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Abstract: In this paper, the stability analysis of neural network: based one-step
ahead control system is presented. First, a brief introduction about the neural
control approach is given. Then, the stability condition for the neural control
system is obtained from the stability investigation. Finally, an example on
simulation is illustrated.

1. Introduction

Nonlinear control systems often are developed with complete knowledge of the
controlled process. In the past, it is difficult to find an appropriate approach which can
provide us with a general means to describe nonlinear processes. Recently, neural
networks have been proved to be able to offer intercsting possibilities for modelling
an arbitrarily nonlinear process. Thus, the application of neural networks to nonlinear
control becomes very attractive. '

Suppose a discrete nonlinear dynamic process which is described by
YO=F 1)y (7 -1),4(1-1),.e.cu(tm-1)] M

where y is the output of the process, u is the input-of-the process. The control purpose
is to use an one-step ahead control action at time t to drive the output of the process
at time t+1 to be equal to the desired output at time t+1, i.e. y(t+1)=r(t+1)"*, where
r is the desired output of the process. In this paper, we use a feedforward neural
network with external feedback inputs for the implementation of this one-step ahead
controller.

In control engineering, stability is one of the most important aspects in design of a
control system. For neural network based one-step ahcad control system, we must also
consider the stability design of the controller to ensure the closed-loop stability. Since
the neural network based control system is nonlinear, the convenient tool for its
stability analysis is the well-known Lyapunov stability theory which has an inherent
relevance to nonlinear systems.

In this paper, we will first give a brief introduction of a neural network based one-step
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ahead control approach. Then, the investigation on the stability of the control system
is presented. It leads to a sufficient condition for closed-loop stability. A simulation
example will finally show an evaluation of the proposed stability design scheme.

2. Neural network based one-step ahead control

The neural network based one-step ahead control system employs a neural network
model as an one-step ahead predictor. It is assumed that the neural model is accurate.
Based on the neural model, the one-step ahead contro! is considered as a direct
optimization of the following cost function of the contro! system, i.e.

J=[r(t+1) =y, ()P +a[Au()]? @)

where o is the weighting factor, Au(t)=u(t)-u(t-1), and y,_(t+1) is the one-step ahead
predictive output of the neural model. As the controller tries to bring y, (t+1) to a
desired value r(t+1) in one step, this may result in an excessive control effort.
Therefore, we consider the minimization of the cost function shown in (2) to achieve
a compromise between perfect one-step ahead control and the variation in the amount
of control effort.

The neural network model used for description of the controlled process is a multilayer
feedforward network with external recurrent inputs, i.e.

H L] m
V) =Ews[Ew,y, (15+1)+Ew,  u(15+1)] )
i el 1
where w; and w; are the synaptic weights of the network, s()) is a sigmoid function
with the form

s(ry=128" @

1+~

Suppose the neural model is well pre-specified by training. Using the neural model
described in (3), we can simulate the dynamic behaviour of a nonlinear dynamic
process'!), Thus, we can obtain the one-step ahcad control from the optimization of the
cost function (2) based upon the neural model (3) by using the gradient descent
optimizing technique, i.e.

o A Oe(eHl) )
Auy =t =

where A is the optimizing step, e(t+1)=r(t+1)-y_(t+1), the sensitivity de(t+1)/du(t) can
be derived from the neural network model, i.c.

ae(t+1)= _" / 6)
o RS

For simplification, we denote
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A
- €))
B 1+0A

Here, we have the following theorem:

Theorem 1:
If the parameters satisfy <1, the control algorithm given in (5) will be convergent.

Proof:

Consider the derivative of the cost function (2) with respect to t
o/ de(t+1) du(s) ou(?)
22 =2e(141 +20A (8)
TR o O

Approximately, we have
AT de(t+1) Au(s) Ault)
=204 — 2V aAu(n=2d 9)
At «(t+1) du(t) At aAu() Al

From (5) and (7), we have
AJ=2(—%+01)[A (@ (10)

To ensure the algorithm to be convergent, (2) should be non-increasing, i.e. the right
hand side of (10) should be negative. Thus, we obtain the condition for convergence,
ie.

ap<l (1)

When o and A are chosen as positive values, the convergence condition is always
satisfied. If the control algorithm cenverges, threugh iteration, we can at least find a
local extremum of (2).

The neural network based one-step ahead control is very simple. It only needs one
neural network for both prediction and control. The design of the controller is
straightforward based on the optimization of the weighted cost function defined in (2).

