of a given FSM-SADF scenario sequence is as follows.

τ (s̄) = lim

i→∞
sup

Σin=1
o(sn)

γi

 . (2)

The throughput of ϕω is 1/3. This is also observed from the execution trace in Fig. 5. Actor R fires

and produces an output once every three time units on average. The worst-case throughput of an

FSM-SADF is obtained among the set of all sequences (words) in the language L, as follows.

τ = inf

s̄ ∈L
τ (s̄). (3)

A throughput analysis based on this definition is provided by Geilen et al. [11]. The throughput in

the example of Fig. 4 is 0.25.

There are different possible definitions for latency in the literature.We focus on a definition which

is a general version of the one given by Geilen et al. [13]. We assume the outputs produced during

the execution of a scenario sequence will be consumed by an external actor S that is periodically

scheduled with period µ (it is not self-timed). Every firing of this actor consumes an output and

its execution trace is shown in Fig. 5. For the external actor to have a feasible schedule, an output

should be produced no later than the start time of the external actor for all firings. If the throughput

is not lower than 1/µ, there exists a feasible periodic schedule for the external actor. That is, there
exists a λ such that for all k it holds that pk ≤ λ + kµ. Recall that we can compute the production

times of outputs produced during a scenario s using the output matrix Hs ∈ IR
o(s)×i(s)
−∞ . We define

the latency of a scenario sequence relative to a period µ as the earliest start time of the first firing

of the periodically scheduled external actor that consumes outputs with period µ. This means the

latency is defined as the smallest λ such that the above inequality holds for all k . Given an initial

state γ0, the latency of a scenario sequence s̄ relative to period µ is defined as follows.

λ(s̄,γ0, µ) = max

k≥0

pk − µk (4)
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According to Fig. 5, given initial stateγ0 = 0, the latency ofϕω relative to period 3 is 5. Considering

the production times of outputs and the firing start times of the external actor S, the first start

time of S cannot happen earlier than 5. Since the second firing of S requires output number one

which is produced at 8 the earliest. Geilen et al. provide a similar latency definition except that

there is no notion of output actors and an execution of any scenario is regarded as production of

one output [13]. Moreira et al. define the latency as the maximum time interval between the firings

of a sink and an a source actor for all iterations of a CSDF graph [22]. In case that the source is

periodically scheduled with period µ and k is the iteration counter, we arrive at Eq. 4.

Similar to the throughput case, the worst-case latency over the language L is defined as follows.

λ(L,γ0, µ) = max

s̄ ∈L
λ(s̄,γ0, µ) (5)

In Sections 4 and 5 we provide methods for throughput and latency analysis of FSM-SADF models.

The analysis is also applicable to the restricted versions of FSM-SADF such as CSDF and SDF.

An SDF graph is an FSM-SADF graph with exactly one scenario. A CSDF graph allows for cyclic

variations across different firings of the same actor. This is done by defining a number of phases for

an actor and deterministic transitions between the phases. A phase defines a fixed execution time

and fixed rates for actors. A CSDF actor might have different rates and execution times in different

phases. A CSDF can be transformed to an FSM-SADF with a language that contains only one

word [12]. The original definition of CSDF does not allow for actors without self-edges; however a

CSDF graph that violates this rule can still be transformed to an FSM-SADF and analyzed.

3.5 The Regular Expression Representation
We use regular expressions to formalize a regular language that describes the set of infinite scenario

sequences in an FSM-SADF. We use the following syntax for expressions σ .

σ ::= ρω | ρσ | σ1 + σ2

The expression ρω formalizes a regular language by an indefinite concatenation of finite words

from a non-empty ordinary regular expression (a regular expression that recognizes a language of

finite words) ρ. A concatenation ρσ denotes the sequential composition of an ordinary expression

ρ and another expression σ . Finally, + denotes the choice between two expressions. We define an

ordinary regular expression ρ over a finite alphabet S by the following syntax.

ρ ::= ϵ | s | ρ1ρ2 | ρ1 + ρ2 | ρ∗ | ρn

where n is a constant natural number. An ordinary expression ρ can be an empty expression

ϵ , a single letter s ∈ S , a sequential composition or a choice between two ordinary expressions,

a Kleene iteration ∗ of an expression ρ, and an expression ρ that repeats n times. Although it

does not add expressiveness, we add the syntax ρn to the common syntax to be able to compactly

represent the sequential composition of n times ρ. Note that (ρ∗)n is not equivalent to (ρn)∗.
(ρ∗)n = (ρ∗)(ρ∗) · · · (ρ∗) and (ρn)∗ = ϵ + ρn + ρ2n + · · · . L(σ ) is the language recognized by σ .

4 THROUGHPUT ANALYSIS
To compute the worst-case throughput of an FSM-SADF, we use the state matrices of scenarios

and the regular expression representation of the language that specifies the set of possible scenario

sequences. We transform the given FSM-SADF to an FSM-SADF with a language that can be

formalized by a compact FSM compared to the given FSM. The language defined for the convolution

filter in Fig. 2 contains only one sequence, which is expressed by indefinite repetition of an ordinary

expression (with in this case a single sequence) ri
2W ((ri)2(cm)W −2(ro)2)H−2(ro)2W that corresponds

to production of a full frame. By regarding the frame sequence as a single scenario, called the frame
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scenario, we transform the given FSM-SADF into an FSM-SADF which has only one scenario and

the new expression frame
ω
that can be represented by an FSM with only one state.

