ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

Growing Adaptive Neural Networks
with Graph Grammars

: S.M. Lucas
Department of Electronic'Systems Engineering,
University of Essex,
Wivenhoe Park, Colchester CO4 3SQ, UK

Abstract

This paper describes how graph grammars may be used to grow neural
networks. The grammar facilitates a very compact and declarative descrip-
tion of every aspect of a neural architecture; this is important from a
software/neural engineering point of view, since the descriptions are much
easier to write and maintain than programs written in a high-level lan-
guage, such as C++, and do not require programming ability.

The output of the growth process is a neural network that can be trans-
formed into a Postscript representation for display purposes, or simulated
using a separate neural network simulation program, or mapped directly
into hardware in some cases.

In this approach, there is no separate learning algorithm; learning pro-
ceeds (if at all) as an intrinsic part of the network behaviour. This has
interesting application in the evolution of neural nets, since now it is pos-
sible to evolve all aspects of a network (including the learning ‘algorithm’)
within a single unified paradigm. As an example, a grammar is given for
growing a multi-layer perceptron with active weights that has the error
back-propagation learning algorithm embedded in its structure.

1 Introduction

Neural Description Languages have been investigated in some depth by the
software and systems engineering communities, and more recently, by genetic
algorithm researchers. All the environments/languages developed so far [1] aim
to make the job of designing neural networks easier, more reliable and more
efficient, by giving the programmer high-level data and control structures for
describing the network and the associated learning algorithm. None of them
force the neural systems designer to implement the learning algorithm as an
intrinsic part of the network, and indeed, most of them encourage the separa-
tion between network and learning algorithm.

Some very interesting developments have come from the genetic algorithms
community regarding the specification of neural networks. This area was prob-
ably started by Kitano in 1990 [2], and has since been followed up with superior
network generation languages and grammars designed by Gruau [3], Boers and
Kuiper [4] and Muhlenbein [5]. All of these however, either use the GA (oper-
ating on strings or graphs in the neural description language or chromosome) to
evolve a hard-wired neural network, or use the GA to evolve a good topology
which is then trained by error backpropagation. In the approach presented here,
there is no separate learning algorithm; learning proceeds as an intrinsic part
of the network behaviour. Hence, it is now possible (in principle) to evolve all

235



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

aspects of a network, including the learning ‘algorithm’, within a single unified
paradigm.

2 The Rewriting Operations

A set of basic graph rewriting operations is listed in Table 1 and depicted in
Figure 1. Table 3 shows a grammar for growing the complete structure of an
adaptive MLP. Figure 2 shows the network that grows when we rewrite S(2 2 1)
according to this grammar, and wire it up according to the connection rules
shown in Table 4.

Action Symbol

modwrite T Symbol | Description

:change A L Reads a value from input stream

:connect e 7" Computes 0; = [[;¢;, 0i
:multiwrite ® = Computes o; = ZiEI,- 0i

:parwrite = o Computes 0; = 0(} ¢y, 0:)
:toparwrite I v Outputs constant 1.0

:seqwrite v ) Computes 0; = 01, = Y 1.vigr, %

Table 1: Graph rewriting operators Tghle 2: Neural cell definitions

3 Simulating Neural Networks

Many, if not most neural network simulations divide the simulation in two phases:
the training phase and the operational phase.

For the operational phase, the simulation can generally be simplified to the
following form: we have a set N of neurons, where each neuron n; has a set of
input connections denoted I;, and computes a function f; : RD! — R that maps
from the set of input values to the output activation o;. The following algorithm
is suitable for simulating all the popular neural network models irrespective of
whether they are feedforward or recurrent.

repeat forever Vi€ N o; := fi(I;) ;|

Given this fundamental simplicity, it is quite remarkable how complicated
many implementations of neural networks become in practice. Interestingly,
as demonstrated in below, this algorithm is also sufficient for simulating the
learning phase of a neural network. The key concept that makes this possible
is the active weight. Normally, neurons are seen to be connected by passive
weights that are incapable of computation or self adjustment — they simply act
as multipliers on synaptic inputs to neurons.

Via a simple transformation, we can instead view all the connections as
having a weight of unity. Then, differing connection strengths are modelled not
by passive numbers, but by feeding the input of a weight-store neuron into a

236



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

08O,
()
ONO

Original

Onr O, (D)
O ® O, ®

C-> A(F) C->HP

change seqwrite

O OO,
DA
C->ITF) C->3F)

toparwrite parwrite

OB @
C->F) C > R@)b)(c)
multiwrite modwrite

ﬁ
oo
5%

= &

),
QIO
= @

Figure 1: An illustration of the action of the fundamental graph rewriting operators
listed in Table 1.

product neuron — together with the signal to be multiplied. When we do this,
the end result is a network with many more neurons than previously, but with
the strong advantage that now the learning behaviour can become intrinsic to
the normal network operation.

