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Abstract. This paper presents a scheme for learning a cognitive map
of a maze from a sequence of views and movement decisions. The scheme
is based on an intermediate representation called the view graph, whose
nodes correspond to the views while the labelled edges represent the
movements leading from one view to another. By means of a graph theo-
retical reconstruction method, the view graph is shown to carry complete
information on the topological and directional structure of the maze.
Path planning can be carried out directly in the view graph without
actually performing this reconstruction. A neural network is presented
that learns the view graph during a random exploration of the maze. It
is based on an unsupervised competitive learning rule translating tem-
poral sequence (rather than similarity) of views into connectedness in
the network. The network uses its knowledge of the topological and
directional structure of the maze to generate expectations about which
views are likely to be encountered next, improving the view recognition
performance.

1. Introduction

1.1. Representation of 3D shape and space

Information on spatial relations in the environment is crucial for the generation
and control of most kinds of behaviours both in living beings and in robots.
One source of such information is the sequence of retinal images. Extensive
research efforts have been directed towards extracting the 3D information in-
cluded in these images in an ezplicit form, i.e. to construct various representa-
tions of depth from them. Examples of such representations include generalized
cylinders in the context of object recognition (Marr and Nishihara, 1978) or
cognitive maps for representing the environment (see Gallistel 1990, O’Keefe
1991).

One way to think about representations is as a piece of information that has
been made explicit in the brain. If the 3D structure of an object is explicitly
known, it should in principle be possible to predict novel views of this object.
Recent psychophysical work shows that this is not the case: even if ample 3D
information is provided (e.g., by stereo or the kinetic depth effect), recognition
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Table 1: Map behaviour, possible sources of information, and hypothetical
representations employed

Behavioural Sources of Possible
Competences Information ~ | Representations

¢ Repeat a previously | e Pointers (guidances) | o Associations
* travelled path and general rules between views and

e Find known target o Global compasses motor commands‘
from new starting (sun, chemical ¢ Relational
point gradients, etc.) information on

¢ Find shortcuts o View sequences and places, connections,

and views (e.g.,

Landmarks
graph structures)

o By-pass newly
blocked connections | e Path integration

(dead reckoning) o Topographic maps

representing metric
relations

¢ Communicate about
paths

is much harder for novel views than for familiar views included in the training
set (Biilthoff and Edelman 1992). One possible interpretation of this result is
that 2D views rather than some explicit representation of 3D shape are stored
in the brain. ‘

Instead of making all available image information explicit and storing it in
a representation, one could think of picking just the right pieces of information
required for a given behavioural task. In this view, perception is part of a
perception—action cycle that uses image information with the least possible
amount of intermediate computation. A particularly interesting way to state
the underlying question is this: how complicated can spatial behaviour get
without using explicit representations of space? In this paper, this question is
explored in the field of navigation in space, i.e., maze exploration.

1.2. Cognitive maps
and the perception—action cycle for map behaviour

A cognitive map is a neural mechanism which enables its user to solve nav-
igation and orientation tasks as if using a real map of the environment (see
Table 1). Examples of map behaviour include: repetition of previously trav-
elled routes, finding detours around obstacles, approaching a goal from a novel
starting point, finding a path between two arbitrary points of the environment
(topological use of the map), finding the shortest path (topological and metrical
use of the map), etc. These competences are based on a number of information
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Exploration—System

Cognitive Map

View-
recognition

View Sequence Map Behaviour

Figure 1: Cognitive maps and the perception—action cycle. The sensory input
available to the system is a sequence of views reflecting the structure of the maze
and the observers movement decisions. The cognitive map stores information
on the interrelation of the view sequence and the movements taken (upward
arrows). It also generates “expectations” in the sense that (i) similar views can
be distinguished by their position in the maze and that (ii) movement decisions
are guided by the cognitive map (e.g., for exploration or goal-finding). For
further explanations see text.

sources some of which are listed in Table 1. In this paper, we restrict ourself
to sequences of views as the sole source of information.

A cognitive map contains two types of information, concerning (a) the recog-
nition of places and (b) the connections between them. Previous approaches
have often focused on the first problem and tried to learn paths as an associa~
tion between recognized views or places and motor commands (for review, see
O’Keefe, 1991). In this paper, we give an explicit account of the connectivity
structure of the explored environment in terms of the view—graph.