To complete the transformation, we need to compute the number of outputs and the state matrix

of every scenario in the transformed FSM-SADF. The total number of outputs produced during a

finite scenario sequence is computed by adding up the outputs produced in every scenario in the

sequence. For a sequence s̄ = s1 · · · sn , the total number of outputs produced during the execution

of this sequence is

o(s̄) = o(s1) + · · · + o(sn). (6)

We compute the state matrix of a scenario sequence by multiplying the state matrices of scenarios

in the order that is the reverse of the appearance order of their corresponding scenarios in the

sequence. Let G(s̄) denote the state matrix of a sequence s̄ = s1 · · · sn . Then we have,

G(s̄) = Gsn · · ·Gs1
. (7)

Using a well known method (e.g. [6]) we can transform the expression frame
ω
into an ϵ-free

FSM and then use the existing analysis of Geilen et al. [11] on the transformed FSM-SADF (in this

example it is trivial and it has only one FSM state) to analyze the throughput.

In this particular example we made a new FSM-SADF by defining a single scenario from an

ordinary regular expression that formalized a finite sequence of scenarios in the given FSM-SADF.

In general, to make a transformation to an FSM-SADF with a compact FSM, we define scenarios

for the transformed FSM-SADF from ordinary regular expressions that represent finite sets of

scenario sequences (instead of a single sequence) in the given FSM-SADF as long as the execution

of every sequence in the set produces the same number of outputs. We refer to these expressions

as abstractable expressions. An abstractable expression does not contain Kleene iterations since

they represent infinite sets. Moreover, such an expression does not contain choices between two

scenario sequences that produce different numbers of outputs.

For instance let’s assume the set of scenario sequences of the example in Fig. 4 is given by

((ϕ + ψ χ 2)χ ∗)ω , which is equivalent to the FSM in Fig. 4b. In this expression, ϕ + ψ χ 2
is an

abstractable sub-expression that can be abstracted into a single scenario in the transformed FSM-

SADF. Let’s call it scenarioυ. This sub-expression formalizes the set that contains the two sequences:

ϕ and χψ 2
. Both of the sequences produce two outputs since o(ϕ) = 2 and o(ψ χ 2) = 0 + 2 × 1 = 2;

therefore their representation can be abstracted to a single scenario and o(υ) = 2. χ ∗ is the sub-
expression that follows ϕ +ψ χ 2

. Since it contains a Kleene iteration, it can neither be abstracted

to a single scenario nor concatenate with ϕ +ψ χ 2
and form a larger abstractable sub-expression.

Therefore we consider χ as a single scenario in the transformed FSM-SADF. Finally the compact

regular expression becomes (υχ ∗)ω . Recall that the state matrix expresses the worst-case timing

relations between initial and final tokens in a scenario. We show that the state matrix of scenario υ
is defined as the maximum of the state matrices of the two sequences i.e. Gυ = Gϕ ⊕ G2

χGψ .
We provide a formal definition to transform a given FSM-SADF to a compact FSM-SADF by

replacing all abstractable sub-expressions with new scenarios. Observe that the transformation uses

a representation of FSM-SADF that defines scenario names, state matrices of scenarios, number of

outputs produced in scenarios and a regular expression. Therefore for the transformation, we use a

representation of FSM-SADF that includes the mentioned four elements. This representation is

defined in the following.

Definition 4.1. Consider an FSM-SADFA (S,д, r , i, f ,o, L). Assume Gis a function that maps every

graph д(s) to its state matrix Gs ∈ IR
f (s)×i(s)
−∞ . A tuple M (S,G,o,σ ) is defined as the matrix-level

representation of A, where G(s) = G(д(s)) maps each scenario to a matrix, σ is such that L = L(σ )
and the other two elements preserve their original definitions.
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Definition 4.2. Given an FSM-SADFM(S,G,o,σ ), the compact transformation ofM is an FSM-

SADFMc (Sc ,Gc ,oc ,σ c ) defined as follows.

The inductively defined function c is used to compute the compacted regular expressionσ c = c(σ ).

c(σ ) : c(ρω ) = cω (ρ)

c(ρσ ) = c(ρ)c(σ )

c(σ1 + σ2) = c(σ1) + c(σ2)

c(ρ) : c(s) = s

c(ρ1ρ2) =

{
sρ1ρ2

if ρ1 and ρ2 are abstractable

c(ρ1)c(ρ2) otherwise

c(ρ1 + ρ2) =

{
sρ1+ρ2

if ρ1 + ρ2 is abstractable

c(ρ1) + c(ρ2) otherwise

c(ρn) =

{
sρn if ρ is abstractable

cn(ρ) otherwise

c(ρ∗) = c∗(ρ)
We use sρ to name a scenario that abstracts a set of scenario sequences recognized by a sub-

expression ρ. Observe that c(σ ) does not do any compression except on its ordinary sub-expressions

ρ, while c(ρ) takes an ordinary regular expression in a recursive fashion and defines new scenarios

from abstractable ones. Sc is defined by collecting all scenarios from σ c . Note that Sc might contain

the same scenarios as in S due to c(s) = s . For every scenario sρ ∈ Sc , the state matrix Gsρ = Gc (sρ )
represents the worst-case timing relations (between the initial and final tokens) among all sequences

recognized by ρ. We compute the functions Gc
and oc as follows.

Gc (s) = G(s) = Gs if s ∈ S oc (s) = o(s) if s ∈ S

Gc (sρ1ρ2
) = Gc (sρ2

)Gc (sρ1
) oc (sρ1ρ2

) = oc (sρ1
) + oc (sρ2

)

Gc (sρ1+ρ2
) = Gc (sρ1

) ⊕ Gc (sρ2
) oc (sρ1+ρ2

) = oc (sρ1
) = oc (sρ2

)

Gc (sρn) = (Gc (sρ ))
n oc (sρn) = noc (sρ )

We need the following two propositions later in the proof of our result.

Proposition 4.3. Consider an FSM-SADF M(S,G,o,σ ) and its compact transformation

Mc (Sc ,Gc ,oc ,σ c ). The following statements hold.

(1) ∀sρ ∈ Sc ,Gc (sρ ) =
⊕

s̄ ∈L(ρ) G(s̄). (2) ∀sρ ∈ Sc and ∀s̄ ∈ L(ρ),o(s̄) = oc (sρ ).

