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Abstract. Missing data is an issue often addressed with imputation
strategies that replace the missing values with plausible ones. A trend
in these strategies is the use of generative models, one being Variational
Autoencoders. However, the default loss function of this method gives the
same importance to all data, while a more suitable solution should focus on
the missing values. In this work an extension of this method with a custom
loss function is introduced (Variational Autoencoder with Weighted Loss).
The method was compared with state-of-the-art generative models and the
results showed improvements higher than 40% in several settings.

1 Introduction

Missing data is a recurrent problem when dealing with real-world contexts. As
many machine learning methods are unable to handle incomplete data, there
is a need to impute the missing values with new plausible ones resembling the
underlying complete information. Imputation becomes increasingly important
in domains such as medical imaging where the number of samples is typically
small and the cost of acquiring new ones is high, which makes ignoring incom-
plete images not a solution. A recent trend in imputation is the use of generative
models, such as Generative Adversarial Networks (GAN) [1] or Variational Au-
toencoders (VAE) [2]. These methods try to generate new observations based on
the available data, and they produce good results particularly for the Missing
Completely At Random (MCAR) mechanism [1], where the missingness does
not depend on any variables1. However, the use of VAEs has not been explored
for missing image data imputation. Moreover, this method focus on the recon-
struction of the whole image giving equal importance to observable and missing
values. In this paper we propose a variant of the VAE, called Variational Au-
toencoder with Weighted Loss (VAE-WL), which has a custom loss function

∗This work was supported in part by the Portuguese Foundation for Science and Technology
(FCT) Research Grants SFRH/BD/149018/2019 and SFRH/BD/136786/2018.

1For more information on missing data mechanisms consult [3, 4].
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that prioritizes the reconstruction of the missing values. Using this method we
tackle the imputation of missing values under MCAR in images. We compare
our approach to other state-of-the-art generative methods and the results show
clear improvements in the imputation quality, achieving in several settings error
improvements above 40%.

2 Related Work

In recent years some directions have been explored to perform the imputation
of missing data in images. State-of-the-art methods are based on deep learning
algorithms, such as Autoencoders and Generative Adversarial Networks (GAN).

Autoencoders and their denoising variants are able to extract a clean output
from a noisy input. Mattei and Frellsen [5] used an approach based on an impor-
tance weighted auto-encoder (IWAE) to perform single or multiple imputations
of incomplete images. The resulting dataset was later used in a classification
task and achieved 98.683% of accuracy, an increase of 0.02% from the complete
dataset. L. Gondara [6] applied a denoising autoencoder built using convo-
lutional layers. This approach achieves good denoising performance for small
sample sizes, which are typical on medical image databases. The increase from
300 to 720 samples only improved the mean SSIM score from 0.89 to 0.90.

GANs have been applied in the field of imaging due to its capacity to re-
construct an image and to perform efficiently when complete data is unavail-
able. Shang et al. [7] developed a novel approach for View Imputation with
a GAN (VIGAN). This approach is able to integrate knowledge from the do-
main mappings and the view correspondences to effectively recover a missing
view/modality. Yoon et al. [1] proposed a method for imputing missing data
named Generative Adversarial Imputation Nets (GAIN). This method outper-
formed several state-of-the-art imputation techniques such as Multiple Imputa-
tion by Chained Equations, MissForest, Matrix Completion, Autoencoders, and
the Expectation-Maximization algorithm, presenting a difference from 0.0062 to
0.0182 in RMSE values between the GAIN and the best performing imputation
technique for each dataset.

Autoencoders and GANs represent the most recent algorithms to perform
imputation of missing image data and present promising results in comparison
to more traditional methods. However, the Variational Autoencoder (VAE)
variant has not yet been used for image imputation, being this a novel aspect of
the presented work.

3 Proposed Approach

A Variational Autoencoder (VAE) is a variant of the Autoencoder family that has
generative capabilities. While the basic Autoencoder simply learns a compressed
representation of the input data in a unsupervised way, the VAE learns the
parameters of a probability distribution representing that data, namely the mean
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and variance of a Gaussian curve. By sampling from these learned parameters,
the model is able to generate new data with the same characteristics [8].

