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Abstract. Vision-based modules are largely exploited by autonomous
driving vehicles to identify the road area and to avoid collisions with other
vehicles, pedestrians and obstacles. This paper illustrates the results of a
comparative study in which eight different vision-based modules are eval-
uated for detecting free navigational space in urban environments. All
modules are implemented using Convolutions Neural Networks. The dis-
tinctive and innovative feature of these modules is the manner via which
navigational freespace is identified from image inputs. The modules gen-
erate the coordinates of a triangle, whose area represents the navigation
freespace. The relative position of the triangle top corner with respect to
the image centre points toward the vehicle direction of motion. Thus, when
trained on a fixed route, these modules are able to successfully detect the
road-freepsace and to make appropriate decisions concerning where to go
at roundabouts, intersections etc., in order to reach the final destination.

1 Introduction

The detection of drivable areas on a road (road detection) from camera images
is a crucial aspect of autonomous driving. The problem is essentially a matter of
identifying which portion/s of an image refers to freespace areas of a road where
a vehicle can move on without incurring into any collision. Although various
solutions have been proposed, the problem remains particularly challenging due
to the fact that real-world conditions exhibit a great degree of environmental
variation with regards to lighting, road-structure, traffic etc. In this paper, we
illustrate a novel approach to the design of road detection from camera images
for autonomous driving vehicles which indicates the image freespace area with a
scalene triangle. Since the triangle top corner points towards the direction of mo-
tion, this approach can potentially integrate road detection and route planning
in a single vehicle control module. That is, the module denotes free driveable
space on the road and make decisions concerning how to drive in roundabouts,
which road to take at junctions. The route planning aspect of our module can
be exploited to keep the vehicle on a predefined fixed route.

A significant amount of academic studies have been dedicated to the problem
of road detection and route planning, generally by treating the two aspects as
separated problems to be tackled by distinctive modules. In this paper, we focus
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Fig. 1: CNN structure used in Module I, II, and III.

on the design of modules for the automatic road detection problem, and we show
how these modules can be also exploited to solve the route planning problem
assuming that the vehicle is travelling on a fixed predefined route. As far as
it concerns road detection, the large majority of the works in the literature
concern the detection of lane boundaries in structured environments such as
highway roads [1, 2]. Initial approaches using manually specified filters for edge-
extraction, were erorr-prone due to shadows, vehicle occlusion and sections where
the lane marking disappeared due to weathering. Current state of the art works
such as [3] have moved towards the use of deep convolutional neural networks
(CNNs) which are better suited for handling the aforementioned issues. CNNs,
with their ability to learn a robust hierarchy of features, offer a more attractive
solution to the issue of detecting complex road scenes as shown in [4, 5, 6, 7].

In this paper, we illustrate and compare three different CNN modules which
are trained to solve the road detection and the route planning tasks on images
taken from a vehicles travelling on a fixed route. In particular, we recorded five
videos with a GoPro camera mounted on a car, while driving around a fixed route
that starts and finishes in the same location. These five videos has been recorded
by driving the car in different dates and in different time of the day. This is
meant to capture the environmental variation that is present within the same
route of roads. Variation with regards to traffic, lighting conditions, presence of
pedestrians were observed in this compilation of these videos. Frames for each
drive video were extracted at 4 fps and organised in five datasets (I,II,III,IV,V):
with 1341, 1276, 1299, 1205 and 1038 images respectively. The drives took place
in a mostly residential area of Surrey, London (UK), and involve the vehicle
being driven from a fixed starting point, exiting the residential area which is
a one lane road onto the high-street which is a two-lane road, going 360◦ at
a round-abound and returning to the starting-point travelling in the opposite
direction. The route also features two junctions where the correct turn needs
to be made on the way forth and back. The residential sections of the road
have restricted space with rows of cars often parked on the side. On-road traffic
increases significantly after the second turn onto the high-street. In section 2, we
describe the three modules. In section 3, we illustrate the results of our study,
and in section 4 we draw our conclusions.
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2 Methods

