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Abstract. Empirical studies have demonstrated that electrical activity
of the neuron can directly affect neurite outgrowth. In this paper the
implications of activity-dependent outgrowth in a simple two-cell model
are studied. The results show that the interaction among neurite out-
growth (’slow dynamics’), excitation and inhibition (*fast dynamics’) can
generate interesting dynamical behaviour, such as bistability, normal and
’bursting’ oscillations. These features might be associated with two states
of the network: a 'normal’ and a ’pathological’ one, where the last one
shows epileptiform activity patterns.

1. Introduction

Many processes that play a role in shaping the structure of the nervous system
are modulated by electrical activity. For example, electrical activity can affect
neurite outgrowth: high levels of activity cause neurites to retract, whereas
low levels of activity allow further outgrowth [3]. As a result of this and other
activity-dependent processes, a reciprocal influence exists between the forma-
tion of connectivity (’slow dynamics’) and activity (’fast dynamics’). We have
made a start at unravelling the implications of activity-dependent neurite out-
growth [4,5]). In this paper, the interactions among outgrowth, excitation and
inhibition are studied in more detail in a simple ODE model, which enables us
to analyse the complete dynamic behaviour of the model.

2. The Model

The shunting model [2] is used to describe neuronal activity. Here, the dimen-
sionless equations [1,5] are used:
‘;—f = —z4+(1-2)wf(z)-(h+z)pw f(y)
(1)

dy
dt

-y+(1-y)pw f(z)
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z = membrane potential of the excitatory cell, ze[—#,1]; y = membrane po-
tential of the mhlbxtory cell, y¢[0,1); w = connection strength; p = level of
inhibition; f(u) = w
We exclude self-inhibition and assume that the connection between the ex-
citatory and inhibitory unit is symmetrical. For simplicity, we assume that cell
z can adapt its neurites, whereas those of cell y remain constant. The neurite
outgrowth of cell z is modelled as follows. We assume that the connection
strengths of cell z to itself and to cell y are proportional to the size of its neu-
ritic field. Therefore neurite outgrowth is modelled implicitly by the following
equation:
o = g(e-bu?-2) (@)

Thus, high electrical activity z > (e — b w?) causes the neuritic field to
decrease, whereas low activity (z < (e—bw?)) allows outgrowth. The dynamics
of w is on a much slower timescale than that of z and y and is determined by
g. To restrict the size of the cell the saturation term dw? is added. Removing
the saturation does not influence the qualitative results. The parameter values
used are: § = .5;h = .1;¢ = .005;a = .1;b = .00005. The parameters e and p
vary from 0 to 1, their exact values are denoted in the figures.

3. Results

We are interested in the impact on the dynamical behaviour of parameters e
and p; e determines the membrane potential at which the neuron neither grows
out nor retracts its neurites; p stands for the level of inhibition in the model.
By bifurcation analysis it is possible to construct the parameter space e-p (fig.
1). The space is divided by fold lines and hopf lines into regions with different
dynamical behaviour. A fold line consists of points in the parameter space at
which a fold bifurcation (=saddle-node bifurcation) occurs. The crossing of a
fold line due to a small change in the value of e or p means that two equilibrium
points appear or disappear. A hopf line consists of points in the parameter
space at which a hopf bifurcation occurs. Crossing a hopf line indicates that
the stability of one equilibrium point has changed, and that possibly stable
or unstable limit cycles appear or disappear. If all hopf and fold lines in the
parameter space are found, the number and stability of equilibria at every point
in the parameter space is known. A collection of points bounded by fold or hopf
lines is called a parameter region. All points in one parameter region have the
same number and stability of equilibria. In this section the parameter regions
having the most interesting dynamical behaviour will be described.

The parameter p determines the level of inhibition. At p < 0.2, the be-
haviour of the model is qualitatively the same as that in the model without
inhibition. Since ¢ << 1, the dynamics of w is much slower than that of z and
y. Therefore w can be considered as a slowly varying parameter, and = and y
are at quasi steady state at the time scale of w. The trajectories of the system
follow the ’slow manifold’, which is defined by dz/dt = 0, dy/dt = 0. The
intersection(s) of the slow manifold with the nullcline of w (which is defined by
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dw/dt = 0) are the equilibrium point(s) of the model. Fig. 2a shows the phase
plane of z versus w. The slow manifold is S-shaped (hysteresis curve). There
is one equilibrium point.
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Fig 1: Parameterspace e-p. The bold lines are fold bifurcation lines, the dotted lines are
hopf bifurcation lines.
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Fig 2(a) The siow manifold in the w-z plane, p = 0 (b) The slow manifold and the
w-nulicline at e==0.6; p = 0, the bold line indicates a trajectory startingat w=z =y = 0.

The nullcline of w, and thus the position of the equilibrium point can be shifted
vertically by varying the parameter e. This corresponds to a walk through
parameter space with constant p and varying e. In parameter region 1 there is
one stable equilibrium which is at branch AB of the slow manifold. In region
2 there is one unstable equilibrium at branch BC of the slow manifold and a
stable limit cycle. In region 3 there is one stable equilibrium at branch CD. A
trajectory starting at w=0 will first follow branch AB, jump to CD and then
approach the equilibrium point (fig. 2b, bold line). The trajectory therefore
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shows a transient overproduction in w (overshoot).
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Fig 3: The slow manifold in the w-z plane and the w-nulicline at the following parameter
values: (a) p==0.4; e=0.56 (b) p=0.4; e=0.5 (c) p=0.4; e=0.4 (d) p=0.6; e=0.12.

