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1. Introduction

The multiple correspondence analysis is a statistical technique to handle qual-
itative variables and to try to show the correlations between several kinds of
variables in a population sample. Classical methods like canonical analysis
or factorial analysis are proven to be efficient to deal with this sort of prob-
lems. But they present some inconvenients : they are intrinsically linear and
moreover they provide graphic representations wich have no true significance
overall when there are more than two crossed variables. In an previous paper
[3], M.Cottrell et al. had defined a new algorithm (KOUPLET) wich allows
to qualitative variables. This algorithm is inspired from the self organisation
Kohonen algorithm. In this paper, we present another Kohonen-like algorithm
to analyze the relations between Q qualitative variables Q > 2.

2. The Problem and the Notations

Let us define the data and introduce the basic notations. Let us consider a
N — sample of individuals and @ variables or questions. Each question has
my possible answers (or modalities). The individuals answer each question
¢ (1 < ¢ < Q) by choosing only one modality among the m, modalities. If
we assume that Q@ = 3 and m; = 3, my = 2 and m3 = 3, then an answer of
an individual could be (0,1,0]0,1|1,0,0), where 1 corresponds to the chosen
modality for each questlon Let us denote by M the total number of all the
modalities : M = E =1 Mq. To simplify, we can enumerate all the modalities
from 1 to M and denote by Z;, (1 < i < M) the column vector constructed by
the N answers to the i-th modality. The k-th element of the vector Z; is 1 or 0,
according to the choice of the individual k (it is 1 if and only if the individual &
has chosen the modality ). Then we can define a (N x M) matrix K as logical
canonical matrix whose columns are the Z; vectors. It is composed with Q
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blocks where each (N x m,) block contains the N answers to the question g.
One has :
K=(21,...,Zmyy ey Ziy...2M)

K my Mg mo
1 0.... [ N
... | 10. ..
Owewee 11,
... | |[0. .
N 0 ... .. [ T

This matrix K gives the complete data and is called complete disjunctive table.It
is essential if we want to remember who answered what. But if we only have
to study the relations between the Q variables (or questions), we can sum up
the data in a crosstabulations table, called Burt matriz, defined by B = K'K
where K is the transposed matrix of K. The matrix B 1s a (M x M) symetric
matrix and is composed of @ x @ blocks, such that the (¢ x r) block B,,
(for 1< ¢,r < Q) is the contingency table which crosses the question ¢ and
the question r. The block By, 1s a diagonal matrix, whose diagonal entries
are the numbers of individuals who have respectively chosen the modalities
1,...,my, for the question ¢. The Burt table can be represented as below. It
has to be seen as a generalized contingency table, when are more than 2 kinds
of variables to simuﬁaneously study.

B Z Z; Zym
Zy ny O 1]
[1] ng 0
0 0 Nyl
Z; nis
. 0 0
0 . 0
Zym V] (1] ny

From now, we denote by n;; the entries of the matrix B, whatever are the ques-
tions which contain the modalities i or j. According to the data if i and j are
two different modalities of same question, n;; = 0 and if i = j, the entry n; is
the number of individuals who chose the modality . In that case, we use only
one sub index and write n; instead of n;;. This number is nothing else than the
sum of the elements of the vector Z;. Each row of the matrix B characterizes
a modality of a question (or variable). One can observe that for each row ¢ (or
column, B is symetric), Z:j n;; = @Qn;, since this number is repeated in each
block of the matrix B and that
Yuni= qu=1 Yt n = NQ. So the total sum of all the entries of B is
b= Ei,j nij = sz = Q?N. One defines successively :

-the tableF of the relative frequencies, with entry fi; = "—b‘i,

-the margins with entry f;. = 37, fij or f; = 3, fij,

-the table P of the profiles which sum to 1, with entry P;; = %
The classical Multiple Correspondence Analysis (MCA), (see for example [1]),
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is a weighted Principal Component Analysis computed on the M row profiles
of the matrix P, for the x? metric between the rows, each row being weighted
by fi.. Let r(i) and r(i’) be two row profiles of the matrix P. One has :

2
2(r(3),r(i)) = Lip. )2 — fisy Sy
) = 3 7P = ) z(mﬁ. \/ij.-:.)

J
So it is equivalent to t file matrix C wh try is ¢;; = —A4
q en compute profile matrix ose entry is ¢;; -\TJT,

to consider the Euclidean distance between its rows and to inpute a weight f;,
at each row. After realizing the Principal Component Analysis on this data
matrix C, the classical Multiple Correspondence Analysis provides a simulta-
neous representation of the M vectors on a low dimensional space which gives
some information about the relations between the Q variables. But as it is
possible to use the Kohonen algorithm to get such a representation, (for which
there is no more constraint of linearity of the projection), we propose to train a
Kohonen network with these corrected row profiles as inputs, and a probability
distribution 7 = (fy, ..., fi, ..., fur.) and to study the resulting map to extract
the relevant information about the relations between the Q variables.