The notion of a cognitive map pursued in this paper is illustrated in Fig. 1
as part of an action—perception cycle. Since we restrict ourselves to cognitive
maps of mazes, sensory input can be described as a sequence of views reflecting
the connectivity structure of the maze together with the movement decisions
taken by the system exploring the maze. Another advantage of mazes is the fact
that there are only a small number of possible (egocentric) movements, such
as “go left”, “go right”, “go back”, “turn left”, etc. The cognitive map does
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Figure 2: a. Simple maze shown as a directed graph with places p; and corridors
¢j. b. Associated view—graph where each node v; corresponds to one view, i.e.
one directed connection in the place graph. Only the edges with go-labels are
shown. In graph theory, b. is called the interchange graph of a. Simpler plots
of b. are possible but not required for our argument. ¢. Adjacency matrix of
the view—graph with labels indicating the movement leading from one view to
another. Go-labels (involving a locomotion from one place to another): g; (go
left), g, (go right), g5 (go backward). Turn-labels (e.g., probing of corridors):
t; (turn left), ¢, (turn right), ¢, (stay).

not represent the complete information of the maze but only those aspects that
are relevant to (i) the interpretation of view-sequences or (ii) the generation of
map behavior. The left double—arrow in Fig. 1 indicates the interaction of view
recognition and the cognitive map: if a view is recognized, the current position
in the map can be updated. Vice versa, knowledge on the current position in the
map helps distinguish similar views occuring at different locations. The right
double—arrow indicates the fact that-movement decisions must be ‘associated
with the resulting view changes in order to make the cognitive map predictive;
also, map information will be used to make movement decisions with respect
to a given plan (such as exploration, approach to a target, etc.).

In Sect. 2., we present the view—graph as a data-structure that is built on
concepts such as views and movements and is able to represent all relevant
information on mazes. The argument will be based mostly on mathematical
graph theory. Sect. 3. deals with an artificial neural network reconstructing a
cognitive map (i.e. a view—graph) from a sequence of views and motion deci-
sions.

2. The view—graph as a sufficient representation of mazes

2.1. Places, views, and movements

Consider a simple maze composed of places p;, ..., p, and corridors c1,...,cm
(Fig. 2a). One way to think of this maze is a graph where the places are
the nodes and the corridors are the edges. We consider all corridors to be
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directional but allow for the existence of two corridors with opposite directions
between any two nodes. Throughout the paper, we will assume that there are
no isolated places in the maze, i.e., each place can be reached from any other
place by at least one sequence of corridors.

When exploring a maze, the observer generates a sequence of movement
decisions defining a path through the maze. In doing so, he encounters a
sequence of views from which he wants to recover the place-graph. In order
to study the relation of views, places and movements, we make the following
simplifying assumptions.

Views: There is a one-to—one correspondence between directed corridors and
views. All views are distinguishable and there are no “inner views” in a
place that do not correspond to a corridor.

Movements: At each time step, one movement from a finite (usually small) set
is selected. Thus, the observer knows if he simply probed a corridor (by
turning towards it without moving) or if he actually walked it. Clearly,
the same view would be encountered in both cases.

With these assumptions, we can construct the view-graph that an observer
will experience when exploring a maze (Fig. 2b,c). Its elements are:

o The nodes of the view—graphs are the views vp, which, from the above
assumption, are simply identical to the corridors in the place-graph. We
denote the start and target place of a view v by Poui(v) and Ppp(v),
respectively. Of course, the functions P, and P,y are not known when
exploring the maze.

e The edges of the view—graph indicate temporal coherence: two views are
connected, if they can be experienced in immediate temporal sequence.
The edges are labelled with the movements resulting in the corresponding
view sequence. It is convenient to distinguish two types of labels:

— “Go-labels” specify movements leading from one place to another.
In Fig. 2c, three types of go-labels are shown, indicating leftward,
rightward and backward movements.

— “Turn-labels” specify movements within one place, i.e. probing move-
ments where a view is looked at but not walked to.

The resulting adjacency matrix with movement labels is depicted in Fig. 2c.
Note that all edges starting from the same node will have different movement
labels.