When the value of p is increased, the shape of the slow manifold changes
(fig. 3a) due to a cusp bifurcation at p = 0.394 and e = 0.52 (fig. 1). In
parameter region 6 there are five equilibria. Equilibrium points 1 and 3 are
stable and 2, 4 and 5 are unstable (equilibria 4 and 5 are not shown). A slight
decrease in e causes successively a hopf and a fold bifurcation, thus arriving in
region 5. In this region there are 3 equilibrium points, of which one is stable
and two are unstable (fig. 3b). Besides the point attractor there is another
attractor in the system, namely a stable limit cycle (fig. 4a) The limit cycle
can be considered as a switching between two states. Let’s for the moment
assume w to be a parameter rather than a variable. At w < 17, z and y are in
an oscillatory regime, whereas at w > 17, z and y are stable. At w ~ 17 a fold
bifurcation occurs, where a saddle and a stable node appear. The limit cycle
glues with the stable manifold of the newly appeared saddle node (homoclinic

90



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 87-92

bifurcation). A very slight increase in w causes the trajectory to move via the
unstable manifold of the saddle to the stable node. Now we consider the full
system again, where changes in w are dependent on the membrane potential
z. If z < (e — bw?), dw/dt > 0, whereas w decreases if £ > (e — b w?). In the
phase plane this means that w increases below the w-nulicline and w decreases
above the w-nullcline. At w < 17, z and y are in the oscillatory regime and on
average = < (e — b w?). Therefore w increases. On the other hand, at w > 17,
z and y are stable, z > (e — b w?) and thus w decreases. In this way w ’pulls’
the system back and forth through the homoclinic bifurcation.
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Fig. 4: Timeplots of stable limit cycles. (a) stable limit cycle in parameter region 4 and
5 (b) stable limit cycle in parameter region 1.

This type of oscillations is also known as ’bursting oscillations’, and is the
second attractor in region 5. Starting at w=0, a trajectory will show overshoot
and finally end up in the stable equilibrium point. However, if the network
develops without electrical activity w will keep-increasing. - If the -activity is
then allowed to return after some time, the system will go to the limit cycle
attractor. Thus region 5 shows a ’critical period’ for pruning of connections.
At larger values of p, even the initial conditions w = 0 are in the basin of
attraction of the limit cycle attractor. This implies that under high inhibition,
even during normal development (electrical activity is not blocked) the system
can end up in the limit cycle attractor. For the existence of this limit cycle, it
is needed that on average r < (e —bw?) during the oscillations of z and y. This
means that if the value of e is too small, the limit cycle will disappear. Another
condition for the existence of the limit cycle is an oscillatory state for z and
y, which exists only if 0.39 < p < 0.77. The third condition is the existence
of the homoclinic bifurcation, which is caused by a fold bifurcation. Because
of these conditions, this limit cycle can exist only in the parameter regions 4,
5, 6 and 7, although the conditions for its existence are not met everywhere in
these regions.

Further decreasing e causes a hopf bifurcation in equilibrium 1, arriving in
region 4 in which there are three unstable equilibrium points (fig. 3c). The
stable limit cycle described previously still exists. At the hopf bifurcation a
second stable limit cycle is born that is the same one as that in region 2. The
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two stable limit cycles show different dynamical behaviour. The first oscillates
in r and y, alternated by long periods of high steady activity; w is almost
constant throughout the process. The second limit cycle causes z, y and w to
oscillate very slowly with high amplitude (relaxation oscillations).

As described before, in region 1 there is only one point attractor. However,
at some points in this region there exists a second attractor (fig. 3d). Thisis a
stable limit cycle (fig. 4b). Intuitively, we can understand the existence of this
limit cycle in the following way. At the present parameter values, £ and y are
in the oscillatory regime if w > 7. On average z < (e — b w?) and w increases.
However, at for instance w = 50, ¢ > (e — b w?). Somewhere in between, on
average r equals (e — bw?), and there is no net increase or decrease in w. Here
a stable limit cycle exists that oscillates in z and y with high amplitude and in
w with low amplitude. Mathematically, we think that the limit cycle is born
at a hopf bifurcation on the hopf line that is the boundary between region 4
and 11.

4. Conclusion

It is demonstrated in this paper that a simple model of activity-dependent out-
growth can generate a great variety in dynamical behaviour, depending on the
parameters p and e. For instance, parameter regions 1 and 5 show one stable
state at low connectivity level and intermediate values of z and y, together with
a stable limit cycle where connectivity is very high and z and y oscillate with
large amplitude. The former state could be associated with a normal state of
the brain, whereas the latter shows epileptiform activity and could therefore
represent a ’pathological’ state. As shown in this model, too much inhibition
(high p) during early development could. result in ending up in the ’patholog-
ical’ state, whereas at low p this latter state does not exist. Interestingly, the
normally inhibitory neurotransmitter GABA works excitatory during early de-
velopment.
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