3.1 Ordering the Neuron Updates

If the network grown is purely feedforward, then the digraph of the network forms
a partially ordered set (POSET), which can then be sorted into some arbitrary
but correct total order before being submitted to the simulator. However, when
the connections are recurrent, a POSET is not formed, and hence this creates a
problem. The order in which the neurons are evaluated is important, and in the
case of conflict (as will inevitably arise in the case of networks with recurrent
connections), we have the choice of making the decision in the rewriting process
(i.e. embedding some decision logic in the grammar), or making the choice at
network build time (e.g. making decisions at random, or according to some heur-
istic). The solution adopted here is that, as a network grows, the ‘scaffolding’
connections between cells do not imply any order. When the network has finished

237



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

Siho) 5 A(SI4)Y(HSH o)II(CM 3) (1)
cM@m) 3V A(CM (n-1)) 2)
CM@m) 5 &BX)I((mtfy)) AM ) (3)
SFn) 3V =S F(n-1)AF) @)
SFn) 5 AF) (5)

HS(ho) 5 (SO o)I(CM 3)A(SH h) (6)

I) 5 @BX)AIM) (7)
M) 3 T((mtfe) (mub =) AM) ®)
H) I oBX)AHM) (9)
HM() EN [((mtf o) (mub X) (const v) (diff §) (mlb 7)) ©(mlb mtf)
©(mlb diff) ©(mlb mub) O(diff mtf) A(M) (10)
BX() = T((wZX)(ctbn) (ctfb 7) (ctf 7))
O(w ctfb) O(w w) O(ctb w) O(ctf w) A(C) (11)
0() EN T((mtf o) (drv &) (err &) (tgt ¢) (const ) (mlb 7))
©(err mtf) O(err tgt) O(mlb err) ©(mlb drv)
©(mlb mtf) O(drv mtf) ©(drv const) A(M) (12)

Table 3: A grammar for growing the structure of an adaptive MLP

growing a set of connection rules are applied to wire up some actual connections
along the scaffolding. Some of these connections are designated as feedforward,
and others as feedback. When establishing the POSET, the algorithm accounts

M mtf) — (C ctf)
(Cctftb) — (M mtf)
(M mtf) — (C ctbf)
(Cctb) « (M mlb)
(C ctfb) + (M mib)

(M mub) « (Cctb)

Table 4: Connection rules for wiring up the network. A forward (—) or backward (+)
connection is made between any units (lowercase) within any modules (uppercase) with
the appropriate labels.

238



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

Figure 2: The adaptive MLP, grown from rewriting the symbol S$(2 2 1) accord-
ing to the grammar in Table 3. When simulated using the simple yet general pur-
pose neural network simulator described in the text, this network performs the error
back-propagation algorithm. Each cell is labelled by its type (see Table 2) and its
partial order (all cells ordered 0 are evaluated, then those labelled 1, and so on. The
inputs are at the left of the diagram, and the outputs at the right.

for the nature of each connection, and providing no cycles exist either in the set
of feedforward connections, or the set of feedback connections, then no conflict
arises. Note that the distinction between feedforward and feedback connections
is made only during the partial ordering process. All connections are treated
identically at the simulation phase.

The network in Figure 2 was simulated using the simple algorithm given
above, and tested on the XOR problem. Results were compared with the
operation of a standard MLP simulator, and were broadly similar, though not
identical, perhaps due to the updates to the weights and the deltas being done
in a different order.

4 Conclusions
The use of a graph grammar for growing adaptive networks has been demon-

strated. In this paradigm, there is no separate learning algorithm — the network
simply behaves as prescribed by the simple simulator — which can simulate any

239



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 235-240

artificial neural network.

Growth of the network proceeds according to cell divisions and modifications.
As the network grows in this way, so a trail of connection scaffolding is left
behind, connecting the groups or modules of neurons in each region. Once the
growth process is essentially finished, actual connections are established between
linked modules, according to a very simple connection grammar.

The main result of the paper is to demonstrate the growth of modular net-
works that are self-adaptive. Now, only one program is needed to simulate any
static neural architecture, allowing neural network researchers to concentrate on
the important details of a neural architecture, and not waste time implementing
simulation programs or libraries for each new combination of architecture and
learning algorithm. .

Finally, the author has argued elsewhere [6, 7] that the relationship between
neural networks and formal grammars is an interesting, informative and useful
one; this paper offers further evidence in support of that case.

Acknowledgements
This work was supported by SERC grant GR/J86209.

References

[1] M. Recce, R. P.V., and P. Treleaven, “Neural network programming environ-
ments,” in Artificial Neural Networks, 2: Proceedings of ICANN-92, pp. 1237
— 1244, Amsterdam: Elsevier, (1992).

2] H. Kitano, “Designing neural networks using genetic algorithm with graph
ISINg & .
generation system,” Complex Systems, vol. 4, pp. 461 — 476, (1990).

[3] F. Gruau, “Cellular encoding of genetic neural networks,” Laboratoire
de UInformatique du Parallelisme Technical Report 92-21, Ecole Normale
Superieure de Lyon, (1992).

[4] E. Boers and H. Kuiper, “Biological metaphors and the design of modular
artificial neural networks,” Masters thesis, Department of Computer Science
and Experimental and Theoretical Psychology, Leiden University, the Neth-
erlands, (1993).

[5] H. Muhlenbein and B. Zhang, “Synthesis of sigma-pi neural networks by the
breeder genetic programming,” in Proceedings of IEEE International Con-
ference on Evolutionary Computation, pp. 318 — 323, Orlando: IEEE, (1994).

[6] S. Lucas, “Connectionist architectures for syntactic pattern recognition,”
PhD Thesis, University of Southampton, (1991).

[7] S. Lucas and R. Damper, “Syntactic neural networks,” Connection Science,
vol. 2, pp. 199 - 225, (1990).

240