Proposition 4.4. Consider an FSM-SADF M(S,G,o,σ ) and its compact transformation

Mc (Sc ,Gc ,oc ,σ c ). Let ρ be a sub-expression in σ and ρc be the compact transformation of it, i.e.

ρc = c(ρ). The following statement holds.

∀s̄ ∈ L(ρ), ∃ s̄c ∈ L(ρc ) s.t. G(s̄) ≤ G(s̄c ) and o(s̄) = o(s̄c ).

The proofs of the above propositions are straightforward using structural induction on ρ. We

can now prove the following result.

Theorem 4.5. An FSM-SADFM(S,G,o,σ ) and its compact transformationMc (Sc ,Gc ,oc ,σ c ) have
the same throughput.

Proof. We divide the proof into two parts, first proving that for every scenario sequence s̄ ∈ L(σ )
there exist a scenario sequence s̄c ∈ L(σ c ) such that τ (s̄c ) ≤ τ (s̄) and then proving that for every

s̄c there exists an s̄ such that τ (s̄) ≤ τ (s̄c ). We prove the first part by structural induction on σ .
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• For the base case i.e. in case σ = ρω , let s̄ = t̄1t̄2t̄3 · · · such that t̄i ∈ L(ρ). According to

Proposition 4.4, for any t̄i , there exists a sequence t̄
c
i such that G(t̄i ) ≤ G(t̄ci ) and o(t̄i ) = o(t̄

c
i ).

We let s̄c = t̄c
1
t̄c
2
t̄c
3
· · · . To show that τ (s̄c ) ≤ τ (s̄) let s̄i = t̄1t̄2 · · · t̄i and s̄ci = t̄c

1
t̄c
2
· · · t̄ci . We

know that for any i , G(s̄i ) ≤ G(s̄ci ) and o(s̄i ) = o(s̄
c
i ). Hence we have

τ (s̄) = lim

i→∞
sup

Σin=1
o(s̄i )

G(s̄i )γ0



 ≥ lim

i→∞
sup

Σin=1
o(s̄ci )

G(s̄ci )γ0



 = τ (s̄c ).
• In case σ = ρσ2, let s̄ = s̄1s̄2 such that s̄1 = L(ρ) and s̄2 ∈ L(σ2). Note that the throughput

of s̄ is equal to the throughput of s̄2, since s̄1 is only a finite prefix of s̄ and it does not affect

the throughput. According to the induction hypothesis there exists a sequence s̄c
2
such that

τ (s̄2) ≥ τ (s̄c
2
). Hence we have τ (s̄) = τ (s̄2) ≥ τ (s̄c

2
).

• In case σ = σ1 + σ2. Consider σ
c
1
and σ c

2
such that c(σ1 + σ2) = c(σ1) + c(σ2) = σ c

1
+ σ c

2
.

Without loss of generality, let s̄ belong to L(σ1). According to the induction hypothesis there

exists s̄c
1
∈ L(σ c

1
) such that τ (s̄) ≥ τ (s̄c

1
).

For the second part of the proof let s̄c = sc
1
sc

2
sc

3
· · · where sck ∈ Sc . According to [9], for any

scenario sequence s̄c there exists a periodic scenario sequence s̄co = (sc
1
sc

2
· · · scn)

ω
for some n, such

that τ (s̄co ) ≤ τ (s̄c ). Therefore to prove the second part, it suffices to show that there exist a sequence

s̄ such that τ (s̄) ≤ τ (s̄co ). The throughput of a periodic sequence is limited by the critical cycle in a

graph ((max,+) automaton) that encodes the dependencies between all initial and final tokens in

the sequence [11]. The nodes in this graph represent the initial/final tokens in each of the scenarios.

The state matrices are used to connect the nodes to each other. For every non −∞ element in the

matrix there exists an edge between the corresponding initial/final tokens, labelled with the value

of that element and with the number of outputs produced in that scenario. The critical cycle is

composed of critical edges and has the lowest output/time ratio.

Now let Gi j denote the element on row i , column j of matrix G. The critical cycle of the graph
for s̄co = (sc

1
sc

2
· · · scn)

ω
specifies a pair ((i, j)k ,ok ) for each scenario sck , such that Gi j (s

c
k ) is the

critical element (the element corresponding to the critical edge) in the state matrix of sck , and
ok = o(sck ). Now let ρk be the sub-expression abstracted by sck . It follows from Proposition 4.3

that s̄k = argmaxt̄k ∈L(ρk ) Gi j (t̄k ) exists such that Gi j (s̄k ) = Gi j (s
c
k ) and o(s̄k ) = ok . Now if we let

s̄ = (s̄1s̄2 · · · s̄n)
ω
, there exists a cycle in the graph of s̄ with the same cycle ratio as s̄co . Therefore

the graph of s̄ has a critical cycle which has at most the same ratio as s̄c , i.e. τ (s̄) ≤ τ (s̄co ). Note that
if the periodic sub-sequence s̄co is in the language of a sub-expression in σ c , then s̄ belongs to the

language of a sub-expression in σ . �

We provide an algorithm for the throughput analysis of FSM-SADF graphs. The algorithm first

performs the FSM-SADF transformation defined by Def. 4.2, and then uses a conversion from

regular expressions to an ϵ-free FSMs for the final analysis on the transformed FSM-SADF. Next

we discuss the complexity of this algorithm. We assume a regular expression σ is given by some

syntax tree tσ . The leaves of the syntax tree are labelled by scenarios s ∈ S , and the inner nodes are
either a binary operator labelled + or · (sequential composition), or they are a unary operator and

labelled by ∗,ω or a natural number n (for the constant repetition). Computing c(σ ), Gc
and oc

can be done by a reversed preorder traversal of tσ . The time complexity of computing c(σ ) and oc

is linear in the size (the number of nodes) of tσ . For a + or · node, computing Gc
has a constant

complexity and for an n node it has a logarithmic complexity in the value of n. It is common to

use Polish Notation (PN) to represent σ . If we represent the value nwith log(n) digits and use a

character to represent each scenario, then the complexity of the transformation by Def. 4.2 is linear

in the length of the representation of σ .
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For deterministic cases of FSM-SADF i.e. SDF and CSDF, the transformed FSM-SADF will

always have a regular expression that represents indefinite repetition of a single scenario. Such an

expression can be transformed to an ϵ-free FSM with only one state, in constant time. Therefore

the throughput computation for deterministic cases of FSM-SADF is always linear in the length of

the regular expression. For non-deterministic cases of FSM-SADF, if for all sub-expressions ρn in