3. Stability analysis

The stability analysis of the neural network based one-step ahead control system is
based upon the well known Lyapunov approach. Firstly, we should define an
appropriate Lyapunov function which has relevance to the performance of the control
system. It is well known that the purpose of control is to force the output of the
controlled process to track the desired trajcctory of the system accurately. From this
point of view, we can define a Lyapunov function as follows:

V=e(1+1)+A eX(t+) (12)

Obviously, the equilibrium point of the control sysem is (e(t+1), Ae(t+1))=(0,0). This
means that the output of the controlled process will accurately track the desired output
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and remain on the desired trajectory if the energy function is attracted to the
equilibrium point. In order 1o achieve this target, we must apply the corresponding
control action to the process to ensure

AV<0 _ (13)

Hence, we have theorem 2:

Theorem 2:
Suppose the candidate Lyapunov function is defined as (12), the sufficient condition
for the stability of the one-step ahead neural control system is

1

P< (14)
[max [s'(. )]Zw wmﬂ]
Proof:
Considering
v de(r+1) du(t) " ae(t+1)au(t) as)
o 2= ou(t) ot +28e(4D) ou(t) o

approximately, it leads to

Oe(t+1) de(t+1)

= ’ 16
AV=2e(1+1) 3%0) Au()+2Ae(1+1) 550 Au(t) (16)
Since (5) and (7) as well as
Ae(r41)= ae(: ;) u(s) , amn
it yields
n,2 Oe(t+1),, de(t+1)., 18
AV 2e(¢+1)[a()][3[1+[3[a()] (18)

In order to satisfy the condition presented in (13), we should confine B to a certain
extent, i.e.
B< 1
[ae(t+l)]2 (19)
du(t)
Referring to (6), we obtain the corresponding sufficient condition for the stability of
the neural control system:

1 1
< <
P EXGI @0
ou(t)
For the neural network model with the sigmoid function defined in (4), we derive
corollary 1.

{max»[s’(.)])’.i,w'.w‘,m,]2 [
iwl
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Corollary 1:

If the one-step ahead controller is designed based on the neural network with a
sigmoid function shown in (4), the sufficient condition for closed-loop stability is that
the parameter B should be less than the following bound:

S ' 21)

It can be easily satisfied by considering the maximum derivative of the sigmoid
function defined in (4) to be 0.5. From theorem 2, we notice that the closed-loop
stability of the neural control system is significantly influenced by the parameter B. As
the neural network model is pre-determined, in the design of the neural controller, we
only select the parameter B to mect the demand of the stability given in (21) to gain
a stable control performance.

4. An example
In this section, we will present an example to test the stability result obtained in the
previous section. Suppose the controlled nonlinear dynamic process described by!':
y(,)=y(t-l)y(t-Z)u(!'l)Lv(t 3)-1]+u(t-2)
1+y*(e-1)+y*(1-2)

We use a neural network with 5-

6-1 structure to model the 5
process. Based on the neural 04
network model, we obtain the o8
corresponding  stability upper 02
bound according to (21), i.e. Naers °';
B=—l <512 o1
1402 02
03
In this example, we use different 0
values of § for controller design 04
to test the stability of the neural e .(2) o8
control system. Figure 1 System response in phase-plane (B=3.3333)

Firstly, we fix the value of the

control weighting factor, i.e. let «=0.2, Then, we only change the value of A to see the
corresponding system response. Fig. 1 shows the case of A=10 which leads to
B=3.3333. In this test, we see that the violent oscillation around the equilibrium point
happens in the system response since B is close to its upper bound. Although the
system finally converges to the equilibrium point, the system response is very poor.
When we choose A=4, we have $=2.2222, The corresponding sysiem response is
illustrated in Fig. 2. We notice that the contro! performance is greatly improved though
the overshoot exists. In Fig. 3, we demonstrate a satisfactory system response obtained
for A=1 and B=0.8333. In this situation, the system can track the desired trajectory
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without any overshoot or
oscillation.

From this example, we see the
effect of both A and o on the
closed-loop stability of the one-
step ahead neural control system.
If we select the parameters based
on the stability constraint given
in (20) or (21), we can obtain a
stable control performance. The
given stability condition has been
proved by the presented example.

5. Conclusions

04
0.3
02
01
Aelt) g
01
42
03
£4

23,

elt)

05

Figure 2 System response in phase-plane ($=2.2222)

A neural network based one-step ahcad control approach has been presented in this
paper. Unlike the other kinds of neural control schemes which usually need more than

one neural network for modclling
and control, the presented control
strategy only uses one for both
modelling and control.

The stability analysis based on
Lyapunov theory has been given.
It results in the corresponding
sufficient condition for the closed-
loop stability of the neural control
system. When the neural model is
pre-determined, the closed-loop
stability only depends upon the
choice of parameter $. The
simulation example has proved
this stability criterion is available.
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Figure 3 Systemresponse in phase-plane ($=0.8333)

In terms of this obtained stability criterion, we can design a stable neural controller
to obtain satisfactory control performance.
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