For the graph-theoretic argument in the rest of this section, we identify all
go—labels and neglect the turn-labels. Thus, two views v, and v, are connected
f Pin(g) = Pout(p). We denote by A = (ay,) the simplified adjacency matriz

of the view—graph:
_ 1 Pin(Q) = Pout(P)
Gpg = { 0 otherwise (1)
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It can be obtained from the adjacency matrix of Fig. 2¢ by replacing all go-
labels by ones and the turn-labels and bars by zeros. Taken together, the (now
unlabelled) view—graph defined here is the interchange graph (e.g., Wagner
1970) of the place-graph.

‘2.2, 'Which information does the view—graph represent?

In this Section, we assume that the view—graph has been learnt, e.g. by the
neural network presented in Sect. 3. The question then is: does the view—graph
contain enough information to guide map behaviour? To answer this question,
we will now mathematically reconstruct the underlying maze—graph from the
view—graph. It turns out that this can be done already with the simplified
(unlabelled) view-graph introduced in the previous section.

It should be clear that the place-graph can be recovered from the view-
graph only up to permutations of the place- and view—numbers. Strictly speak-
ing, we will construct a third graph whose nodes are sets of views leading to
one place. This graph will be isomorphic to the original place-graph. We start
by defining the successor S(vp) of a view v, as the set of views that can follow

Vp:
S(vp) = {vrlar, = 1} (2)

The reconstruction method rests on the idea that two views lead to the
same place, if they have the same successor:

Pin(vp) = Pin(vg) <= S(vp) = S(vy). 3)
To prove this equivalence, we substitute from Eqs. 2, 1 and obtain:

S(vp) =8(vg) <= {vrlapr = 1} = {vslag =1}
<= {vr|Pout(r) = Pin(p)} = {vs|Pout(s) = Pin(q)}

The last two sets cannot be empty, because the maze does not contain isolated
places. Since the indices 7 and s refer to the same arbitrary numbering of the
set of views, it is easy to see that the final equality implies P;,(p) = Pin(g),
which proves our proposition. Note that in addition to Eq. 3, we have proved
S(vp)NS(vg) # 0 <= S(vp) = S(vy): Successors are either disjoint or identical.

While we cannot recover the functions P;, and P, explicitly, Eq. 3 shows
that the equality of their successors partitions the set of all views into n subsets
correponding to the places {p;}i < 1 < n}. These are the nodes of the recovered
graph. The corridors can be found by inspection of the view—graph.

The above results were obtained for the unlabelled version of the view—
graph. Since this can always be derived from the labelled view—graph, the
results hold for the richer graph a forteriori. It should be clear that the re-
construction described here need not be carried out in the brain; it simply
illustrates the sufficiency of the representation.
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Figure 3: Subgraphs of maze-

a4 . and view-graph corresponding
a2 to one place. The subgraph
@ €2 of views is a complete bipartite

s e3 graph since every entry view, a;,
4 is connected to every exit view,

e; (i.e., the successors of all en-
try views are the same).

2.3. Redundancy of the view—graph and the completion matrix

The fact that all views leading into the same place have the same successor can
be restated by saying that each place in the maze corresponds to a complete
bipartite subgraph in the view—graph (see Fig. 3). A complete bipartite graph
consists of two subsets of nodes such that each node from one subset is con-
nected to each node of the second subset while there are no connections within
subsets. Here, the two subsets are the views leading into one place and the
views leading away from this place. This second set is the successor of each
member of the first set.

This structure of the view-graph entails an interesting type of redundancy
which might be useful in exploration. Suppose that view a; is known to have the
views ej, ez in its successor and view ay is known to have ey in its successor.
It can than be predicted that the sequence as — ey should also exist. If
it doesn’t, the views e; as seen in the sequences a; — e; and as — e; are
probably confused and must be distinguished by further examination.

