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Abstract. Multi-sigmoidal units, which are a generalization of ordinary
sigmoidal units used in neural networks, are introduced here. Multi-
sigmoidal neural networks (i.e. neural networks with multi-sigmoidal
units) share the same function representation and approximation capa-
bilities with ordinary sigmoidal neural networks. In addition, it is proved
here that if X is a finite and discrete subset of real numbers then any
function f : X™ — {0,...,C — 1}* can be represented by a two-layer
network (i.e. no hidden units) that has A[log, C] multi-sigmoidal output
units. The above result indicates that there is a trade-off in capturing
interactions among inputs and representing functions either via hidden
units or via non-monotonic unit activation functions.

1. Introduction

Perceptrons have been severely criticized for their inability to represent simple
boolean functions (such as exclusive-OR) [12]. As it has been shown in the
literature [16], the above limitation is mainly due to the fact that perceptrons
are two-layer networks (i.e. they have no hidden layers). Three-layer neural
networks with arbitrary activation functions (especially in the upper layer)
can represent any continuous function [8, 17, 4]. On the other hand, given
a particular activation function v, three-layer neural networks can uniformly
approximate any continuous function, if and only if ¢ is non-polynomial [10, 6).
Furthermore, if v is a squashing function then three-layer neural networks

" can uniformly approximate and Borel measurable function [7]. Based on the
later results, in many neural network applications, simple monotonic activation
function (such as sigmoidal functions) have been used [16, 5, 11].

In this paper, it is proved that some of the computational limitations of two-
layer networks with monotonic activation functions are due to the monotonicity
of their activation functions. In our study, units have activation functions that
consist of a collection of simple sigmoidal functions arranged along a dimen-
sion so that they constitute a piecewise sigmoidal or multi-sigmoidal function.
Those units are called multi-sigmoidal units.

It is proved that, if X is a discrete and finite subset of real numbers then any
function f : X® — {0,1} can be represented by a single multi-sigmoidal unit.
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As a consequence, any function f : X® — {0,...,C—1}* can be represented by
a two-layer network (i.e. no hidden units) that has Aflog, C| multi-sigmoidal
output units.

The above results indicate that there is a trade-off in capturing interactions
among inputs and representing or approximating functions using either hidden
units or non-monotonic unit activation functions.

Non-monotonic activation functions are not uncommon in neural network
literature [11, 15, 14, 1). Empirical comparisons of sigmoids and radial basis
functions appear in [18, 13, 9] while empirical comparisons of sigmoids, poly-
nomials, rational functions, and flexible Fourier series appear in [14]. All those
studies provide some empirical evidence that non-monotonic unit activation
functions could aid representation and approximation of functions by neural
networks.

In the next section, formal definitions are followed by two theorems re-
garding the representational capabilities of two-layer multi-sigmoidal neural
networks. In section 3, an example of a multi-sigmoidal unit is presented, and
the representational capabilities of multilayer multi-sigmoidal networks are dis-
cussed.

2. Multi-Sigmoidal Units and Neural Networks

Sigmotdal functions are formally defined and studied in [2]. Here, a basic unit
sigmoidal function S is used and its affine class Ag is defined as follows:

As ={Ssc/a,cER,a#0 and Yz S,.(z) = S(az - c)}

where R is the set of real numbers. Intuitively, a determines the steepness and
monotonicity of S, . while the ratio ¢/a determines the position of the center of
symmetry of S, .. For example, S could be chosen to be the logistic function.

Now, define [¢] to be equal to 1 if the condition ¢ is true and equal to zero
if the conditions ¢ is false. Then

Definition 1 A function f is called a multi-sigmoidal function iff

3k, a1,...,ak,€1,...,Ck Vi aj-1a; <0 and
Vo f(2) = iy Sauei(@)lbio1 <@ < b3

. . . . Cig1—0Cs .
where S s a sigmotdal function, by = —00, by = +o0, and b; = ;ﬁ:—a—';, i=

1,2,...,k—1. In that case we write f = (Sa,,c,;b1,5a3,c3)02, -1 bk—1, Sar,cu)-
We call a;,¢; (i = 1,...,k) the affine coefficients and b; (i = 1,...,k) the
barrier locations of the ms function f. Note that the conditions upon bg and b

are for notational convenience while the condition upon b; results in a function
f that is continuous! at b;, for i =1,2,...,k - 1.

LThis condition is not only sufficient but also necessary when S is invertible. The later
is equivalent to the generator of S being zero in a set of points that have zero total length
which, in turn, is equivalent to S being strictly monotonic.
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0j = fi(net)

fj = (Sajlycjl’bjl’""bjik—l’sajk)cjh)’
for some k € N

net; = Zi 0 Wij

Figure 1: A Typical MS Unit. net; is the net input to node j, o; is its output,
and f; is its activation function.

Now, a multi-sigmoidal unit (MS unit) is a unit with a multi-sigmoidal
activation function while a multi-sigmoidal neural network (MSNN) is a neural
network whose units are MS units. A typical MS unit and its functionality are
shown in figure 1.

