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Abstract. A transition from the localized basis function description
of a probability density function to the general regression estimator and
corresponding neural network model is presented in this article, and its
relations to localized basis function neural network are explained. Typ-
ical parametric and nonparametric models are described more in detail.
Among them, a new elliptical multivariate basis function approach is the
most advanced one. In the article, its performance is compared with
the radial basis function neural network using various two-dimensional
examples.

1. Introduction

One of the most important applications of neural networks is approximation
of functions. Systems dealing with this problem are called the mapping neural
networks. The most well known are multilayer perceptrons learning by back-
propagation, counter-propagation network, and localized basis function neural
network (LBFNN) [1].

The aim of this article is to explain theoretically that LBFNN-s have sim-
ple statistical background from which various recall rules can be obtained by
standard procedures as follows.

Let us dente an independent variable by € X C ®™ and a dependent one
by y € Y C R"*. The regression of a variable y on a given variable z is the
estimator j

¥(z) = Ely|=] (1)

where the symbol E[ | ] represents the conditional average operator. Let us sup-
pose that the joint probability density function p(z,y) over the measurement
space is known. The regression estimator (1) is then expressed as

/ yp(ylz) d*y

_ p(z,y)
- [o(z,y)dry 'y @

¥(=) = Elyl]
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The main problem is to estimate the joint probability density function by which
the regression estimator of dependent variable z over the independent one y is
determined.

2. LBFNN as regression estimator

A fundamental step in the development of LBFNN is the concatenation of
measured variables z and y

T

z=xPy=
v Yy

yielding the joint sample space Z = X ). Elements of that space are vectors
z having (n + m) dimensions. In further treatment the vectors x and y are
considered as independent and dependent variables, respectively.

The joint probability density function p(z) = p(x,¥y) is usually not known
in practice and must be estimated from measurements. Its estimation is the
main task of learning the LBFNN.

By the repetition of measurement we obtain a set of pairs {z; = (z;,y;); 1 =
1,2,...N'} which represent independent samples from the sample space Z with
the under-laying probability density function p(z). Among various methods
for estimation the probability density function from finite sample set we select
the following description:

p(z) = Z fi(center,width) (3)

in which f;() denotes the localized functions. Their characteristics are usually
described by a center and a width, while their analytical expression should be
chosen in accordance with the properties of the joint measurement space Z. A
very broad class of distributions can be well represented by multivariate Gaus-
sian basis functions. An essential advantage of LBFNN over other paradigms
stems from the fact that after the measurement of joint data the separation
into the dependent and independent variable can be selected arbitrarily.

In the following sub-sections, we present several examples in which we apply
some of the most frequently-used functions f;(). The corresponding regression
estimator (2) is calculated and two typical examples of nonlinear functions are
presented.

2.1. Non-parametric LBFNN

The probability density function estimate (3) is called non-parametric, when
each measurement sample z; is a center vector for localized function f;().
Therefore, there are as many “bumps” in the estimate (3) as given measured
samples.
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2.1.1. Non-parametrical radial case

A radial non-parametric probability density function estimator stems from the
Parzen window approach [2]. Using radial multivariate Gaussian windows it is
expressed as ! '

N
_C 1 (z—2:)T (2 — 2;)
p(z,o)_—ﬁ;mexp (— 902 . . (4)
Inserting p(z) into Eq.(2), we obtain a recall rule for the nonparametric RBFNN

i(x) :;yiz:xp( (_%)

j=1€XP

-2t

o f(x) = abs(x) f(x) = x+sin(3x)
v xe[-3,5.3,5] X€[-3,5..3,5)
- N=30 - N=40
K=30 K=40
5 4 3 2 4 0 1 2 3 4+ b 5 4 -3 2 4 0 1 2 3 4 5

Figure 1: Approximation with the non-parametric RBFNN.

It has been already used in many applications [3, 4].

The non-parametric RBFNN has an essential advantage regarding paramet-
ric networks. It does not need to be adapted, sufficient is only the measurement
of data and specification of width ¢. By the measurement samples the cen-
ters of the localized basis functions are determined, while the width o provides
for a smooth representation of continuous probability density function by finite
number of sample data. It can be selected globally for all basis functions. How-
ever, we can also mention deficiencies of the LBFNN: there have to be stored
many prototype samples, the estimation variability is high, and extrapolation
is impossible.