We compare the performances of three CNN Modules, which share the same
network structure, and generate same output. Figure 1 shows the CNN structure
common to all three Modules. This CNN structure was fixed after a period of
experimentation with different structures. The number of layers in the network
are explicitly kept small in consideration of the fact that these Modules are
meant to be deployed in a real-time software pipeline and will be one of the
several CNNs that need to run their update cycle multiple times per second.
While the size of the input images is the same for all modules (i.e., 336 x 152
pixels), the way in which colours are represented in these images is different for
each Module. In Module I, the inputs are raw camera images in standard RGB
colour model. In Module II the input are images presented in an hybrid colour
model referred to as HSA. This colour model is made by combining Hue (H) and
Saturation (S) from the HSV colour model, and the *a channel from the L*a*b
colour model. Contrary to RGB, HSA allows to treat separately information
concerning colour and brightness of the images. Thus, it should represent a
more robust road detection module to allow the vehicle to operate in extreme
lighting conditions. In Module III, the input are images generated by merging,
using a regression model, the output of three different CNNs already pre-trained
for carrying out different image segmentation tasks. These three CNNs take as
input the raw images from our dataset and perform the following segmentation
tasks. The first CNN is the YOLOV3 from the darknet framework (see [8]). This
CNN performs an object detection/classification task by generating bounding
box coordinates for every object detected in an image. The boxes are represented
by opaque rectangles of different colours on each image. General objects (traffic
lights, road sign) are coloured as pink; cars, trucks, buses are marked blue, two-
wheelers including cycles are coloured red and pedestrians are marked yellow.
The second CNN is the ICNET for scene segmentation (see [9]). Each pixel of the
original image is coloured as one of 18 colours according to the “CITYSCAPES”
dataset labelling convention. The third is a CNN for lane detection (see [3]).
This CNN outputs a final frame with coloured pixels predicting the road lanes
and black pixels for all other areas.

Each Module outputs four real numbers used to draw a triangle in the raw
camera image. The first number x1 refers to the width of the leftmost corner
of the triangle with pixel coordinate (x1, 580). The second number x2 refers
to the width of the rightmost corner of the triangle with pixel coordinate (x2,
580). The third (x3) and the fourth number y refer to the width and the height
of the top corner of the triangle with pixel coordinate (x3, y). The coordinate
(0,0) corresponds to the top leftmost pixel. We exclude from the freespace area
prediction algorithm the portion of the images directly in front of the vehicle
(that is, the portion of the image with a row coordinate bigger than 580 pixels).
The position of the triangle indicates the drivable freespace in the raw camera
image and the shape of the triangle indicates the direction of motion. How
does the triangle top corner indicate the direction of motion? Assuming the
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middle column of pixels in the image plane (pixel column 672) corresponds to
the vehicle pointing straight, a simple trajectory can be generated by considering
two vectors, the first one originating in the image coordinate (672, 608) with the
head in the image coordinate representing the triangle centroid; and the second
one originating in the image coordinate representing the triangle centroid with
the head in the image coordinate representing the triangle top corner/vertex.
Thus, for every time step the vehicle needs to make adjustments to the trajectory
(steering, speed), a motion control module can generate actions that take the
vehicle initially in the direction of the first vector and then in the direction
of the second vector. We propose a proportional differential control scheme
wherein the trajectory is a function of current and prior values of the two vectors.
Further methodological details can be found in the supplementary paper link
https://bit.ly/35bUro0.

3 Results

Besides presenting the results of evaluation tests of the three Modules illustrated
in section 2, we have also evaluated the freespace prediction generated by merg-
ing the output of Module I, II, and III for each frame. We refer to the merging
approach as Module IV. We implement five techniques for merging the three
Modules frespace prediction. The first technique, referred to as Module IVa, is
a simple averaging scheme where each of the four output (that is x1, x2, x3, and
y) is generated by averaging the three corresponding real numbers generated by
each Module. The other four merging techniques are different regression schemes
implemented using the python scikit-learn library. In particular, we used the k-
nearest neighbour regression (Module IVb), the random forest regression
(Module IVc), the decision tree regression (with the depth set at 8, Module
IVd), and the gradientboost regression (Module IVe). The regression models
are first trained on sample data before being used to combine the predictions
of the individual networks on the test data. Because of the limited amount of
images, we employed a scheme wherein we chose a sample of 1000 images from
the training set. The regression models were then trained using the annotated
freespace area as ground-truth and the predicted triangle coordinates generated
by I, II, and III as input.