σ , ρ are abstractable, then the transformed FSM-SADF will have a conventional regular expression

(without a repetition construct). A sequential algorithm is provided by Hagenah et al. for conversion

from a conventional regular expression to an ϵ-free FSM that takes O(k log
2(k)) time, where k is

the length of the regular expression [17]. If in the worst-case, the length of the expression for

the transformed FSM-SADF is equal to the length of the expression in the given FSM-SADF, then

the throughput computation will have a polynomial complexity. For sub-expressions ρn that are

not abstractable, the conversion to FSM is pseudo-polynomial in n, which makes the throughput

computations pseudo-polynomial in the length of the regular expression.

5 LATENCY ANALYSIS
This section provides a compositional latency analysis for an FSM-SADF, of which the language is

given by a regular expression. We first provide a latency analysis for a set of finite SADF scenario

sequences given by an ordinary regular expression, as a means to compute the latency of the set of

infinite scenario sequences of an FSM-SADF. A naive method to compute the latency of a finite

scenario sequence is to compute the production times of all outputs and use Eq. 4 where k has an

upper bound. Consider again the scenario sequence for producing a 9×11 frame in the filter example

i.e. (ri)18((ri)2(cm)7(ro)2)9(ro)18

. Scenario cm is the first scenario that appears in the sequence that

produces output. This scenario follows the scenario sequence that corresponds to the frame rush-in

and the line rush-in phases. To proceed, we provide the output matrices: Hcm =
[

13 11 2

]
and Hro =

[
−∞ 9 2

]
. Assuming the initial state vector 0, the outputs are produced at

p0 = HcmG20

ri
0 = 53 p1 = HcmGcmG20

ri
0 = 57 · · · p98 = HroG17

ro

(
G2

ro
G7

cm
G2

ri

)
9 G18

ri
0 = 440.

Using Eq. 4, the latency of producing pixels in one frame relative to period 5 (derived from the

earlier computed max throughput of 99/432) is 53. According to Fig. 3 the first output contributes

to the latency. In the beginning of the execution the convolution filter goes through the frame and

line rush-in phases where there are no outputs produced. However, after getting past theses phases,

outputs are produced more frequently. Assuming that the first start time of the external actor (see

the definition of latency in Section 3.4) is 53, the next outputs will be available before the next starts

of the external actor with µ = 5 (this is true only when the first output causes the highest latency).

Although computing the production times of all outputs one by one is a solution to determine

the latency of a sequence, it would scale only linearly in the total number of scenarios in the

sequence. Therefore, we provide a compositional method to efficiently compute the latency of a

finite SADF scenario sequence. In this section s̄ denotes a finite sequence unless stated otherwise.

For readability, we leave µ implicit and write λ(s̄,γ0) instead of λ(s̄,γ0, µ). For all examples in this

section we assume µ = 5 and γ0 = 0.
A scenario sequence is either a single scenario or the sequential composition of two sub-sequences.

In case s̄ is a single scenario s̄ = s that produces o(s) > 0 outputs during its execution, we can use

the output matrix to capture the output production times and use them to compute the latency. For

instance, for scenario cm we can obtain the latency as follows.

λ(cm,γ0) = p0 − 5 × 0 = Hcm0 − 0 =
[

13 11 2

]
0 = 13
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Fig. 6. Execution traces for two example scenario sequences.

In general, for a scenario s , the k th element of Hsγ0 corresponds to the production time of the

k th output in the scenario. Therefore, we can obtain the latency as follows.

λ(s,γ0) = max

0≤k<o(s)
pk − µk = max

0≤k<o(s)
(Hsγ0)k − µk

Alternatively, we can define the compensation matrix,

M(s) =
[

0 −µ −2µ · · · (o(s) − 1)µ
]
,

that captures the number of periods occurring till the corresponding output. Then we compute the

latency of s in matrix form as

λ(s,γ0) = M(s)Hsγ0 =
[
HT
sM

T (s)
]T

γ . (8)

Observe that Eq. 8 computes the following vector.

λ(s) = HT
sM

T (s). (9)

We refer to λ(s) as the latency vector of scenario s . The latency vector λ(s) is a column vector

that expresses the timing relations between the availability times of labelled initial tokens and the

production times of outputs relative to the required period µ, during the execution of the scenario.

According to Eq. 8 the latency equals the inner product of the latency vector and the initial state

vector, i.e.,

λ(s,γ0) = λT (s)γ0. (10)

Let’s consider an example of this case in which s = cm. Using the above equation, the latency is

computed as follows.

λ(cm) =
[

13 11 2

]T [
0

]
=

[
13 11 2

]T
λ(cm, 0) =

[
13 11 2

] [
0 0 0

]T
= 13
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Fig. 6a shows the execution trace of scenario cm followed by the execution of the external actor S

that needs this output. The output is produced at 13. Therefore the latency is 13 since the start of

actor S cannot happen earlier.