2.2. Parametric LBFNN

In order to reduce memory requirement of the non-parametric network a pa-
rameterization is introduced. In this case a small number K <« N of prop-

!Constant C in all examples is C = 1/(27)("+m)/2,
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erly selected localized basis functions can be distributed over the measurement
space Z so that they judiciously describe the under-laying probability density
function. A localized basis function f;() is then described by adaptable center
vector @; and width o; in the radial case or by a width matrix X; in the ellipti-
cal case. The centers can be positioned by an appropriate clustering procedure,
but an efficient adaptation algorithm for the widths is still an open problem.

2.2.1. Parametrical radial case
Let the probability density function estimate (3) be represented in the radial

form K .
1 -0; - 0.
P(Z,Qaa)'—‘ %Emexp (—(z Q]2)a(2z QJ))
i=1% i

Inserting this estimate into {2), the parametric RBFNN recall rule is obtained.
With this aim, we have to split center vectors @; in the independent and
dependent part

(5)

Qi
Q; = ‘ ()i
’ Q(y)j

It follows then’

exp a7

Ef:l exp (— (zOQ(’)”ZZSz'Qu)j) )

2

_ (2-Qup)” (#-Qps) )

K
y(z) = Z Qy)k
k=1

-2

f{x) = abs(x)

fx) = x+sin(3x)

x€[-3,5.3,5] x€[-35.3

- N=1000 - 006>
K=11 K=20

5 4 3 2 -4 0 t 2 3 -4 & 5 4 3 2 -1 0 1 2 3 4 5

- Figure 2: Approximation with the parametric RBFNN.

This type of networks has been introduced by [1], but a good discussion can
be found in [6]. In fact, it is very often used recently and a lot of articles are
dealing with it. Various learning schemes are applied to parametric RBFNN,
from unsupervised, hybrid to completely supervised [5, 6].

312



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 309-314

2.2.2. Parametric elliptical case

Instead of using the radial Gaussians as in the previous case, we utilized general
multivariate Gaussians to represent the probability density function paramet-
rically. '

1

1%

K
p2QD =Ty = (-6- @) EE-0)  ©
j=1

B

The vector Q; and matrix X; describe the center vector and the receptive field
of the j-th neuron, respectively. The sign | | denotes the determinant of the
matrix. To express regression estimator in a concise form, center vectors and
width matrices are split into independent and dependent part

Q= I Q)i

(y)i

zj - ‘ -g(w)j —g(zy)j
Do) By
In order to calculate regression estimator, the probability density function (6)

must be inserted into the equation (2). After cumbersome algebraic manipula-
tion we obtain recall rule for parametric EBFNN

K
y(z) = Z (Q(y)k + E(yx)kg(_xlx)k(z - Q(m)k)) :
k=1

|§(zx)ki_1/2 exp (—%(w - Q(z)k)Tg(;lz)k(” - Q(z)k))
K Y —
iet Byl 2exp (—4(= — @) Bk (= - Qo)

-2

0 f(x) = abs(x) f{x) = x+sin(3x)
X€[-3,5.3,5) X€[3,5.3,5]
-} N=500 n N=500
K=2 K=9
5 4 3 2 9 80 t 2 3 4 8 5 -4 3 2 <1 o0 { 2 3 4 b

Figure 3: Approximation with the parametric EBFNN.

We have derived learning algorithms for all parameters in the EBFNN, [7, 8],
but details are beyond the scope of this article. It should be only said that
learning algorithms are based on an information criteria.
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3. Conclusions

A theoretical background of the LBFNN-s is based upon regularization tech-
nique of minimizing the estimation error {9], and is quite general and complete
but complicated mathematically. On the other hand, our approach offers an
alternative way to understanding the LBFNN. It stems from the localized rep-
resentation of the probability distribution and can be more simply interpreted.
Some of the known localized basis function estimators have been derived from
the very basic statistical concept. Furthermore, a new localized basis function
regression estimator has been obtained using general multivariate Gaussian
representation of a probability density function.

Introduction of elliptical receptive fields of neurons in the LBFNN improves
significantly the mapping properties of that network. The improvements are
the most obvious in the extrapolation mapping domain what is evident from
comparison of Fig.2 and Fig.3.
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