ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

A New Training Algorithm for Feedforward Neural Networks

Brijesh K. Verma, Member IEEE, and Jan J. Mulawka
Warsaw University of Technology
Nowowiejska 15/19, Room 225
00-665 Warsaw, Poland
E-mail: Bverma@koral.ipe.pw.edu.pl

Abstract- This paper introduces an approach for fast training of the Feedforward
Neural Networks (FNNs). The approach is based on linearization of nonlinear output
activation function by inverting it and calculation of weights using gradient-decent and
QR decomposition techniques. The approach called Gradient-descent Orthogonalized
Training (GOT) algorithm. The algoritbm GOT is applied to some benchmark
problems and the results are compared to those obtained using Error Back-Propagation
(EBP) algorithm.

L. INTRODUCTION

Many researchers have recognized the potential of FNNs for pattern recognition,
speech recognition, system modeling and other tasks [Her91, Ver94c]. Feedforward
neural networks using EBP [Rum86] algorithm have been widely used for many
applications. Although EBP algorithm has demonstrated great capabilities in learning
difficult mappings, it has some drawbacks. First, there is no guarantee that the network
will find the global minimum of the cost function. Second, is that the algorithm
converges very slowly. Many modifications [Her91, Mul94, Ver94a] have been
proposed to improve the training time of the EBP algorithm.

In this paper, another speed-up approach is proposed. The approach combines the
gradient descent technique [Rum86] and the Gram_Schmidt orthogonalization method
[Kie92].

II. NETWORK ARCHITECTURES

Feedforward neural network is a multilayer network consisting of nodes grouped into
layers. We consider a two-layer network which is illustrated in Figure 2. The network
has n inputs, m outputs and h hidden units. All neurons represented by the model
depicted in Figure 1 are grouped in sequentially connected layers. Each neuron is
characterized by one output and many inputs, which are the neuron outputs of the
preceding layer. Let x,...x, and o denote the inputs and output of the neuron and w is
the weight, then the computation performed by each neuron can be expressed as:

net=y. s, W
=
o-finety=— L @)

(1 +exp(-net))

359



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

III. DESCRIPTION OF THE PROPOSED ALGORITHM

The proposed training algorithm uses iterative error backpropagation and
orthogonalized-QR decomposition methods. First an error backpropagation [Rum86,
Mul94] is applied to the two-layer FNN. After some iterations, we stop the training
process and check the inputs of the output layer, if we get similar vectors then take
only one among them for further calculations (use data reduction algorithm ) [Ver94c].
Next we convert the output nonlinear activation function as shown below.

Equation (2) can be rewritten as follows:

de__ L 3)
(1+exp(-net))

where d is the desired output.
In the FNNs, the desired output is always known for each neuron in the output layer.
We can easily calculate the net value from Equation (3) as follows:

) | @

net=In(

d
(-4
Let H be the matrix of selected input vectors and w is the weight vector of the output
layer. We can write a linear system of equations for the output layer as follows:
Hw=net ®)
The weights (w) of the output layer can be calculated from (5) using orthognalized-
modified Gram_Schmidt method [Kie92, Ver94a).

01 02..0m-1 Om

X1

x2
et
xn.l( - Out
Xa Wn
X1 X2 .. Xn-1 Xn
Figure 1. Single neuron model. Figure 2. Feedforward neural network.
TRAINING ALGORITHM

Training of the FNNs using proposed approach requires the following steps:

Step 1. Set all weights to small random values.

Step 2. Present inputs and desired outputs.

Step 3. Calculate actual outputs.
Use the formulas as in (1) and (2) to calculate outputs.

Step 4. Adjust weights.
Use a recursive algorithm error backpropagation [Rum86, Mul94] starting at
the output nodes and working back to the hidden layer.

360



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

Step 5. Repeat by going to Step 2 (After some iterations go to Step 6).

Step 6. Use data reduction algorithm [Ver94c]; calculate net,, net,,..., net, (p-number
of training pairs) for the output layer using Equation (4).