Now, we can state and prove the following theorem:

Theorem 1 Let X C R be a finite and discrete set and S be a unit sigmoidal
function with range Rg (i.e. (0,1) C Rs C[0,1]). Then

Va>1 Vf:X"—{0,1} IWER" Ve>0
Jk,a1,...,ak,c1,. .. 06,01, bk YuEX™ |f(u)—g(W -u)| <€

where ¢ = (Sa;,¢,,01, Saz,e5:02, - -+, k=1, Say,ci)- Furthermore, if Rs = [0, 1]
then € could be chosen to be zero (i.e. f = g) in the above inequality.

Proof

Let m =min{lz —y| /2,y € X,z # y}, M = max{|z—y| / 2,y € X}, B =
Y 11,and W =[B°,BY,...,B"~1]T. Then the function h(u) = W-u, u € X"
can be proven to be 1 —1in X". Thus we can write X” as {u1,us,...,un}
so that A(u;) < h(uit1) (=1,2,...,N — 1), where N is the finite cardinal of
X",

Now we can construct g. To this purpose, let u;,,u;,,...,u;, denote the
elements of X™ where it is f(u;;) # f(ui;41) ( = 1,2,...,k — 1). Then de-
fine g= (541,61 3 bl) Sdg,Cga b27 <y bk-l, Sak,ck) where lSaj,c_,- (h(uij)) - f(u'ij)l =
|Sagre; (h(ui;41)) — F(ti,41)| = €. Obviously, since {F(u, )y f(ui,41)} = 10,1},
€ could be chosen to be zero in the above equations, if Rg = [0,1]. In either

case, those equations can define solution sets for a;,¢; (j = 1,2,...,k). Any
element in those solution sets will be an acceptable assignment of values to the
affine coefficients a;,¢; (j = 1,2,..., k). The barrier locations are now defined
as b; = fﬁ, i=12,...,k-1.

Now, Yu € X® 3j h(u;;) < h(u) < h(ui;41). Since, S is monotonic in
[A(ui;), h(ui;41)], and f is constant over all u € X™ that map (through &) into
[A(ui;), h(ui;41)], the required inequality |f(u) — g(W - u)| < € holds. Q.E.D.
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Figure 2: Multi-sigmoidal functions for f(z,y,2) = (z Ay) V(z A Z).

The above theorem states that one multi-sigmoidal unit is necessary in
order to represent any function f : X” — {0,1}. As a direct consequence,
A multi-sigmoidal units are necessary to represent any function f : X" —
{0,1}*. Furthermore, since [log, C] bits are necessary to represent any number
in {0,1,...,C — 1} we have the following theorem:

Theorem 2 If X C R is discrete and finite then any function f : X" —
{0,1,...,C — 1}* can be represented by a two-layer multi-sigmoidal network
having A[log, C'| multi-sigmoidal units.

3. Examples and Discussion

Consider the boolean function f(z,y,2) = (zAy)V (2AZ). Now,itis X =Y =
{0,1}. Thus (see proof of theorem 1), it wouldbe M =m =1, B =2, and so it
would be h(z,y, z) = =+ 2y + 4z. This results to a multi-sigmoidal g function
as shown in figure 2. However, if we define h(z,y,2) = 42 + 2y + z we get
the multi-sigmoidal function ¢’ that has fewer sigmoidal functions than g. In
adition, for the n-parity problem, it can be proved by induction that a weight
vector as the one constructed in theorem 1 will require [2":;‘1] sigmoidal
functions. On the other hand, setting all weights equal to a constant (say 1)
will result in a multi-sigmoidal unit that can represent n-parity using only n
sigmoidal components.

In general, for any given problem, the weight vector W may affect the
number of sigmoidal components of g. Finding a weight vector that would
minimize the number of sigmoidal functions of an MS unit is an open problem
and should be a subject of further research.

However, two-layer multi-sigmoidal networks cannot represent or approxi-
mate arbitrary functions, by any € > 0. For example, the two-spiral problem
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cannot be modellled by a single multi-sigmoidal unit. On the other hand,
multi-sigmoidal units are generalizations of ordinary sigmoidal units since ev-
ery sigmoidal unit is a multi-sigmoidal unit with only one sigmoidal component.
Thus, the functions that are representable by ordinary sigmoidal neural net-
works are representable by multi-sigmoidal networks, too. As a consequence,
three-layer multi-sigmoidal networks can uniformly approximate any (Borel)
measurable function [7].

Unfortunately, there has not been discovered a theorem such as theorem 1
that would provide a weight vectors and multi-sigmoidal functions for mul-
tilayer multi-sigmoidal neural networks. However, a heuristic and greedy
algorithm (steepest descent) that trains multilayer multi-sigmoidal networks
and dynamically adapts the sigmoidal components on each unit is the multi-
sigmoidal back propagation algorithm that is presented in [3].

Finally, it must be noted that two layer multi-sigmoidal neural networks
can represent strictly more functions than two layer ordinary sigmoidal neural
networks can (e.g. consider the XOR function). This is due to the fact that
non-monotonic unit activation functions can help to represent functions with
either fewer units or fewer layers.

4. Conclusion

Multi-sigmoidal units reveal an existing trade-off in representing functions us-
ing hidden units or non-monotonic unit activation functions. Although the
theorems proved here shed some light into this trade-off much remains to be
studied and analyzed. Furthermore, both mechanisms (i.e. hidden units and
non-monotonicity) could be combined in order to optimize one’s network.
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