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Abstract. We present an estimate of approximation error of multivari-
able continuous functions by networks with kernel basis function (KBF)
units. The estimate is a function of the number of hidden units and of
the total variation of the convolution of the function to be approximated
with a kernel basis function. We also present here known estimates of
the error of approximation of continuous multivariable functions by net-
works with sigmoidal and spline activation functions. All the presented
estimates of errors depend indirectly on the number of units in the hidden
layer.

1. Introduction

In neural network theory, some estimates of the error of approximation of
continuous functions by various feedforward neural networks are known. Un-
fortunately, they are mostly limited to one-dimensional functions.

We focus here on the approximation of multivariable functions by feedforward
neural networks and deal with recent estimates for the most common neural
networks: sigmoidal (Barron [1]), spline networks (Mhaskar [9]) and our kernel
basis function network.

Section 2 contains the main definitions of the terms used in the paper and the
estimates of the error for spline and sigmoidal networks. Section 3 deals with
approximation by radial basis function networks (RBF) and by more general
kernel basis networks (KBF). In section 4, we derive an estimate of rates of
approximation by KBF networks based on approximation by convolutions. As
an example, using Jackson’s estimate, we give an upper bound on approxima-
tion error for KBF networks with the Jackson convolution kernel. Section 5
discusses the presented estimates.

*This work was supported by GACR under grant 201/93/0427.
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2. Activation Functions, Functional Spaces and Neural
Networks

2.1. Definitions

Let us recall the definitions of the terms used in the paper.

By R and N we denote the set of real numbers and positive integers, respec-
tively; I = [0,1] and R4 = [0,00). For a bounded function f : R — R the
uniform norm is defined by

I f lleo = sup |f(x)]-
XeR*

A convolution of two functions f,g : R =R is f*xg= [ f(x)g(x — y)dy.
Re

Let f : R? — R be a function. Let [a,b] = H:=1[aj, b;] be a given cube in RY.
Let int(A) denotes the interior of the set A.

The following definition is from [?]. Define U[a,b] = {x; either z; = a; or
z; = b;} and let 7(x) denotes the number of i so that z; = a;, where x =

(z1,-..,%a)-
Denote

flapp=1 Y D@5l

xeU{a,b)

Total variation of a d-dimensional function f on the interval [a,b] is defined
by

P - e e k . .
V(f) = V(f)l[a,b] = st;p{z fle}’
ji=1
where P = {Ji,...,Js} is a partition of [a,b] so that [a,b] = Uf_,J; and
int(J;))Nint(S)) =0forall j#1,=1,...,k.
We say that f is of bounded variation if V(f) is finite. The function

w(f,h)=_ max |f(x+t)- f(x)|

x,titi<h

is called the modulus of continuily of f.
IfA= H;=1[aj,bj], the modulus of smoothness of a function f : A — R

wd (f, A) may be defined by
. 4 N _
wm(f) A) - lan’ElEaiilf(X) P(X)I,

where the infimum is taken over all polynomials P of degree at most m — 1 in
each of its d variables. :
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We may also define the modulus of §~smoothness

wi (£,86,[0,1]%) = sup{wd (f, A) : A subcube of [0,1]¢, diam(A) < §}.

Let [a,b] C R4. Denote C[a, b] the space of continuous functions on [a, b] with
the uniform norm and corresponding topology.

2.2, Some Known Estimates of the Error of Approximation

There are various activation functions used in the hidden layer of feedforward
networks for approximation of functions, namely sigmoidal functions, polyno-
mials, spline functions, radial basis functions and kernel basis functions. We
will present here some known results on estimates of the error of approximation
by the networks with spline and sigmoidal activation functions.

Denote Syy(A) - a space of splines of order m with the partition A = {x;}¢!
in the interval [a,b] C R?. The members of a basis of the space S™(A) are
called B-spline functions.

The corresponding neural network has spline activation functions assigned to
the neurons in the hidden layer.

Mhaskar dealt in [9] with the estimation of the error of approximation by
multivariable spline functions with fixed knots. His result is based on the gen-
eralization of the results in Schumaker [12] considering tensor product.

Let d > 2 be the number of input variables. = The tensor product quasi-
interpolatory spline operator is defined by

QU(f,%) = Y NN (nx - 1),
i

where x = (21,23,...,24) € R, i=(41,...,44) and the tensor product (cardi-
nal) B-spline of order m
d
N (%) = ] Nen(=5)-
ji=1

Theorem 1 ((Mhaskar)) If f : [0,1]¢ — R is continuous and m,n > 1 are
integers, then there erists a spline Q3 of order k with (n +1)4 nodes such that
if the interpolating poinis are properly spaced, we have

max 11(x) ~ QAG0)| < awih(f, 7, 10,119

Xeg[o,1)¢

where ¢ is a posilive constant depending only on m and d.