Step 7. Provide a linear system of equations as follows:
Hw=net, where H - input matrix for the output layer; w_- weight vector of
the output layer and net is calculated from (4).

Step 8. Calculate weights of the output layer using modified Gram-Schmidt method.

Repeat Step 6 through 8 for each neuron of the output layer.

IV. COMPUTER SIMULATIONS

The proposed algorithm (GOT) has been tested on artificial problems such as the
parity problem, exclusive nor problem, iris problem, sonar problem, on real problems
arising in pattern recognition, and on a variety of other problems from various sources.
The algorithm has been implemented in C on an HP-UX 715/50 workstation. The
Root-Mean-Square (RMS) error is calculated using following formula.

(6)

where m is the number of output nodes, p is the number of training pairs, d; and o,
are the desired and calculated values for the ith pair and jth output.

Experiment 1. Iris Data Classification Problem

The particular problem is that of classifying examples of different kinds of iris flowers
into one of three species of irises: setosa, versicolor, and viginica. There are 150
instances, 50 for each class; instances are described using four features: sepal width,
sepal length, petal width, and petal length. The units for all four are centimeters,
measured to the nearest millimeter. A learning rate of 0.5 and momentum of 0.4 is
used. A number of iterations, training time, RMS error, and average performance for
the proposed and error backpropagation algorithms are shown in Table 1. The
proposed algorithm shows many times faster learning.

Table 1. Comparative results on the iris data classification problem.

# of hidden # of Training time| Gain | Performance on | Performance
units iterations [s] term 7 | training set [%] |on test set [%]
EBP | GOT | EBP |GOT

6 300 8 0.5 95.55 | 97.77 | 95.55 195.55

12 100 9 0.5 84.44 | 98.88 | 83.33 |97.77

12 150 11 0.5 86.66 | 98.88 | 86.66 |97.77
12 600 45 0.5 95.55 | 96.66 | 94.33 [96.66

361




ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

Iris classification problem
0045
ane — EHP
og0s =} 60T
o
oots
on L T[]
k) [~
0.005 5
0 2 50 '% 150 2 3y
Number of iterations

Figure 3. Comparison of rates of learning for iris data classification problem.
Experiment 2. Pattern Recognition Problem

The proposed algorithm has been tested using a pattern recognition problem, consisting
of the recognition of character patterns encoded in as 8 x 8 pixel matrix, according to
the IBM PC VGA character set. 36 different characters (0..9,A..Z) had to be
recognized, corresponding to ASCII codes between 32 and 95. The number of input-
output pairs is thus 36, and for each pair the input is a vector of 64 binary values,
corresponding to the pixel matrix representing a character, while the output is a vector
of 7 binary values, representing its coded ASCII value. Therefore, the used FNN’s
have 64 inputs and 7 outputs. We set all input-output pairs of values of the training
set to 0.1 and 0.9 rather than to zero and one, respectively, to improve convergence.
The network architectures with different numbers of hidden units are used for this
problem. The results for different numbers of hidden units are presented in Table 2.
Figure 4 depicts learning profiles produced for this problem and indicates that the
proposed learning algorithm yields many times faster learning.

Table 2. Comparative results on the pattern recognition problem.

Training |# of hidden| # of |Training| Gain {Performance|Performance
algorithm units iterations| time [s] | term 7 | on training | on test set
set [%] [%]
EBP 12 200 40 0.5 90.90 63.63
20 100 20 0.5 27.27 21.21
20 200 90 0.5 100.0 69.69
20 300 105 0.5 100.0 7272
GOT 12 200 40 0.5 96.97 57.57
' 20 100 40 0.5 100.0 63.63
20 200 90 0.5 100.0 69.69
36 1 7 0.5 100.0 19.20

362



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

Pattern recognition problem
00085 —FEr
0.00
0.0045 = GQF
0004 RS
-gm, ynits=2U

s

002
00015

0.001
00005
T . . e
Number of iterations

Figure 4.-Comparison of rates of learning for pattern recognition problem.
Experiment 3. Sonar Problem, Mines vs. Rocks

This is the data set used by Gorman and Sejnowski in their study of the classification
of sonar signals using a neural network. The task is to train a network to discriminate
between sonar signals bounced off a metal cylinder and those bounced off a roughly
cylindrical rock. The data set, is in the standard CMU Neural Network Benchmark
format. The data has 60 continuous inputs and 2 enumerated outputs. This data set can
be used in a number of different ways to test learning speed, quality of ultimate
learning, ability to generalize, or combinations of these factors. There are 208 patterns
in total with 111 belonging to the "metal" class and 97 belonging to the "rock” class.
These 208 patterns are divided between the 104-member training set and the 104-
member test set.

