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Abstract. Firstly, the effect of a neuron’s spatial structure on the dependency of
the receptor potential for a constant pheromone-dependent conductance is
studied. It is shown that the ability to discriminate is improved by considering a
cable model instead of a point model neuron. Secondly, we compare the firing
frequency when the passive backpropagation of action potentials is ignored [2,4]
with the frequency when this backpropagation is included. For certain sets of
parameters, the inclusion of backpropagation has little effect.

1. Introduction

Modeling the sex-pheromone neuroreceptor is a good starting point to
develop a biophysical model of single neurons because its dendritic structure is
simple [1]. Pheromone coding begins by transduction which occurs in the
dendrite. The binding of pheromone molecules to receptor proteins borne by the
membrane triggers a second-messenger system which finally opens pheromone-
dependent ionic channe]s. Then, a membrane depolarization, called receptor
potential, is evoked. When this potential is high enough, action potentials are
generated and propagated along the axon to the brain. We proposed a model [2]
describing this sequence of events composed of three functional modules: the
transduction, receptor potential and action potential modules. The membrane of
the neuroreceptor is modeled by a cylindrical cable which is divided in two parts
(Fig. 1), (i) a pheromone-sensitive dendrite containing transduction mechanisms,
and (ii) a pheromone-insensitive part corresponding to passive dendrite, soma,
initial segment and axon.

In the present work, we focus our attention on the receptor and action
potential modules. The pheromone concentration is assumed to be constant.
Consequently, the transduction module is in a steady-state and the number of
open pheromone-dependent ionic channels is constant. These open channels are
modeled by a constant pheromone-dependent conductance Ag* which is
considered here as the input signal of the receptor potential module. Two main
problems are studied.
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Figure 1. Schematic representation of the sex-pheromone neuroreceptor.

(i) Experimental observations show that the range of variation of the
receptor potential in the sex-pheromone neuroreceptor extends over more than 6
decades of pheromone concentration [1} However, we show that in a point model
neuron the range extends over only 23 decades of the conductance change Ag*.
Can this coding range be increased by taking into account the spatial extension of
the neuron?

(ii) In previous work [2,4], we described a model which allowed us to
determine analytically the dependency of the firing frequency on the conductance
Ag* without considering the passive backpropagation of the action potential into
the dendrite. Is backpropagation really negligible? To answer this question we
determine numerically the conductance-frequency relation in the case of
backpropagation and compare it to the relation found analytically.

2. Receptor potential for different spatial structures

The receptor potential module is based on a cable model of the neuron [5] in
which each area of membrane behaves as the electric circuit shown in Fig. 2 with
membrane resistance r,, of unit length times unit length, membrane capacitance
¢,, per unit length, resistance of internal medium r; per unit length, pheromone-
dependent conductance Ag(z) (in units of r,, ) and reversal potential E of the
pheromone-dependent conductance. The receptor potential V(z) of the steady-
state cable is described by an ordinary differential equation (ODE)

2

—%gi)+ V(z) = Ag(z) (E - V(z)), 0<z< L, €))
where L is the length of the neuron and z the distance along the neuron expressed
in units of the characteristic length A (= /v /r). We will find solutions of this
equation for various cable lengths when the conductance Ag(z) is a positive
constant over the pheromone-sensitive dendrite and zero elsewhere

Ag(z) = Ag* (1 - H(z— z,)), 0<z< I, (2)

where H(z) is the unit (Heaviside) step function and z, (0 < z; < L) corresponds
to the border between the pheromone-sensitive dendrite and pheromone-
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insensitive part (Fig. 1).

The solution of equation (1) may be calculated by using the input resistance
of the pheromone-insensitive part. The general solution of (1) on [0,z,] with
conductance (2) for the pheromone-sensitive dendrite is given by

AgE

V(z) = ¢, sinh(a z) + ¢, cosh(a z) + ——— Ar T

0<z< 1, 3)
where @ =4/1+4g" , ¢; and ¢, are constants to be determined by using the
boundary conditions at the beginning (z = 0) and end (z = z,) of the pheromone-
sensitive dendrite. By considering that no current flows at z =0, the so called
“sealed end” condition (see [5]), and that there is conservation of axial current
Iz.lat z = z, (Fig. 1), the boundary conditions may be written as

V'(0) =0, and Vi(z)) = - il (4)

where / indicates differentiation with respect to z. The current [, can be

computed knowing the input resistance R, (= V(a:l)/I by deﬁnmon) of the
pheromone-insensitive part
V(z,)
=2 ()

a1 in

Combining equations (3), (4) and (5) give

_ cosh(a 7) Ag*E
V(o) = (1~ prmmmieay o) 2 0<z<z,  (6)
with 8 = R; /r; The required input resistance (and hence the receptor potential

on the pheromone-msensmve part) can be found in table 4.2 of [5] for different
types of boundary conditions.

Case (i). Finite L. Considering the pheromone-insensitive part as a finite
cable with a sealed end at L, the input resistance is given by R, = r;coth(L —z,)
and the receptor potential by

cosh(a z) \ A E
e e ves SILELELY

Wz) = (M
V(zl)-%?((f:—:l)), z,<z< L.