The bipartite structure of the subgraphs has an interesting counterpart in
the adjacency matrix. The successor of view v, (Eq. 2) corresponds to the pth
column of the adjacency matrix A; its size is the number of ones in that column.
The reconstruction result (Eq. 3) therefore implies that A can have only up to n
(the number of places).different columns. Two columns of A are either identical
or orthogonal (no coinciding ones). Therefore, for a suitable permutation of
the views, the symmetrical matrix AT A will have block structure with n blocks
each corresponding to one bipartite subgraph of views or to one place in the
maze. If A is interpreted as a transition matrix, AT A describes a step forward
followed by a step backward, not necessarily the reverse of the step forward.
Starting with some view, this movement will reach all views leading to the
same place. We call ATA the completion matriz of the view—graph. The
size of the blocks equals the frequency of a particular column (successor) in a
matrix, i.e., the in—degree of the corresponding place. The values taken by the
coeflicients inside each block are constant and correspond to the out—degrees of
the corresponding places. Qutside the blocks, the matrix takes the value zero
(cf. Fig. 6).
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2.4. Is the view—graph planar?

In the previous section, we have shown that the view—graph contains all in-
formation required to reconstruct the place-graph. If we want to represent
view—graphs in a neural network, it is important to find a network topology
in which they can actually be embedded. For example, two—dimensional grids
are best suited for planar graphs, i.e., graphs that can be drawn on a sheet of
paper without intersecting edges. Since the problem of planarity is completely
solved for bipartite graphs {e.g., Wagner, 1970), we can give a simple sufficient
criterion for non—planarity of the view—graph: Complete bipartite graphs are
non—planar if both subsets contain at least three nodes. Therefore, the view—
graph of a maze containing a place where three or more corridors meet, cannot
be planar. This is the case for all interesting mazes.

2.5. Paths and movement sequences

So far, we have shown that the (unlabelled) view—graph contains all informa-
tion contained in the place—graph. However, for path planning some additional
information is required. This can be seen from the fact that simple transfor-
mations such as mirroring applied to the maze would affect neither its graph
structure nor the structure of the view—graph. It would, however, strongly af-
fect the paths taken through the maze since all left/right decisions would have
to be reversed.

In the original maze, directional information can be included by allocentric
or world centered direction labels assigned to the corridors (e.g., in Fig. 2a, cor-
ridor ¢; would be labelled “west”, corridor ¢4 “north—east”, etc.). In the view—
graph, we can now use the egocentric labelling system introduced in Sect. 2.1.
The reconstruction method given above was based solely on the go-labels and
ignored the connections having turn-labels. Of course, the turn-labels will be
useful for reconstruction of the places. It is an empirical problem to find out
the relative importance of these labels in biological maze learning.

For the generation of movement sequences, the turn-labels are irrelevant. If
a path is given connecting two views in the view—graph by edges carrying go—
labels, a corresponding movement sequence can easily be generated by simply
listing the labels along the path.!

3. Learning mazes from view sequences

3.1. Self-organizing sequence map

We construct a neural network consisting of three sets of units: the input, the
movement, and the map layer. In order to support orientation behaviour in a
maze, the network must represent information concerning two problems:

1If two views are connected by a turn—label, they will also be connected by a two-step
path using go-labels.
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Figure 4: Structure of the
neural network. p: in-
put weights, «: map layer
weights, (:  presynap-
tic, modulatory weights
from the movement units.
Note the similarity to the
intra-organismic part of
the action—perception cy-
cle depicted in Fig. 1.

map layer

movement layer
(motor command
units)

input layer

~ (receptor array)

P1 Each view must be identified and associated with a particular location in
the map. In our network, this is achieved by a set of input weights Pij.
After learning, each view will be represented by activity in the associated
map unit, i.e. the unit whose input weights are most closely tuned to
the presented view. Neurons representing particular places have been
recorded from rats (see O’Keefe, 1991). For results on directional place
cells, which more closely correspond to our views, see McNaughton et al.

(1983).

P2 The topology of the maze is represented by weights a;; connecting units
within the map layer. Weights between units will be assigned according to
the temporal sequence of the views represented by these units. Movement
labels are associated to the connections in the map layer by presynaptic
facilitating connections from the corresponding movement unit.

While the proposed network is reminiscent of.a standard Kohonen map (Ko-
honen 1982), there are two important differences: First, nearness in the map
corresponds to temporal adjacency, not to featural similarity. In fact, similar
views can occur at great distances in the maze and must not be confused. Sec-
ond, distance in the map is measured as the minimal number of synapses that
must be passed between two units (the “combinatorial distance” in graph the-
ory). Therefore the topological structure of the resulting “map” is not limited
(see Martinetz and Schulten 1994). This is desirable since view—graphs need
not be planar.