Now let s̄ be the sequential composition of two scenario sequences i.e. s̄ = s̄1s̄2. We work out

an example where s̄1 = cm and s̄2 = ro i.e. s̄ = (cm)(ro). We need to compute the maximum of the

latencies of both scenarios. The latency of cm is 13 (using Eq. 8). Since ro follows cm, the initial state

vector for ro is γ1 = Gcmγ0 =
[

2 6 13

]T
. This can be observed in Fig. 6b by circles marked

with number one in the x , y, z rows. To compute the latency of ro as the second scenario in the

sequence (cm)(ro), we also need to account for the output produced in cm, because the first firing

of the external actor S consumes this output. Therefore, we need to compute the latency of ro with

the state vector γ1 and subtract 5 from the result to compensate for the output produced by cm.

Using Eq. 8 with γ1 for ro returns 15 and, subtracting 5 from 15 we obtain the latency of 10 for ro.

The latency of the entire sequence is the maximum of 13 and 10, which is 13.

In general, in a sequence s1s2, to compute the latency of the second scenario s2, we need to

compute the latency of s2 with the state vectorγ1 and subtract o(s1)µ from the result to compensate

for all outputs produced in s1, i.e. we compute λ(s2,γ1) − o(s1)µ. Alternatively, we can consider the

compensation term −o(s1)µ in computing the latency of the second scenario by normalizing the

state vector γ1 as follows.

γ̂1 = γ1 − o(s1)µ = Gs1
γ0 − o(s1)µ = (Gs1

− o(s1)µ)γ0.

We normalized the state vector by multiplying the initial state vector by the following matrix.

Ĝ(s) = Gs − o(s)µ . (11)

We define the normalized state matrix Ĝ(s) as the state matrix of scenario s that is normalized for

its outputs. Now the latency over the sequence s1s2 can be obtained as follows.

λ(s1s2,γ0) = λ(s1,γ0)⊕λ(s2, Ĝ(s1)γ0) = λT (s1)γ0 ⊕λT (s2)Ĝ(s1)γ0 =
[
λT (s1) ⊕ λT (s2)Ĝ(s1)

]
γ0 (12)

Hence the latency vector for s̄ = s1s2 is

λ(s1s2) =
[
λT (s1) ⊕ λT (s2)Ĝ(s1)

]T
= λ(s1) ⊕ ĜT (s1)λ(s2) (13)

Again considering the sequence (cm)(ro), we compute the normalized state matrix of cm (Eq. 11)

and the latency vector of ro (Eq. 9) as follows.

Ĝ(cm) = Gcm − o(cm) × µ =


2 −∞ −∞

6 4 −∞

13 11 2

 − 1 × 5 =


−3 −∞ −∞

1 −1 −∞

8 6 −3


λ(ro) =

[
−∞ 9 2

]T [
0

]
=

[
−∞ 9 2

]T
The latency according to Eq. 12 is computed as follows.

λ((cm)(ro),γ0) =


[

13 11 2

]
⊕

[
−∞ 9 2

] 
−3 −∞ −∞

1 −1 −∞

8 6 −3





0

0

0

 = 13

From Fig. 6b, we can obtain the output production times and compute the latency according to Eq. 4

as λ((cm)(ro), 0) = (13 − 0) ⊕ (15 − 5) = 13. This confirms the result computed earlier from Eq. 12.

Note that using Eq. 12, the latency of a sequence composed of two scenarios is obtained by first

computing a vector that is then multiplied by the initial state vector. This vector extends the concept
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of the latency vector of a scenario to a sequence. In general, for any finite sequence s̄ = s1 · · · sn the

latency vector λ(s̄) is defined as follows.

λ(s̄) =
⊕

0<k≤n

(
ĜT (s1 · · · sk−1)λ(sk )

)
(14)

In Eq. 14, the normalized state matrix Ĝ(s̄) of a sequence s̄ is the state matrix of the sequence that

accounts for all outputs produced in the sequence i.e.

Ĝ(s̄) = G(s̄) − o(s̄). (15)

In Eq. 14, for k = 1, s1 · · · sk−1 represents the empty scenario sequence ϵ and Ĝ(ϵ) is defined to

be the identity (max,+) matrix I. We show that the latency of a sequence equals the inner product

of the latency vector of the sequence and the initial state vector.

Proposition 5.1. The latency of any finite scenario sequence s̄ = s1 · · · sn is equal to the inner

product of its latency vector and the initial state vector i.e.

λ(s̄,γ0) = λT (s̄)γ0. (16)

Proof. First we distribute the max term in the definition of the latency (Eq.4) into n max terms

each of which corresponds to the latency of outputs produced during a single scenario in the

sequence.

λ(s̄,γ0) = max

0≤k<o(s̄)
(pk − kµ)

= max

0≤k<o(s1)
(pk − kµ) ⊕ max

o(s1)≤k<o(s1s2)
(pk − kµ) ⊕ · · · ⊕ max

o(s1 · · ·sn−1)≤k<o(s̄)
(pk − kµ)

= max

0≤k<o(s1)
(pk − kµ) ⊕ max

0≤k<o(s2)
(pk+o(s1) − kµ) − o(s1)µ ⊕ · · ·

⊕ max

0≤k<o(sn )
(pk+o(s1 · · ·sn−1) − kµ) − o(s1 · · · sn−1)µ . (17)

Recall that the production time of outputs in scenario si within a scenario sequence, can be computed

in vector HsiG(s1 · · · si−1)γ0. Using the compensation matrix M(s) we can rewrite each of the max

terms in the following form.

max

0≤k<o(si )
(pk+o(s1 · · ·si−1) − kµ) − o(s1 · · · si−1)µ

=
[
po(s1 · · ·si−1) − 0 po(s1 · · ·si−1)+1 − µ po(s1 · · ·si−1)+2 − 2µ · · · po(s1 · · ·si−1)+o(si )−1 − (o(si ) − 1)µ

]
− o(s1 · · · si−1)µ = M(si )HsiG(s1 · · · si−1)γ0 − o(s1 · · · si−1)µ = M(si )Hsi Ĝ(s1 · · · si−1)γ0.