Although a VAE can be used in its original form to perform missing data
imputation tasks, its loss function is not the most suitable for this purpose [2].
As Equation 1 shows, the default VAE loss function contains two terms: the first
is the reconstruction error and the second is a regularizer. Moreover, q(z|X) is
the encoder output, p(X |z) is the decoder output, X is the input data and z is
the new sampled data from the learned distribution.

L(X) = −Ez∼Q(z|X)[logp(X |z)] +KL(q(z|X) ‖ p(z)) (1)

The reconstruction error is the basis (and often the only term) of every loss
function used with neural networks. Some of the most frequent used functions
here are the Mean Squared Error or the Binary Cross-Entropy for scenarios with
only two possible outcomes. This term is essential for the decoder to learn how to
reconstruct the data. On the other hand, the regularizer from the second term is
the Kullback-Leibler divergence between the encoder and decoder distributions.
This term is needed to ensure that the latent space is well structured, meaning
that similar input data should be represented by similar representations of the
latent space [8]. When considering the use of a VAE for missing data imputation,
this loss function poses two problems. First the reconstruction error gives the
same importance to the available values and to the missing ones. Although this
error should consider all the data to ensure a complete learning of the network,
for imputation purposes the reconstruction of the missing values should have
a heavier weight on this process. Second, considering the importance of both
terms from the loss function, in imputation tasks it is admissible to lose some
of the structure from the latent space to ensure a better reconstruction of the
missing values [9]. In other words, the Kullback-Leibler divergence may have a
smaller impact on the learning process, which will lead to better reconstructions
and, as consequence, better imputation results.

To address these issues we propose in this work the Variational Autoencoder
with Weighted Loss (VAE-WL), consisting in a VAE with an extension of the
default loss function that is presented in Equation 2. In this new function, the
reconstruction error is split between the data containing missing values (Xmv)
and the data that is complete (Xav), assigning a heavier weight to the first
one through a coefficient γ > 1. Moreover, the Kullback-Leibler divergence is
penalized by using another coefficient β within the range [0, 1[.

PE(X) = Ez∼Q(z|X)[logp(X |z)]

L(X) = −(PE(Xav) ∗ γ PE(Xmv)) + βKL(q(z|X) ‖ p(z))
(2)

An example of the impact of the proposed changes in the VAE-WL loss
function is presented in Figure 1. The first image is an original character from
the MNIST2 dataset and the second one is the same image with 50% of its pixels

2Available at http://yann.lecun.com/exdb/mnist/.
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missing completely at random. The last two images represent the imputation
with a regular VAE and with the VAE-WL (respectively). The use of the new
loss function shows obvious improvements in the image reconstruction. Notice
that in both imputation scenarios the VAEs have the same architecture and
hyperparameters and were trained with the same data.

Fig. 1: Example of image imputation. From left to right: the 1st image is the
original one, the 2nd image has 50% of its pixels missing completely at random,
the 3rd image was imputed with a regular VAE, and the 4th image was imputed
with the VAE-WL.

4 Experimental Results

In order to properly evaluate the impact of the proposed approach in an imputa-
tion task, an experiment was conducted to compare the VAE-WL with a regular
VAE. Also, the Generative Adversarial Imputation Nets (GAIN) [1] method was
also considered in the study, being this another generative state-of-the-art model
for missing data imputation.

Regarding the VAEs, the used architecture was obtained through experi-
mentation and its main aspects are presented in Figure 2: the encoder has two
convolutional layers with 32 filters, a kernel size of three, ReLu as the activation
function and a stride length of two (which avoids the use of max pooling layers);
the encoder also has two fully connected layers with 392 and 196 units, which
also use ReLu as the activation, while the layers for the mean and variance have
32 units; the train used the optimization algorithm Adam with a learning rate of
0.001, batches of 64 images and a maximum of 200 epochs; to avoid overfitting
each layer uses the L2 regularizer and is followed by a dropout layer with a 20%
rate; and finally the decoder presents the inverse architecture of the encoder.