The purpose of this experiment is to compare the performances of the
proposed algorithm and the conventional EBP with different numbers of hidden units.
A learning rate of 0.2 and momentum of 0.5 is used. Errors less than 0.2 are treated
as zero. Initial weights are uniform random values in the range -0.3 to +0.3.

As shown in Table 3 the performance of the proposed algorithm and
conventional EBP is best for 22 and 12 hidden units respectively and the proposed
algorithm shows better generalization and faster learning.

Table 3. Comparative results on the sonar problem, Mines vs. Rocks

Training |# of hidden| #of | Training| Gain |Training set| Test set
algorithm units iterations | time [s] | term 1| | % right on | % right on
EBP 12 300 90 0.2 100.0 93.26

22 150 125 0.2 100.0 86.53
22 300 260 0.2 100.0 84.50
104 300 830 0.2 81.73 47.11
GOT 12 300 90 0.2 100.0 94.23
22 150 125 02 100.0 95.19
22 300 260 0.2 100.0 95.19
104 1 20 0.2 100.0 81.73

363



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 359-364

- R
%
/=

8
a

cség
/

Figure 5. Comparison of learning profiles for sonar problem.
V. CONCLUSIONS

We have shown how to train a feedforward neural network by combining gradient-
descent and QR-decomposition modified Gram_Schmidt (MGS) methods. The
experiments show that our algorithm (GOT) achieves recognition accuracy as good as
or better than FNNs trained using error backpropagation algorithm (EBP), and the
training process is much faster than EBP. This is true even if various modifications
are made to speed up the convergence of EBP. Also there is no chance for local
minima because direct methods used in GOT for training the output layer does not
have such problems as local minima.

REFERENCES

[Her91] Hertz, J., Krogh, A. and Palmer, R. (1991). Introduction to the. Theory of Neural
Computation. Addison-Wesley Publishing Company, USA.

[Kie92] Kielbasinski, A. and Schwetlick, H. (1992). Numerical Linear Algebra, Warsaw.

[Mul94] Mulawka, J.J. and Verma, B.K. (1994). Improving the Training Time of the
Backpropagation Algorithm, International Journal of Microcomputer Applications, vol.
13, no.2, pp.85-89, 1994, Canada.

[Rie93] Riedmiller, M. and Braun, H. (1993). A Direct Method for Faster Backpropagation
Learning: The RPROP Algorithm, Proceedings IEEE International Conference on
Neural Networks, San Francisco, California, March 28-April 1, vol.1, pp.586-591.

[Rum86] Rumelhart, D.E., Hinton, C.E. and Williams, R.J. (1986). Learning International
Representations by error propagation, In parallel distributed processing: Explorations
in the microstructures of cognition, Cambridge: MIT press.

[Ver%94a] Verma, B.K. and Mulawka, J.J. (1994). Training of the Multilayer Perceptron using
Direct Solution Methods, Proceedings of the Twelfth IASTED International
Conference, Applied Informatics, pp. 18-24, May 17-20, 1994, Annecy, France.

[Ver94b] Verma, B.K. and Mulawka, 1.J. (1994). A Modified Backpropagation Algorithm,

" Proceeding of the World Congress on Computational Intelligence, vol.2, pp.840-846

26 June-2 July 1994, Orlando, Florida, USA.

[Ver%4c] Verma, B.K. (1994). New Methods of Training the Multilayer Perceptrons, Ph.D.
Dissertation, Warsaw University of Technology, Warsaw, Poland.

364