By substituting the max terms in Eq.17 with their matrix forms above, we get

λ(s̄,γ0) =

[ ⊕
0<k≤n

(
M(sk )Hsk Ĝ(s1 · · · sk−1)

)]
γ0 =

[ ⊕
0<k≤n

(
λT (sk )Ĝ(s1 · · · sk−1)

)]
γ0 = λT (s̄)γ0.

�

Now we show how to compositionally compute the latency vector of a sequence by splitting the

sequence from any arbitrary point in the sequence. We show that the latency vector of s̄ = s̄1s̄2

can be computed from the latency vectors of s̄1 and s̄2 similar to the sequential composition of two

scenarios (Eq. 13) as follows.

λ(s̄1s̄2) = λ(s̄1) ⊕ ĜT (s̄1)λ(s̄2). (18)

Proposition 5.2. Consider a finite sequence s̄ = s1 · · · smsm+1 · · · sn . Let’s assume s̄1 = s1 · · · sm
and s̄2 = sm+1 · · · sn . The latency vector λ(s̄) can be computed by Eq.18.
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Proof.

λT (s̄) =λT (s1 · · · smsm+1 · · · sn) =

[ ⊕
0<k≤m

λT (sk )Ĝ(s1 · · · sk−1)

]
⊕

[ ⊕
m<k≤n

λT (sk )Ĝ(s1 · · · sk−1)

]
=λT (s̄1) ⊕

[ ⊕
m<k≤n

λT (sk )G(s1 · · · sk−1) − o(s1 · · · sk−1)

]
=λT (s̄1) ⊕

[ ⊕
m<k≤n

λT (sk )G(sm+1 · · · sk−1)G(s1 · · · sm) − o(sm+1 · · · sk−1) − o(s1 · · · sm)

]
=λT (s̄1) ⊕

[ ⊕
m<k≤n

λT (sk ) [G(sm+1 · · · sk−1) − o(sm+1 · · · sk−1)] [G(s1 · · · sm) − o(s1 · · · sm)]

]
=λT (s̄1) ⊕

[ ⊕
m<k≤n

λT (sk )G(sm+1 · · · sk−1) − o(sm+1 · · · sk−1)

]
[G(s1 · · · sm) − o(s1 · · · sm)]

=λT (s̄1) ⊕

[ ⊕
m<k≤n

λT (sk )Ĝ(sm · · · sk−1)

]
Ĝ(s̄1) = λT (s̄1) ⊕ λT (s̄2)Ĝ(s̄1)

By taking the transpose of both sides of the above equation we obtain Eq.18. �

Next we show that we can use Eq. 18 to efficiently compute the latency of repetitive sequences.

To compute the latency vector of a finite sequence that repeats n times i.e. s̄n, we can recursively

use Eq. 18 as follows.

λ(s̄n) = λ(s̄s̄n−1) = λ(s̄) ⊕ ĜT (s̄)λ(s̄n−1) = λ(s̄) ⊕ ĜT (s̄)
(
λ(s̄) ⊕ ĜT (s̄)λ(s̄n−2)

)
=

( ⊕
0≤k<n

(ĜT (s̄))k

)
λ(s̄) (19)

Computation of Eq. 19 looks linear in n; however, it can be computed with the worst-case

complexity of O(logn). Let’s assume A(V ) is the adjacency graph of G where V is the number of

vertices of A. When n > V , and there are no positive cycles in A, computing

⊕
0≤k<n G

k
is to

compute the longest paths from all nodes to all nodes in A, which has worst-case complexity of

O(V 3) using the Floyd-Warshall algorithm [7]. When n > V , and there is a positive cycle in A,⊕
0≤k<n G

k
can be computed with the complexity of O(logn), because

⊕
0≤k<n G

k = (I⊕ G)n−1

and rasing a matrix to a power can be computed with log complexity. When n ≤ V , the complexity

of computing

⊕
0≤k<n G

k
is linear in n. For multi-scale dataflow models, typically n ≫ V since, n

indicates the number of repetitions of an execution and V indicates the number of initial tokens in

the dataflow model. In the convolution filter example, the scenario repetitions can be as large as the

number of lines or columns of the input frame e.g. 1000 but the number of initial tokens is just 3.

We introduce an approach to compute the latency of a set of sequences based on the compositional

latency analysis provided for a single sequence. Since we are dealing with a set of sequences, we

first generalize the latency vector concept defined for a single sequence to a set of sequences. To

obtain the worst-case latency of the set, we define the latency vector λ(ρ) of an ordinary regular

expression ρ as the maximum latency vector over all sequences in the language of ρ:

λ(ρ) =
⊕
s̄ ∈L(ρ)

λ(s̄). (20)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



Scalable Analysis for Multi-Scale Dataflow Models 1:21

The goal is to do compositional latency analysis for a language of scenario sequences similar to

what we did for a single sequence case. Recall that to compute the latency of a sequence s̄2 that

follows sequence s̄1, we had to compute a normalized state matrix that accounts for the outputs

produced during s̄1. In the case of expressions, to compute the latency of ρ2 that follows ρ1, we need

to obtain the worst-case normalized state matrix over all sequences recognized by ρ1. Therefore

we define the normalized matrix Ĝ(ρ) of a regular expression ρ as the maximum of normalized

matrices over all sequences in the language of ρ i.e.

Ĝ(ρ) =
⊕
s̄ ∈L(ρ)

Ĝ(s̄). (21)

Note that we can not use Eq.21 to compute Ĝ(ρ) since L(ρ) might be an infinite set. Therefore we

provide a recursive method to compute it and later we prove that the computation corresponds to

the definition. The computation is defined as follows.