3. The Kohonen algorithm and the KMCA

The Kohonen algorithm is an unsupervised algorithm that produces a feature
map preserving the input topology of data. Let us briefly recall its definition.
Consider a k x k network (bidimensional grid), where a topological neighbor-
hood is defined in a homogeneous way around each unit.

Each unit u is represented by a-weight-vector w(u) in RM; the weights are
initialized at random. The training at step ¢ consists of

- presenting a stimulus ¢(¢) i.e a row of the corrected row profile matriz C,
according to the probability distribution =.

- look for the winner unit, i.e that one which minimizes ||c(i) — w(u)}|? for all
the units u.

- update the weights of the winner unit and its neighbors by

wip1(u) — we(u) = €(t) (¢(i) — w(u)) for u = ug or neighbour of u.

The neighbourhood function and the adaptation parameter ¢ are decreasing-
time functions. See [5] or [4] for the definitions and properties of this well-known
and largely used algorithm. After training, each row profile ¢(i) can be repre-
sented by its corresponding winner unit. Because of the topology preserving
property of the Kohonen algorithm, the representation of the M inputs on the
K x K grid emphasizes the prozimity between the modalities of the Q ques-
tions (or variables).

We apply this new method called Kohonen Multiple Correspondence
Analysis (KMCA) to several examples which are presented in the next sec-
tions.
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4. Examples

4.1. Physical characteristics

This example is extracted from the SAS examples (version 6.0). We compute a
crosstabulations table of four variables : Age (Old, Young), Sex (Male, Female)
Height (Tall, Short), Hair (White, Brown, Blond). So @ = 4 and m; = 2,
mz = 2, m3g = 2 and my4 = 3. The Burt table is not writen down for simplicity.
After training a 4 x 4 Kohonen gird, we get this map :

Blond Young Tall
Female Brown

Male
White Old Short

We can compare it with the represeni;ation that we get by projection of the 9
vectors on the plane of the two first factorial directions :

Car Owneve and Cur Origin

white

cre shertc

1e

oarepn
"
[]
2

mepe Bilona

young

We observe that the main conclusions are the same : association between Tall,
Brown and Young, between White, Old and Short, etc.

4.2. Cars and their owners

(Example coming from SAS 6.0). We cross five variables: origin (American,
Japanese, European), size of car (Small, Medium, Large), type of car (Family,
sporty, Work vehicle), home ownership (Owns, Rents), marital/family status
(Single, Married, Single and living with children, Married and living with chil-
dren), income (1-income, 2-income), sex (Male, Female). One has M = 19.
The Kohonen map is below:

l-income Single Rent Single-w-kids
: Sporty European | Work
Japanese Small Large
Male
Female American
2-income Married Own Medium Family
Married-w-kids
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The classical Multiple Correspondence Analysis gives:

Cor Ownerw and Car Origin

single

renc

1 Income

sporty

smadd Single w Kida

Tapanese
e SRR

T

proxic

244 @ wamm

pieialy American

Marriea Pomily

2 Incomes
Zearge

Meafried w Kide

We can deduce the same main conclusions: 2-income with Married, Married
with kids near Family car, Sporty car near Single, Male, Small car or Japenese,
etc.

4.3. Historical monuments

We study this example with @ = 2.to compare this method with the KOU-
PLET method defined in [3], since there are here 2 variables. We cross the
variable Historical monuments with ten categories (Prehistoric, Historic, Caste,
Military, Cathedral, Church,-Chapel,-Monastery, Public equipement, Private
equipement, Diverse) and the variable Owners with six categories (Town, Ter-
rit.ori(% and administrative division of France, State, Public, Private, no deter-
mined).

The resulting Kohonei map is:

PREH NDET MILI CHAP EGLI COMM
HIST
ECPR ECPU DIVE ETPU
PRIV ETAT
CHAT CATH MONA DEPA
The KOUPLET map is:
PREH EGLI
NDET
CHAP COMM
PRIV HIST MILI DIVE
CHAT
ECPR
MONA ECPU
ETAT DEPA ETPU
CHAT

The classical map is below and the conclusions are mainly the same:
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5. Discussion

The first results that we get are very promissing: on the simple examples that
we study, the KMCA method provides very quikly good representations of the
relations between several qualitative variables. The main advantage is that
there is no arbitrary choice of the representation. The M vectors in RM which
correspond to the modalities are correctly classified by the network and the map
is realized in a very natural way. However, it is wel-known that the classical
representations uses a strong approximation which can make an interpretation
of the relations very difficult. The disavantage of the KMCA method is that
there remains an open problem in defining some quality criteria, to known for
example which is well represented or not in the map. One of our objectives
will be to go on in this way to provide such quantitative performance.indices.
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