3.2. Description of the model

Network structure. The network consists of an input layer (J units) with
activity variables f}, a map layer (I units) with activity variables e! and thresh-
olds 6}, and a movement layer (K units) with activity variables m},; superscripts
denote time steps. The input layer is fully connected to the map layer via the
input weights p;. For each map unit i, the weight vector r; := (pi1, ..., pis) is
called its “receptive field”. As a consequence of the Cauchy-Schwarz inequal-
ity, the map unit will be activated most strongly by an input vector identical
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to its receptive field. Within the map layer, synaptic weights of,, are initialized
to zero but may evolve during learning. The movement layer contains one unit
for each possible movement (label of the view—-graph connections). Each unit
will establish facilitating presynaptic connections to all appropriate map layer
connections. The map layer weight of, may be facilitated by a presynaptic
weight ﬂfnyk, if my, is the movement type associated with view connection a;y,.

Input sequence. A sequence of movement signals is given as external in-
put to the movement units. At the same time, a sequence of input vectors,
! =(f},... f})T,t € N, is simulated from the corresponding movements in
some underlying maze-graph and presented to the input layer. In the first se-
ries of simulations, the movement decisions were chosen at random with equal
probability, resulting in a random walk through the maze. For each view (di-
rected corridor in the maze) a fixed view vector is chosen which is fed to the
input layer of the network each time the random walk passes by. The view vec-
tors can be either canonical base vectors (only one component different from
zero) or random. In the first case, problem P1 above is assumed to be solved
by some ideal preprocessing; in the second case, P1 and P2 are approached
simultaneously.

Activation dynamics. The acitivity of the map layer units is described by

J I
e =g | =051+ > phifi 4+ bt ], (4)
ji=1 i=1

where g : R — [0, 1] denotes the logistic function. Let w(t) denote the index
of the most active cell (the winner cell), i.e.: &, 5 = max;{e}f}. It represents
the view currently perceived in the maze. The eftects of incoming information
are biased by an intrinsic term (the second sum in Eq. 4) such that the current
winner is likely to be a-unit connected to the last winner via a strong weight. By
&, we denote the joint effect of map layer weight and the presynaptic facilitation
from the movement layer:

K
&En = QZn + E(l - a;k) Zn,kmk' (5)
k=1

Weight dynamics. The input weights p;; are randomly initialized to values
between 0 and 1, with a subsequent Euclidean normalization of each receptive
field ry (1) == (pi1, - - .piy). The receptive field of the winner unit approaches
the presented input via the competitive learning rule with learning rate A; (see
Kohonen 1982)

rt+1 _ rf”(t) ‘+‘ A]_ft

= 6
w(t) “rfu(t) + ,\lft” ( )
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The input weights of the other units remain unchanged. Connections within
the map layer are established between the last two winners and represent a
transition between the last two views in the maze:

Cu@ui-1) = (1= A2)e0) o1 + A20mas (7)

Here, )3 is a learning rate and apq, an upper limit for the weights.

Finally, the weights of the presynaptic connections f;,  are set to some
constant ¢ € (0, 1] if movement my coincided with the last increase of a;p;
otherwise, B;n r is zero.

Threshold control. Due to the intrinsic term in the activation dynamics,
the network ¢ould converge to a state where just two strongly connected map
units are the winner units for all view presentations. In order to overcome
this problem, the thresholds of winner units increase according to the threshold
dynamics (As: learning rate, 0p,q,: maximal threshold):

efv(t) = (1 - AS)ofu-Etl) + A3bmaz. (8)

4. Simulations

In this Section, we briefly summarize a number of simulation results obtained
with the neural network model. View sequences were generated by a random
walk through a 7-place (12-view) hexagonal maze. A network with 7 = 20
input units, J = 64 map units and K = 4 movement units was used. A
more thorough account of the network’s computational capabilities as well as
a simple plath~planning algorithm have been presented elsewhere (Schélkopf
and Mallot 1994).