Ĝ(ρ) : Ĝ(ρ1ρ2) = Ĝ(ρ2)Ĝ(ρ1) (22)

Ĝ(ρ1 + ρ2) = Ĝ(ρ1) ⊕ Ĝ(ρ2) (23)

Ĝ(ρ∗) = Ĝ∗(ρ) (24)

Ĝ(ρn) = Ĝn(ρ) (25)

Now we provide a method to efficiently compute the latency vector of an ordinary regular

expression ρ for every syntactic composition in an ordinary regular expression as follows.

λ(ρ) : λ(ρ1ρ2) = λ(ρ1) ⊕ ĜT (ρ1)λ(ρ2) (26)

λ(ρ1 + ρ2) = λ(ρ1) ⊕ λ(ρ2) (27)

λ(ρ∗) = (Ĝ∗(ρ))Tλ(ρ) (28)

λ(ρn) =
⊕

0≤k<n

(ĜT (ρ))kλ(ρ) (29)

Note that if for an expression ρ the star closure Ĝ∗(ρ) in Eq. 28 or Eq. 24 does not exist, it means

that the production of outputs during at least one sequence in the language of that expression

cannot keep up with the consumption of the outputs with period µ i.e. the throughput is too low

and therefore the latency is not defined.

Now we provide proof of correctness for latency vector computations for ordinary regular

expressions. We first show that using Eqs. 22-25 we can compute the normalized matrix of any

recursive combination of ordinary regular expressions.

Proposition 5.3. For any ordinary expression ρ, Ĝ(ρ) computed by Eqs. 22-25 satisfies Ĝ(ρ) =⊕
s̄ ∈L(ρ) Ĝ(s̄).

Proof. We prove this by structural induction on ρ. The base case ρ = s is trivial. For the induction
steps we have:

Ĝ(ρ1ρ2) =
⊕

s̄1s̄2∈L(ρ1ρ2)

G(s̄1s̄2) − o(s̄1s̄2) =
⊕

s̄1∈L(ρ1),s̄2∈L(ρ2)

G(s̄2)G(s̄1) − o(s̄1) − o(s̄2)

=
⊕

s̄2∈L(ρ2)

G(s̄2) − o(s̄2)
⊕

s̄1∈L(ρ1)

G(s̄1) − o(s̄1) = Ĝ(ρ2)Ĝ(ρ1).

Ĝ(ρ∗) =
⊕

s̄ ∈
⋃
n≥0

L(ρn )

Ĝ(s̄) =
⊕
n≥0

⊕
s̄ ∈L(ρn )

Ĝ(s̄) = I⊕ Ĝ(ρ) ⊕ Ĝ2(ρ) ⊕ · · · = Ĝ∗(ρ).
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The proof for Ĝ(ρn) follows straightforwardly from Ĝ(ρ1ρ2), and for Ĝ(ρ1 + ρ2) it is trivial. �

Proposition 5.4. For any ordinary expression ρ, λ(ρ) computed by Eqs. 26-29 satisfies λ(ρ) =⊕
s̄ ∈L(ρ) λ(s̄).

The proof is straightforward using structural induction (using Eq. 18 in the induction steps).

Finally we provide the latency analysis for an FSM-SADF with a given regular expression σ . We

use the same latency vector definition (Eq.20) for regular expressions where s̄ denotes in this case,

an infinite scenario sequence. We use the fact that the latency vector of an indefinite repetition of

an ordinary regular expression i.e. ρω directly follows from Eq.29 when k does not have an upper-

bound. This enables us to provide the following computations for the latency of an FSM-SADF.

λ(σ ) : λ(ρω ) = (ĜT (ρ))∗λ(ρ) (30)

λ(ρσ ) = λ(ρ) ⊕ ĜT (ρ)λ(σ ) (31)

λ(σ1 + σ2) = λ(σ1) ⊕ λ(σ2). (32)

Proposition 5.5. For any expressionσ ,λ(σ ) computed by Eqs. 30-32 satisfiesλ(σ ) =
⊕

s̄ ∈L(σ ) λ(s̄).

The proof is straightforward using structural induction on σ . For the filter example on 9 × 11

frames, we have λT
(
((ri)18((ri)2(cm)7(ro)2)9(ro)18)ω

)
=

[
53 51 2

]
, and the latency is 53 when

γ0 = 0. The latency vector signifies that there are at least 53, 51 and 2 time units time differences

between the output(s) that contribute to the worst-case latency (in this case the first output) and

the availability time of initial tokens x , y and z respectively. This can be observed also from Fig. 3.

6 EVALUATION
We implemented the scalable throughput and latency analysis as two algorithms in the SDF3

tool [30]. We applied our analysis to dataflowmodels of several realistic applications listed in Table 1:

H.263 decoder, MP3 decoder, down-sampler (DS), up-sampler (US), sampler (DS→US), convolution

filter (CF), sub-sampled convolution filter (DS→CF→US) and multi-resolution convolution filter

(MRCF). The SDF graph of the H.263 decoder is taken from Stuijk et al. [28]. This graph models

the behaviour of the decoder on QCIF size images. We adapted the graph to model its behaviour

for 16CIF (1408 × 1152) images. We applied our scalable analysis on this application by expressing

its behaviour as an SADF sequence of three different modes. The MP3 decoder is modelled as

an FSM-SADF [10]. To apply our analysis, we formalized its FSM by a regular expression. The

convolution filter is modelled as shown in Fig. 2. The up-sampler uses a 3 × 3 kernel to generate

four pixels out of every input pixel. The generated pixels form two pixels in one line and two pixels

in the next line. To preserve the line-by-line output of data, the two bottom pixels are first stored as

the kernel moves along the first line. After the first line is output, the stored pixels from the second

line are output to form another complete line. The structure of operations is as follows.