We carried out two training runs. Modules are first trained on datasets
III, IV, and V and tested on datasets I and II. In the second run modules are
trained on datasets I, II, and III and tested on datasets IV and V. Two different
evaluation metrics are used to compare the position of the Modules’ generated
freespace triangles with the human ground-truth annotation indicating the driv-
able freespace. Metric A refers to average percentage of annotated triangle (i.e.,
the ground-truth) covered by the Modules’ generated triangles. Metric B refers
to average percentage of Modules generated freespace triangles that lies outside
the ground-truth triangles. Metric A and B provide evidence about the extent to
which the Modules’ generated freespace triangles matches the annotated ground-
truth triangles. These percentages are computed using functions of the OpenCV
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M.
Dataset I Dataset IV Dataset V

A (%) B (%) A (%) B (%) A (%) B (%)
m std m std m std m std m std m std

I 11.9 32.4 39.6 36.5 19.2 25.1 49.6 36.2 12.3 23.5 43.3 34.1
II 18.5 27.1 45.0 43.9 15.2 24.7 58.1 36.6 15.3 23.8 57.3 36.2
III 19.3 25.7 21.1 35.8 21.3 25.7 38.1 35.8 24.2 24.5 28.1 33.2
IVa 19.0 20.3 20.3 34.1 21.8 22.7 27.3 34.7 21.9 20.9 21.4 32.6
IVb 24.6 25.0 16.1 34.6 24.5 25.7 16.1 34.3 24.8 25.3 15.0 32.5
IVc 17.5 31.4 19.2 25.5 17.9 19.3 14.9 35.7 24.3 19.2 10.6 31.6
IVd 29.0 26.2 17.5 34.9 26.2 26.0 17.8 36.5 27.3 19.9 10.5 34.3
IVe 29.0 27.08 14.8 36.0 21.7 21.0 14.7 34.9 26.8 19.6 10.8 32.0

Table 1: Table showing median (m) and standard deviation (std) of the metric
A and B for eight different Modules (M) tested on datasets I, IV, and V.

library. For each image we scan through all the pixels and we test firstly if a pixel
lies within the contours of the annotated triangle and/or within the contours of
a Module’s generated triangle. Metric A is derived from the proportion of pixels
within the contours of the annotated triangle that are also within the contour
of the Module generated triangle. Metric B is derived from the proportion of
pixels within the contour of the Module generated triangle that are not within
the contours of the annotated triangle. The optimum for metric A is 100%, the
optimum for metric B is 0%.

Table 1 illustrates the results only for tests on Dataset I, IV, and V. The re-
sults of the evaluations on dataset II can be found at https://bit.ly/35bUro0
together with images illustrating the Modules’ freesapce predictions, results of
two other Metrics (C and D) and further methodological details of this research
work. The results in Table 1 indicate that, first, all different flavours of Mod-
ules IV tend to do better than Modules I, II, and III. This suggest that there
is merit in combining the detections of the three individual Modules using the
regression approach. We notice however that, even for all Modules IV, the gen-
erated triangles tend to cover, on average, a relatively small portion (between
20% and 30%) of the annotated triangles (see Metric A in Table 1 for all Mod-
ules IV and for all Datasets). The best matching is registered for Module IVd,
and IVe for Dataset 1, where the percentage are slightly below 30%. Metric B
however confirm that on average, for all different flavours of Modules IV, only a
small proportion of the generated triangles lies outside the annotated triangles
(between 15% and 20%, see Metric B in Table 1 for all Modules IV and for
all Datasets). Visual examination of frame sequences pointed to the fact that
even though they are almost always positioned within the annotated triangle the
Modules’ generated triangle tend to be smaller than the annotated one. Indeed,
the predicted freespace shapes, irrespective of the Modules used are generally
narrower at the base compared to annotated triangles. This is the main cause
to account for the relatively small values recorded for metric A, and also for
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the relatively high standard deviations in metric A. In summary, Modules IVd
and IVe produce the best results by generating triangles that, although smaller
than the annotated one, they lie within the annotated drivable area of the road,
clearly pointing to the correct direction of motion. Results for metrics C and D
concerning the direction of motion are shown in https://bit.ly/35bUro0.

4 Conclusions

The methodologies presented in this work have laid the foundation for an inter-
esting avenue of research which can provide a novel means for translating camera
inputs to directional cues that integrate mapping/route-planning information.
Despite limitations arising from limited training images and noisy annotation,
all Modules were found to be generally capable of learning road freespace. Mod-
ule III was found to be more robust and less prone to including areas beyond the
ground-truth adding weight to our method of using fused perception outputs of
other neural networks as the input image. We also observe that combining the
freespace predictions of these individual networks via simplistic regression mod-
els increase the performance. The final freespace triangle prediction arising from
this regression-based combination scheme negates errors that may be present in
individual network detections. Future work will focus on the development of
the control component to generate the vehicles actions (i.e., acceleration and
heading direction) from the freespace triangle generated vectors.
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