In other words, the approximation error depends indirectly on the number of
units in the hidden layer of the network. The more units are in the hidden
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layer, the better approximation is achieved.

Let k£ > 0 be an integer, 0 : R — R be a bounded measurable function on the
real line for which limy—,— 0(z) = 0, lim;—, 6(2) = 1. Feedforward neural
network models with one layer of sigmoidal units implement functions on R4
of the form

n
n(x) = Z ceo(ar.x+ b))+ co 1)
k=1

parametrized by ax € R? and by, ¢; € R, where a;.x denotes the inner product
of vectors in RY.
Let us mention here an interesting result by Barron [1] on approximation by
sigmoidal functions. The approximation error is measured by the integrated
squared error with respect to an arbitrary probability measure u on the ball
B, = {x : |x| <€ r} of radius » > 0. The function & is an arbitrary fixed
sigmoidal function.
Consider the class of functions f on :R,d for which there is a Fourier represen-
tation of the form f(x) = [r. €™ X f(w)dw for some complex-valued function
f(w) for which wf(w) is integrable, and define Cr = [relwll f(w)|dw, where
|w| = (w.w)/2. For each C > 0, let T'c be the set of functions f such that
C;<C.

Theorem 2 ((Barron)) For every function f with Cy finite, and every n >
1, there exisis a linear combination of sigmoidal functions f,(x) of the form
(1), such that

[ ¢ - om0 < Z,
By

where ¢, = (2rCy)2. For functions in T'c, the coéfficients of the linear combi-
nation in (1) may be restricted to satisfy 3 p_, lck| < 2rC and co = £(0).

It is also shown in [1] that for f(x) = e~I*°I/2 (Gaussian function) Cy < d'/2,

so f,f- = 4—':—d. The more units are in the hidden layer, the better approximation
is achieved.

3. RBF and KBF Networks

Radial basis function (RBF) networks have been recently studied by many
authors (for example, by Broomhead and Lowe [2], Moody and Darken [10],
Girosi and Poggio [5], and Park and Sandberg [11]). Let us recall here the
definitions of RBF and KBF networks.

A radial basis function (RBF) unit with d inputs is a computational unit that
computes a function from R? to R of the form ¢(|| x—c || /b), where ¢ : R = R
is an even (radial) function, || . || is a norm on R4, and c€ R4, b€ R, b > 0.

A radial basis function (RBF) network is a neural network with a single linear
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output unit, one hidden layer with RBF units that have the same radial func-

tion ¢ and the same norm || . || on R4, and d inputs.
By F(#,]| - ||) we denote the set of real-valued functions on I¢ computable by
RBF networks with the radial function ¢ and the norm || . || with any number

of hidden units. The most popular radial function currently used in applica-
tions is the Gaussian ¥(t) = exp(—t2) (see [10]).

Approximating a convolution by an appropriate Riemann sum, we obtained in
[6] that for every positive integer d and for every continuous function ¢ : R —
R4+ with a finite non-zero integral and every norm || . || on R4, F(&,]] . ||) is
dense in C(I%). In other words, the class of single hidden layer RBF networks
with uniform width has the universal approximation property.

In [7], we built on these results and derived estimates of rates of approximation
for one-dimensional continuous functions.

In this paper, we build on these results to derive estimates of rates of approx-
imation for multivariable continuous functions with bounded total variation.
We show here that for any of a number of classical kernel functions the rate of
approximation is bounded above by terms depending on the total variation of
the convolution of the approximated function and a given kernel function.
Recall here the definition of general kernel functions as we introduced them in
[6] into neural networks by defining kernel basis function (KBF) units.

A KBF unit with d inputs computes a function R — R of the form k,(||
x — c ||), where {k, : R — R} is a sequence of functions}, || . || is a norm on
R4, and ¢ € R%, n € N are parameters. We call n sharpness.

A kernel basis function (KBF) network is a neural network with a single linear
output unit, one hidden layer with KBF units with the same sequence of func-
tions {k,, n € N'} and the same norm || . || on R¢, and d inputs.

By K({kn, n € N}, || - ||) wWe denote the set of functions computable by KBF
networks with {k,, n € N} and || . || with any number of hidden units. By

Ku({kn, n € N}, || . ||) we denote the set of functions computable by KBF
networks with {k,, n € N’} and || . || with any number of hidden units and
uniform k,, for all hidden units.