(1) frame rush-in phase: read pixels one by one without computing any output yet for one

line of the image, orW pixels;

(2) line rush-in phase: read one pixel without producing output;

(3) line computation phase: one pixel is consumed and two pixels are produced (and 2 others

are stored) for a whole line minus one pixel i.e.W − 1 pixels. During this phaseW − 1 pixels

are consumed and 2W − 2 pixels are produced;

(4) line rush-out: two pixels are produced without reading new input;

(5) memory flush: one line of output is flushed from memory: 2W pixels;

(6) repeat steps 2–5 for H − 1 lines;

(7) frame rush-out phase: produce 2 more lines of output without new input: 4W pixels.
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Table 1. Throughput and latency analysis results for few realistic applications

Application L F REM (Exact) SOTA (Exact) SOTA (Approx.)

Thr. RT Lat. RT Thr. RT Thr. RT

CF (8) 37 312 0.2253 <1 49 <1 0.2253 <1 0.2025 6.00e+3

CF (32) 45 4344 0.2426 <1 145 <1 0.2426 1 0.2229 8.40e+4

CF (128) 53 66552 0.2480 <1 529 <1 0.2480 7 − −

CF (512) 61 1.05e+6 0.2495 <1 2065 <1 0.2495 122 − −

CF (2048) 69 1.67e+7 0.2497 <1 8209 <1 0.2497 2010 − −

DS (512) 75 8.52e+5 9.99e−2 <1 2063 <1 9.99e−2 93 − −

DS (1024) 81 3.40e+6 9.99e−2 <1 4111 <1 9.99e−2 360 − −

US (128) 59 2.13e+5 0.3073 <1 271 <1 0.3073 22 − −

US (512) 69 3.40e+6 0.3076 <1 1039 <1 0.3076 352 − −

DS→US (2048) 98 2.66e+7 0.3076 1 18453 1 0.3076 3202 − −

DS→CF→US (2048) 113 3.07e+7 0.2496 1 38947 1 0.2496 3695 − −

3-level MRCF (2048) 168 7.12e+7 0.2497 1 99225 1 0.2497 8571 − −

H.263 (16CIF) 26 3.04e+5 1.17e−8 <1 1.40e+4 1 1.17e−8 21 4.84e−10 <1

MP3 decoder 12 3169 1.71e−7 9 1.23e+7 9 1.71e−7 14 N /A N /A
Example (Fig. 4) 13 11 0.25 1 6 <1 0.25 <1 N /A N /A

We can use the same scenario graphs used in the model of the convolution filter (Fig. 2) with a

suitable expression to express the behaviour of the up-sampler. For example the following expression

models the pattern we just explained for the up-sampler.

σus = (ri)W
(
(ri) ((cm)(ro))W −1 (ro)2W +2

)H−1

(ro)4W

For the computation phase, we used an alternation of ro and cm to express the behaviour in which

one pixel is consumed and two pixels are produced. We also used ro for the memory flush and

rush-out phases. For the down-sampler we use a 4 × 4 kernel to generate one pixel out of every 4

input pixels. To reduce the number of output pixels by four, the down-sampler produces an output

only for every other input line and only for every other input pixel. Again if we use the same

scenario graphs we used in the filter example, the pattern in which our down-sampler behaves can

be described by the following expression, assumingW and H are even numbers.

σds = (ri)W
(
(ri)W ((ri)(cm))W /2

)H/2−1

(ri)W (ro)W /2

The sampler is an up-sampler down-sampler pipeline, where the up-sampler consumes the

outputs produced by the down-sampler. In the sub-sampled convolution filter, first the image is

down-sampled, then the convolution is applied to the down-sampled image and finally the filtered

image is up-sampled. A block diagram of a multi-resolution filter is provided by Keinert et al. [19].

Table 1 shows the analysis results for the mentioned applications using several input image sizes.

The number x following the applications denotes that the image size is x × x . Parameter L is the

length of the representation of the regular expression. For SDF and CSDF graphs, parameter F is

the total number of actor firings within one iteration of the application, and for FSM-SADF it is

the sum of all actor firings in one iteration of all scenarios. In this table the Regular Expression

Method (REM) is the method provided in this paper. It uses the regular expression representation

of FSM-SADF to recognize repeated sequences and transform the FSM-SADF to an FSM-SADF

with a fewer number of FSM states. Then it uses the method of Geilen et al. [11] as the final

throughput analysis. Moreover, it uses the same representation to compute the latency. SOTA
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represents the state of the art throughput analysis methods (exact CSDF analysis [31], exact FSM-

SADF analysis [11] and approximate CSDF analysis [8]). There is no existing latency analysis. The

run-times (RT) reported in this table are obtained on an Ubuntu server with a 3.8Ghz processor

and they are measured in milliseconds; the experiments that took more than 10 minutes were

terminated, indicated with hyphens for the result and run-time. The results confirm that the REM

method is scalable to applications operating on large image frames. Observe that the run-time of the

state of the art methods scale linearly in F . This causes scalability problems for, for example, buffer

sizing algorithms on complex applications such as multi-resolution filters. The approximate analysis

often takes more than the exact analysis to terminate or it is very pessimistic. The analysis run-time

for the approximate method is mainly due to transformation to a conservative SDF. According to

De Groote et al., the transformation has a quadratic time complexity in the maximum number of

CSDF phases, which for our examples is in the order of F [8]. We used the REM method on the MP3

decoder and the example in Fig. 4 to show the applicability of the method to FSM-SADF models.

However, we do not gain much with our throughput analysis compared to the existing methods,

because these models do not contain repetitive structures.

7 CONCLUSION
We provided a scalable throughput and latency analysis for multi-scale applications that are

modelled by scenario-aware dataflow graphs. We showed that such models often have a cyclic

behaviour with a large number of actor firings in the cycle. We overcame the scalability issue of

existing exact analysis techniques by exploiting the repetitive structures within the large cycle. Our

analysis scales logarithmically in the number of repetitions for such repetitive structures whereas

the state of the art analysis scales at least linearly. We implemented our analysis and applied it to

several realistic applications. The results show that our analysis provides accurate analysis in a

shorter time compared to the existing dataflow analysis methods.
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