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Abstract. Remote monitoring of vital signs has a wide range of ap-
plications. In this paper we propose a method to identify respiratory
patterns from low-resolution thermal video data using a nearest neighbor
data association (NNDA) and nearest neighbor Kalman filter (NNKF)
based algorithms along with multi-class support vector machine (SVM).
The method in this work is evaluated against breathing belt data as a
reference, collected from healthy volunteers. Correlation of the proposed
method with airflow derived from the breathing belt was found to be 0.7.
The SVM classifier is able to distinguish between the breathing patterns
from derived airflow with 60% accuracy.

1 Introduction

This paper is concerned with the measurement of breathing patterns using non-
contact thermal imaging. The aim is to develop a new computer vision based
methodology for processing of the thermal images in order to produce a measure-
ment of respiration. Accurate measurement of respiration plays an important
role in assessing and treating several respiratory disorders. These disorders are
commonly identified by changes in the respiratory rate (RR), abnormal changes
in breathing volume, or changes in respiratory sounds. A raised or irregular RR
has also been shown to be a strong predictor of serious clinical events, such as
cardiac arrest, meaning that monitoring of respiratory rate is very important for
patient assessment [1, 2].

Methods of measuring respiratory function can be divided into two categories
- contact and non-contact [3]. In contact respiratory function monitoring, the
instrument makes direct contact with the subject’s body, whereas in non-contact
monitoring there is no direct contact with the body. There have been numerous
studies on both monitoring methods, as reviewed by Folke et al [4]. Non-contact
assessment of breathing function has been of growing interest in the past two
decades due to its advantages - for example, monitoring of infants or monitoring
severely burnt patients. The use of thermal imaging to measure respiratory
rate has been introduced in several studies (e.g. [5–10]). Thermal imaging is
a remote non-contact monitoring method, with a passive nature – it does not
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supply current or emit radiation to the patient but it measures the natural heat
radiation of the target. It is independent from illumination, making it useful in
sleep studies.

The contribution of this article is to develop a new method which uses re-
mote, non-contact low-resolution thermal imaging to track, recognize, and clas-
sify different breathing patterns. The temperature of each nostrils is measured
separately, and each nostril is tracked based on the thermal feature of breathing.
We also developed a thermal model to estimate the airflow through the nostrils.
A respiratory belt was used as a gold-standard reference method. In contrast
with earlier studies [11, 12], we processed the thermal signal using a nearest
neighbour data association algorithm to track the individual nostrils over the
image sequences. Previous studies have also mainly concentrated on recognizing
only the respiratory rate [13] however our method is also capable of detecting
different types of respiratory disorders.

2 Materials and Methods

2.1 Setup and Dataset

Setup involved a healthy human volunteer, the Samsung Galaxy S9 Smartphone
with the FLIR ONE Pro Thermal Camera [14] to record thermal video, Biono-
madix breathing belt with MP150 data acquisition system interface by BIOPAC
for validating the thermal measurements, and a laptop for recording and pro-
cessing the data offline. A custom developed Android app with the FLIR ONE
SDK was used to retrieve the thermal raw frames from the FLIR sensor and
stream it to Matlab.

To simulate different breathing patterns with the help of healthy volunteers,
a custom Breath Dictator (BD) software was used. BD supplies a supervisory
stimuli through a display screen which helps mimic different breathing patterns
for the volunteer. These stimuli were displayed in the Matlab GUI where breath-
ing was denoted by a marker on a 2D amplitude vs time. Overall 4 BD sequences
were formed which consisted of nine breathing patterns : Eupnea (E), Tacypnea
(T), Kussmaul (K), Apnea (A), Cheyne–Stokes (C), Moderate obstructed (M),
Severe obstructed (S), Plateau after inhale-exhale (P), and Nasal Flaring (N).
These sequences were validated by a medical doctor. A similar approach was
adopted in [11,12].

Using the BD and the FLIR camera [14], four samples each from two sub-
jects were recorded for each BD sequence, resulting in 16 samples for each sub-
ject. Each sample recording consisted of thermal video of the face together with
breathing belt data. Each thermal recording had a mean sampling rate of about
4 Hz with raw thermal frames of 160×120 pixels.

2.2 Image processing

During inhale and exhale, significant temperature changes are visible in the nos-
trils. Otherwise the temperature profile of the face is relatively static. During
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inhale, the inside of the nostrils gets cooler due to surrounding cold air imping-
ing on its surface. This allows simple image processing techniques to extract
the location of the nostrils without the use of complex methods like face and
feature recognition, which may require higher resolution [11,12]. For each frame
of thermal video, a window is chosen from the first frame which remains static
for its subsequent frames. Each image is smoothed with a 2D Gaussian filter
of variance 0.5. Then, the morphological operation of filling holes in an inten-
sity image is used. It fills the pixel-area of lower temperature surrounded by
higher temperature with the surrounding higher temperatures. The filled image
is subtracted from the smoothed image providing cold spots surrounded by high
temperature. During inhale the two nostrils show relatively drastic temperature
differences and are the most prominent cold spots. Hence the local maxima of
intensity in the cold spot image gives the potential nostril locations.