Similarly, we obtained the universal approximation property for quite general
KBF networks in [6] which is presented in the following theorem:

Theorem 3 For every positive integer d and for every sequence of continuous

functions {k, : R — R4, n € N} and every norm || . || on R? satisfying for

every n € N and every x € R? [ kn(|| x —y |)dy = 1 and for every § > 0
Rd

and everyx €R? lim [ ku(|| x—y |)dy = 0, where Js(x) = {y| y € R?,
lx—yll > 6}, the class Ky({kn, n € N'}, || - ||) is dense in C(I9).

Note that the classical kernels such as the Féjer kernel, the Dirichlet kernel,
the Jackson kernel, the Abel-Poisson kernel, the Weierstrass kernel, and the
Landau kernel (for the definitions see [6]) satisfy the assumptions of Theorem
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3 and so KBF networks with any of these kernels are powerful enough to ap-
proximate continuous functions (of course, to achieve arbitrary accuracy, one
must increase the number of hidden units).

4. An Estimate of the Error of Approximation for KBF
Networks

Let us present here the main result of this paper. For some of the above
mentioned convolution kernels upper bounds on convolution approximation are
known. Our following theorem derives an estimate of the rate of approximation
by KBF networks depending on the error of approximation E(f, kn) =|| f—f*
kn ||r= supxen |f(X) = f * kn(x)], H C R? and the total variation of f * k.

Theorem 4 Let d > 0 be a given integer. Let f : R4 — R be a continuous
function, k, a kernel function,I¢ = [0,1}4, E(f, kn) =|| f(x) — [1a F(£)kn(ll
x — t |)dt||js. Let f * kn be of a bounded variation. Then for every m € N
there ezists a KBF network with m hidden units computing a function g €
Ku({kn}, ||-|)) such that for every x € I¢

1£6x) = 90| < (k) + 2V (B)

where

B = £ ka(®) = [ FOka (i

As in the previous theorems, the greater the number of the units in the hidden
layer the smaller the approximation error.

Proof:

By assumption, |f(x) — [« f(X)ka(l| x — t ||)dt| < E(f, kn) for every x € Ié,
We estimate the funclion ;. f(t)kn (|| x — t ||)dt by multivariable Riemann
sums sy, (see [4], p.129 ). Under the condition that V(f * k) is bounded, we
have

| [ £kl = ) Dt = sG] < V(7 ),

and et
om(x) = 517 ...E;Fof(%’ Yl @1 = L za = ) 1D,
where i = (1,...,14).
Then | [0 FR)x — 6m ()| < | [y FNX = [y S (ll X )t}
+| Jur F)ka (| x =  [dt = sm(x)| < E(f, kn) + 2V (f * kn). o

As an example, we use this theorem to estimate the error of approximation
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for the KBF networks based on the Jackson kernel with inputs in the interval
P = [—m,7)%. Consider the following operator:

[ 10Lax= vyt = [ e+ L@, @
P P

where L,, is the Jackson kernel

1 sin|| n.t/2|| 4 / _
Ln(t) - ’\n (nsin ” t/2 ” H P Ln(t)dt - 1’

where the last relation defines A,,. It is convenient to normalize the operator
(2) in such a way as to obtain a trigonometric polynomial of degree n. For this
purpose, we put
n
Ka®=L(),  r=[gl+1

The operator Ju(x) = Jn(f,x) = [p f(x + t)Kn(t)dt is called the (multivari-
able) Jackson operator.

Theorem 5 ((Jackson)) There ezists a constant M such that, for each func-
tion f € C(P), where P = [—m,7]% and for every n € N,|f(x) — Ja(x)| <
wa(f, %)

The proof is a multivariable generalization of the theorem in [8], p.56.

Theorem 6 There exists a constant M such that for every f € C(P), P =
[—m, 7], for every n (sharpness of the Jackson kernel) and for every m € N
and a function g computable by a Jackson KBF network with m hidden unils
and with sharpness n such that for every x € P

1) 90l < Mar(f, 2+ Sv(7a), ©
where r = [2] + 1 and P* =[-2x,2x].

Proof. ;From Theorems 6 and 7, where E(f, kn) < Mwp(f,3). ]

5. Discussion

In this paper, we have presented some estimates of error of approximation of a
multivariable continuous function on a compact set by the most common neural
networks: sigmoidal networks (by Barron), spline networks (by Mhaskar) and
our estimate for kernel basis function networks. All the presented estimates of
errors depend indirectly on the number of units in the hidden layer.

It is difficult to decide which estimate is the best for a general continuous
function. Each result was achieved for a function under different conditions.
For example, for some functions it can be demanding to compute a Fourier
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transform as it is required in Theorem 2. On the other hand, the modulus of
é-smoothness or the total variation of the function can be gained more easily
as it is required in Theorem 1. The quality of approximation in Theorem 6
depends on the kernel function k,, by E(f,k,) and the total variation of the
convolution of f and k,.
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