Regarding the parameters for the VAE-WL loss function, after some experi-
mentation with stable results they were define as γ = 5 and β = 0.1. Both VAEs
use Binary Cross-Entropy for the reconstruction error of the function.

The experiment considered three datasets: MNIST, CBIS-DDSM Mass and
Calcification3. The first is a well-known dataset for benchmarking in image
related works, and it contains 70000 greyscale handwritten digits with a size
of 28 by 28 pixels. The second and third datasets contain greyscale scanned
mammography studies with 1696 and 1872 images, respectively, which where
resized to 64 by 64 pixels. These two datasets were used because they represent
a domain of medical imaging where missing values are frequent. All datasets

3Available at https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM.
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Fig. 2: Architecture of the VAEs used in the experiments. The top rectangle
represents the encoder and the bottom one the decoder.

where normalized within [0, 1] and split in train, validation and test sets with
60%-20%-20% proportions. The experiment considered four missing rates (20%,
30%, 40% and 50%), with the missing values being assigned randomly to each
image (following therefore the MCAR mechanism) and pre-imputed with zero.
To mitigate bias and stochastic behaviors, each method was executed 30 times
(the average was used as the final result) with the datasets being shuffled in
each run. The imputation results were assessed through the Mean Absolute
Error (MAE) metric calculated with the original images and the imputed ones.

The results obtained from the experiment are presented in Table 1. The VAE-
WL outperforms the standard VAE and the GAIN method in all experimented
scenarios. This allows for the conclusion that the imputation of missing values
with the VAE-WL is in fact better than the state-of-the-art generative models.
Moreover, the VAE-WL presents stable results across the different missing rates,
with insignificant error increases in higher rates (the same behavior is observed
in the regular VAE). On the other hand, the GAIN method presents in general
worse results for smaller missing rates. An analysis of the percentage results for
the VAE-WL shows average improvements of 43%, 12% and 13% for the MNIST,
CBIS-DDSM Mass and Calcification datasets when comparing with a standard
VAE, and 47%, 34% and 23% when comparing with the GAIN method.

5 Conclusion

In this article an extension of the Variational Autoencoder (VAE) is proposed,
called Variational Autoencoder with Weighted Loss (VAE-WL). It uses a cus-
tom loss function that is more suitable for the imputation of missing values.
The method was experimented with three image datasets (MNIST, CBIS-DDSM
Mass and Calcification) and compared with two other state-of-the-art genera-
tive models: a regular VAE and the GAIN method. The VAE-WL outperformed
both models in all scenarios, achieving improvements over 40% in some settings.

In the future the method will be tested with more datasets containing colored
images, and other missing mechanisms besides MCAR will be addressed.
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Table 1: Results from the experiment. The first three columns present the MAE
values for the used methods. The last two columns present the percentage im-
provement of the VAE-WL compared with the VAE and the GAIN, respectively.
The best results for each combination of dataset with missing rate are bolded.

VAE-WL VAE GAIN ↑ % VAE ↑ % GAIN

M
N
I
S
T

MR 20% 0.036 0.063 0.091 43% 61%

MR 30% 0.036 0.064 0.066 44% 45%

MR 40% 0.037 0.065 0.064 44% 43%

MR 50% 0.039 0.067 0.064 42% 39%

C
B
I
S
-
D
D
S
M

M
a
s
s

MR 20% 0.044 0.051 0.084 13% 47%

MR 30% 0.045 0.051 0.067 12% 32%

MR 40% 0.046 0.052 0.055 11% 17%

MR 50% 0.046 0.052 0.075 11% 39%

C
a
lc
.

MR 20% 0.046 0.054 0.078 16% 42%

MR 30% 0.047 0.054 0.066 12% 29%

MR 40% 0.048 0.054 0.055 10% 13%

MR 50% 0.047 0.054 0.051 12% 8%
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