2.3 Data association algorithms

From the list of potential nostril locations, trajectory of nostrils is calculated,
first using nearest neighbour data association (NNDA), and second with a near-
est neighbour Kalman filter (NNKF) algorithm. At each time step, the pixel
locations and their temperature values for the first n = 2 local maxima values
are retained for the cold spot frame. This gives a list of potential nostril locations
which needs to be tracked. A heuristic threshold is calculated as the average of
the min-max value of the maximum of each cold spot frame. The positions corre-
sponding to the local maxima values from cold spots frames above the threshold
were considered as detections and the frames with no clear cold spots (below
the threshold) where considered as missing measurements in the tracker. Near-
est neighbour data association algorithm [15] using Euclidian norm was used
only for these frames to track the locations in the list. The nostril locations
were then linearly-interpolated in between the inhale frames, and zeroth-order-
interpolated out of the frames. From these interpolated nostril locations, the
thermal signal is looked up from the original image sequence. As an alternative
method for NNDA, we also used the Kalman filtering (KF) based nearest neigh-
bour data association method [15] to track the nostril position sequence taking
below-threshold values as missing measurements of position.

2.4 Airflow prediction

The breathing belt is used for validating the respiratory measurements from the
thermal camera. Their recorded signals were synchronized and re-sampled to 1
kHz. In this work, a reference approximate airflow was computed as the time
derivative of the belt signal. Since the breathing belt provides the displacement
of chest perimeter, changes in volume of the lungs can be approximated to be
proportional to change in the perimeter. This airflow like quantity (αv) is used
to model inside-the-nostril surface temperature (T ). During inhale the cold
surrounding air impinges on the nasal passage, cooling it, while when warm air
comes out of the lungs during exhale, the nostril skin temperature rises quickly.
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When there is no exchange of air, the temperature rises to body temperature
relatively slowly. Hence, the simplified model for this phenomena is:

dT

dt
= −λ(T − θ)|αv(t)| − κ(T −M), (1)

which allows us to solve for αv(t) as function of T and dT/dt.
Above, the target temperature θ is due to the surroundings on inhale, and

inside of the body on exhale. It has λ (= 1) as the decay constant for airflow-
induced temperature change. The target temperature to which T rises without
any airflow is taken as M = 1 + max(|∆T |), where |∆T | is the maximum tem-
perature deviation of nostrils from the face, and κ (= 0.5) is the decay constant
for heat conduction to surrounding skin. The derivative of thermal signal was
estimated with a Kalman smoother with a Wiener velocity model [16, 17].

2.5 Classification of breathing patterns

The airflow predictions are resampled to 20 Hz and a Kalman-smoother-based
time-frequency spectrogram [18] (frequencies from 1/60 Hz to 80/60 Hz with step
of 1/60 Hz) is computed for all samples. The approximate number of feature
vectors for each class was taken to be 8000 to make a balanced distribution.
The single-time spectrograms slices of the first subject were used as the inputs
to the classifier and the aim was to predict the class labels of second subject and
vice versa, achieving twofold classification. We used an error-correcting output
codes (ECOC) classifier (see, e.g., [19]) with support vector machine (SVM) as
the binary classifier.

3 Results and Discussion

In this section we present the experimental result for the proposed method.
For comparison, we also computed the average signal over a rectangular win-
dow called Region of Interest (ROI) covering both the nostril locations. This
methodology was adopted in [11] to compute the respiratory signal and is used
to compare the classification performance of single pixel measurements of nostril
thermal data from this work.

A single recording of belt and thermal camera measurements from the same
session and subject is shown in Fig. 1. Clear differences in belt signals and
thermal signals can be seen for different breathing patterns. The temperature
curves were evaluated using NNDA, NNKF, and ROI methods and the airflow
model in Equation (1). Major differences are visible in case of tachypnea (T)
and respiration with plateau (P). In particular two decays timescales can be seen
from the breath-in, hold and breath out. The correlations between the airflow
derived from the breathing belt with the thermal camera based estimates were
the following: NNDA = 0.72, NNKF = 0.66, ROI = 0.54. Also, both nostrils
have different temperatures with one nostril having (for NNDA and NNKF)
approximately 1.4× higher temperature than the other, likely due to different
airflow from each nostril.
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Fig. 1: Left: an example of breath dictator sequence and the extracted thermal
signals. Right: airflow signals obtained from Equation (1).

Spectrograms of the airflow signals in Fig. 1 and the confusion matrix for
SVM classification are given in Fig. 2. The classification accuracies are: NNDA
= 60%, NNKF = 52%, ROI = 47%, and BELT = 62%. That is, the accuracy
of NNDA is very close to that of the breathing belt and the accuracy of NNKF
is slightly lower. The accuracy of the ROI-based method is the lowest of all
methods. From the confusion matrix of NNDA it can be seen that the breath
types N and P, which both have plateau after inspirium and expirium, are mixed
with each other. Most breathing patterns are not separable in the ROI method.
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Fig. 2: Left: spectrograms obtained from the airflows in Fig. 1. Right: confusion
matrices for the breathing patterns (from all the data).

4 Conclusion

In this paper, we have presented an algorithm to track the nostril locations and
extract the temperature signal using a low resolution thermal camera. We have
also shown how the breathing patterns can be automatically classified based on
this information. We compared the method to the gold standard of a breathing
belt and a reference method. The results suggest that it is possible to identify
various breathing patterns remotely using a thermal camera.
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