4.1. Convergence ’

Convergence of the learning process is judged from the combination of two
measures: Neighborhood preservation rate (NPR) is the frequency of view pre-
sentations in which the winner neuron receives a map layer connection from
the winner neuron of the previous time step. If the network contains the map
layer conections for all edges of the view graph and view recognition is correct,

Table 2: View graph topology convergence in the simulation. NPR: Neighbour-
hood preservation rate (cf. Sect. 4.1.).

Learning time 0[10720(|130{50|70] 90| 110 | 130 || ideal
NPR (in %) 04060 (7377|8387 (100 ] 100 100
No. of connections || 0 9114 (17119122124 | 26 26 26
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Figure 5: Neighbourhood preservation rates (NPR) measured in 200 testing
steps for different amounts of Gaussian noise added to the input views. Learn-
ing time 110 steps. +: intrinsic connections cut. A: intrinsic connections
without movement facilitation (topological biasing). e: intrinsic connections
with movement facilitation. o: additionally, the winner unit activity is set to
one in each time step. The curves are logistic functions fitted to the data.
The relative shift of the curves, i.e. the improvements achieved by adding the
different features are given by the differences of the 50%-thresholds shown to
the right.

neighborhood preservation rate becomes unity. While NPR increases during
learning, the total number of map.layer connections should be low since in a
completely connected map layer, NPR would evaluate to one for trivial rea-
sons. In Table 2, NPR and the number of map layer connections are shown for
a number of learning steps. Learning is complete after 110 steps.

4.2. View Recognition

The intrinsic term of the map layer activation function (Eq. 4) helps recognize
the views. In Fig. 5, view recognition as a function of signal-to—noise ratio is de-
picted by means of the neighborhood preservation rate, NPR (see Section 4.1.).
If noise is added to the views, the map layer weights reduce the signal-to—noise
ratio required for recognition by a factor of about 2 (3.6 dB). This indicates that
the topological structure stored in the map layer weights is used to distinguish
similar, but distant views. Further improvements are achieved by including the
movement layer, indicating that knowledge about the last movement decision
(i.e. the direction of approach) also helps distinguish similar views.
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Figure 6: Completion matrices AT A derived from the weight matrices after 40
and 110 learning steps. Grey-levels correspond to the values 0 (white) to 3
(black), unit numbers denote units in the map layer. The block structure is
clearly visible after 40 steps, the underlying maze can be inferred already from
this stage.

4.3. Maze Reconstruction

From the weight matrix, we derive an estimate of the adjacency matrix A
of the view graph by deleting the all-zero rows and columns, thresholding
the remaining entries, and suitable reordering of the rows and columns. The
estimated completion matrix (cf. Section 2.3.) after 40 and 110 learning steps
is shown in Fig. 6. The block structure is already fully developed after 40
learning steps. In addition, from the inhomogenities within the blocks, optimal
strategies for further exploration of the maze can be derived.

5. Discussion

The examples presented in this paper indicate that view-based approaches
can go a long way in the processing of spatial information. The information
implicitly present in the images can support many behavioral competences
without being transformed into explicit spatial representations.

The view—graph can also be used to represent three-dimensional objects by
their various views. Edelman and Weinshall (1991) proposed a neural network
model for rotation-invariant object recognition which recovers view-graphs of
objects. The authors argue that views perceived in close temporal sequence are
likely to belong to the same 3D object and should be linked in the view-graph.
The predictions for view extrapolation made by view—based models have been
confirmed in psychophysical experiments by Biilthoff and Edelman (1992). In
maze reconstruction, the problem is slightly more complicated: again, views
perceived in temporal sequence are connected, but do not in general belong to
the same place. Object recognition is thus analogous to the reconstruction of
the places of a maze from connections with “turn-labels”. In order to recover
the connections between places, “go—labels” are required as well (Sect. 2.2.).
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In general, the amount, type, and explicitness of the information represented
at a stage depends on the information processing streams interacting at this
stage. If, for example, maze information could be gathered from additional
sources such as global compass, general guidances and world knowledge (e.g.:
“if you want to reach the water, go downward”), acoustic information, or even
communication with other exploring systems, a common stage would be needed
where all these inputs could be compared. A “good” representation is therefore
not so much characterized by its explicitness but by its ability to integrate data
from different streams. To what degree explicit representations of space are
required to make the various inputs and outputs commensurable, is an open
question.
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