Case (ii). L =occ. In the original model [2] we considered the pheromone-
insensitive part as a semiinfinite cable (L = 00) so the input resistance is given by
R, = r; and the receptor potential by

cosh(a z) Ag*E
(1 - asinh(o :1:1) +cosh(azl))Ag* 1 0<z<L z,
V(z,)-exp( ~ (z - zy)), >z,
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Figure 2. Receptor potential for different spatial structures. Relative receptor potential at the
initial segment as a function of the conductance Ag* for a point model neuron (- - - ), a finite
cable with sealed end at [ = 1.5\ (---) and a semiinfinite cable (—). In the last two cases,
z; = A. Electric circuit illustrates the receptor potential module.

The dependence of the relative receptor potential at the initial segment z,
(z) < z < L) on the conductance Ag* for (8) is shown in Fig. 2. For comparison
the same relation is shown for a point model neuron (d?V(z)/d«? = 0 in (1)) and
a finite cable (7) with sealed end at L =1.5\. It is found that the potential
changes less rapidly when the spatial extension of the neuron is taken into
account. More precisely, in the 5-95% interval of the relative receptor potential,
the range of Ag* is 2.6 decades (point model neuron), 3.1 decades (short finite
cable) and 3.5 decades (semiinfinite cable). Thus, the difference is approximately
one decade when a long cable is-considered ‘instead of a simple point model
neuron. This means that an extended neuron can code over a wider range of the
input signal.

3. Backpropagation of action potential into dendrite

In [2,4], we assume no backpropagation of the action potential into the
dendrite. This simplification allows us to determine analytically the firing
frequency f as a function of the steady-state receptor potential V(z3). In order to
do this, the action potential module is based on a simplified phenomenological
model. The potential of the initial segment V;g(?) is modeled by the electric
circuit shown in Fig. 3B. It is characterized by a switch which simulates the
action potential generation and a current source I= V(z,)/r,, which simulates
the current coming from other parts of the neuron. If the potential V;¢(?) exceeds
the firing threshold #, an action potential is triggered and the switch is closed for
a period corresponding to the absolute refractory period T,¢p The dependency of
the firing frequency fon the potential V(z,) is given by,

f= {ln(—‘;%?l—z)+ T, }_ g ‘ V(z)>0.  (9)
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Figure 3. Backpropagation of action potential into dendrite. A. Example of the profile of the

membrane potential V(z,1) between the beginning of the cable and the initial segment zy for

Ag* = 1. B. Relative firing frequency as a function of the conductance Ag* with (- - .) and

without (——) backpropagation. Electric circuits illustrating the action potential module with

and without backpropagation. Both figures were calculated with & =AM zy=15}6=10mV,
_ _T

E =100 mV and Tref" 5

Using the value of V(z,) from (8) in equation (9) to replace V(z,), we obtain an

analytical solution for the dependency of the firing frequency f on the

conductance Ag*.

We now compare this analytical solution with a numerical solution for a
more realistic model where the passive backpropagation of the action potential
into the dendrite is permitted. This is done by introducing a switch at the initial
segment z,. In this way the generation of an action potential influences the
membrane potential along the cable. Hence, the membrane potential is no longer
described by the receptor potential alone and we have to replace the steady-state

cable (1) by a time-dependent cable which is described by the partial differential
equation

2
_ 0 Zg,t)+anzt,i)+V(z,t) =Ag(z, ) (E- (z,1), 0<z<I, (10)

with time { expressed in time constant units 7 ( = r,c,,).

No analytical solution of (10) is known for the chosen input signal (2), so the
equation is solved numerically. The spatial discretisation is performed using finite
differences, and the method of lines is employed to reduce (10) to a system of
coupled ODEs. This system is then integrated forward using the implicit Euler

method with an adaptive step size, as in [6], to avoid numerical instabilities or
oscillations [3].

An example of the profile of the membrane potential W(z,t) from the
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beginning of the cable to the initial segment z, is shown in Fig. 3A. The
dependency of the relative firing frequency on the conductance Ag* is shown in
Fig. 3B and compared with the analytical solution without backpropagation of
action potentials. It may be concluded for the present model, that in the case
studied, the firing frequency is relatively independent of the backpropagation of
the action potentials.

4. Conclusions and perspectives

In conclusion, the results presented can be summarized as follows. (i) As far
as coding performance is considered, the spatial extension of a neuron is a
significant feature. This is shown by a wider coding range of the pheromone-
dependent conductance for a spatially extended neuron than for a point model
neuron. This conclusion is interesting because the point model neuron is a
commonly used neuron model. (ii) Conversely, the passive backpropagation of the
action potentials into the dendrite does not seem to have much influence on the
the firing frequency. At least in the case studied, it seems that the receptor
potential is not modified by the backpropagation of spikes.

These properties will be investigated further by a more systematic study of
the influence of the geometric parameters (z;, z,, L). Then, the model will be
extended to more realistic neural geometries; numerical methods will be used to
study for instance the influence of the different diameters of the various neuron
parts (dendrite, soma, axon). The evolution of the receptor potential for space-
dependent and time-dependent conductance Ag(z, ) will also be considered.
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